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In the context of human-robot collaboration in close proximity, safety and comfort are

the two important aspects to achieve joint tasks efficiently. For safety, the robot must

be able to avoid dynamic obstacles such as a human arm with high reliability. For

comfort, the trajectories and avoidance behavior of the robot need to be predictable

to the humans. Moreover, these two aspects might be different from person to person

or from one task to another. This work presents a framework to generate predictable

motions with dynamic obstacle avoidance for the robot interacting with the human by

using policy improvement method. The trajectories are generated using Dynamic Motion

Primitives with an additional potential field term that penalizes trajectories that may

lead to collisions with obstacles. Furthermore, human movements are predicted using a

data-driven approach for proactive avoidance. A cost function is defined which measures

different aspects that affect the comfort and predictability of human co-workers (e.g.,

human response time, joint jerk). This cost function is thenminimized during human-robot

interaction by the means of policy improvement through black-box optimization to

generate robot trajectories that adapt to human preferences and avoid obstacles. User

studies are performed to evaluate the trust and comfort of human co-workers when

working with the robot. In addition, the studies are also extended to various scenarios and

different users to analyze the task transferability. This improves the learning performance

when switching to a new task or the robot has to adapt to a different co-worker.

Keywords: human robot interaction, motion generation, black-box optimization, dynamicmotion primitives, policy

improvement, close proximity

1. INTRODUCTION

Nowadays, robots are no longer only industrial machines behind fences. Instead, they are being
integrated more in our daily lives as well as in collaborative manufacturing scenarios. The new
generation of robots is expected to assist elderly people in daily tasks, to support customers in
markets, to work as a partner with humans in factories, etc. For all of these tasks, the robots are
required to interact with the human. Especially in collaborative scenarios, where robots work with
humans as co-partners in joint tasks, they need to interact more efficiently since it will increase the
overall performance. Looking at the case when two humans perform a joint task as an example,
the humans can anticipate each others’ movements and perform a complementary action without
the need of verbal communication. This facilitates teamwork and increases the efficiency of joint
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tasks (Erlhagen et al., 2007). Similarly, robots are expected to
move in a natural way, similar to human-human interaction.To
achieve such an interaction between humans and robots, the
first requirement is the robot’s motion must be readable to the
human (Kirsch et al., 2010), which means the human partner is
able to understand its intentions and the motion/behavior of the
robot has to meet the expectations of the human partner. In the
work of Lichtenthäler and Kirsch (2016), this is defined as legible
robot behavior. Another requirement is that the robot has to be
aware of its surroundings to provide a safe environment, while
still being efficient in performing its task. Legibility and safety are
therefore the two important criteria that increase the efficiency of
joint collaboration between human and robot.

In order for humans to feel comfortable working with robots,
especially in close proximity, they have to understand the robot’s
behavior and be able to infer their actions or in other words, the
robot’s behaviormust be legible to the human partner. Identifying
the factors that contribute to these natural movements is
not trivial. According to a study conducted by Dautenhahn
et al. (2005), participants want robots assisting at home to be
predictable, controllable and have human-like communication.
Another study (Koay et al., 2007) that investigated the subjective
effects of direction of approach and distance of robots when
handing an object over to humans, came to the conclusion
that the frontal approach is subjectively preferred most by the
participants since it is the most predictable. In addition, Bortot
et al. (2013) discovered that understanding and predicting the
behavior of the robot increases the well-being of humans.

The question arises how such legible robot motion can
be generated. Dragan and Srinivasa (2013) tried to find one
mathematical metric for legibility. However, this is insufficient as
robotmotion gets perceived differently by individual humans and
depends on several factors including the configuration of tasks,
robot positions and human positions. It is therefore necessary
to have a framework in which the robot is able to learn legible
motions by interacting directly with the human. In this way, all
possible influencing factors will indirectly be included.

In addition, to fulfill the requirements mentioned above,
legibility alone is not sufficient. In order to ensure the
safety of humans in close proximity scenarios and allow joint
collaborations, the robot has to know the position of the human
and possibly predict their motion (Oguz et al., 2017) to modify
its trajectories in real-time and reliably avoid collision with the
human. Combining this safe behavior with legibility increases
human comfort.

It is also worth mentioning that the main drawback of
many learning approaches is the training time. The learning
process usually requires several iterations of training and is time
consuming to repeat for each new task and each human partner.
In a lot of scenarios, it might be useful to have a flexible algorithm
that still works if any parameter changes i.e., robot position,
task configuration, human perspective, etc without the need of
retraining. Therefore, the algorithmmust be capable of extending
to different scenarios and different tasks.

In this work, we develop a framework to generate legible
robot motion that is transferable to different tasks and that
is safe to allow collaboration in close proximity through a

reinforcement learning approach. The interdependency between
legibility, safety and efficiency is tackled for achieving natural
human-robot interaction. Both human and robot collaborate in a
joint scenario, i.e., in our case they have to reach similar objects,
and the robot will adapt its motions over time corresponding
to the reaction/prediction of the human partner. After training,
the robot will be able to perform its tasks more efficiently
and more predictable. This helps increase human comfort and
the effectiveness of the collaboration. Our framework is also
generalizable to similar tasks using learned policies in order to
save training time.

2. RELATED WORK

Safety and legibility of robot motion in close proximity have
always been investigated independently. Several methods were
proposed that produce real-time obstacle avoiding trajectories,
while others developed optimization based algorithms for legible
robot motions.

Legible (or predictable) robot motion was first introduced
in Dautenhahn et al. (2005). The result from their survey
confirms the necessity of predictable behaviors in future
robot companions. However, the paper does not focus on
how to generate predictable behaviors for the robot. In the
works from the Robotics and Artificial Intelligence Group at
LAAS/CNRS (Alami et al., 2005; Sisbot et al., 2007, 2008; Sisbot
et al., 2010; Sisbot and Alami, 2012), they developed a human
aware motion and manipulation framework which is able to
generate safe, comfortable and socially acceptable motions. The
framework is verified on amobile robotmanipulator in simulated
environment and in a hand-over scenario on real setup. The
safety criterion introduced in their works, however, is based on
the distance between the robot and the human, i.e., the robot
should keep its distance from the human when performing tasks.
While the framework is able to generate safe and legible motion,
it is not applicable for joint tasks in close proximity since it does
not allow the interaction between human and robot. As shown in
the results of their papers, only the robot performs its tasks and
there is no collaboration between them.

The work from Dragan et al. (2013) focuses explicitly on
generating predictable and legible robot motion. In their work,
the authors differentiate between legibility and predictability and
provide a mathematical model to produce and evaluate such
motions. They assume that humans expect robots to be efficient
in their movements and compare all possible goals in the scene to
determine the most probable one. This probability is formulated
mathematically and is being maximized for the targeted goal.
This approach has some limitations. The algorithm was tested
only with two goals for the robot, which the human had to
predict when pausing a video which showed the robot moving
to one of the two (see Supplementary Video). This setup was
very simple as the probability of selecting a goal (randomly) is
already 50%. Another limitation is that the subjective evaluation
of robot efficiency differs from one individual to another and
the algorithm does not allow to adjust the robot’s movements to
individual preferences of each participant.
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In the work of Stulp et al. (2015), the team generates robot
motions that learn from the observation of a human participant
and iteratively reduce the human’s reaction time. Here, Dynamic
Motion Primitives (DMPs) are used for motion planning. Policy
Improvement through Black Box Optimization (PIBBO) (Stulp
and Sigaud, 2012) is applied to improve the robot’s legibility
to the human iteratively. This is done by only optimizing
human guessing time about the action of the robot and the
correctness of the prediction without defining formal criteria
about legibility. This approach provides flexibility in choosing
the relevant parameters to be optimized to obtain legible motion.
Recently, Busch et al. (2017) showed that transferring the learned
policy to other individuals leads to better prediction in the
beginning and can thus lead to shorter adaptation times for new
subjects. However, in this work no close interaction scenarios
were considered as no necessary collision avoidance methods
were integrated and only the policy transfer to other subjects was
investigated, not the policy transfer to new tasks.

