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Deep Brain Stimulation (DBS) is a neurosurgical procedure consisting in the stereotactic

implantation of stimulation electrodes to specific brain targets, such as deep gray matter

nuclei. Current solutions to place the electrodes rely on rectilinear stereotactic trajectories

(RTs) manually defined by surgeons, based on pre-operative images. An automatic

path planner that accurately targets subthalamic nuclei (STN) and safeguards critical

surrounding structures is still lacking. Also, robotically-driven curvilinear trajectories

(CTs) computed on the basis of state-of-the-art neuroimaging would decrease DBS

invasiveness, circumventing patient-specific obstacles. This work presents a new

algorithm able to estimate a pool of DBS curvilinear trajectories for reaching a given

deep target in the brain, in the context of the EU’s Horizon EDEN2020 project. The

prospect of automatically computing trajectory plans relying on sophisticated newly

engineered steerable devices represents a breakthrough in the field of microsurgical

robotics. By tailoring the paths according to single-patient anatomical constraints, as

defined by advanced preoperative neuroimaging including diffusion MR tractography,

this planner ensures a higher level of safety than the standard rectilinear approach.

Ten healthy controls underwent Magnetic Resonance Imaging (MRI) on 3T scanner,

including 3DT1-weighted sequences, 3Dhigh-resolution time-of-flight MR angiography

(TOF-MRA) and high angular resolution diffusion MR sequences. A probabilistic q-ball

residual-bootstrap MR tractography algorithm was used to reconstruct motor fibers,

while the other deep gray matter nuclei surrounding STN and vessels were segmented

on T1 and TOF-MRA images, respectively. These structures were labeled as obstacles.

The reliability of the automated planner was evaluated; CTs were compared to RTs in

terms of efficacy and safety. Targeting the anterior STN, CTs performed significantly better

in maximizing the minimal distance from critical structures, by finding a tuned balance

between all obstacles. Moreover, CTs resulted superior in reaching the center of mass

(COM) of STN, as well as in optimizing the entry angle in STN and in the skull surface.
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1. INTRODUCTION

Deep brain stimulation consists in the stereotactic implantation
of electrodes in deep brain structures to reversibly excite
a functional target with high-frequency electrical impulses
(Larson, 2014). This technique has been increasingly exploited
to treat a variety of movement disorders, with a particular
concern for the cardinal motor symptoms of Parkinson’s
Disease (PD) (Hickey and Stacy, 2016). DBS strategy for PD
relies on stimulating the subthalamic nuclei (STNs) to keep
them in constant refractoriness, thus inhibiting the indirect
dopaminergic pathway.

Despite being an effective procedure, DBS trajectory planning
toward STN is particularly challenging due to the critical
position of the target, deeply sited and surrounded by eloquent
structures. Overall, a correct positioning of DBS electrodes
implies the accurate targeting of the desired deep structures
and the anatomical obstacles avoidance, in order to maximize
the treatment outcome while minimizing the surgery-related
risk for the patient. The current surgical procedure planning is
delicate and time-consuming, since stereotactic trajectories are
now calculated on the basis of manually-defined target points
(TPs) and entry points (EPs) that neurosurgeons should adjust
using a trial and error approach (Breit et al., 2004).

Inappropriate trajectories could be lethal or life impairing
and the risk of hemorrhages and seizures should not be
underestimated (Larson, 2014). In fact, besides the other gray
matter deep nuclei, also white matter (WM) motor fibers of
the corticospinal tract (CST) critically run close to the STN
and must be preserved. Magnetic Resonance (MR) Tractography
enables the in vivo non-invasive dissection of WM fiber bundles,
thus allowing to depict the entire course of eloquent tracts in
the brain, including the corticospinal one. MR Tractography
is based on diffusion-weighted MR imaging (dMRI), which
measures the displacement of water molecules in biological
tissues, preferentially oriented along the direction of the axonal
fibers in WM (Castellano et al., 2017).

Automated computer assisted planning may significantly
decrease calculation time and provide quantitative information
about the safety and efficacy of trajectories. Specific anatomical
constraints adapted to patient’s anatomy can be inferred from
clinical images. Despite the evident need of improving the
proficiency of these automated approaches in avoiding obstacles,
only standard preoperative imaging has been integrated into the
DBS planners proposed in the literature until now. Remarkably,
it must be highlighted that some eloquent structures such as WM
fiber tracts, that are not identifiable on standard MRI but can
be reconstructed by MR tractography, have increasing clinical
relevance for neurosurgical preoperative planning.

