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We present Bento Box, a virtual reality data visualization technique and bimanual 3D

user interface for exploratory analysis of 4D data ensembles. Bento Box helps scientists

and engineers make detailed comparative judgments about multiple time-varying

data instances that make up a data ensemble (e.g., a group of 10 parameterized

simulation runs). The approach is to present an organized set of complementary

volume visualizations juxtaposed in a grid arrangement, where each column visualizes

a single data instance and each row provides a new view of the volume from a

different perspective and/or scale. A novel bimanual interface enables users to select

a sub-volume of interest to create a new row on-the-fly, scrub through time, and quickly

navigate through the resulting virtual “bento box.” The technique is evaluated through a

real-world case study, supporting a team of medical device engineers and computational

scientists using in-silico testing (supercomputer simulations) to redesign cardiac leads.

The engineers confirmed hypotheses and developed new insights using a Bento Box

visualization. An evaluation of the technical performance demonstrates that the proposed

combination of data sampling strategies and clipped volume rendering is successful in

displaying a juxtaposed visualization of fluid-structure-interaction simulation data (39 GB

of raw data) at interactive VR frame rates.

Keywords: virtual reality, ensemble visualization, comparative visualization, 3D user interfaces, small multiples

1. INTRODUCTION

Science and engineering workflows increasingly rely upon ensembles—“concrete distributions of
data, in which each outcome can be uniquely associated with a specific run or set of simulation
parameters” (Obermaier and Joy, 2014). Analyzing these ensembles is a challenging task that
involves not just understanding specific data values and trends but also making comparisons.
Visualization can help, and recent ensemble visualization research has made it possible to: (1)
manage and render some of the large datasets that are encountered with ensembles (Vohl et al.,
2016); (2) use interactive techniques to navigate through large ensemble parameter spaces (Sedlmair
et al., 2014), including using both local-to-global (Coffey et al., 2013) and global-to-local
approaches (Bruckner and Moller, 2010); and (3) use simulation steering to explore “what if ”
scenarios (Waser et al., 2010, 2014). Unfortunately for scientists and engineers, much work
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remains—successful ensemble visualization requires not just a
minor adjustment of the traditional visualization pipeline but
rather a significant reworking.Major current problems include:

• The lack of connection between the research on ensemble
visualization and theoretical research on comparative
visualization (Gleicher et al., 2011; Gleicher, 2017; Kim
et al., 2017) which discusses fundamental trade-offs between
perceptual strategies required for making comparisons, such
as juxtaposition (side-by-side), superposition (overlayed),
interchangeable (animating through or interactively switching
between viewing a single data instance at a time), explicit
encoding (e.g., computing the difference between data instances),
and hybrid approaches.

• The lack of ensemble visualization techniques, including user
interfaces, designed specifically for use in virtual reality (VR)
environments. We know perspective-tracked, stereoscopic
displays can outperform desktop tools for spatial perception
tasks (Ware and Mitchell, 2005, 2008), but designing effective
VR visualization tools is challenging and requires synthesizing
and refining user interface research results on bimanual
interaction (Hinckley et al., 1997), navigation (Stoakley
et al., 1995), selection (Bowman and Hodges, 1997), and
manipulation (Mapes and Moshell, 1995) (citations limited
here to some early, seminal works); these VR and 3D user
interface research results are not always widely cited and used
in scientific visualization.

• The need for additional examples (i.e., case studies) of how
to organize data and perform rendering of different types
of ensembles. This is important because rendering at the
ensemble scale requires fundamentally different approaches
for 4D fluid dynamics computed on unstructured grids
(explored here) as compared to, for example, 2D maps
and imagery (Javed et al., 2012). In addition, visualizing
spatial relationships and interaction between data parts in
multimodel scenarios (i.e., fluid and structure interactions) is
rarely explored (Kehrer and Hauser, 2013).

This paper addresses the specific unsolved challenge of
visualizing moderate-sized ensembles (e.g., containing on the
order of 10 data instances) of state-of-the-art, time-varying
fluid-structure interaction simulations run on high-performance
computing platforms. This size of ensemble is useful to study
because it is large enough to present challenges in rendering and
visual comparison but not so large as to rule out the possibility
of visualizing the entire ensemble simultaneously. The strategies
developed for this scale can likely be combined with others (e.g.,
filtering) to address larger ensembles.

This paper also focuses on VR-based visualization. The
rationale for VR is based on the data. With interdisciplinary
collaborators, we are studying simulations of blood flow
through the heart, and this requires analyzing complex spatial
relationships, such as subtle differences in 4D vortical structures.
Formally, low-level perceptual studies suggest that perspective-
tracked, stereoscopic visualization can facilitate understanding
complex spatial relationships found in 3D data (Ware and
Mitchell, 2005, 2008), providing evidence for the likely utility of

VR in our work. Informally, our collaborators have consistently
cited an improved ability to see spatial patterns in the data with
VR and repeatedly demanded to analyze the data using VR over
the course of a 5+ year project. Taken together with the fact that
there is no longer a financial barrier to using VR for scientific
visualization, we take this as strong motivation.

Our proposed solution builds upon recent theory on
comparative visualization in 2D contexts (Gleicher et al., 2011;
Gleicher, 2017) as well as 3D and 4D (3D + time) contexts (Kim
et al., 2017). Specifically, we adopt the fundamental approach to
visual comparison known as juxtaposition and adapt it to suit
VR-based volumetric visualization.

The rationale for the juxtaposition strategy as compared
to the interchangeable strategy (another fundamental approach
discussed in the literature) can be summarized by the
visualization rule of thumb, “eyes beat memory” (Munzner,
2014); making comparisons is easier if we can see the items to
compare simultaneously rather than trying to remember one or
more previously viewed items. The rationale for juxtaposition as
compared to superposition is specific to the data of interest. These
4D data are so dynamic and the spatial patterns so complex, that
we rule out superposition due to the extreme complexity and
occlusion issues that would occur when rendering 10 blood flow
datasets in the same visual space. The final fundamental approach
to comparative visualization discussed in the literature is explicit
encoding. Explicit encoding is an excellent approach and could
be used within an extended version of our tool (future work);
however, designing a new explicit encoding for comparison is so
dataset specific that it often becomes its own research project with
results that may not translate well to other datasets.

This leads us toward a juxtaposition approach, in general,
however, juxtaposition is not perfect, and the trade-offs are
what makes designing an effective ensemble visualization such a
challenge. For example, one concern with juxtaposition is that
when visuals to compare are viewed side-by-side, the viewer’s
eyes must move back and forth between the visuals in order to
find correspondences and notice differences. This takes effort
and time, and the naïve approach of simply rendering each data
instance, one next to the other, is unlikely to be the most useful,
especially when the key differences are subtle and appear in small
sub-regions of the volume data. Our strategy to mitigate this is to
make it possible for users to interactively design a spatial layout
that places all of the volumetric features of interest as close as
possible to each other. We call the resulting tool, which neatly
slices and places data into an organized grid of sub-volumes,
Bento Box.