Safety for humans during interaction with the robot, in
general, involves several aspects and criteria (Robla-Gómez
et al., 2017). There are also different categories of methods
to ensure safety for the human partner (Lasota et al., 2017)
i.e., safety through control, motion planning, consideration
of psychological factors, etc. Within this work, we limit the
safety aspect to the obstacle avoidance behavior of the robot
and therefore only mention about methods that are able to
provide this functionality to the robot. In this aspect, potential
field (Khatib, 1985) is a very popular and widely used approach
due to its simplicity and real-time capability. Flacco et al.
(2012) and Dinh et al. (2015) utilize the potential field idea
in their works to provide obstacle avoidance behavior on the
end-effector of an articulated robot. In the work of Park et al.
(2008), the authors introduce the dynamic potential field to
adapt robot trajectories while avoiding obstacles in mid-motion.
This dynamic potential field is used with the inverse kinematics
with null-space constraints to further ensure collision avoidance
between the human and robot’s links. However, the aim of these
approaches was not to enable the robot to interact with humans,
but rather to perform desired movements in the presence of
obstacles. In a recent study by Oguz et al. (2017), a stochastic
motion planning algorithm is introduced that predicts human
motions and adjusts the robot’s trajectories on-line to avoid the
predicted region. For the prediction of the human movement,
Probabilistic Movement Primitives (ProMPs) were used, which
were first introduced by Paraschos et al. (2013). This method
learns the distribution of the motion during training and allows
prediction of human motion in the online phase. This allows
close interaction between humans and robots, but does not
examine predictable or legible motion.

Inspired by the work of Stulp et al. (2015) and considering
the requirements of joint human-robot collaboration in close
proximity, in this paper we extend the learning approach in Stulp
et al. (2015) with the potential field method. Our contribution is
therefore a learning framework incorporating real-time obstacle
avoidance to allow humans and robots working together in
close proximity and therefore both legibility and safety aspects
are tackled within our framework. This means that the human

partner no longer stays outside of the robot workspace as a silent
observer, but really cooperates with the robot in joint tasks in
the same workspace. Apart from that, we also develop a task
generalization method to generate policies for new tasks from
previously learned tasks. With our task generalization approach,
the robot is able to adapt to new tasks faster and hence the
training time is reduced. We evaluate our approach on an
articulated KUKA IIWA robot in virtual reality (VR) as well as
in a real robot and complete the evaluation with a human study.

In the following, we first introduce our legible motion
framework in section 3 then present our idea on the task
generalization method in section 4. The improvement of our
framework and task generalization approach is evaluated through
experiments in section 5. Sections 6 and 7 provides further
discussion and concludes our work.

3. LEGIBLE MOTION FRAMEWORK IN
HUMAN ROBOT INTERACTION IN CLOSE
PROXIMITY

A general overview of our framework is shown in Figure 1. The
goal of the framework is to generate legible motion for the robot
directly through interaction between the human and robot. Both
of them collaborate in a joint scenario, i.e., in our case they have
to reach similar objects, and the robot will adapt its motions
over time corresponding to the reaction/prediction of the human
partner. After training, the robot will be able to perform its
tasks more efficiently and more predictable. This helps increase
human comfort and the effectiveness of the collaboration. The
framework therefore can be described in three steps as follow:

1. Firstly, Dynamic Movement Primitives (DMPs) are
used to generate smooth trajectories with modifiable
parameters. These trajectories are generated in Cartesian
space and converted into the joint space of the robot using
inverse kinematics.

2. DMP trajectories are then executed by the robot in the online
phase where the robot collaborates with the human in a joint
task. During execution, a potential field force is added to
modify the DMP trajectories to ensure safety of the human.

3. A cost function which evaluates how the human partner
perceives each trajectory is computed. These costs are then
used to update the policy, which comprises the parameters
of the DMPs in our framework. In the next iteration, new
trajectories are sampled based on the updated policy and the
procedure repeats until it converges to an optimal predictable
trajectory or the maximum number of iterations is reached.

DMP trajectories are the trials/samples that the robot performs to
understand how his human partner perceives a legible motion. By
changing the parameters of the DMPs, the robot is able to exploit
the working area and approach the goal from different angles.

The human reacts to the robot by moving to his corresponding
task. Each trajectory performed by the robot is then evaluated
based on the human reaction formulated in a predefined cost
function. This cost function reflects the perception of the human

on how legible this trajectory is. Base on the evaluation of the cost
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FIGURE 1 | Overview of the human-guided policy improvement framework. In each iteration, DMPs generate Cartesian trajectories x, which are converted to joint

angles q using inverse kinematics. During interaction, potential field force is added to modify the trajectories online to provide safety when the human gets close to the

robot. After execution, a cost function C is evaluated to update the policy 2 of the DMPs using PIBBO for the next iteration.

function of each trajectory, the DMP parameters will be modified
in favor of the ones that are more predictable to the human

(smaller costs). This is done by the policy update method called
Policy Improvement through Black Box Optimization (PIBBO).
After the DMP parameters (policies) are updated, the robot rolls
out new samples from these parameters for the next iteration. The

procedure is then repeated until the trajectories converge or the
maximum number of iterations is reached. Note that all of these
computations are done at the beginning of each iteration.

To prevent collision between human and robot during

execution (online phase), the DMP trajectories are modified
using a potential field force. This potential field force is

proportional to the relative distance between the human and

robot and returns an error vector that is added into the current
DMP trajectory. As a result, the robot will move away when
the human comes close, and recovers his task when the area is
free. Additionally, in order to increase safety in close proximity,
human motion is predicted using Probabilistic Movement
Primitives (ProMPs) (Paraschos et al., 2013) and serves as
Supplementary Information added into the potential field force.
ProMPs is a recent approach that is able to generate/represent
movement from a given trajectory distribution. After training
with a set of human motion observations, we used ProMPs
in the online phase to predict the movement of the human
hand and incorporate this information into the potential field.
This helps the robot react faster and can avoid the human
more actively.

In section 3.1, we first briefly introduce DMPs and describe
how they are used to generate smooth trajectories. The policy
update method PIBBO is introduced and explained in section 3.2.
This is followed by the explanation of how safety for the
human partner is ensured through potential field force with the
assistance of ProMPs in section 3.3. Finally, the cost function
that evaluates the performance of each trajectory especially with
a focus on collaboration effectiveness, is explained in detail in
section 3.4.

3.1. Dynamic Movement Primitives
DMPs provide a method for trajectory control and planning
that is able to represent complex motions and is flexible to
be adjusted without manual parameter tuning or having to
worry about instability (Ijspeert et al., 2002). DMPs comprise
two parts, a dynamical system, and a nonlinear forcing term.
In our work, the dynamical system is defined as a closed loop
spring-damper system

τ ÿ = α(β(yg − y)− ẏ) (1)

that converges to the defined attractor state yg where τ is the time
constant, α and β are positive constants. By setting β to α/4 we
get a critically damped system. The variables y, ẏ and ÿ are the
position, velocity and acceleration, respectively.