Steerable electrodes have not been taken into account, even
if the research community is increasingly proposing pioneering
prototypes of flexible surgical instruments. In particular, the
EU’s Horizon EDEN2020 project aims at providing a step
change in the microsurgical robotic field by delivering an
integrated technology platform for minimally invasive surgery
based on a high-tech programmable bevel-tip needle, where the
displacement among four interlocked sections generates an offset

on its tip so that the tool can follow Curvilinear Trajectories
(CTs). When inserted into tissue, bevel-tip needles that are
sufficiently thin exhibit the natural tendency to curve toward the
tip of the bevel, due to the asymmetric force distribution applied
by the tissue onto the surface area of the beveled tip (Watts
et al., 2018). This effect can be exploited to steer the needle by
varying the orientation of the shaft during insertion, thus the
aforementioned steerable devices carry the unique potential of
being adaptable to flexible surgical accesses (Liu et al., 2016; Secoli
and Rodriguez y Baena, 2016; Secoli et al., 2018). The present
study focuses on an electrode for DBS potentially engineered
with a design mimicking the EDEN2020 programmable bevel tip
needle. Accordingly, the aim of this work is to develop a planning
algorithm for DBS which includes state-of-the-art MR imaging
and that is able to estimate a pool of CTs for accurate targeting of
the STN and concomitant avoidance of the other relevant gray
matter nuclei and WM fiber tracts, ensuring a higher level of
safety with respect to the standard rectilinear approach, based
on Favaro et al. (2018a,b). The planner performances have been
evaluated considering the minimum distance from critical gray
and white matter obstacles, the efficacy of the target achievement
and the minimum entry angle of the electrode with respect to
the main axis of STN and with respect to the skull, in order to
verify the potential advantage of the curvilinear trajectories over
the rectilinear ones.

2. RELATED WORK

Image-guided keyhole neurosurgery procedures require the
precise targeting inside the brain, based on pre-operative
CT/MRI images. A misplacement of the surgical tool from the
planned trajectory may result in non-diagnostic tissue samples,
uneffective treatment and/or severe neurological complications
(Mascott, 2006; Shamir et al., 2011b). Consequently, it is desired
to select a trajectory that is at a safe distance from critical
structures such as blood vessels or motor and functional areas
(Shamir et al., 2011a). Spatial visualization and segmentation
of critical brain structures has been proposed as a means for
enhancing the neurosurgeon’s spatial perception and improving
the awareness of structures surrounding the trajectory (Lee et al.,
2002; Navkar et al., 2010; Bériault et al., 2012; Bick et al., 2012).

Blood vessel analysis plays a fundamental role in neurosurgery
(De Momi et al., 2013; Faria et al., 2014; Essert et al., 2015) both
for diagnosis, treatment planning, and execution. Blood vessel
segmentation is necessary for their avoidance in performing path
planning. Automatic or semiautomatic methods can support
clinicians in performing these tasks. Moccia et al. provided a
complete review of methods, datasets, and evaluation metrics
(Moccia et al., 2018). For motor and functional areas avoidance,
Diffusion-Tensor Imaging (DTI) tractography is widely used
to map structural connections of the human brain in vivo.
Abhinav et al. presented the technological advances leading up to
the development of DTI and more advanced techniques aimed
at imaging the white matter (Thomas et al., 2014). Different
automatic algorithms have been proposed for minimally invasive
neurosurgery, mainly for Stereoelectroencephalography (SEEG),
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Deep Brain Stimulation (DBS) and needle biopsies with the main
goal of assisting the surgeon during the planning phase (Scorza
et al., 2017).

Automated computer assisted planning solutions for DBS,
computing Rectilinear Trajectories (RTs) for currently used rigid
electrodes, have been presented and intensely discussed in the
literature. For instance, Essert et al. extended the approach of
RT calculation to an analytical description of the risk factors and
suggested an additional qualitative test (Essert et al., 2012). Liu
et al. validated the automatic planning method with multiple
surgeons and different targets for DBS applications (Liu et al.,
2014). De Momi et al. developed a method that provides the
neurosurgeons with a planning tool able tomaximize the distance
from vessels, to avoid the sulci as entry points and to optimize
the angle of guiding screws (De Momi et al., 2014). In other
two studies, the authors proposed a hybrid method working by
associating information of the expected risk in the form of a color
map (Shamir et al., 2010, 2012). This allowed for the intuitive
selection of an entry point for the desired surgical trajectory,
then proposing an automatic trajectory plan. Another group
developed a system for computer-assisted preoperative selection
of target points and for the intraoperative adjustment of them
(D’Haese et al., 2005).

Going beyond RTs, the safeguarding of critical structures
could be further implemented with new models of electrodes
able to navigate along CTs, that will overcome limitations
related to straight and non-malleable paths. Existing steerable
needle concepts can be classified in seven different groups, as
summarized in a recent work (van de Berg et al., 2015): bevel tip,
base manipulation, optically controlled needle, pre-curved stylet,
active cannula, tendon actuated tip, and programmable bevel tip.

