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Designing collective behaviors for robot swarms is a difficult endeavor due to

their fully distributed, highly redundant, and ever-changing nature. To overcome the

challenge, a few approaches have been proposed, which can be classified as manual,

semi-automatic, or automatic design. This paper is intended to be the manifesto of the

automatic off-line design for robot swarms. We define the off-line design problem and

illustrate it via a possible practical realization, highlight the core research questions, raise

a number of issues regarding the existing literature that is relevant to the automatic off-line

design, and provide guidelines that we deem necessary for a healthy development of the

domain and for ensuring its relevance to potential real-world applications.
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Although swarm robotics is widely recognized as a promising approach to coordinating large
groups of robots (Dorigo et al., 2014; Yang et al., 2018) and has already gained a prominent
position in the scientific literature (e.g., see Rubenstein et al., 2014; Werfel et al., 2014; Garattoni
and Birattari, 2018; Slavkov et al., 2018; Yu et al., 2018; Li et al., 2019; Xie et al., 2019), a general
methodology for designing collective behaviors for robot swarms is still missing (Brambilla et al.,
2013). The design problem is particularly challenging because it aims at producing a system that is
autonomous, fully distributed, and highly redundant: robots do not have any predefined role and do
not rely on any external infrastructure (Beni, 2004; Şahin, 2004). A robot swarm is a loosely coupled
system in which the collective behavior of the system results from the local interactions between
individuals, and between them and the environment. These interactions cannot be explicitly
defined at design time due to the high uncertainty that characterizes the operation of a swarm.
As a result, at least in the general case, it is impossible to tell what the individual robots should do
so that a desired collective behavior is achieved. This rules out the application of traditional multi-
robot systems and software engineering techniques, which rely on formally deriving the individual
behaviors of the robots from specifications expressed at the collective level (Brugali, 2007; Di Ruscio
et al., 2014; Bozhinoski et al., 2015; Schlegel et al., 2015).

A few methods/tools have been proposed that, under a number of restrictive hypotheses and
constraints, support the designer for specific classes of missions (Hamann andWörn, 2008; Kazadi,
2009; Berman et al., 2011; Beal et al., 2012; Brambilla et al., 2015; Reina et al., 2015; Lopes et al.,
2016; Pinciroli and Beltrame, 2016). Also, a few automatic (and semi-automatic) design methods
have been proposed that operate under various assumptions (Nolfi and Floreano, 2000; Watson
et al., 2002; Duarte et al., 2014; Francesca et al., 2014). For recent discussions, see Francesca and
Birattari (2016) and Bredeche et al. (2018).

This paper is intended to be the manifesto of the automatic off-line design of robot swarms.
In this approach, the design problem is cast into an optimization problem that is solved
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off-line—that is, before the swarm is deployed in the target
environment. An optimization algorithm searches a space of
possible designs with the goal of maximizing an appropriate
mission-specific performance measure. Within the design
process, the performance of candidate designs explored by
the optimization algorithm is assessed via computer-based
simulations. Once the optimization algorithm terminates, the
selected design is uploaded to the robots and the swarm is
deployed in its target environment. In the following, we focus
mostly on the development of software but the discussion can
be directly extended to the hardware. For example, the automatic
off-line design process might optimize the number of robots in
the swarm; if the swarm is heterogeneous, select the fraction of
robots of type A, B, C,. . . ; fine-tune parameters of hardware or
firmware; activate/deactivate or add/remove hardware modules;
design chassis, shell, or attachments.

Our vision is that, in a relatively close future, automatic off-
line design will be a practically relevant way of realizing robot
swarms. Likely, it will not be the only one: other approaches
will be available, each with its specific advantages and ideal
areas of application, as well as its disadvantages and limitations.
Among them, we foresee that a relevant role will be played
by manual design, semi-automatic design, automatic on-line
design, and hybrid approaches that combine the previous ones.
Nonetheless, we expect that the automatic off-line approach will
play a major role, both on its own and also as a component of
hybrid approaches.