Figure 1 shows Bento Box in use with the medical device
design application. Diving into this example just a bit now, we
know engineers need to analyze several important sub-volumes
of data within the right atrium of the heart, including: (1) the
stress in the right atrial appendix, (2) the speed of the flow in
the main vortex that forms, and (3) the stress through a cross-
section of the lead inserted in the heart. Engineers must analyze
all of these aspects and more, making comparisons across each
instance, in order to completely understand the ensemble. A key
design goal is, therefore, to make it as easy as possible for users
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to compare a specific volumetric feature (we will call this a sub-
volume of interest) while also switching focus easily back and
forth between several sub-volumes of interest. The Bento Box
technique accomplishes just this.

Bento Box naturally draws upon and advances research
that is relevant to both the VR and Visualization research
communities, and we expect this paper to be especially relevant
to the growing number of researchers that span the two
communities. Our contributions necessarily span both technical
areas and include:

• The design of Bento Box, a VR visualization technique for
comparative analysis of 4D data ensembles.

• A novel bimanual 3D user interface that supports: (1) zooming
and reframing the Bento Box, (2) selecting sub-volumes of
interest, (3) navigating within these sub-volumes, and (4)
specifying multiple critical times to compare.

• A case study that describes how to apply rendering and
data-sampling algorithms for visualizing Fluid-Structure-
Interaction (FSI) simulation data for the first time to multiple
instances of these data simultaneously in stereoscopic, head-
tracked VR.

• A performance evaluation of the rendering and data sampling
strategies applied to the cardiac application.

• User feedback from the interdisciplinary application.

The paper is organized as follows. After additional discussion of
related work, we present the Bento Box technique. The key novel
aspects here are the visual layout and VR user interface, both
of which are likely to generalize to use with other volumetric
datasets. Then, we present the application developed as part of
a multi-year interdisciplinary team-science research project; this
includes important details, such as data sampling strategies, that
are required tomake the technique practical for use withmodern,
actively researched 4D flow datasets. The real-world application
serves as an initial evaluation of the technique, and both user
feedback and rendering performance are reported. Finally, we
discuss limitations and future work as well as conclusions.

2. RELATED WORK

Several areas of related work are relevant.

2.1. Ensemble Visualization and
Comparative Visualization
Sedlmair et al. present a conceptual framework that is useful
for characterizing ensemble visualizations, including several
fundamental approaches for navigating through a parameter
space (Sedlmair et al., 2014). One such approach is “local-to-
global,” as demonstrated in Design by Dragging (Coffey et al.,
2013). Here, for the most part, the user focuses on visualizing just
a single instance of data at a time, and the emphasis within the
user interface is on making it easy to transition from the current
instance to others that make up the ensemble. Connecting to the
literature on comparative visualization, this work uses what Kim
et al. describe as an “interchangeable approach” augmented with
animated transitions (Kim et al., 2017). Recall, this approach has

a key theoretical perceptual limitation—the data to compare are
not simultaneously visible.

Bruckner and Möller present an alternative (Bruckner and
Moller, 2010), characterized by Sedlmair et al. as “global-to-
local.” Here, the visualization system starts with an overview in
the form of thumbnail images. The thumbnails enable juxtaposed
comparative visualization at the overview level. Interactive filters
then make it possible for users to narrow the search space to
the most promising subset of the ensemble for closer inspection.
Individual data instances can then be examined one at a time
in a single 3D view window. In comparing with Bento Box, a
major strength of this approach is the filtering, which enables
the technique to scale to larger ensembles. However, a drawback
relative to Bento Box is that detailed analyses of the final volume
data are done on the desktop with a single 3D window at a time.
Comparing this as well as related ensemble visualization tools
that include some form of juxtaposed comparison, for example
World Lines and follow-on systems (Waser et al., 2010, 2014), a
key difference with Bento Box is supporting not just comparison
via overview thumbnails in the top row of the widget, but also
detailed comparisons of even subtle variations across multiple
volumes that can all be viewed simultaneously from multiple
vantage points in VR.

Vohl et al. (2016) have done some of themost impressive work
in ensemble visualization from a systems perspective, multiple
data instances may be displayed juxtaposed for collaborative
analysis using an ecosystem of displays (desktop, mobile, and
VR); in VR/large-screen mode the system uses a handheld tablet
as a display controller. In contrast, Bento Box is optimized for
VR and introduces a bimanual user interface for not just rotating
data and assigning data instances to specific sub-displays but also
for selecting sub-volumes of interest in 3D space and reframing
the virtual display for comfortable viewing. This is intentionally
designed to enable a fluid style of data exploration so users do
need to look away from the data when operating the interface.

Chi et al. (1997) introduced a spreadsheet-inspired layout for
data visualization, highlighting that “Custom Tabular Layouts
Enable Comparisons” and including data processing operators,
such as subtracting one data instance from another. Working
with volumetric data where explicit “difference” encodings are
often more complex to compute, Jankun-Kelly and Ma (2001)
combine volume rendering and a spreadsheet-like interface to
visually explore an ensemble. Axes may represent ensemble
parameters, time, color maps, or transfer functions. Bento Box
extends the concept of a 2D grid, small-multiples-style layout to
one where users to interactively set the views along the vertical
axis based on spatial croppings of volume data. In addition,
Bento Box reinterprets the approach as a native VR visualization
technique with integrated 3D user interface.

Finally, Alabi et al. (2012) take an innovative approach to
comparative visualization where multiple surface models are
sliced and then displayed in an interleaved 3D space. The result
is visually distinct, but the approach shares a similar underlying
theoretical reasoning with Bento Box. Both techniques prefer
juxtaposition to superposition, reasoning that the resulting
3D visual display would be too complex with superposition.
However, both also recognize that the spatial separation that
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FIGURE 1 | Bento Box is a virtual reality visualization and 3D user interface technique for comparative analysis of data ensembles, such as this set of 10 time-varying

simulations of blood flow around a cardiac lead in the right atrium of the heart. Each column shows a simulation with different parameters, here varying the length and

stiffness of the lead. Each row shows a different view of the data. The top row is a zoomed-out overview. Users add additional rows of complementary, zoomed-in

views during analysis.

comes with a naïve application of juxtaposition (one complete
dataset next to another, then another,...) is also problematic. The
solution in both involves slicing the data, placing corresponding
sub-volumes as close together as possible. The key differences
in Bento Box are the use of more complex 4D data, including
fluid flow, which would likely not work well with the extreme
spatial interleaving Alabi et al. use for surfaces, and the fact that
the sliced display can be defined interactively by the user directly
within a VR environment. Slicing to pull out subsets of data for
comparison has also been used in 2D visualization (e.g., for time-
series and image data) (Javed and Elmqvist, 2010; Javed et al.,
2012); but, the spatial arrangement and interface are necessarily
different when working with volume datasets.