Regarding CT approaches, some solutions can be found
in keyhole neurosurgical scenario. Duindam et al. proposed
a 3D motion planning for a steerable needle as a dynamical
optimization problem with a discretization of the control space
using inverse kinematics (Duindam et al., 2018). Other solutions
proposed in literature can be divided in two main categories:
graph-based and sampling-based methods. Two examples of
graph search methods are Dijkstra’s algorithm, which aims at
finding the shortest path between a node and all other nodes in
the graph (Dijkstra, 1959) and A*, that is an improved version
of the Dijkstra’s method, using an heuristic function (Hart et al.,
1968). Park et al. presented a diffusion-based motion planning
for a non-holonomic flexible needle based on a probability
map (Park et al., 2005). Although graph-based methods are
relatively simple to implement, they require a considerable
computational time as the environment becomes more complex
(Bellman, 1966).

Sampling-based solutions are the current trend for generic
single-query path planning problems. Remarkably, Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner, 2000) is
an exploration algorithm for quickly searching high-dimensional
spaces and it’s much more efficient than brute-force exploration
of the state space. Several authors (Rodriguez et al., 2006;
Knepper and Mason, 2009) proposed different exploration
algorithm for RRTs with randomly sampled C space and
deterministic control space. Branicky et al. extended the

RRT-based method for a motion planning approach considering
a system with a hybrid configuration space and constraints
(Branicky et al., 2003). Particularly interesting, in this regard,
is the study of Favaro et al. (2018a) proposed in the context
of EDEN2020, which improved the approaches described in
previous works applying an informed RRT algorithm, designed
tomeet the catheter kinematic constraints and non-holonomicity
and to guarantee a high reliable level of obstacle-avoidance
capability, crucial for the intended neurosurgical application.

To our knowledge, there is no algorithm in the literature
that calculates automatically curvilinear safe paths for DBS
integrating tractography reconstructions. Thus, following CTs
may enhance the chances to obtain an optimal targeting
of the STN with the proper anatomical obstacles avoidance,
since flexible electrodes can mitigate limitations of their rigid
counterparts through their ability to steer along CTs (Favaro
et al., 2018b).

3. MATERIALS AND METHODS

3.1. Surgeon’s Input and Data Processing
As first step, the surgeon is asked to select the desired entry point
(EP) on the brain cortex, the target structure (TS) within the
brain, corresponding to the STN and, optionally the target point
(TP). This latter, if not specified, will coincide with the center of
mass of the STN. The anatomical obstacles (AOs) are segmented
and a distance map is computed (Danielsson, 1980).

The system delineates an entry area EA around the EP,
excluding the sulci as possible entry area because of the presence
of cortical blood vessels, thus preventing possible hemorrhages
(De Momi et al., 2014). A mesh decimation is performed over
the EA and a pool of 10 feasible entry points EPi, i ∈ 1, .., 10
is defined.

3.2. Path Planning ∀ EPi
Our path planner method consists in three main steps: Path
planning, described in section 3.2.1, where a set of piece-wise
linear feasible paths is computed from each EPi to the target
point, Path approximation and optimization, described in section
3.2.2, where an evolutionary optimization procedure generates
smooth paths, reduces their lengths and optimizes the insertion
angle with respect to the target main axis and Exhaustive search
for the best path, reported in section 3.2.3, where an exhaustive
search is performed over the set of paths for determining the best
planning solution. The entire workflow is described in Figure 1.

3.2.1. RRT*-Based Raw Planning
At first, an ellipsoidal volume H is built, having the EP and TP
as foci. The focal length of the ellipsoid is the Euclidean distance
between the EP and the TP and corresponding to the minimum
possible path length, the minor axis of the ellipsoid is set to a
predefined value equal to 10 mm. In this way, the original search
workspace, consisting in the entire patient’s brain, is bordered
within a confined region,H.

A batch of uniformly-sampled 3D points in H is gradually
provided to an RRT*-based planning algorithm (Gammell
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FIGURE 1 | Schematic representation of the workflow. From the segmented image dataset, 10 EPs are selected. On each EP, the RRT based raw planning is applied

computing s {solis} solutions (section 3.2.1). Subsequently, an EOP is computed based on Fobj to be minimized. A number of feasible solutions { ̂curvei,s} is generated

(section 3.2.2). Finally for each EPi the best path {
̂̂
curvei} is computed by running a cost function Fcost, to be minimized, over the set of solutions generated by the

Exaustive search for best path (section 3.2.3).

et al., 2015), to build a connected graph of vertices and
obstacle-free edges.

As a first path able to connect the EPi to the TP is detected,
the solution is stored. Subsequently, the RRT* keeps adding new
points inH. As a new, shorter solution is discovered, the graph is
pruned and themajor axis ofH is reduced to the length of the new
solution resulting in focusing the search within a smaller space.
This new piece-wise linear pathway is stored as well. A number of
paths solis, s ∈ 1, ...,Nmax

s is thus defined as a sequence of vertices
Pk (k = 1...Nv), where Nv is the number of vertices, such that:

solis = {Pi,s
k
∈ R

3} (1)

where Nmax
s is a predefined upper limit of possible solutions

discovered for the specific EPi with i ∈ 1, .., 10, Pi,s1 = EPi and

Pi,sNvi
= TP. The reader is referred to Favaro et al. (2018a), Favaro

et al., (under submissiion) for further details.