In the automatic off-line approach, robot swarms are
generated to perform missions that are sampled from a given
class of interest and are sufficiently different from one another
to possibly require (or benefit from) a tailored design. An
automatic off-line method must operate on the missions of the
given class without requiring eithermission-specific adjustments,
or per-mission human intervention. The notion of a class of
missions plays here a central role. It refers to a set of missions,
together with a probability measure defined on them, which
determines their relative frequency of appearance. Typically, an
explicit, closed-form definition of the set of missions and of the
probability measure is not available—and is not even needed.
Instead, what we have is a stream of missions sampled from
the class of interest according to the aforementioned probability
measure. The assumption that missions are sampled according
to a probability measure gives a formal meaning to the notion
of expected performance, as well as to any other statistics one
might wish to adopt to describe the aggregate behavior of a
design method across the missions of interest. To illustrate the
automatic off-line design of robot swarms, it is convenient to
sketch one of its possible practical applications.

Fiorella’s swarm gardening

(for an artist’s rendition, see Figure 1)
Fiorella owns a robot-swarm gardening business and offers
her individually-tailored service to her many customers in
the Brussels area. She has a busy schedule: every day,
she visits three or four customers with her gardening

swarm. Customers book Fiorella’s service via a form on
her website. Through the form, they ask for one or more
specific interventions—e.g., cutting grass, watering flowers.
They also provide relevant information on their garden—
e.g., size, shape, orientation. The interventions requested and
the characteristics of the garden specify the mission that
Fiorella’s swarm must perform for a specific customer. As the
list of possible interventions and characteristics of the garden
is huge, the class of possible missions is overwhelmingly
large and rather diverse. To provide her customers with
the best gardening experience—but also to cut costs and
maximize her benefit—Fiorella relies on an automatic off-
line method that designs and fine-tunes the behaviors of
her swarm specifically for each mission. The design process
takes place while Fiorella drives her swarm to the customer’s
garden: her powerful computers run simulations using the
information provided by the customer on the interventions
and on the garden. The design process must be performed
within a limited amount of time—the time of the ride to
the customer’s. As Fiorella arrives on the spot, the selected
design is uploaded to the robots and the swarm is deployed in
the garden. Fiorella cannot intervene in the design process—
she drives the van in the meantime. Moreover, due to her
tight schedule, Fiorella cannot either test the selected design
on the robots before deployment and possibly re-run the
design process: once she reaches the customer, robots must
be operational. Any per-mission human intervention and
any test on the robots in the target environment would
be too time consuming and expensive: they would increase
costs dramatically and Fiorella would be unavoidably out of
business.

Missions in the class of interest can be relatively minor
variations of each other—e.g., cut the grass in a small garden;
in a large one; in one with a central flower bed. In this case,
the behaviors to be produced will be similar, with some minor
differences to increase performance or reduce execution time.
Missions can also be substantially different in the nature of
their goals and require major differences in the behaviors to be
realized—e.g., cut the grass; gather dead leaves in a specific place;
locate and map mole tunnels.

In Fiorella’s example, the central role of the notion of class
of missions emerges clearly. Fiorella faces a stream of missions
sampled from the possible missions for which customers might
demand her intervention—and which her swarm can hopefully
accomplish. It is in the repetitive nature of the design problems
faced by Fiorella that the significance of automatic design lies.
Indeed, if Fiorella had to solve a single design problem (instead
of a stream thereof) she could more profitably solve it either
manually or via a semi-automatic designmethod1. It is only when
one has to solve a stream of design problems that the human
intervention might become uneconomical or even unfeasible.

1 By semi-automatic design, we mean an approach in which a human designer is

assisted by an optimization process similar to the one of automatic design, but can

afford intervening in the process (on a per-mission basis) to guide it according to

their insight.
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FIGURE 1 | Fiorella’s swarm gardening. Fiorella’s robots can perform a large class of gardening missions. Through her website, customers book Fiorella’s services,

specify the interventions to be performed, and provide a description of their garden. On the basis of this information, while Fiorella drives her robots to customers, her

algorithms automatically design and fine-tune the behavior of the robots so as to offer a tailored service. When she arrives at a customer location, the gardening

swarm is operational and immediately deployed.

Conceiving, implementing, and setting up an automatic design
method is in itself an investment of time and resources, which
pays off only if the design process is then repeated a sufficient
number of times on multiple missions—those of the class for
which the automatic design method is conceived. If one had to
address a single mission, it would be more sensible to invest
time and resources on that specific mission—by adopting an ad-
hoc manual or semi-automatic approach—rather than on the
development of an automatic design method that would be then
used only once. For a schematic representation of the automatic
off-line design process, see Figure 2.