2.2. Flow Visualization and Animation
There is a long history of visualizing fluid flows in VR, dating
to Bryson’s seminal Virtual Wind (Bryson, 1996). Early work
in this area relied upon interactive visualization widgets, such
as interactively placed particle emitters and streamline rake
widgets. This elegantly enables user exploration but it also has
a key limitation in that the data are essentially hidden from
the display until the user places widgets to reveal them. The
Particle Flurries technique takes an opposite approach, using a
fleet of carefully seeded particles to present a synoptic animated
view of the data (Sobel et al., 2004). For many tasks (e.g.,
gaining an overall understanding of a flow), we see this as the
preferable approach; however, it is not well suited to comparative

visualization, as reading 10 animated flow visualizations side-by-
side would simply be impossible from a perceptual standpoint.
Our approach is a hybrid. Flow visualizations are pre-populated
with 3D comets inspired by Mitchell et al.’s carefully designed 2D
streaklets (Mitchell et al., 2009), but the default presentation is
static rather than animated.

The best role for animation is something that was considered
carefully in Bento Box. Prior perceptual research suggests that,
although animation can be useful for explaining trends, it is less
useful for data analysis tasks (Tversky et al., 2002; Robertson et al.,
2008). For identifying trends in the first place, it is often the
case that a carefully designed static visualization is better than
an animated visualization. In addition, prior VR-based studies
suggest that interactive control over time is useful and important
to support for some tasks, such as identifying the exact moment
of collision by two objects in 3D space (Coffey et al., 2012a).
These motivate our approach to default to static views of multiple
time steps and support interactive control of time and animated
overviews as options. A timeline interface is used; however,
the direct manipulation interface introduced by Hentschel et al.
(2008), would integrate perfectly into Bento Box and is a planned
future addition to the tool.

2.3. Bimanual and 3D User Interfaces
Navigation, object selection, and object manipulation are major
topics within the VR and 3D user interface research (Bowman
et al., 2004). What is unclear from the prior literature is how best
to move these techniques from user studies or other application
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scenarios to complete, high-end visualization applications. For
example, there is no prior work that demonstrates how to select
sub-volumes of interest within 3D visualizations using the same
bimanual controllers that are also used for multi-scale navigation
of multiple datasets and for system control (e.g., interacting with
menus and timelines).

Bento Box extends the bimanual scene navigation and object
manipulation techniques first introduced by Mapes and Moshell
(1995), which have since been revisited and revised many times
(e.g., Cutler et al., 1997; Keefe et al., 2001). Specifically, Bento Box
makes it possible to use these techniques at multiple scales. When
the user’s hand enters the Bento Box, the technique transitions
from a scene-level manipulation to a local object manipulation
interface. Another extension is that a laser (ray-casting) based
selection is used for easy, coarse selections when working from
a distance, but this seamlessly transitions to a cursor, point-based
interface for detailed selection of sub-volumes of interest when
the hand is held inside the Bento Box. In addition to these smooth
interface transitions, Bento Box also includes automated view
adjustments for quickly zooming to a subsection of the grid or
zooming back out to an overview state.

Building upon early theoretical work in bimanual user
interfaces in 2D (Hinckley et al., 1997; Leganchuk et al., 1998)
operations are assigned to the hands following the guidance that
the non-dominant hand should set the context within which
the dominant hand performs, often more precise, operations.
Prior work in VR has used these interface design concepts (Keefe
et al., 2001, 2007), but in different applications (e.g., 3D painting).
There are just a few prior examples of bimanual 3D spatial
interfaces for manipulating and navigating through volumetric
scientific data (e.g., Coffey et al., 2012b; Laha and Bowman, 2013),
and none of these specifically support comparative visualization.

Bento Box also extends research on button overloading in
VR (e.g., Zeleznik et al., 2002; Jackson and Keefe, 2016) by
providing an example of how this can be usefully employed for
data visualization tasks rather than 3Dmodeling. This is achieved
via a state machine that uses the current context defined by the
positioning of the hands relative to the body, each other, and/or
virtual content to decide how to interpret each button press.

3. BENTO BOX: CONCEPT, VISUAL
LAYOUT, AND INTERFACE

This section presents the concept, visual layout, and specific
interactive techniques that make up Bento Box. Some figures
refer to the cardiac application mentioned earlier as examples,
but we defer a detailed description of that application to section 4.

We designed Bento Box to run on multiple VR environments
that are popular for scientific visualization today, and
demonstrate here and in the accompanying video from the
Supplementary Material that the current implementation runs
on both a high-end 4-wall Cave, which is useful to facilitate
discussion with an engineering design group, and a low-cost
HTC Vive personal VR display. The minimum required VR
hardware is as follows. The technique relies upon a perspective-
tracked, stereoscopic VR display and requires input from two

6 degree-of-freedom tracked input devices (i.e., VR wands),
one held in each hand. Each device must have two buttons, one
primary and one secondary that report separate button_down
and button_up events. These input requirements are a subset
of what is available via the hardware for the current-generation
HTC Vive. In the 4-wall Cave environment we have used,
users hold two tracked 3D pen-like devices (Jackson and Keefe,
2016) to provide the simple button input together with 6-DOF
tracking. Our implementation uses the MinVR toolkit (Jackson,
2017) to facilitate deploying the application to these multiple
platforms. The technique is designed to be operated by one user,
but in practice engineering teams like to stand together and
work as a group, looking over an operator’s shoulder in the Cave
environment pictured in Figure 1.

3.1. Concept and Visual Layout
When users enter the environment, they see the “Bento Box”
widget, an arranged grid containing multiple views of volume
data, floating in front of them as in Figure 1. A 3D cursor is also
drawn at the location of each tracked hand.

As diagrammed in Figure 2, each row and column have a
specific meaning. Each row has unique view settings, which
primarily define a specific sub-volume (i.e., a volume-of-interest)
to crop from the original data along with the viewing direction.
Additional parameters, such as the particular stress fields or
other visualization properties to include in the view may also
be set on a per-row basis. Each column presents data for a
single data instance (i.e., the results of one simulation run) from
the ensemble. If the user wishes to compare multiple timesteps
(i.e., times-of-interest), this entire row-column structure can be
duplicated multiple times.