The forcing term, which forms the second part of the DMPs,
deforms the trajectory tomatch a desired shape. Thus, the spring-
damper system is modulated to

τ ÿ = α(β(yg − y)− ẏ)+ f (x), (2)

where f (x) is the forcing term consisting of a weighted sum of
Gaussian basis functions multiplied by a canonical dynamical
system, denoted as x. The canonical system x is obtained by

ẋ = −αxx, (3)

where αx is a constant. The canonical system state x in (3) starts
at some arbitrary value and goes to 0 as time goes to infinity. This
ensures convergence to the goal while keeping the forcing term
not directly dependent on time. The forcing function f (x) hence
has the form

f (x) =

∑N
i=1 ψi(x)ωi∑N
i=1 ψi(x)

x, (4)

where

ψi(x) = exp

(
−

1

2σ 2
i

(x− ci)
2

)
(5)
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defines the Gaussian basis functions with means ci and variances
σi. In (4), N is the number of basis functions and ωi are
modifiable weights, which are adjusted to match the desired
trajectory. They are optimized by the policy improvement
method explained in section 3.2.

Since the mass spring-damper system leads to high initial
accelerations, which is not desirable for robots, we use a goal
system, which moves the attractor state of the system from
the initial state y0 to the goal state yg during the movement.
This delayed goal attractor ygd itself is given as an exponential
dynamical system that starts at y0 and converges to yg .

ẏgd = −αg(yg − ygd) (6)

Thus the equation for the DMPs resolves to

τ ÿ = α(β(ygd − y)− ẏ)+ f (x) (7)

The DMPs has several advantages, which make it suitable for our
framework:

• It is guaranteed to converge to the goal, since the canonical
system is 0 at the end of every movement.
• The weights ωi can be adapted to generate any desired

trajectory. In our case this is especially relevant, since we want
to learn the optimal trajectory and adjust the weights online
with each interaction.
• As there is no time-dependency, the duration of themovement

can simply be altered by adjusting τ .

3.2. Policy Improvement Through
Black-Box Optimization
Policy improvement methods seek to optimize the parameters of
a policy w.r.t. a utility function. In our work, we use a policy
improvement method to iteratively update the weights of the
DMP to obtain a desired trajectory. Policy improvementmethods
have two basic steps:

1. Exploration by perturbation: The exploration noise ǫt can
be either added to the actions, i.e., the output of the policy
(πθ (x) + ǫt), or directly to the input parameters of the policy
(πθ+ǫt (x)).

2. Policy update: Here, the parameters of the policy are updated
in order to minimize a predefined cost metric C. Usually,
gradient descent is applied to iteratively converge to a local
minimum. Another method is the reward-weighted averaging,
which is used in our application.

Reward-weighted averaging does not require differentiability of
the cost function, which makes it more stable than gradient
descent if the cost function is not continuous.

Specifically for this work, we choose Policy Improvement
through Black-box Optimization (PIBBO) as our policy
improvement method (Stulp and Sigaud, 2012). PIBBO treats the
whole control trajectory as a black-box, i.e., no assumptions are
made about the search space or the cost function. An important
property of PIBBO is that the search is done in the space of

policy parameters, thus it is a parameter perturbing approach.
The output ut of the policy is computed as:

uk = πθ+ǫk (x), with ǫt ∼ N (0,6) (8)

In our case the policy πθ , is the DMP and θ are the corresponding
weights for the Gaussians.

The parameter update is done using reward-weighted
averaging. First, the cost Ck for each trajectory roll-out is
computed. Then we assign higher probabilities Pk to trajectories
with a lower cost and vice versa.

Pk =
e−1/λCk

∑K
k=1 e

−1/λCk
(9)

k is the number of roll-outs and λ is a constant between 0 and 1.
The parameter update is then given as

δθ =

K∑

k=1

Pkǫk (10)

θ ← θ + δθ . (11)

After taking the weighted average of all roll-outs, the new DMP
with updated parameters θ follows the trend of trajectories with
high probabilities (i.e., low costs). This process of perturbing and
updating is repeated until the desired cost value is achieved or the
maximum number of updates is reached.

The exploration is done by rolling out different trajectories
and evaluating them using the cost values resulting from the
interaction with the human. Before outlining the cost function
in detail, we discuss the safety aspect of the human partner in
close proximity.

3.3. Safety Aspect in Close Proximity
As the human works together with the robot in close proximity,
safety of the human needs to be considered. In essence, the
robot should be able to physically avoid the human to prevent
any collision. In this section, we describe our approach to
provide a safety aspect for the robot. The main idea is to
create an artificial repulsive force to push the robot away
whenever the human comes close (Khatib, 1990; Park et al.,
2008). Furthermore, to improve the robot reactivity, the human
motion is also considered. In our approach, we use Probabilistic
Movement Primitives (ProMPs) to predict the human motion
and incorporate its effect into the repulsive force. Our idea
about generating repulsive force for obstacle avoidance will be
introduced in section 3.3.1, after that, an introduction about
ProMPs and how human motion prediction extracted from
ProMPs is incorporated will be given in section 3.3.2.

3.3.1. Repulsive Force With Artificial Potential Field
The robot trajectory is generated by the DMP at the beginning
of every update. We want to modify this trajectory to avoid
the human partner while still generating smooth motions and
following the original DMP trajectory when the human is out
of reach. As the DMP trajectory is already smooth based on its
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formulation (see section 3.1), the artificial repulsive force also has
to generate a smooth transition on the robot. This is important
for the human partner to feel comfortable when working with
the robot. A simple solution is to make the robot behave like a
virtual mass-spring-damper system regarding to external forces
(Hogan, 1984)

Fext = Më+ Dė+ Ke, (12)

where Fext ∈ R
3represents an external virtual force, which

is excited whenever the human enters the safety area around
the end-effector of the robot. This virtual mass-spring-damper
system results in a smooth transition in the vector e ∈ R

3

regardless Fext. This vector indicates the modification length and
direction to be added to the DMP. M,D,K ∈ R

3×3are positive
definite matrices that represent the mass, damping and stiffness
of the virtual system. In our proposed setup, M is chosen as the
identity matrix, K and D are diagonal matrices chosen to adapt
the desired reaction to virtual forces. Increasing the damping
results in a slower reaction but smoother movement of the robot.
The external virtual force Fext is computed based on potential
fields w.r.t the distance between the end-effector of the robot
and obstacles.

The idea of potential fields was first introduced in the work
of Khatib (1990). Whenever an obstacle is inside a threshold
region of the end-effector, a repulsive force vector Fext according
to (12) is generated. Here, we use the same idea of repulsive
vectors (Flacco et al., 2012; Dinh et al., 2015) to generate a smooth
reaction force

Fext =
Fmax

1+ exp
(
(
∥∥d(E,O)

∥∥ (2/ρ)− 1)γ
) , (13)

where Fmax is the maximum force applied,
∥∥d(E,O)

∥∥is the
distance between obstacleO and end-effector E, ρis the threshold
distance that defines the collision region around the end-effector
and γ is a shape factor. The force reaches its maximum if the
distance equals zero, and zero if the obstacle is outside the
region, respectively. The steepness of the force profile within the
threshold region regarding the distance can be adjusted by the
shape factor γ . With Fext, the error vector e is obtained from (12)
which return in the deviation needs to be added into the DMP to
avoid the obstacle.

3.3.2. Human Motion Prediction With ProMP
Although the robot is able to avoid the human with the repulsive
force generated from the potential field, its reaction time is an
important factor that needs to be considered. In a confined
workspace where the human usually interferes with the robot,
the robot might not have enough time to react and fail to avoid
the human partner. Increasing the safety region around the robot
can improve the reaction time but results in a smaller workspace.
Thus, in our framework, we estimate and predict the human
motion and add this additional information into the repulsive
force to increase the responsiveness of the robot.