Fiorella’s example allows us to highlight a number of issues
and research questions that are relevant to the automatic off-line
design of robot swarms.
Can effective robot swarms be designed automatically via

an off-line process? Can we conceive a method to
automatically design a swarm for anymission within a given
class?What is the class ofmissions for which a givenmethod
can design an appropriate swarm? How can a given method
be generalized to solve a larger class of missions?

Given a class of missions, which is the most appropriate

design method? What elements or characteristics of a
design method influence its ability to handle missions of
a given class? Vice versa, what elements/characteristics of
a class of missions might suggest that a given method is
appropriate to handle them? Which features of a specific
mission make it challenging for a given design method?
Are these challenging features equally challenging for all
possible design methods? Is it possible to match challenging
features of missions with characteristics of design methods?

To what extent a given design method is robust to the

so called reality gap—that is, the difference between

simulation models and reality? Is it possible to predict
the performance drop that a swarm designed off-line will
experience when deployed in the target environment? Are
different design methods equally sensitive to the reality
gap? What elements/characteristics of a design method

make it more or less robust to the reality gap? Can these
characteristics be leveraged to engineer a design method
that is inherently robust to the reality gap? How should
models be devised to be effectively used within an off-line
design process?

How efficient is a design method? In other terms, how many
off-line simulation runs are required to produce an effective
design? What elements/characteristics of a design method
increase/decrease its efficiency? How well does a given
design method behave for a large/small design budget—that
is, when allowed to perform few/many off-line simulation
runs? Does the efficiency of a design method depend
on the specific mission or class of missions considered?
What elements/characteristics of a mission determine the
minimum size of the design budget needed to produce an
effective design? When should a design process be stopped?

This list of questions encompasses many relevant issues
but it is by no means exhaustive. For example, other
relevant issues would concern the off-line definition of
the swarm size (or its spatial density), its impact on
performance, and the robustness/scalability of behaviors
that are automatically designed.

A body of literature exists that is relevant to the automatic
off-line design of robot swarms. The largest share of the design
methods described in the relevant literature belong in the
neuro-evolutionary domain (Nolfi and Floreano, 2000): robots
are controlled by a neural network whose synaptic weights
(and possibly the topology) are optimized by an evolutionary
algorithm (Quinn et al., 2003; Christensen and Dorigo, 2006;
Baldassarre et al., 2007; Trianni, 2008; Hauert et al., 2009; Trianni
and Nolfi, 2009; Waibel et al., 2009; Ferrante et al., 2013, 2015;
Gomes et al., 2013; Trianni and López-Ibáñez, 2015). For a review
of the neuro-evolutionary approach (including also single-robot
studies) see Floreano and Keller (2010), Bongard (2013), Bongard
and Lipson (2014), Trianni (2014), Doncieux et al. (2015), and
Silva et al. (2016). Other approaches depart from neuro-evolution
as (i) robots are controlled by software architectures other than
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FIGURE 2 | Flowchart diagram of the automatic off-line design process. A mission is sampled from a class of interest. Using computer-based simulations, an

automatic design method defines a robot swarm tailored to the mission sampled. Once the automatic design terminates, the swarm is deployed in the target

environment and has to cross the so-called reality gap—the possibly subtle but inevitable difference between simulation and reality (Brooks, 1992; Jakobi et al.,

1995)—which is among the most challenging issues in automatic off-line design. The process is repeated ad libitum. It should be noted that an automatic design

method could generate a robot swarm from scratch for every mission sampled or could refine and adapt a solution previously generated for a similar one. It could

also, for example, produce a robot swarm by combining and modifying solutions (or partial solutions) contained in a catalog of template solutions that were

pre-defined by a human expert. The only condition that needs to be respected for the process to be qualified as automatic off-line design is that such initial (partial)

solutions must be selected without any per-mission human intervention and without recourse to tests performed in the target environment.

neural networks (Hecker et al., 2012; Gauci et al., 2014a; Jones
et al., 2016), or (ii) they adopt optimization algorithms other than
an evolution algorithm (Pugh et al., 2005), or (iii) both (Francesca
et al., 2014, 2015; Gauci et al., 2014b; Kuckling et al., 2018).
Besides, a few studies exist that provide insight into the reality gap
in the automatic design of robot swarms and/or define methods
to handle it (Francesca et al., 2014; Birattari et al., 2016; Ligot and
Birattari, 2018). Additionally, a number of methods have been
proposed that, although described in single-robot applications,
are relevant to the design of robot swarms (Jakobi et al., 1995;
Miglino et al., 1995; Floreano and Mondada, 1996; Jakobi, 1997;
Bongard and Lipson, 2004; Zagal et al., 2004; Boeing and Braunl,
2012; Koos et al., 2013).