Using this layout, the concept behind and intended use of
Bento Box is for users to interactively create a comparative
volume visualization where each column can be thought of
as something like a volumetric, visual “feature vector.” The
user’s goal is first to select appropriate sub-volumes of interest
within the data in order to build up a complete picture of the
interesting variation in the data while, importantly, cropping
out or deemphasizing regions that are less important. The data
comparison task then becomes to compare these visual feature
vectors. For each key feature (defined in a row), users make visual
comparisons across the data instances in the ensemble (columns).

The key to creating a useful visual summary of the data is to
explore and experiment: looking at the data from different angles,
creating views of new sub-volumes, changing visualization
parameters, navigating to different views of the widget, and
adjusting the viewpoint used to render individual rows. We aim
for users to naturally, through this exploratory and interactive
process, arrive at a visualization that brings the most important
sub-volumes to the forefront of the visual field while at the same
time hiding or deemphasizing distracting or less scientifically
relevant regions of the volume. Bento Box makes the process
of exploring the data and creating the ensemble visualization
fluid, natural, immediate, and iterative—users can perform the
navigation and display management regularly and naturally
during data analysis without even taking their gaze away from
the dataset.
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FIGURE 2 | The Bento Box widget arranges multiple views of volume data within a grid of “cubbies”.

3.2. Zooming and Reframing the Widget
Viewing the entire Bento Box is like looking at an overview of
the entire ensemble. Some major, high-level patterns are visible
at this level, but the visualization within each individual “cubby”
is too small to investigate in detail. This makes it important to
be able to fluidly zoom in and out of the widget and otherwise
reframe it on the display in order to see just the current portion
of interest.

Since zooming and reframing is so critical to the user
experience, Bento Box supports two complementary interaction
techniques, each appropriate in a different context. The first is
controlled by the input device held in the dominant hand (DH)
and is appropriate to use when the Bento Box is displayed at
a small scale (i.e., used as an overview). In this situation, a
laser pointer is used as the virtual cursor for the DH and the
user simply points this laser at the Bento Box to highlight a
specific cubby to investigate in detail. A click and release of the
DH’s primary button triggers an animated transition that zooms
the view into the selected cubby. Alternatively, by holding the
primary button down and sweeping the laser across multiple
cubbies, the user may paint a selection onto the widget, and the
view will zoom to comfortably fit the bounds of this selection.
In each case the BentoBox is scaled so that the front faces of
the cubbies selected by the user fit within a 1 physical meter x 1
physical meter area centered in front of the user. To return to the
default position and scale the user clicks and releases the same
primary button while pointing the laser away from the widget.
(When explaining the interface to users, we make this interaction
easy to remember by telling them, “to go back, simply point the
laser backwards over your shoulder”).

The one situation where this pointing interface is not efficient
is when the view is zoomed in and the user wishes to make

a small change (e.g., pan to the right by one or two cubbies).
It is inefficient to do this by zooming all the way out and
then back in to nearly the same position. Thus, the interface
includes an ability to grab onto and translate the world directly.
This is done with the primary button on the input device
held in the non-dominant hand (NDH). To avoid unnecessary
translations and rotations, this motion is constrained to only
translate within the plane of the widget. Scaling is also possible.
While the NDH primary button is depressed and the translation
mode is active, pressing and holding the DH primary button
activates the scaling mode. The scale of the Bento Box is then
adjusted in proportion to the distance between the two hands.
This second mode is like a constrained version of early VR
object-manipulation interfaces (Mapes andMoshell, 1995; Cutler
et al., 1997), which are also similar to modern 2D multi-touch
interfaces (i.e., translate with 1 finger, scale with 2 fingers).

Note that the interface intentionally overloads the
functionality of the DH primary button—it means
different things in different contexts. This strategy has
been used successfully in several other bimanual 3D user
interfaces (Zeleznik et al., 2002; Jackson and Keefe, 2016). In
general, the interface follows a pattern of using context to infer
user intent whenever possible. This allows a complex interface
to be specified using only two buttons on each hand-held input
device and helps to overcome both learnability and “fumbling in
the dark” problems that often arise in 3D user interfaces that use
controllers with many buttons. It is important to consider the
state of the system when designing and implementing this type of
interface. Thus, Figure 3 presents a detailed Finite State Machine
for the Bento Box interaction. The virtual cursors drawn in
the scene change to provide visual feedback (e.g., from a laser
pointer to a picking sphere) when moving from state to state.
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FIGURE 3 | The 3D bimanual user interface is implemented as a finite state machine. There are four main states, and the system transitions between them based

upon the positioning of the hands (DH, dominant hand; NDH, non-dominant hand) relative to the cubbies. As illustrated in the blue portions of the diagram, the actions

triggered by the pressing the buttons on the VR wands held are different depending upon the context provided by the current state.

3.3. Creating and Reframing Sub-volumes
As shown in Figure 3, a state transition is made when the DH
cursor is moved within the bounds of the volume of a specific
Bento Box cubby. Here, the concept is that the user is no longer
in an overview mindset but rather in an inspection mindset. The
cursor changes from a laser pointer to a small sphere to indicate
this shift.

The most important operation in this state is to indicate
a new (sub)-volume of interest and thereby add a new row
of view settings to the Bento Box widget. This is done via
a click and drag operation. The 3D location of the cursor at
the moment the DH’s primary button is clicked is used as
the center of the volume of interest, and the extent of the

volume is set interactively as the cursor is moved away from
this center. It is critical to display interactive visual feedback
during this operation (Figure 4) so that the user may size the
volume appropriately relative to features observed in the data
visualization. The selection operation is completed by releasing
the primary button.

Creating the new sub-volume adds a new row to the Bento Box
widget. All of the view settings are copied from the originating
row with the exception that the transformation matrix used to
draw the data within the widget is adjusted to exactly map the
sub-volume displayed in the new row to that selected in the
originating row. The exact transformation is described when
discussing rendering in section 3.6.

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2019 | Volume 6 | Article 61

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Johnson et al. Bento Box

FIGURE 4 | A new sub-volume of interest is created with an interactive selection. From left to right: (A) Assume the starting state is a Bento Box with two rows. (B) A

click within any of the cubbies (in this case, one from the top row) using the primary button on the DH wand defines a center point for the selection (the black dot). (C)

Dragging defines the size of the selection box to create. (D) After releasing the button, a new row of view settings is added to the bottom of the Bento Box.