In general, human motion estimation requires a specialized
prediction method due to the inter- and intra-personal

movement variations (Todorov, 2004). To imitate such behavior
online, we use ProMPs and learn a distribution of a motion
behavior by training with multiple trajectories performed for a
specific task (Paraschos et al., 2013). ProMPs represent a discrete
trajectory X = {xn}, n = 0 . . .N defined by states xn over time N
with the formulation

yn = [xn, ẋn]
⊤ = 8⊤n ω + ǫy, (14)

where ω ∈ R
k×2 is the weighting matrix over the k × 2

dimensional time-dependent basis matrix 8n = [φn, φ̇n] with k
being the number of basis functions and ǫy ∼ N (0,6y) is zero-

mean independent Gaussian noise, while 8⊤n ω gives the mean
of the trajectory. Introducing a Gaussian distribution to also
represent variance p(ω; θ) = N (ω|µω,6ω) over the weighting
vector ω results in the following distribution for the trajectory:

p(yn; θ) =

∫
N (yn|8

⊤
n µω,6y)N (ω|µω,6ω)dω

= N (yn|8
⊤
n µω,8

⊤
n 6ω8n +6y).

(15)

Using a set of motion observations, the parameters µω, 6ω can
be computed by maximum likelihood estimation (Lazaric and
Ghavamzadeh, 2010).

By this formulation, an online human motion prediction,
where a trajectory along with the variance for each discretized
time point is generated. This predicted trajectory can be used in
different ways within our framework. An intuitive way is to select
some predictions at different time points along the trajectory.
These predictions represent the points in space where the human
might occlude in the future and thus are treated as incoming
obstacles that the robot has to avoid. This triggers the reaction
of the robot even if the human is not currently within the safety
region, which in turn increases the responsiveness of the robot. In
case the human does not move toward the robot, these incoming
obstacles do not create any disturbance, thus do not alter the
robot desired position.

3.4. Cost Computation
In this section, we will explain how the cost function in our
framework (Figure 3) is defined. There are different aspects that
we want to evaluate through the cost function:

• First is the legibility of the robot trajectories. There are
different methods to measure this aspect. In the works of
Dehais et al. (2011) and Lichtenthäler et al. (2011), they show
the participants robot motions and afterwards ask them to rate
how legible the motions were perceived. In a quantitative level,
Dragan and Srinivasa (2013) and Busch et al. (2017) show the
participants robot motions through videos/experiments and
ask them to indicate immediately or press a button when they
feel certain about the robot’s intention. Time and correctness
of the prediction are used as the indicators for legibility in their
works. Using the same approach as in Busch et al. (2017), we
also use the human prediction time and accuracy to form the
cost of legibility.
• Second is the smoothness of the trajectories. This helps

the human partners feel comfortable when working with
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the robot and be more confident approaching their goals.
Smoothness also contributes in the legibility aspect since a
jerky motion does not meet the expectation of the human. In
our framework, we use the third derivative of the trajectories
to form the cost of smoothness.

From the two aspects that we want to evaluate, several
components are identified and also mixed up depending on the
experimental setup. Here, we list all the costs used in this work:

• End-effector jerk Vej: the sum of the third derivative of
the end-effector position of the robot at each sample
along trajectory.
• Angular jerk Vθ : the sum of the third derivative of the angular

positions of the controlled joints of the robot at each sample
along trajectory.
• Human prediction time Vpred: the time taken by the human to

make a prediction about the robot’s target. It starts when the
robot starts moving and ends when the human reaches one of
the targets.
• Accuracy Vtask: whether the human prediction was correct,

translating to 0 cost (Vtask = 0), or if the prediction was wrong
which results to a cost of 1 (Vtask = 1).
• Human duration Vdur: the duration of the human movement

between when the human starts moving and reaches the
goal. It is a measurement of human’s confidence in the
robot’s presence.
• The weighted distance between the robot trajectories, Vδ ,

which measures how distinct the trajectory to the targeted goal
is in comparison to the trajectories to the other goals. This cost
is calculated using the following equation:

Vδ =

( G∑

g=1

T∑

t=0

1

t

∥∥pt , qt
∥∥
2

)−1
(16)

whereG is the number of the goals excluding the targeted goal,
g is the other goal whose trajectory is compared to the targeted
goal trajectory, t is the time step at which we calculate the
distance, T is the total time of the trajectory, pt is the point
at t in the trajectory to the targeted goal, qt is the position at
t in the trajectory to the goal g and

∥∥pt , qt
∥∥
2
is the Euclidean

distance between pt and qt .

In summary, the cost function has the form

V = λejVej + λθVθ + λpredVpred + λtaskVtask + λdurVdur + λδVδ
(17)

where each cost component is weighted differently. In general,
λpred, λtask > λej, λθ , λdur, λδ as we want to have a high reward
for trajectories that are more predictable to the human partner.

4. TASK GENERALIZATION

Even though our framework generates predictable policies, the
learning procedure requires a considerable amount of data and
thus time until a convergent behavior is achieved. Furthermore,
the trained polices directly depend on the specific setup. When
the environment changes, e.g., the start/goal positions of the

robot or the relative position of the human w.r.t. the robotic
partner, the robot needs to adapt to this new configuration.

Given a fixed number of policies that have been learned on
specific settings, the existing knowledge can be exploited, such
that the adjustment to variations of similar tasks can be achieved
given limited data. In other words, since the prior policies
learned already encode some preference of human perception,
they can be used to improve the learning convergence rate for
the cases that the robot has not been trained for. We propose an
approach to realize such a generalization capability for the policy
improvement framework within HRI settings.

Suppose that the set of tasks for the robot is defined as

8 =
{
g1, g2, · · · , gM | M ∈ N

}
, (18)

whereM is the number of available tasks. Within the scope of this
work, a task is defined as a reaching motion, where the starting
position is the same for all of the tasks and g1, g2, · · · , gM are M
different goal positions. Learning via PIBBO is done by selecting
a subset Ti out of 8 and training trajectories for each goal in
T i, where

T i =
{
g i1, g i2, · · · , g iS

}
⊂ 8, S ∈ N, g ij 6= g ik,∀j 6= k (19)

with a predefined S < M. The result of PIBBO is S policies that
generate predictable trajectories for each g ij over Ti. Each policy

is parameterized by 2
ij
T i

, e.g., in our case given as the weighted
basis functions of the DMP. Note that the policy of g ij depends
on the remaining goals in T i, which means a similar task will
have different policies if it belongs to a different subset. We then
denote the generated policy for a goal g ij from Ti as

πT i (g ij | g i\j) = πT i (g ij) = π(2
ij
T i

) (20)

where g i\j is an abbreviation of all tasks in Ti except j. This can
be interpreted as the policy that generates the most predictable
motion for goal g ij given the remaining tasks in T i.

Given a training set T = {T 1,T 2, · · · ,T k} consisting of k
batches of S elements from 8 each, a new T̃ /∈ T is drawn
from 8. The objective here is to find a new policy for a goal
gm ⊂ T̃ such that the DMPs initialized using this policy improve
the convergence rate of the learning procedure of gm afterwards.
This requires finding a mapping

π
T̃
(gm) = h

(
πT 1 (g11), . . . ,πT 1 (g1S), . . . ,πT k

(gkS)
)

(21)

with h(·) is a function of all policies obtained from the training set
T. In fact, solving (21) is equivalent to finding the parameterized
vector 2m

T̃
in Equation (20) for goal gm in the new subset T̃ .

We claim that a predictable trajectory for each goal in Ti

depends on a set of features χ . These features characterize the
interrelation between g ij and g i\j in the subset T i. They can be
relative distances, angles, etc, depending on how the set of tasks
8 is defined. These features vary for each goal in each subset.
Given a predefined set of p features for goal g ij in T i, we denote

the resulting feature vector for each goal as χTi
(g ij) ∈ R

p. We
now want to establish a relation between χTi

(g ij) and vector
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2
ij
T i

, which is the policy of g ij in T i. Furthermore, the weighted

basis functions of the DMP in 2
ij
T i

are independent from each
other, hence can be evaluated individually. Therefore, we propose

an approximation to initialize each individual weight 2 ∈ 2
ij
T i

as follow

2 = β0 +

p∑

k=1

βkχk(g ij), (22)

where χk ∈ χT i
represents a single feature in the set of p features

for goal g ij. Given the trained policies from T and a predefined
set of features χ , β = {β0,βk} in (22) is obtained by solving the

linear regression problem. Assuming 2
ij
T i

has N basis functions,
then N linear regression problems of (22) are solved individually
to obtainN sets of β , denoted as β i where i denotes the according
basis function index.