3.2.2. Evolutionary Optimization Procedure (EOP)
An Evolutionary Optimization Procedure (EOP) is run (Favaro
et al., under submission). The vertexes of each piece-wise linear
solution solis are used to define a population {curve

i,s
j , j = 0, ...,Nc}

of Non-Uniform Rational Beta Splines (NURBS) by assigning
different random weights to each vertex. {curvei,sj } is made to

evolve according to the objective function to minimize (Fobj).
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This results in pulling (pushing) a curvei,sj closer to (far from) the

vertexes so that to optimize the curve in accordance with Fobj.
Hyper-parameters used in the EOP are reported in Table 1.

The best trajectory obtained will:

1. Minimize the number of points of the path intersecting
an obstacle.

2. Minimize the maximum curvature of the path kpath, to respect
kinematic constraints such as the maximum curvature of the
electrode (Kmax).

3. Minimize the length of the electrode l.
4. Minimize the standard deviation of curvature values, in order

to obtain a smoother path.
5. Optimize the orientation of the electrode depending on

TS shape.

Thus Fobj is defined as:

Fobj({curve
i,s
j }) = β1 · #punsafe + β2 · #punfea + β3 · l + β4 · SD

+β5 · α (2)

where:

• #punsafe is the number of points Punsafe ∈ {curvei,sj } whose 3D

coordinates are internal to the point cloud describing each
AOs, such that:

{Punsafe} :{curve
i,s
j ∩ cloudAOs} (3)

where {cloudAOs} is the set of 3D points representing the
obstacle space with the AO surface.

• #punfea is the number of points Punfea ∈ {curvei,sj } whose

curvature, kpath = curve
′′i,s
j (calculated as the second derivative

of curvei,sj ; Favaro et al., under submission), exceeds the

maximum curvature achievable by the needle (Kmax), such
that:

{Punfea} :{kpath > Kmax} (4)

• l is the total path length of {curvei,sj }, such that:

l({curvei,sj }) =

∫ TP

EPi

||{curvei,sj (u)}||du (5)

where u ∈ [0, 1] is the independent variable used to define the
NURBS curve in parametric form, The reader is referred to
Favaro et al., (under submission) for further details.

TABLE 1 | Parameters used for the EOP.

EOP parameters

Nc Ni pcross pmut

20 50 0.5 0.1

With the exception of Nc, which has been set empirically and represents the number of

NURBS individuals composing the population of each piece-wise linear solution solis, the

number of EOP iterations Ni , the cross-over probability pcross and the mutation probability

pmut are taken from Jalel et al. (2015).

• SD is the standard deviation of the curvature, kpath, such that:

SD =

√
1

Ns

∑
Ns
i=1(kpath − kpath)

2 (6)

where Ns represents the number of samples of {curvei,sj } that

depend upon the discretization of u ∈ [0, 1].
• As the STNs have an anisotropic shape, for each STN the

longitudinal axis is defined computing Principal Component
Analysis (PCA) of the STN point cloud segmentation and
used as desired trajectory for the distal part of the needle.
Specifically, the entry angle α between the distal part of the
needle (the one inserted in the STN) and the longitudinal axis
of the STN is computed as:

α = arccos(̂ldist · l̂STN) (7)

where l̂dist is the 3D unit vector representing the entry
direction of the distal part of the needle. l̂STN represents the
3D unit vector of the 1st PCA component.

• The values of the weight are empirically defined and reported
in Table 2.

Minimizing Fobj({curve
i,s
j }), through a preset number of

iterations, allows each new offspring of the EOP, {curvei,sj }, to

move toward the path optimality. {
̂
curvei,s1 } represents the best

C
2, obstacle-free path able to connect EPi to the TP starting from

the piece-wise linear solution s.

3.2.3. Exhaustive Search for Best Path
Among the optimized solutions {ĉurvei,s} that defined the feasible
optimized trajectories from EPi to TP, the best one is identified
through a cost function to minimize, Fcost , expressed as follows:

Fcost({ĉurvei,s}) =





∞ if dmin ≤ 0

∞ if kpath > Kmax

κ1
1

dTHA
+ κ2

1
dGP

+ κ3
1

dCN
+ κ4

1
dCST

+ κ5
1

dmin
+ κ6

1

d̄
+ κ7

kpath
Kmax

otherwise

(8)
where, given the euclidean distance de,o, defined as:

de,o = ||Pe − Po|| (9)

with Pe = {P}path, with e ∈ 1, ...,N, is the set of points of

the calculated curvei,s and Po = {P}AO, with o ∈ 1, ...,M, is
the set of 3D points representing the obstacle AO, with AO =

{THA,GP,CN,CST}.