While the user is in this same inspection mindset, there is
often also a need to view the data from a slightly different
direction. Mirroring the use of the hands in the overview
situation (DH = pointing/action, NDH = framing), this is
accomplished with a grabbing operation controlled via the NDH.
Again, the context provided by the positioning of the hand in
space is used to distinguish a local grab that manipulates a sub-
volume from the global operation that moves the entire Bento
Box widget (see transitions in Figure 3).

3.4. Changing the Visualization With the
Design Palette
Figure 5 shows the visualization design palette, which is
positioned to float in the air next to the user, coincident with
the left wall of a Cave when running in a Cave display. The
palette contains one section for designing the visuals used for
each major graphical component of the visualization. Figure 5
shows an example from the cardiac application described in detail
in section 4. Here, there are three major graphical elements: the
heart walls, the cardiac lead, and the flow path lines.

The heading for each section includes the name of the
graphical element. Next to this is a button that can be selected
with the virtual laser pointer attached to the dominant hand
cursor and then pressed with a click on the primary button on
the stylus. This cycles through a list of possible data fields that
can be mapped onto the graphics (e.g., vonMises stress, Principle
Stress, pressure).

Below this, the palette contains a set of color maps that can
be used to present the data. With the laser pointer, a dragging
operation is used to drag the colormap to a specific row of the
Bento Box. While dragging, the laser cursor changes to include a
colormap icon and rows of the Bento Box highlight as the laser
passes over them to provide visual feedback. The use of dragging
to control this operation is intentional, with one click and release,
the user is able to specify both the specific color to apply (clicking
while pointing at the design palette) and the row to apply it to
(releasing while pointing at a Bento Box row). The last choice in
each colormap list is a blank mapping (“Hide”), which removes
the visual element from the scene completely.

Finally, an additional section at the bottom of the palette
contains a set of toggle buttons, one per Bento Box column, to
control the visibility of each data instance.

3.5. Using the Interactive Timeline
By default, each cubby in the Bento Box displays data from the
samemoment in time; however, additional time-points of interest
(we call these critical times) can be added, extending the grid as
diagrammed in Figure 2. Critical times are created and adjusted
using an interactive timeline that is activated at a location in front
of the Bento Box widget when the secondary button in either
hand is clicked. The timeline acts as a modal widget, disabling the
Primary Bento Box FSM shown above the dotted line in Figure 3

when the Timeline Active state is active. The timeline includes
two virtual buttons that float in space and may be selected by
the user’s cursor. The first adds a new critical time to the display.
This adds an indicator (color coded sphere) to the timeline at
the correct time value and also adds the appropriate columns
to the Bento Box. The critical times can be adjusted dynamically
by grabbing onto the corresponding spheres on the timeline and
moving them using the DH’s primary button. While grabbing,
the spheres can also be deleted by pulling them off the timeline
by a distance of more than 0.3 meters and releasing. These
interactions are demonstrated in the accompanying video from
the Supplementary Material.

3.6. Rendering Multiple Clipped Volumes
Bento Box requires rendering multiple views of multiple
volumetric data instances. Each row is rendered using different
view settings, which consist of: (1) an affine transformation
matrix that transforms the raw volume data to a particular view
of a sub-volume of interest, and (2) visual settings, such as the
set of color maps and variables to be displayed. Since the view
may require the data volume to be drawn at a scale that eclipses
the size of its cubby, the rendering must be clipped to fit within
the cubby.

For each cubby in the widget, the transformation matrix that
maps the raw data to widget space, MD2W , is composed of three
parts and calculated as follows:

MD2W = MV2W ∗MC2V ∗MD2C. (1)
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FIGURE 5 | A visualization design palette is used to change the variable displayed on each major graphic element of the visualization (in this case: heart walls, lead,

and flow) and to adjust the color map applied to the data. A set of possible color maps to apply to each variable is loaded during initialization, and the user may

change the color map to display in each row of the Bento Box interactively by dragging one of these colormaps onto a specific row. Toggle buttons at the bottom of

the palette control the visibility of specific data instances (the columns), labeled with instance parameters.

Here,MD2C (Data-to-Cube), transforms the bounding box of the
raw volume data to fit within a unit cube centered at the origin.
This transformation is specific to the data provided with each new
application; the samematrix is used for every cubby in the widget.

MC2V (Cube-to-View) transforms from the unit cube space to
the view of the sub-volume selected by the user—this includes
scale, rotation, and translation); the same matrix is used for
each row in the widget. When the program starts, with only the
top row of the Bento Box visible, MC2V is set to the identity
matrix. When a new row is created, the matrix to use for this
new row is computed using the matrix from the originating
row. The following equation is used, where S() constructs a
scaling matrix, T() constructs a translation matrix, and p and
r define the center point and radius specified by the user (in
View-Space coordinates).

MC2Vnewrow = S(1/r) ∗ T(−p) ∗MC2Voriginalrow
(2)

Finally,MV2W (View-to-Widget) transforms from the view space
defined for each row to widget space by translating by a vector of
the form (cubby_width∗ row, cubby_height ∗ col, 0) and scaling to

match the current size of the widget. This is a simple translate-
scale matrix, aligning the view to the specific cubby in which the
data are to be rendered.

To clip each view to fit within its respective cubby, a clipping
mesh is used. We chose a cube with rounded edges, but any
convex shape of unit dimensions may be used. Before the view
is drawn in a cubby, the back faces and front faces of the clipping
mesh are rendered to two depth textures.

In our implementation, the graphics displayed for each data
instance can be any 3D scene drawn using a traditional shader-
based rasterization pipeline. There are two steps to adapt an
existing rendering pipeline to work with Bento Box. First, the
scene’s model matrix Moriginal should be modified using MD2W

before the Model-View matrix is computed.

Mnew = MD2W ∗Moriginal (3)

Second, the fragment shader should be adapted to perform
clipping to fit within two depth textures. For each fragment of
the data scene, the fragment should be discarded if it falls nearer
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FIGURE 6 | Diagram of the simulation scenario with a cardiac lead implanted

in the right atrium of the heart.

to the camera than a given Front depth texture, or discarded if it
falls farther from the camera than a given Back depth texture.

4. APPLICATION AND RESULTS

The core Bento Box concept and technique described thus far,
which we believe will generalize to other ensemble visualization
problems, was inspired by the needs of a specific real-world
data analysis problem, using an ensemble of fluid-structure-
interaction (FSI) simulations to design improved medical
devices. This section describes in detail the specific data
management strategies developed for the application along with
user feedback and quantitative performance measures from this
first application of Bento Box.