From there, given the new subset T̃ , the generalized policy for
a goal gm in T̃ is initialized by the approximate value as

2m
T̃
=




β1
...

βN


 χ

T̃
(gm), (23)

where χ
T̃
(gm) is the features of gm in T̃ . We then use this

policy as an initialization for the DMP when learning predictable
motion for the new subset T̃ . Details about our implementation
and results are outlined in section 5.3.

5. RESULTS

In this section, we present different experiments to evaluate our
framework and task generalization method. In section 5.1, we
first describe the experimental setup in virtual reality (VR). The
legibility results are shown in section 5.2 while in section 5.3, we
present the results of our task generalization approach. Finally,
to verify the safety aspect of our approach we conducted an
experiment on a real KUKA LWR 4+ robot and present its results
in section 5.4.

5.1. Experimental Setup in Virtual Reality
We conduct our main experiments in a VR environment as
shown in Figure 2. There are advantages of VR that facilitate
our work: First, it is easier to change the environment or switch
to different robots and second, VR provides a first person point
of view that is similar to how humans would perceive their
environment, which makes it suitable for our work.

In the experiment, the participant wears a VIVE pro headset
and stands in front of a table with the robot mounted on it in
VR. We added a real table at the exact location as in VR, which
both acts as a physical support and improves the realism of the
interaction. The position of the robot is different depending on
the experiments. In our case, we use two configurations: (i) the
robot is mounted on the same side of the participant, and (ii) on
the opposite side of the participant relative to the collaborative
task area. The first case emphasizes the side-by-side perspective

of the human toward the robot motions and the second case
highlights the direct point of view when the human observes
the robot motions from the opposite side. Here we want to
investigate if this perspective also affects the predictable motion
of the robot. To facilitate the collaboration between the human
and the robot, we design the tasks for both as reaching designated
goals. The goals of the robot are visualized as cylinders and the
goals of the human are visualized as spheres. Each goal of the
robot has a corresponding goal of the human with the same
color. They are positioned near each other to evaluate obstacle
avoidance behavior (Figure 2).

For each experiment, there are three different goals for the
robot and three corresponding goals for the human. The robot
starts first by moving to one randomly chosen goal and the
participant has to predict which one the robot is aiming at and
moves the VR controller to the corresponding goal with same
color when they feel confident about the target of the robot. After
that, both the participant and robot move back to their starting
positions and the procedure repeats. The participant is informed
that this is a collaborative task, therefore they are expected to
find a balance between making a correct prediction or being fast
and reacting early. For example, making many wrong predictions
results in failing the tasks, whereas having long prediction time
increases the total amount of time for both to finish their tasks.
Both cases reduce the efficiency of the collaboration.

Each experiment consists of a habituation phase and an
evaluation phase. The purpose of the habituation phase is to
get the participants acquainted to the VR environment and the
used equipment as well as familiarized to the robot motions and
their own task. This habituation phase reduces the learning effect
during the main evaluation phase. During the evaluation phase,
the participants are asked to answer a questionnaire. The answers
are scaled onto 5 different levels: strongly disagree, disagree,
neutral, agree, strongly agree. There are 11 questions in total, that
are classified into 5 categories:

• How does the participant feel about the smoothness of
the trajectories?
• Does the participant feel safe when working with the robot?
• Are the robot trajectories predictable?
• How natural and comfortable the participant feel about the

robot trajectories?
• How does the participant like and want to work with the

robot again?

The user study was approved by the ethics committee of the TUM
School ofMedicine. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

For all experiments, if not mentioned specifically, we use
configurations and parameters described as follow:

• For DMP, we use three goal systems for the three Cartesian
goal positions of the end-effector. These goal systems are
first initialized with straight lines. The DMP has 5 equally
spaced Gaussian radial basis functions and there are 5 samples
per update for each goal. In the sampling phase, we add
perturbations with the covariance size as 200 to the DMP
parameters and run the policy for each sample. With each
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FIGURE 2 | Experiment setup with different configurations: (A) Human and robot are on the same side. (B) Robot is on the opposite side of the human.

iteration, we let the variance factor for the perturbations
decay as it helps reducing the search space for the parameters
over time.
• For obstacle avoidance, we use a motion capture system to

detect the position of the human (and the velocity), which are
then used to compute the repulsive force. The maximum force
Fmax is set to 300N and the obstacle threshold is 20 cm around
the end-effector of the robot.
• The weights of cost components used in the experiment are:
λej = 1, λθ = 2, λpred = 8, λtask = 10, λdur = 1, λδ = 3. The
weights of the human prediction time and accuracy costs are
relatively higher than the others.

Over time, the policy of the robot is updated to adapt to
the preferences of the human and produces more predictable
movements to the human partner. The results of this adaptation
are presented in the following section.

In order to convert the Cartesian trajectory produced by
the DMP into joint positions, we use traditional inverse
differential kinematics:

θ̇ = J+ẋ (24)

with J+ being the pseudo inverse of the Jacobian J of the end-
effector (Penrose, 1955), θ ∈ R

7 is joint configuration and
x ∈ R

3 is Cartesian position. The pseudo inverse gives the least
square approximation to the real inverse. In our case only the
pseudo inverse is applicable, as we map three Cartesian values
to seven joint positions, which makes the Jacobian not quadratic
and thus not regular. We constrain the covariance size of the
DMPs to avoid generating trajectories out of the robot’s reach.
In addition, the joint configuration corresponding to the starting
position is fixed for all trajectories. In this way, the elbow position
of the robot resulting from joint redundancy does not change
significantly during the experiment. Hence, the adaptation effect
is mainly visible on the end-effector movement. The motion of
the end-effector is formed based on the DMPs trajectories and the
potential field force applied to it and it is the major factor for the
human partner to differentiate between different robot motions.
Our detailed implementation is provided in https://github.com/
khoilsr/hrc_legible_motion_generation.

5.2. Predictable Robot Motion for a
Specific Setup
Given a specific setup, which in our case comprises the goals
of the human and the robot in addition to the robot mounting
position (either in the same side or opposite side of the human),
the predictable trajectories are obtained through the learning
framework. We conduct experiments with different participants
on different configurations to evaluate overall performance. To
quantify the performance of our framework, we look at the
following criteria:

• The total costV and human prediction time costVpred (section
3.4) for each update. Vpred is used to quantify the legibility of
the robot motion while V shows the overall efficiency of the
learning framework.
• The opinion of the subject about how legible robot motions are

after each phase.
• The converged trajectory for each goal after learning w.r.t each

subject.

The first two criteria will be discussed in sections 5.2.1 and 5.2.2
while the last one will be analyzed in section 5.2.3.

5.2.1. Evaluation of the Learning Framework
Fifteen participants took part in this study. As mentioned, each
experiment consists of a habituation phase and an evaluation
phase. In the habituation phase, 30 trials are executed using
invariable DMP trajectories. After its completion, the evaluation
phase starts, which consists of 10 updates with 5 trials per
update for each of the three goals, resulting in 150 trials in total.
This number is comparable to Stulp et al. (2015) and Busch
et al. (2017). To evaluate the participants’ perception during the
experiment, this phase is divided in three blocks with two breaks
after the 4th and 7th update, respectively, in which the participants
are asked to fill a short questionnaire (see results in Figure 4).