• dmin is theminimumdistance calculated over the whole length,

(l), of the {ĉurvei,s} with respect to all the AOs, such that:

dmin = min{de,o} ∀Pe,∀Po (10)
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TABLE 2 | Parameters used in the experimental setup.

PBN parameters Objective function Cost function Check function

�[mm] Kmax [mm−1] β1 β2 β3 β4 β5 κ1 κ2 κ3 κ4 κ5 κ6 κ7 θmax[
◦]

1.3–2.5 0.015-0.055 5 5 0.1 1 0 0 0 0 0 1 0.5 0.2 0

1.3 0.015 5 5 0.1 1 2 0.5 0.1 0.1 0.1 1 0.5 0.2 30

Line1 corresponds to feasibility study, while line2 to validation of RTs vs CTs. From the left to the right, the PBN diameter (�) and maximum degree of curvature (Kmax ) are reported,

followed by the values of the weight used in the Objective and the Cost functions. The value assigned to the thrmax used in the Check functions is shown. Lastly, the values of the

threshold density is also reported.

• d̄ is the average distance calculated over the whole length, (l),

of the {ĉurvei,s} with respect to all the AOs, such that

d̄ =
1

N ·M

N∑

e=1

M∑

o=1

de,o (11)

• dTHA, dGP, dCN , dCST represent the sum of dmin and d̄
with respect to the 4 most critical AO taken singularly:
thalamus (THA), globus pallidus (GP), caudate nucleus (CN),
and corticospinal tracts(CST). For the sake of clarity are all
defined as:

dAOk
= dminAOk

+ d̄AOk
, ∀AOk (12)

where

dminAOk
= min{de,k}, ∀Pe,∀Po,k ∈ AOk

and

d̄AOk
=

1

N · #AO ·M

N∑

e=1

#AO∑

k=1

M∑

o=1

de,o

• Weights from κ1 to κ4 are defined by the user, according to the
possibility of the surgeon to set the priorities for maintaining
distances with respect to structures, while from κ5 to κ7 are
empirically defined and reported in Table 2.

The output of this step is the best path from each EPi to TP over

the entire set of {ĉurvei,s}, identified as:

{
̂̂
curvei} = argmin

x∈{ĉurvei,s}

f (x) = {x ∈ {ĉurvei,s} :

f (x) = min
y∈{ĉurvei,s}i

Fcost(y)} (13)

A further surgical need is to compute a trajectory possibly
aligned to the main axis of the target, especially in ellipsoidal
STN, in order to cover almost all the nucleus and to increase
the electrostimulation. We define θmax=30

◦ as the maximum
insertion angle with respect to skull normal acceptable for
electrode placement. The insertion angle θEP between the
proximal part of the needle (the one near the EPi) and the skull
normal is computed as:

θEP = arccos(̂lprox · l̂SKULL) (14)

where l̂prox is the 3D unit vector representing the entry direction

of the proximal part of the needle. l̂SKULL represents the 3D
unit vector of the skull normal. A check function Fcheck(θEP) is
then computed:

Fcheck(θEP) =

{
discarded if θEP > θmax

accepted otherwise
(15)

The developed system was implemented in the 3DSlicer software
(4.7.0-2017-10-16) on iMac (OS-X 10.13.3 (17D47), 2,9 GHz Intel
Core i5, 8GB of RAM).

4. EXPERIMENTAL SETUP

4.1. MRI Acquisition
High-resolution MR images of ten healthy controls (mean age:
38 yo; 5M/5F) have been acquired on a 3T Ingenia CX scanner
(Philips Healthcare, Best, The Netherlands). The research ethical
committee of Vita-Salute San Raffaele University and IRCCS
San San Raffaele Scientific Institute approved the study, and all
subjects provided signed informed consent prior to MR imaging.
The MRI protocol included:

• a 3D T1-weighted sagittal Fast-Field Echo with selective water
excitation (Proset technique) acquired with the following
parameters: repetition time/echo time [TR/TE] 12/5.9 ms; flip
angle, 8◦; acquisition matrix, 320 × 299; voxel size, 0.8 ×

0.8× 0.8 mm; thickness, 0.8/0mm gap; SENSitivity-Encoding
[SENSE] reduction factor, R = 2; 236 slices; acquisition time, 5
min 19 s;

• a simultaneous multislice Echo Planar Imaging (EPI) axial
sequence for Diffusion MR Imaging (dMRI), acquired at
multiple b-values (0, 711, and 3,000 s

mm2 ) with diffusion
gradients applied along 35 and 60 non-collinear directions
and the following parameters: TR/TE 5977/78 ms; flip angle,
90◦; acquisition matrix, 128 × 126; voxel size, 2 × 2 × 2 mm;
thickness, 2/0 mm gap; SENSE factor, R = 2; Multiband factor
= 2; 60 slices. Twelve b = 0 images were obtained, including
one with reversed phase-encoding to estimate susceptibility-
induced distortions;

• a 3D high resolution time of flight MR angiography (TOF-
MRA) acquisition to visualize flow within the arterial vessels,
acquired with parameters as follows: TR/TE 23/3.45 ms; flip
angle, 18◦; acquisition matrix, 500 × 399; acquired voxel size,
0.4× 0.5× 0.9mm; reconstructed voxel size, 0.3× 0.3× 0.45
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mm; thickness, 0.45/−0.45 mm gap; SENSE factor, R = 2; 210
slices; acquisition time, 8min 33 s.