4.1. Background: Cardiac Leads in the
Right Atrium
Cardiac leads are the electrical cables that connect the heart to an
artificial pacemaker device. The data visualized here come from
a specific set of simulations designed to understand the impact of
lead stiffness and lead length on the blood flow and stresses in the
right atrium. The scenario is diagrammed in Figure 6. The goal of
the study is to improve the underlying device technologies as well
as procedures for implanting and extracting the devices. A 3× 3
design was used for the initial study with three lead lengths (108,
110, and 112 mm) and three lead stiffnesses (8, 9, and 10N/mm
corresponding to Young’sModules 1145.92, 1289.16, and 1432.39
MPa), resulting in 9 data instances. Later, one additional run (116
mm, 8 N/mm, and 1145 MPa) was added to the ensemble to
understand the extreme case of extending the lead length as far
as possible without touching the walls of the atrium.

The simulation extends Runesha et al. prior model (Runesha
et al., 2016) and is built using the ABAQUS solver. The

bounding geometry of the right atrium is a smoothed version
of a real heart anatomy captured via CT scan, and the
cardiac lead is modeled as a uniform wire entering the right
atrium through the superior venae cavae and exiting through
the tricuspid valve. Both the anatomy and the cardiac lead
deform slightly over the course of a heartbeat. Each run
consists of 800 timesteps for a 0.8 s heartbeat. Velocity
and pressure within the volume along with stresses within
the lead and along the walls of the atrium are saved at
each timestep.

4.2. Sampling and Visualizing Solid
Domain Data
As in most real-world ensemble visualization problems, some
data management strategies are required in order to efficiently
render many instances of the volumetric data. The approach
described here is tailored to fluid-structure interaction (FSI)
data and uses different strategies for solid domain data (Abaqus
Implicit Solver) and fluid domain data (Abaqus CFD Solver).
Since a VR rendering is required, the challenges of rendering
large scale data cannot be solved with just an incremental loading
or streaming approach, such as those used in recent 2D rendering
contexts (Fisher et al., 2012; Glueck et al., 2014). Here, there
is also a 3D computer graphics rendering problem where the
data to be rendered at each frame are simply too large to fit
within graphics card memory. The techniques described here are
similar to those described previously in the literature for solid
domain (Lee and El-Tawil, 2008; Beneš and Kruis, 2015; Liangyin
et al., 2018) and fluid domain (Kuester et al., 2001; Sobel et al.,
2004; Falk et al., 2016; Zhao et al., 2017) data visualization, but
we believe this research provides the first example of extending
and using both styles of visualization simultaneously to display
multiple instances of FSI data in a head-tracked, stereo VR
environment. Thus, we provide a detailed account as a case-
study-level contribution.

The solid domain describes properties of deformable meshes
like displacement and stress and defines the physical structure
of the volumetric solid with a mesh. The element and node
properties of the simulation are used to generate a triangulated
mesh that can be rendered. Triangles are constructed from the
supplied primitives and passed to the GPU. Each instance uses its
own index and vertex array since the hearts deform as a result of
the simulation.

Since the solid data for all instances, variables, and time steps
are too large to fit onto the GPU, optimizing the GPU memory
and update speed becomes a significant challenge. We solve this
by minimizing both the memory footprint on the GPU and size
of data streamed onto the GPU at any time. In addition, we use
CPU memory caching strategies to avoid disk access as much as
possible. This involves only loading the variables and time steps
that are actively being displayed into GPUmemory. For example,
if a user is only looking at displacement and stress for three
instances, only these data are dynamically loaded on the GPU.
However, depending on the CPU memory size, many time steps
may be loaded into CPU memory, allowing for quick update if a
user chooses to animate the instances.
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The solid domain data are loaded into GPU memory when
the user changes the displayed variable, the number of visible
instances, or the critical times. Only the selected variable’s values
are loaded for each visible instance at the valid time steps, keeping
the memory load footprint as low as possible. Each solid domain
variable (e.g., wall stress) is assigned its own GPU buffer with size
equal to the number of critical times multiplied by the number
of FEA nodes and then by the number of components (1 float
for scalar values, 3 for vector values). Although for perceptual
reasons, our default is to view multiple critical times in static
juxtaposed views, the visualizations can be animated by simply
swapping data every frame, and this can be done automatically
or interactively using the timeline widget described earlier.

4.3. Sampling and Visualizing Fluid Domain
Data
The raw fluid domain data are large, but these data are visualized
using particles, so a significant data reduction can be achieved by
converting the raw data into pathlines in a precomputation step.
Our implementation uses an accelerated cell location technique,
similar to a CellTree (Garth and Joy, 2010) data structure,
to precompute path lines directly from the unstructured grid
data using a Fourth Order Runga-Kutta integration method. A
random seeding strategy is used; other seedings, such as targeted
seeding in areas of high vortical structures, would also work.

The specific path lines to draw within each cubby are
determined based upon the time and view. Since path lines
inherently encode time; the display for a given critical time is
determined by cropping each line to the portion that lies between
the current critical time and a few moments before (in order to
create a streaklet effect).

Bento Box requires rendering to be performed at multiple
scales, and this raises an interesting challenge for drawing path
lines. Recall that the path lines are just a visual representation for
the underlying flow field, so when drawing them with a streaklet
geometry, it makes sense to define the size of that geometry (its
radius) in cubby-space units, not data units. Another way of
thinking of this is that when zooming in, viewers do not wish
to see a giant streaklet geometry, rather they want to see a more
intricate visual rendering of the flow at that zoomed in scale. To
accomplish this, both the size and density of the streaklets must
be defined in cubby-space units.

Empirically, we determined that drawing about 2000 path
lines per cubby provides the right balance for density—enough
lines to provide detail to understand the flow and not so many
that occlusion is a problem. This is a simple constant in our
algorithm, and a different value may be easily incorporated to
tune to technique for use with other datasest. What should not
change from one application to another is the desire to maintain
a constant visual density of path lines per cubby regardless of the
scale of the data represented in that cubby.

To address this, the precomputed single set of randomly
seeded path lines for each data instance is computed for the
most-zoomed-in view expected. Then, any zoomed-out views
that require fewer particles are drawn using just a subset of the
precomputed paths; the size of the subset to draw increases as the

view zooms into the data. The specific calculation is as follows.
With the constant N as the application-specific desired visual
density of paths per cubby, the number of particles to render, n,
for a cubby displayed with scale factor, s, is

n(s) = N

(

s

sexternal

)3

. (4)

The final constant in the equation, sexternal, which is 4.0 for our
data, is the scale at which the visualization transitions from an
internal view of the flow data to an external one. With this
formulation, n increases smoothly, randomly adding new path
lines to the scene rendered and ultimately clipped into each
cubby, as the view is zoomed in tighter.