The prediction time and accuracy from all participants is
collected using a motion capturing system after each trial to
update the cost function and evaluate the framework over time.
The human prediction time is calculated by measuring the time
between the start of the robot’s motion until the participant
reaches their goal. Since each human being has a different
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FIGURE 3 | The mean and confidence interval of the total cost and human prediction time cost for all subjects.

inherent reaction speed, we normalize the measurement of the
human prediction time of each participant by their responses on
the first update, which is computed as the average of 15 values of
the human prediction time.

Both total cost V and human prediction time cost Vpred for
all subjects are presented in Figure 3. For each update, there are
225 data points (15 trials per update for 15 participants), each
data point represents the measurement of one single movement
of the participants. The red line depicts the mean while the blue
area illustrates the 95% confidence interval. As shown, both cost
values decrease over time. The human prediction time cost Vpred

drops around 13%, while the total cost V drop is around 24%.
Comparing the data between the first and the last update, a pair-
sampled t-test indicates that they are both significantly different
from each other (t = 7.142, p < 0.001 for V and t = 7.437, p <
0.001 forVpred). The decrease of human prediction time indicates
that the subjects are able to predict and react faster to the robot
motions while the reduction of total cost also implies that the
subjects predict more accurately over time (accuracy cost has the
highest weight).

The subjective legibility of robot trajectories is measured by
the questionnaire during the breaks and after the last update.
Here, we asked the participants’ opinion on two statements: the
robot’s intention was clear and it was easy to predict which goal
the robot is targeting. We get the average of the two answers as
the measurement of legibility aspect from the human perspective.
The trajectories becomemore predictable as themedian increases
over time (Figure 4A). An interesting result that can be observed
here is that the interquartile range is reduced from phase 1 to
phase 2, however it slightly increases from phase 2 to phase 3.
This means the improvement from phase 2 to phase 3 is not very
clear as the mean increase but the data spread is also larger. One
reason for this is due to the trajectories of the robot start to get
close to the converged one after a few updates and the updated
trajectories of phase 2 and phase 3 are quite close together.
An example of this behavior is shown in Figure 4B, where the

trajectories start as a straight line toward the goals and after a few
updates, get close to the converged trajectories depicted as the
bold and dark curves for each goal.

Overall, it can be concluded that, given a specific setup, human
prediction time and subjective legibility can be improved through
our framework and therefore can boost the efficiency of the
collaboration between human and robot. However, the question
arises here whether the learning effect of the participants plays
a significant role in the improvement of the results, since the
experiment is designed as a repetitive task. This will be discussed
further in the next section.

5.2.2. Comparison With Non-adaptive Robot
In this section, we compare our method with a non-adaptive
baseline. Even though we reduce the learning effect from
the participants through the habituation phase, there is still
probability that the human adapts to the motions of the robot
over time. Therefore, the goal of this section is to investigate
if the prediction of the human is improved due to the legible
motions of the robot or because of human adaption. We design
two experiments with the same environment setup, i.e., the tasks
and the positioning of human and robot are the same. We
use the counterbalanced ABBA design and define the following
two groups:

• Group I: Subjects within this control group first interact
with the non-adaptive robot, then with the adaptive
robot subsequently.
• Group II: Subjects within this control group first interact

with the adaptive robot, then with the non-adaptive
robot subsequently.

In the case of non-adaptive robot, we also use our framework,
but the policies (the parameters of the DMP) will not be
updated. Therefore, the non-adaptive robot will always follow
a straight line from the start toward the goal in every motion.
As there is no adaption from the robot, the results from
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FIGURE 4 | (A) Predictability evaluation from all subjects for each phase. The evaluation of participants for the first 4 updates, then the next 3 updates and the last 3

ones are shown in phase 1, phase 2 and phase 3, respectively. The mark shows the median of each group. The box contains 50% of the middle half of all given

answers thus representing the interquartile range of the data. The whiskers mark the most extreme answers. (B) Robot trajectories learned for each goal every

update. The first updates (straight lines) and last updates are marked thicker than the others.

the non-adaptive robot solely reflect the learning capability
of the human over time. This configuration also guarantees
that the trajectory of the robot is smooth based on the
DMP formulation (section 3.1) and the avoidance behavior is
identical to the adaptive robot. The only difference between
the two robots is the method to generate their motions
which can be evaluated by comparing the results from the
two experiments.

The experiments are then conducted on 14 new subjects,
divided into 2 groups of 7 participants each. The procedure
for each experiment is identical to the experiment described in
section 5.2.1.

The total cost and human prediction time for both cases,
adaptive and non-adaptive robot, are shown in Figure 5. The
error bar represents the mean value and standard deviation for
each update. For the adaptive robot, there is a clear tendency
for decreasing in both total cost and human time cost over the
course of iterative updates. On average, the total cost deceases
around 22% and human time cost decreases around 10%. In
the case of non-adaptive robot, these values are 3.8% and 4.5%,
respectively. It can also be seen that for the first few updates,
the subjects collaborate better with the non-adaptive robot as
both of the costs are lower. This is due to the fact that the
adaptive robot uses a trial and error method to understand how
the human perceives legibility by exploiting different motions.
Motions that are harder to predict result in a higher cost, as
shown in the slightly increasing in the human time cost on the
second and third updates of the adaptive robot. But overtime,
its motions become more predictable and easier for the subjects
to predict compared to the non-adaptive robot, as indicated by
the better performance in both cost values from the sixth update
and after.

We also perform pair-sampled t-test to evaluate how
significantly different is the performance between the adaptive
and non-adaptive robot. On the first update, the performance
between both robots is not significantly different (t =

−2.464, p > 0.001 for the total cost V and t = −0.266, p > 0.001
for the human prediction time cost Vpred). In contrast, on the
last update, the t-test results in t = 4.139, p < 0.001 for V and
t = 3.185, p < 0.001 forVpred, which indicates that the difference
is significant. Overall, our conclusion drawn from this section
is that the improvement in the human prediction time and the
overall performance is mainly from the legible behavior of the
robot. The learning effect from the human partner, while also
reducing the human time and cost, does not have a significant
contribution within our framework.

5.2.3. Predictable Trajectory Evaluation
To analyze the converged trajectories from the policy
improvement framework, we first pick three different
configurations: 3 goals in a horizontal line, 3 goals in a vertical
line and 3 goals in a diagonal line. These configurations are
illustrated in Figure 7. Combined with two different mounting
positions of the robot (same or opposite to the human), we have
6 cases in total. The experiments are conducted with several
participants for each case. In Figure 6 we representatively show
3 converged robot trajectories for each goal configuration.

For the horizontal configuration, Figures 6A,B are
with the robot on the same side and Figure 6C is with
the robot on the opposite side. The robot tends to
bend more on the left or right for the blue or red goal,
respectively, while for the green goal, the robot tries to
keep the trajectory in the middle with a small variance,
i.e., the green line diverges slightly to the left side in
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FIGURE 5 | Comparison of the total cost and human prediction time between adaptive robot and non-adaptive robot.

FIGURE 6 | Converged trajectories from different subjects and configurations. (A–C) Horizontal, (D–F) Vertical, (G–I) Diagonal configurations.

Figure 6A. Another variance is the length of the trajectories,
e.g., the red line is the shortest in Figure 6A and longest
in Figure 6B. All trajectories tend to go downward for all
three results.

The vertical configuration is one of themost interesting case as
the trajectories converge quite differently. For example, the green
line curves to the left in Figures 6D,E but keeps in the middle-
left in Figure 6F. The red line is the only one bending to the
left in all three results. However, we observe the same pattern
for all three results. For each case, one trajectory bends to the
left side, one to the right side and one stays in the middle. This

creates a divergence between the three trajectories and makes
it easier to predict. The difference in trajectory shape toward
each goal comes from the random sampling of DMPs during
the rollout phase. For example, if there are more rollouts for
the green goal to the left side and being predicted correctly
by the human, these rollouts will be rewarded more and push
the next update to the left. Another reason is the personal
preference of each participant, i.e., for the blue goal, it is easier
for one participant to predict if it bends to the left side, but for
another the right side is favorable. Hence, these trajectories are
rewarded differently.