4.2. MRI Analysis and Tractography
Reconstructions
From the multi b-value dMRI dataset, high angular resolution
diffusion-weighted imaging (HARDI) volumes (60 diffusion
directions, b-value = 3,000 s

mm2 ) and b0 images were extracted
by using the “fslsplit” and “fslmerge” tools of FMRIB Software
Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/). Current distortions
as well as susceptibility distortions were corrected. Diffusion
tensor and fractional anisotropy (FA) maps were estimated using
Diffusion imaging in Python (Dipy) software (Garyfallidis et al.,
2014). MR Tractography reconstruction was based on a q-ball
residual bootstrap algorithm (Berman et al., 2008), in order to
fit the signal to spherical harmonics, to compute the Orientation
Distribution Functions (ODFs), and to identify the primary
fiber orientation.

To reconstruct bilateral corticospinal tracts (CSTs), seeding
regions-of-interest (ROIs) were selected on axial images
including an area of high anisotropic diffusion in the anterior
part of the pons, and target regions were chosen at the level of the
primary motor cortices in the precentral gyri. Maximum turning
angle of 60◦ and FA threshold of 0.1 were used as stopping criteria
for fiber tracking.

Arterial vessels have been segmented on the TOF-MRA
images, in the native space of each patient, by applying an
intensity threshold with 3D Slicer©.

Finally, the b0 volume from the HARDI data, the 3D T1-
weighted images and the TOF-MRA images were co-registered
to the MNI image volume (Ewert et al., 2017) by means of a
3D affine transformation. The transformation matrix of the b0
volume was applied to both the .trk files and NifTI binary masks
of the CSTs, in order to bring the tracts in a standard reference
space. Similarly, the masks of the arterial vessels were reported in
the MNI space.

4.3. Experimental Protocol
On the normalized 3D T1-weighted images previously
coregistered to the MNI space, we segmented cerebral cortex,
skull surface, arterial blood vessels, and ventricles by means of
FreeSurfer Software, then relevant deep gray matter structures
[(THA), (GP), (CN)] and the DBS target STN, by using the
DISTAL atlas with 3D Slicer©. Each start and target points pair
has been set as in DBS clinical practice (Figure 2; Okun, 2012).

The herein described method was tested in two different
phases described in the following sections 4.3.1 and 4.3.2. All the
relevant parameters used in the tests are reported in Table 2.

4.3.1. Feasibility Study on Catheter Specifications
The feasibility study is aimed at computing the max diameter
(EOD) and the minimum curvature (k) that could allow safe
paths toward the TPs.

Tests were conducted bilaterally on one case-study. For each
hemisphere, 2 EPs were chosen and for each point a solution
path was provided. Five electrode outer diameters (EODj) with
j ∈ 1..5 were tested, starting from the standard 1.3 up to 2.5

mm range with a step of 0.3 mm. The value of k was increased
stepwise from 0.015 to 0.055 mm−1 with a step of 0.010 mm−1.
The performance in terms of dmin from the AOs was computed.

4.3.2. Validation of RTs vs. CTs
The validation phase included multiple tests, performed on 10
cases, selecting 2 TPs for each hemisphere: 1 defined manually on
the basis of current clinical practice and 1 in the center of mass of
the STN. An EOD of 1.3mm was considered and a Kmax of 0.015
mm−1 was chosen.

From the EPi each RT was computed by linearly connecting

each EP to the related TP and solutions solRTi were obtained.
Moreover, CT were obtained with the application of the method
described in section 3. Finally, for every EPi, the CT solutions

{
̂̂
curvei} is compared with the standard RT ones solRT1 (Figure 2).
For each RT and CT solution, we calculated:

• The minimum (dmin) and the mean (d̄) distances with
respect to all the obstacles (AOs point cloud), as described
in Equations (10) and (11) (section 3.2.3). The minimum
(dminAO ) and the mean (d̄AO) distances with respect to an
obstacle taken singularly (THA, GP, CN, or CST point cloud),
as described in Equation (12) (section 3.2.3).

• The STN entry angle α were computed, as described in
Equation (7) and shown in Figure 3A.

• The percentage of CTs and RTs that did not exceed θmax=30
◦,

defined as the maximum insertion angle with respect to skull
normal acceptable for electrode placement (Scorza et al.,
2017), as described in Equation (15) and shown in Figure 3B.