It is our contention that, with only few exceptions, the
aforementioned methods have been studied following protocols
that were not conceived to directly address the core research
questions sketched above. Although these protocols allowed
studies which partially addressed those questions, they were
conceived to target other questions that are mostly relevant
to other domains including, for example, evolutionary biology
and the semi-automatic design of robot swarms1. In almost
the totality of the studies, the focus is on a specific mission
that must be performed by a swarm—or, equivalently, on a
specific capability that the swarm should acquire and display.
The design method is proposed only as a way to achieve the
desired collective behavior and is not the protagonist of the
study: the study is not structured to highlight its properties
and assess its performance. The design method has so little
importance that it is not customarily given an identifying name—
contrary to what happens in related fields such as machine
learning or heuristic optimization. Typically, the design method
is tested on a single mission and it is not compared to any
alternative. It is rare that a same design method is tested
across multiple studies on multiple missions without undergoing
any (manually-applied) mission-specific modification. In many
studies, the control software produced by a design method is
tested only in simulation and no assessment is provided on
whether and to what extent it crosses the reality gap satisfactorily.
Moreover, design methods survive only the time span of the

paper in which they are introduced and their implementation is
not routinely made publicly available for further studies, to be
possibly performed by a third party. Often, a design method is
run iteratively on a single mission. It is run once, the behavior
generated is inspected by the designer who then modifies the
method itself or the objective function to be optimized—e.g.,
by adding/removing terms. These activities are then iterated at
will until a satisfactory behavior is obtained. In most cases, this
iterative process is not detailed in research articles: it is often
unclear how many iterations have been performed, what has
been measured at each iteration, what modifications have been
implemented, what ideas have been tried and then abandoned.
In these cases, the research articles present only the final setting
that eventually generated the behavior discussed. The iterative
process is repeated only once, as it would be difficult to produce
independent trials of a process that features a human in the loop.
As a result, the robustness and the repeatability of the process are
not assessed.

An appropriate protocol to address the aforementioned
issues should reflect the following tenets of the research in
automatic off-line design: (i) automatic off-line design methods
should not be mission-specific and should be able to address a
whole class of missions without undergoing any modification;
(ii) once a mission is specified, human intervention is not
provided for in any phase of the design process. Indeed,
research that is intended to be relevant to the automatic
off-line design of robot swarms should exclude the case in
which design methods are conceived for or are manually
adapted to a specific mission—for example, by manually
tuning parameters of the optimization algorithm and/or of
the control architecture, or by pre-filtering sensor readings
on the basis of insight that only a human designer can
provide. It should also exclude the case in which, on a
per-mission basis, human designers are allowed to inspect
(via either simulation or robot experiments) the behavior of
an automatically designed swarm and, on the basis of their
observations, modify elements of the automatic design process
and iterate it at will, until they obtain satisfactory results.
In particular, human designers should not be allowed, on a
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per-mission basis, to use any insight gained through inspection to
modify the design method (optimization algorithm, architecture,
sensor pre-filtering, etc.); to adapt simulation models; and to
amend the objective function by adding/removing terms so
as to steer the design process as wished. On the other hand,
to effectively contribute to the development of the domain,
researchers in the automatic off-line design of robot swarms
should pay particular attention to a number of methodological
issues. In particular, they should: (a) provide a clear and thorough
description of the design methods they propose, including a
list of the value of all parameters; (b) precisely characterize
the platforms for which these methods can generate control
software; (c) clearly identify and name methods for future
reference; (d) publish implementations; (e) test methods on
multiple missions; (f) identify—at least informally—the class
of missions that a method is intended to address; (g) perform
comparative studies in which methods under analysis are tested
under the same conditions; and (h) run robot experiments to
assess robustness to the reality gap. It is our contention that this
minimal set of guidelines will allow the domain to grow healthy
and thriving so as to eventually prove its practical relevance in
real-world applications.
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