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2019 | Volume 6 | Article 69

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hoang Dinh et al. Adaptive Motion Policies in HRI

For the diagonal configuration, we observe similar behaviors
as in the horizontal one. The green line stays in the middle while
the two others diverge to the corresponding directions. Also in
this configuration, the distance between two goals is larger than
previous cases, therefore it is easier for the human to predict in
this configuration. The blue line is one example as it tends to go
straight toward the goal in Figure 6H.

For all configurations, we observed slightly different
trajectories w.r.t the mounting position of the robot. It seems the
perspective affects the shape, but it’s not always significant. This
is probably because from the human point of view, the shape of
trajectories does not change a lot, therefore it does not affect the
predictability too much.

In summary, there are differences between trajectories
w.r.t different subjects and configurations i.e., length, bending
angle, etc. However, we also observed several similarities and
patterns in the robot trajectories that make them become more
predictable to the human. This motivates us to learn these
patterns such that they can be generalized to other cases.

5.3. Task Generalization Evaluation
As learning a policy for each task and each configuration requires
considerable amount of time, it is preferable to take advantage
of the knowledge of the prior polices as it already encodes some
preference of human perception. In this section, we evaluate
our task generalization presented in section 4. To generalize the
policy for task gm in a new set T̃ , we have to find a set of features
χ

T̃
(gm) (see section 4). From our observation and from the

results in section 5.2.3, we identified some critical features that
a predictable trajectory depends on:

• The relative distances from the target goal gm to other goals
in T̃ .
• The angles between the target goal gm to other goals in T̃ w.r.t

the horizontal line.
• The relative angle between the human and the robot.

Without loss of generality, we illustrate our idea for the case T̃

consisting of 3 goals as depicted in Figure 7. The workspace of
the robot is divided into a 3 × 3 lattice where robot goals can
be located in 9 different positions. For the sake of simplicity,
the height of the workspace is normalized as 1. Figure 7 depicts
some possible configurations and how χ

T̃
(gm) is calculated. For

example, for G1 in Figure 7A, the relative distances to G2 and
G3 are 0.5 and 1, respectively, the angles to G2 and G3 are both
0◦. For G2 in Figure 7B, the angles are 90◦ and -90◦ while for
the same G2 in Figure 7C, these values are 45◦ and -135◦. The
relative angles between the human and robot is set 0◦ if the robot
in mounted on the same side with the human and 180◦ if the
robot is mounted on the opposite side of the human. Within
the scope of this work, we only investigate these two mounted
positions of the robot, but it can be extended to other cases,
e.g. the robot is positioned on one side of the table such that the
perspectives of the human and robot are orthogonal.

To verify our task generalization approach, three
configurations Figures 7A–C combined with two different
robot positions are used for the training phase (6 different
cases in total). The training phase consists of 18 subjects,

equally distributed for all cases. For each experiment, we
obtain the policy w.r.t each subject for each case. The weights
of the converged trajectories are extracted to construct a
regression model. Then, we use a new setup depicted in
Figure 7D with the robot mounted on the same side with
the human as a testing sample. Using the corresponding
features for the new setup as the input, we initialize
the DMP with the output of the regression function in
Equation (23).

The robot trajectories in the first and final update are depicted
in Figure 8. The trajectories are initialized as curves toward
the three goals in the first update instead of straight lines in
the non-trained case. For G1, the curve bends upward while
for G2 and G3, the curves deviate downward, more to the left
and right from the human point of view, respectively. These
behaviors match the expectation that we observed in section
5.2.3. During the updates, the robot continues exploring new
motions around the initial ones. The covariance size of the
DMP perturbation is set to half of the value of the non-trained
case so that the rollout trajectories are sampled in a smaller
area. The converged trajectories for each goal are shown in
the final update in Figure 8. Compared to the first update, the
shape of the trajectories does not change a lot, which indicates
that the learning algorithm stays close to the minimum from
the beginning.

Next, we analyze the outcome of the total cost and the human
prediction time. Our goal here is to compare the performance
of the learning method to the non-trained case. Therefore, we
establish two groups with 6 new participants each:

• Group A: Subjects within this control group interact with
the untrained robot on a specific experimental setup different
from the ones used for training the data.
• Group B: Subjects interact with the robot, whose trajectories

are initialized by the regressionmodel. The experimental setup
is identical to the one of Group A.

The experiment procedure is the same as described in section
5.2.1. The human prediction time cost of each subject is also
normalized for cross comparison. The means and standard
deviations of the total cost and human prediction time cost
from both groups are plotted together for comparison (Figure 9).
A clear improvement of the trained robot can be observed
directly from the result as both the total cost and the human
prediction time cost are lower than the untrained robot. In
addition, the cost values of the trained robot start decreasing
from the start while in the case of untrained robot, they start
increasing at first then decrease due to high exploration in
the beginning. As the experiment is designed exactly the same
between both groups, the improvement of the trained robot
comes from the initialized trajectories derived from our task
generation approach. Instead of exploring the whole area, the
trained robot only needs to search around the given trajectories,
which inherit the properties of legibility from training data.
As a result, the human predicts easier and faster over time,
i.e., the human time cost drops substantially 20% in the case
of the trained robot compare to 10% of the untrained robot
after 10 updates.
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FIGURE 7 | Different configurations of the robot goals: (A–C) are used for training, (D) is used for testing the task generalization approach.

FIGURE 8 | Robot trajectories in the task generalization experiment. The trajectories were initialized by the weights generated from the regression model.

As a conclusion, the task generalization approach that we
proposed increases the efficiency of the learning framework.
Starting from an initial trajectory generated from the approach,
the robot trajectory converges quickly to the predictable one,
which is also close to the initial trajectory. This helps to reduce
the number of updates and the number of sampled trajectories
per update, which in turn reduces the amount of time needed
for training.

5.4. Experimental Results on a Real Robot
As shown in previous sections, our approach is efficient in
learning predictable motions for the robot through interaction
in VR. We take one step further and bring our framework into
a real robot. While performing the experiments in VR allows us
to evaluate our hypotheses in different setups and configurations
without the need to account for the system limits, safety, etc.
in the performance, it is difficult to judge the safety aspect
from the human perspective since there is no real collision
possibility during the experiment. Therefore, the safety aspect is

additionally evaluated in this section. For this purpose, we design
the experiment as illustrated in Figure 10 with the robot on the
opposite side of the human. The robot used in this experiment
is the KUKA LWR 4+ which has 7 degrees of freedom. The
same inverse kinematics introduced in section 5.1 are applied
to convert the Cartesian position to joint configuration for the
robot. The trajectories generated from our framework are sent to
the robot via ROS (Robot Operating System) at the frequency of
100Hz. The KUKA robot uses the joint position control internally
to keep track of the sent trajectories. Slightly different from
the setup in VR, here the goals of the human and robot are
chosen to be the same and are constructed in the form of three
LEGO blocks (red, blue, and yellow). With this configuration, the
human needs to enter the robot workspace to reach the goals and
therefore triggers the possibility of collision at every movement.
The human hand and robot end effector are equipped with
passive retroreflective markers which are tracked by a Qualisys
tracking system. This information is then used by the robot to
avoid the human and provide safety during the experiment.
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FIGURE 9 | Cost plots that show the difference between the control group that interacted with the untrained robot and the results for the interaction with the trained

robot.