The fluid domain rendering method makes it possible to
visualize the flow at any scale and any critical time from the same
pre-calculated data. Thus, changing the critical time does not use
any additional GPU memory or require additional CPU-GPU
memory updates. One path buffer array is stored on the GPU for
each data instance in the display. The buffer is arranged according
to a path index and each path has the same path length. The GPU
also stores path value buffers for data variables such as velocity
and pressure that may be used to color the particles.

The comet geometry is defined as an axis-aligned 3D mesh.
Since each visualization will include thousands of these meshes,
the mesh is rendered using instancing and deformed in a shader
to fit within an appropriate start and end position along the path
line. Our implementation uses a mesh with 72 triangles.

4.4. Insights and User Feedback
Our interdisciplinary collaborators (also co-authors) have used
Bento Box during several months of iterative development, most
recently to analyze the scenarios highlighted in Figures 1, 7,
8. The team includes two mechanical engineering researchers
and four computational scientists who also confer regularly
with cardiac surgeons and with engineers in the medical device
industry. Several new insights about the data were able to be
made. These observations come from multiple working sessions
in the Cave, which is used regularly for collaborative data analysis
by small groups of users. As mentioned earlier, the application
also runs on the HTC Vive, and this has been a useful platform
for portable demonstrations at international conferences and for
school groups, industry, and university alumni; however, users
have preferred the Cave for data analysis because it facilitates
collaborative discussion.

Initial observations confirmed the expected spatial positioning
of the leads, which was easily judged in VR. The engineers
commented that the “drapings” for the leads in all data instances
were appropriate. Looking at cross-sections of the lead by
arranging sub-volumes that cut through the lead like a slicing
plane, the engineers also confirmed that the internal stress pattern
has a neutral axis, an expected pattern for a bending scenario like
this one.

Figure 7 shows a comparison of data instances with leads of
increasing stiffness from left to right. The second row shows the
neutral axis stress pattern mentioned earlier. The sub-volume
was rotated with a NDH gesture so that the front of the cubbies
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FIGURE 7 | Bento Box arranged for a comparison of cardiac leads with three different stiffness parameters, increasing in stiffness from left to right. The top row

shows an overview of the dataset. The middle two rows highlight stress on the lead itself, which appears to increase with stiffer leads. The bottom row zooms in on

the attachment point of the lead in the atrial appendix, showing how in all cases the flow stagnates near the attachment point. Here, stress on the atrial walls also

appears to increase with stiffer leads.

act as cutting planes, slicing into the finite element data. The
third row shows a top-down perspective of the lead. Here, white
indicates high stress. Engineers found that the highest stress
on the lead occurs when the lead is at its stiffest, confirming
their expectation. Conversely, the leftmost situation should have
the most displacement. This was difficult to verify because the
displacements are all quite subtle, and a suggestion was made to
include a “motionmagnifier” feature in future work to exaggerate
any movement. The fourth row shows the volume of the right
atrial appendage near the attachment point of the lead. This is

a region where flow circulation and stagnation can occur and
fibrosis develops. Here, engineers noticed that the stress on the
atrial wall near the attachment point is higher (more yellow and
less dark red) with stiffer leads.

Figure 8 shows a complementary comparison. Here, the focus
is on different lead lengths, which increase from left to right.
Some interesting variation in blood flow within the volume is
visible. Engineers noticed that the longest lead produced flow
patterns that appeared slower (darker red) and slightly out of
phase with the other simulations (visible when scrubbing through
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FIGURE 8 | Bento Box arranged for a comparison of different length cardiac leads. Lead length increases from left to right. At this timestep in the simulation, the

longest lead length creates a slower flow (i.e., darker red path lines).

time). This slowing trend is visible in the overview in the top
row, but it can be seen even more clearly in the next two
rows, which focus on a vortex and an outflow. The wall stress
is hidden in these rows, and a neutral background is used to
make it easier to read the color-coded variation. During the most
recent data analysis session, this visual insight prompted several
minutes of follow-on discussion, and the computational scientists
hypothesized that the longer stiff lead might stretch the atrium
wall, making the atrium bigger, and that the increased volume
creates a slower overall flow pattern.

In terms of usability, the layout and interface controls made
sense to users, who learned the controls within a first working
session. One suggestion for improving the interface design was
made. Users were sometimes confused when translating a sub-
volume relative to a parent volume. Recall, from the discussion
in section 3 that this is supported via a grabbing gesture with the
NDH. Users understood the rotational aspect of this grabbing,
but had trouble with the translational aspect. One user told us
that when she was translating she looked not at the sub-volume
where her hand was located but at different row where she
could see the location of the sub-volume displayed as an icon.
When the user focuses on the sub-volume’s icon, this breaks the
metaphor of using the hand to grab onto and “move the data”
and instead puts the user in the mindset of grabbing and “moving
the selection box.” Unfortunately, this does not work well in the
interface because the translations will be the opposite of what
is expected. The solution is not trivial. The widget is designed
so that the boxes are arranged at fixed locations in space, so
it breaks this design if the interface is switched to a mode of

grabbing and moving the boxes. One option to explore in future
work is to make the selection icons themselves objects that may
be grabbed and moved with the hand. Then, if the user wishes
to move the object, she simply finds a view where its icon is
visible, grabs it and moves it. Alternatively, if she wishes to move
the data, she grabs the data following the metaphor used in the
current implementation.

4.5. Memory Usage and Rendering
Performance
Characteristics for the ten data instances visualized are reported
in Table 1. After processing the 39 GB of raw data, the amount
of memory needed to accurately visualize the solid and fluid
attributes is over 8 GB, exceeding a 4 GB GPU hardware limit
on our 4-wall cave environment, a 2 processor Intel(R) Xeon(R)
CPU E5–2640 @2.50GHz machine with two NVIDIA Quadro
K5000 cards and 192 GB of RAM. Since this machine has more
than 8 GB of RAM, it is possible to stream solid attribute data
from memory into the GPU when needed. Streaming combined
with the pathline sampling of the fluid, provides an extremely
low memory footprint on the GPU, allowing us to visualize many
instances and variables.

Using this application as a testbed, we also report some
rendering performance measures, summarized in Figure 9.
These timings were recorded on a 4 core processor Intel(R)
CORE(TM) i7–7700HQ CPU @2.80GHz machine with 16 GB
of RAM and a NVIDIA GeForce GTX 1070 graphics card,
which was configured to drive an HTC Vive with a resolution
of 2,160× 1,200 pixels. The datasets are streamed into memory

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2019 | Volume 6 | Article 61

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Johnson et al. Bento Box

TABLE 1 | Characteristics and memory usage for the ten data instances.