All the parameters were analyzed by means of Matlab (The
MathWorks, Natick, Massachusetts, R2017b) and Graph Pad
Prism 7 (GraphPad Software, La Jolla, California, USA). Lilliefors
test has been initially applied for data normality. Due to the
non-normality of data distribution, pairwise comparison RT and
corresponding CT to any anatomical obstacles was performed
with Wilcoxon matched-pairs signed rank test. Differences were
considered statistically significant at p < 0.05. It is worth
specifying that analyses have been conducted keeping data of the
right hemispheres separate from the left ones, in order to respect
the functional more than the anatomical variability between the
two hemispheres. In fact, they are generally approached very
differently in the surgical setting, depending on the patient-
specific side dominance.

5. RESULTS

5.1. Feasibility Study
A heatmap was generated to show the minimum curvature
required by any tested diameter in order to compute safe
trajectories for flexible electrodes. Figure 4A shows electrodes
with different diameters [mm] and different maximal curvatures
[mm] that have been tested. Figure 4B shows dmin with respect
to AOs. A catheter with EOP of 2.3 [mm] allows clearance from
obstacles if the curvature k is 0.015 [mm−1]. A curvature of 0.055
[mm−1] allows free trajectory up to 2.5 [mm] of diameter.
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FIGURE 2 | (A) Selected areas of 1 cm diameter in the caudal middle frontal gyrus, where i ∈ 1, .., 10 EPi were determined in each hemisphere. (B) Example of the

computation of i viable RTs (red) from i EPs to the same TP on the anterior portion of STN, left hemisphere. (C) Example of the computation of correspondent RT (red)

and CT (green), from the same EPi to the same TPi on the anterior portion of STN, left hemisphere.

FIGURE 3 | (A) Representation of RT (red) and CT (green) entry angle, (α), into the STN, the illustrative scene of single-case example has been taken from 3D Slicer

4.7.0 (B) Representation of RT(red) and CT (green) in keeping a skull entry angle < θ◦, the illustrative scene of single-case example has been taken from 3D

Slicer 4.7.0.

5.2. Validation of RTs vs. CTs
Figure 5 shows a comparison between RTs and CTs in terms

of dmin, d̄, and α, reporting for each subject the mean value
of dmin, d̄, and α calculated over the best trajectory of all the
EPi, from all critical AOs, of left and right hemisphere. As
seen in Figure 5A and in Supplementary Figure S1A, CTs keep
a significantly greater dmin from critical AOs with respect to
RTs for all subjects in both the hemispheres (p ≤ 0.0001 left
and right).

Remarkably, in Figure 5B and in Supplementary Figure S1B

CTs also showed a statistically significant advantage over RTs as
far as CTs were able to keep a greater d̄ from critical AOs in both
the hemispheres (p ≤ 0.0003 left and right).

In Figure 5C and in Supplementary Figure S1C, it could be
observed the CTs minimization trend of α with respect to RTs in
both the hemispheres.

The positive trend of maximized dmin can be globally
appreciated even considering the delicate anatomical structures.
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FIGURE 4 | (A) DBS electrode prototype, in which the tip that actually releases the stimulation is shown. Examples of progressive increase in diameter and curvature

are presented. (B) Heatmap representing the minimal distances from AOs obtained when differently designed CTs reach the anterior STN. The best (b) and worst (w)

results for the left (L) and right (R) hemispheres are displayed. In red, the constrains that we selected for successive tests are highlighted.

Figure 6 shows a comparison between RTs and CTs in terms
of dminAO , reporting for each subject the mean value of dmin

calculated over the best trajectory of all the EPi from each AO
∈ THA ∨ GP ∨ CN ∨ CST of left and right hemisphere. As
seen in Figure 6B and in Supplementary Figures S2A and S2B,
if single structures are considered separately, only the minimal

distance from GP optimized by CTs (dminAO , AO ≡ GP) resulted
statistically significant, while the improvement in the minimal

distances from CN, CST and THA (dminAO , AO ∈ {CN ∨

CST ∨ THA}, respectively) just followed a positive trend. This
very likely depends on the fact that the algorithm optimizes
every single case keeping a scenario-specific focus, balancing
distances in different ways depending on the particular needs.
Thus, averaging the distances from single structures of all the
10 subjects may flatten the effect of trajectory optimization.
In fact, if single cases are considered, it is clear how every
setting is unique and how the planner balances its computation
accordingly. For instance, in subject #9647, RTs passed so
critically near to GP and CST that the corresponding CTs should

even reduce their distances to CN (dminAO , AO ≡ CN) in order
to maximize the minimal distance from GP and CST obstacles
(dminAO , AO ∈ {GP ∨ CST}, respectively) (p ≤ 0.01) (Figure 6C
and Supplementary Figure S3A). Moreover, taking as another
example subject #5960 in which THA is instead particularly
threatened by RTs, it emerged how the algorithm could also
ponder to move minimally closer to all the other structures
in order to gain sufficiently safer minimal distance from the

THA obstacle (dminAO , AO ≡ THA) (p ≤ 0.01; Figure 6D and
Supplementary Figure S3B).