The experiment procedure is then designed identically to
previous sections with a habituation phase and three main blocks
in the evaluation phase. The first block contains 4 updates
while the second and third one contain 3 updates each. After
each block, there is a short break for the subject to answer a
questionnaire. The questionnaire is designed similarly to section
5.2.1 with the same questions about the legibility of robot
motions. Additionally, new questions are added to evaluate
the safety aspect and comfort of the participants. For safety,
we asked the participants’ opinions about three statements:
The robot is responsive to my movement, The robot does not
hit me while moving and I feel safe working with the robot.
The first two statements focus on the avoidance behavior of
the robot since this is the key feature to provide safety for
the human. The last statement is a direct question to the
participants if they feel safe when working with the robot.
The average of three answers is used as the measurement
for safety aspect. Similarly, for comfort, two statements were
asked: The motion of the robot is natural to me and I feel
comfortable working with the robot. Here we want to evaluate
if our framework also provides comfort to the human partner.
The experiment lasts around 30 min in total. During the
experiment, the participants are asked to wear a headphone with
concentration music so that they do not get distracted by the
surrounding environment.

We collect data from 10 new participants who have not
participated in or known about the VR experiments. The
results therefore only reflect the performance of the real robot.
Regarding the total cost V and the human prediction time cost
Vpred, we observe similar patterns as in VR experiments. Both
cost values decreases over time (Figure 11). In this case, the total
cost V drops around 20% and for the human prediction time
cost Vpred, the drop is around 19%. The improvement in the cost

FIGURE 10 | Real experiment setup on a KUKA LWR 4+ robot.

values indicates that the trajectories of the KUKA robot is more
predictable over time.

The bottom side of Figure 11 shows the evaluation of safety
and comfort aspects in box-plot. In case of safety, there is almost
no negative answer from the participants as the data spreads
only from neutral to strongly agree in all three phases of the
experiment. The boxes, which contains 50% of the answers
spread around agree level in phase 1 and phase 2. In phase 3, there
is a larger variation since the box spreads from above neutral to
strongly agree. In general, the data shows positive feedback which
means the participants are confident that the robot will not hit
them while moving and therefore they feel safe when working
with the robot. Some participants, that we observed that during
the experiment, even show their interest in the behavior of the
robot by repetitively interacting with the robot after finishing
their task (they keep moving their hand toward the robot to
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FIGURE 11 | Results of the real experiment on a KUKA LWR 4+ robot. The top side of the figure shows the total cost and human prediction time cost while the

bottom side shows the human evaluation in the safety and comfort aspects when working with the real robot.

see how the robot reacts to their movement). For comfort, the
participants also give positive feedback as most of the answers
are above neutral level. Only in phase 2, one of the whiskers stays
below neutral level. However this is an extreme case (1 out of 10
subjects) which also reflects the difference in subject’s personality.
Overall, we can conclude that our framework is able to provide
a safe and comfortable environment for the interaction between
human and robot during the learning process.

6. DISCUSSION

Our learning framework is a framework that combines learning
and interaction into one. By ensuring safety for the human
partner, we are able to change from “learning from observation”
to “learning through interaction.” The results in sections 5.2.1
and 5.2.2 show that our framework is able to generate motions
that are legible to the human partner during interaction. A
substantial improvement compared to the non-adaptive baseline
also points out that the robot motion is more legible over time
due to its own adaption and the learning effect from human
does not play a significant role during the learning process. We
also present some preliminary results in our task generalization
approach. We first learn the policies of three sampled tasks

and use our approach to generate the policy for a new one.
Results presented in section 5.3 indicate that the robot initialized
with this policy achieves a better performance. This confirms
our hypothesis that legibility can also be transferred to similar
tasks and our framework therefore is generalizable using our
task generalization method. We also verify our framework in a
real experiment setup and show that it is able to provide a safe
environment for the human partner. Even though the results that
we presented show the effectiveness of our framework, there are
some other aspects that we want to discuss in detail.

In our study, we evaluate and verify different hypotheses
as presented in section 5. Beside that, there are also other
case studies that are worth investigating in further experiments.

One case study that is interesting to further investigate is how

the predictable trajectories learned from the framework are
affected by the relative perspective of the human and robot.
The motivation of this study comes from the fact that the
human partner usually does not stay at a fixed position, but
rather goes around when working with the robot. Therefore the
robot trajectories also change from the human point of view. In
our work, two mounting positions of the robot were evaluated
and we obtained some preliminary results. However, further
positions need to be investigated to justify this proposition.
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Another case study is about the variation in perception of
different types of participants, e.g., participants who have robotics
background behave and react differently when working with the
robot compared to others who do not have robotics background.
Comparing the outcomes of the learning framework from these
types of participants requires further inspection but might lead to
interesting results.

Task generalization is a concept to estimate the policy for a
new task from the existing policies of the prior trained tasks
by exploiting the relation between human perception in term of
predicting robot trajectories and task specifications. As a result,
for a new task, the robot starts from a trajectory that is more
predictable to the human and therefore the convergence rate of
the learning framework is improved. We demonstrated our idea
in a 3 × 3 lattice environment with 3 tasks for the robot per
configuration and showed the effectiveness of the approach. The
advantages of our method are: First, it does not require the exact
positions of tasks but only the relative positions between them
as we only estimate the basis functions of the DMP; second, it
can be extended to an n× n case with larger number of tasks per
configuration without lots of modifications. However, since the
features that specify the differences of tasks are defined from the
start and do not change during the learning phase, the variation
of new tasks whose policies can be estimated by our approach are
limited. The reason is these new tasks need to be described using
the same features. For example, in our work, all tasks or the robot
are reaching a goal on a vertical plane.

With the promising outcome of the task generalization
method, there are some consequent open questions that are
worth investigating further. The first question is how to identify
features and how to qualify the influence of each feature to
the trajectories of the robot. In this work, we did it mainly by
observing from a certain number of participants and identifying
some critical features. However, more data is required to properly
justify these features. Another interesting question is how many
cases are needed for the training phase of the task generalization
approach and how to select these cases such that it comprises
enough information about the interrelation between tasks. Too
many training cases requires lots of training time, thus reduces
the efficiency of the approach. But too few training cases might
not contain enough variation, therefore affect the outcome of the
generalization method.

Finally, the experiment on the KUKA LWR 4+ robot is
our first step to bring our learning framework to reality. The
avoidance behavior of the robot is reliable such that the human
feels safe and confident to cooperate with the robot. Here, we
want to emphasize the importance of this avoidance behavior and
its contribution on the success of the learning process since it
allows a smooth and consistent behavior from the human partner
in term of prediction and hand movement. One example is that
in case of collision during the experiment, the human would feel
uncomfortable and hesitant to do the next movements, which
may lead to inaccurate measurement of the human prediction
time. Beside that, one limitation in our setup on the KUKA LWR
4+ is the working area of the robot. Due to the joint limits of
the robot (especially the elbow), the mounting position and our
configuration to avoid singularity, the workspace of the robot
is quite small as we can only setup 3 goals with the distance

between them being around 20 cm. As a result, it is difficult to
extend the framework to different tasks and evaluate the task
generalization method in a real setup. A solution for this is to
change the mounting position i.e., mount the robot on the ceiling
to have a larger range on the elbow or use a different robot with
larger working space.

7. CONCLUSION

In this work, a framework is developed to generate predictable
robot motion that can adapt to human preferences and can
avoid dynamic obstacles, which in our case is the human
hand during interaction. The experiments that were conducted

show that robots are able to adapt their behavior to human
preferences. They can learn to become more predictable while
still giving humans the freedom to move safely in the same
work space. The humans became faster and more confident in
their predictions. Furthermore, a task generalization approach is
also developed and tested. In our experiment, the learned policy
produces better results in the new task than the control group
without a pre-learned policy. This confirms our hypothesis that
the policy learned by this framework is indeed transferable to
other tasks.
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