ID Raw Solid (MB) Fluid (MB) Total (MB)

(MB) Processed GPU Proc./GPU Processed GPU

108–1145 5,252.6 892.6 7.0 115.2 1,007.8 122.2

108–1289 4,724.4 682.2 7.0 115.2 797.4 122.2

108–1432 4,911.5 682.2 7.0 115.2 797.4 122.2

110–1145 2,933.7 660.9 6.7 115.2 776.2 122.0

110–1289 2,933.7 660.9 6.7 115.2 776.2 122.0

110–1432 2,933.7 660.9 6.7 115.2 776.2 122.0

112–1145 4,926.1 687.5 7.0 115.2 802.7 122.3

112–1289 4,934.6 687.5 7.0 115.2 802.7 122.3

112–1432 4,934.6 687.5 7.0 115.2 802.7 122.3

116–1145 1,588.9 832.4 6.9 115.2 947.6 122.1

40,073.6 7,134.7 69.1 1,152.3 8,287.0 1,221.4

FIGURE 9 | Rendering frame rates decrease as additional cubbies are added

to the display. Since there are multiple ways to construct a Bento Box (e.g.,

there are 4 possible arrangements for 10 cubbies 10× 1, 5×2, 2× 5, 1× 10),

these results are for a systematic sampling of possible configurations. The

trend line is a logarithmic fit (R2 = 0.76).

from a 128 GB M.2 PCIe SSD. The scatter plot in Figure 9

shows a systematic sampling of Bento Box configurations that
are possible for this 10-instance data ensemble. All possible grid
arrangements (10× 1, 10× 2, 10× 3, 9× 1, 9× 2, 9× 3, etc.) that
result in a total of 40 cubbies or less were sampled. A cutoff
of 40 was used since it is reasonable to assume that beyond
this we reach a perceptual limitation in terms of what users can
manage within the visual field. In fact, 20 cubbies is probably
a better threshold. Since we found the rendering performance
depends upon the zoom level, multiple samples at different scales
were collected for grid arrangements that involved displaying
sub-volumes. In general, rendering speed decreases as the view
is zoomed in, since this requires rendering more path lines to
achieve the same visual density as at zoomed out views.

The trend is above 30 frames-per-second for Bento Box
arrangements of about 20 cubbies or less, and is in the 40–
50 frames-per-second range for typical arrangements, such as
for the results pictured in Figures 7, 8. In some arrangements

sampled, the frame rates drop below what we would consider
a bare minimum for VR environments (about 20 frames-per-
second), but these cases are rare in practical use and have not
detracted from analysis tasks using the system.

5. DISCUSSION OF LIMITATIONS AND
FUTURE WORK

There are two key limitations to the Bento Box technique that
are worth reiterating. Although the concept, visual layout, user
interface, and general rendering strategy can be applied to any
3D dataset, this only applies to cases where it is already possible
to render the entire ensemble dataset. In fact, the ensemble needs
to be able to be rendered multiple times per frame, in order
to support multiple views at different scales. Our application
demonstrates that this is possible to accomplish with a realistic,
real-world, scientifically relevant ensemble, but in practice it
takes some work and requires thinking carefully about how to
sample and render the data. Some simpler datasets (e.g., 3D
geometry only with no flow data) would perhaps work without
any rendering optimizations, but many of the ensembles that
scientists are interested in studying today will likely need to be
optimized for fast rendering. One goal of reporting this case study
is to provide guidance on how to approach this task, at least for
fluid-structure interaction data.

Another limitation is that Bento Box is not the right technique
for large ensembles. We intentionally describe the technique as
designed for ensembles on the order of 10 instances for two
reasons. First, rendering is even a bigger challenge for larger
ensembles. Second, perceptually, it asks too much of users to
try to interpret a juxtaposed visualization that goes beyond
20–30 “cubbies.”

This leads us to the most important direction for future work.
We see great potential to combine Bento Box with a workflow
that includes filtering. In this way, large ensembles might be able
to be interactively filtered down to sets of 5–10 most interesting
instances, then these could be explored in VR using Bento Box.
This might be enabled, for example, by adding a linked scatter
plot visualization of a dimensionally reduced view of a large
ensemble from which the user could select individual or groups
of instances to add to the Bento Box. Perhaps this could happen
at a central control panel within a virtual room with multiple
Bento Boxes created based on specific filters arranged around
the virtual space. The workflow could also be extended in the
other direction, making it possible to dive deeper into individual
volumetric data instances to query specific data values with a
probe or place other interactive visualization widgets directly
within the detailed visualizations inside each cubby to access
details on demand.

Finally, we now know, since Bento Box helped us to analyze
the ensemble, that the variation within the particular cardiac lead
data ensemble developed as part of the research project is quite
subtle, and we are curious to learn how Bento Box would work in
other situations, such as an ensemble where the variation between
data instances is drastic. It would also be interesting to use Bento
Box to explore abstract data, like a 3D field of data glyphs. In this
case, the rendering optimizations described for FSI data would
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not be necessary, but, assuming the data are dense enough that
zooming in is required to do detailed analysis of sub-regions, we
hypothesize that the core technique would be just as valuable as
it is for medical volume data.

In the future, we plan to conduct additional evaluations
of the technique, for example, it might be possible to design
a formal user study to assess speed and accuracy in a
search and comparison task conducted with Bento Box vs. a
standard juxtaposed or interchangeable (over time) comparative
visualization. This would be a significant undertaking, likely
requiring generating a synthetic volumetric ensemble dataset
with features that can be interpreted by non-expert users. It
may also be possible to implement a baseline VR or desktop-
based visualization that uses an alternative visual approach to
comparison, recruit additional experts with knowledge of cardiac
medical device engineering and fluid analysis, and then design
and execute a formal insight-based evaluation (Saraiya et al.,
2005) of the support Bento Box provides for interpreting the
data used in our case study. More generally, Bento Box is a good
example of a visualization tool that, in practice, is often used
in a collaborative data analysis mode; it would be interesting to
more formally assess the strengths and weaknesses of various
VR platforms (e.g., head-worn display vs. Cave) for this type
of analysis.

6. CONCLUSION

VR environments are already effective for visualizing simulation
data with complex spatial relationships, such as those presented
in this paper, but only when visualizing a single data instance
at a time. To make VR visualization useful for comparative
visualization of a data ensemble, we conclude that new techniques
for spatially arranging and cropping the data are necessary, since
these help users focus attention on the most important 3D and
4D regions of comparison. Such an arrangement is only possible
within VR with the aid of a tightly integrated 3D user interface.
The Bento Box technique addresses both of these needs. Further,
the application described here demonstrates that it is possible to

use Bento Box to construct a visualization of a 10-instance, real-
world, scientific data ensemble and provides early indication of
the potential impact of visualizations in this style.
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