Finally, wemeasured the electrode insertion angle with respect
to the direction perpendicular to the skull surface. We recorded
99% success rate in inserting steerable electrodes in the skull with

an angle < 30◦ (100% right, 98% left), while 98% success rate as
far as the rigid electrodes were concerned (98% bilaterally).

Moreover, after calculating all the possible trajectories, CTs
reached the COM of STN with a success rate of 52% on the
left and 57% on the right. On the other hand, feasible RTs
that targeted the COM of STN just accounted for the 37%
on the left and 43% on the right. Thus, between the tested
trajectories, steerable electrodes could reach even this new TP
more efficiently (Figure 7).

5.3. Computational Time
The computational time required to find the set of solutions

{
̂̂
curvei} for each EPi, i ∈ 1, .., 10 ranges from 1 to 3 min: such
computational effort is required by the different steps of the
workflow. All detailed data are reported in Table 3. Specifically,
EOP is the most time consuming phase: the gradually smoothed
path needs to repeatedly iterate in order to decrease its dmin, d̄
and Kmax, before reaching the final results.

6. DISCUSSION

This work aims at developing a novel path planning approach for
minimally invasive neurosurgery, in the context of EDEN2020.
Although rectilinear DBS electrodes are now routinely exploited
in the clinics (Deeb et al., 2016), the aim of our study is
to demonstrate that the use of curvilinear electrodes can lead
to the computing of safer trajectories that pass farther away
from vulnerable anatomical obstacles. Some studies have recently
demonstrated the advantages that potentially flexible alternatives
could gain in terms of efficacy and safety, in the context of
convention enhanced delivery of drugs (Engh et al., 2010), laser-
driven amygdalohippocampectomy for epilepsy (Comber et al.,
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FIGURE 5 | (A) Comparison between RTs and CTs, reported for the 10 subjects, in terms of the mean value of the dmin, calculated over the best trajectory of all the

EPi , from all critical AOs of left and right hemisphere. (B) Comparison between RTs and CTs, reported for the 10 subjects, in terms of the mean value of the d̄,

calculated over the best trajectory of all the EPi , from all critical AOs of left and right hemisphere. (C) Comparison between RTs and CTs, reported for the 10 subjects,

in terms of the mean value of the STN entry angle, α, calculated over the best trajectory of all the EPi , from all critical AOs of left and right hemisphere. p-values were

calculated using Wilcoxon matched-pairs signed rank test (**p ≤ 0.01, ****p ≤ 0.0001).

2017), and DBS for PD (Favaro et al., 2018b). The novelty of
our planner consists in the possibility to consider as obstacles
also white matter tracts depicted by advanced MR tractography,
which is essential to avoid potential damages to pivotal functions.
Fibers of the motor pathway have been considered in this specific
setting due to the particularly hazardous position of the CST with
respect to STN, the target of DBS for PD, but different white
matter tracts could theoretically be integrated into a preoperative
plan if other kinds of surgical procedures are performed, pointing
to different TPs (Stypulkowski et al., 2017).

In this regard, future perspectivesmay include the exploitation
of DBS in order to alleviate chronic pain such as peripheral
neuropathic pain or cluster headache by directly stimulating

the thalamus or the hypothalamus (Falowski, 2015). Given that
PD does not alter the global brain architecture, especially in
patients with preserved cognition for whom DBS is mostly useful
(Seibyl et al., 2012), healthy volunteers have been selected for
this computational study as a demonstration for the future
inclusion of this advanced neuroimaging planning protocol for
PD patients’ evaluation. Indeed, since its timing is clinically
compatible, dMRI acquisition for tractography reconstructions
can be included in a preoperative DBS protocol. A possible
concern might be the relatively small sample size of this study.
However, the main aim of our work is to provide a proof-of-
concept for the significant efficacy and clinical translatability
of the proposed planner system, preliminary validating it in a

Frontiers in Robotics and AI | www.frontiersin.org 10 August 2019 | Volume 6 | Article 70

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Segato et al. Automated Path Planning for DBS

FIGURE 6 | (A) The 3D Reconstruction of the most critical obstacles is shown. (B) Comparison between RTs and CTs, in terms of the mean value of the dminAO ,

calculated over the best trajectory of all the EPi of all the subjects, from each AO separately, of left(I) and right (II) hemisphere. (C) Comparison between RTs and CTs,

reported for 9647 subject left hemisphere, in terms of the mean value of dminAO , calculated over the best trajectory of all the EPi of the subject, from each AO

separately (I). The illustrative scene of 9647 single-case scenario has been taken from 3D Slicer 4.7.0 (II). (D) Comparison between RTs and CTs, reported for 5960

subject left hemisphere, in terms of the mean value of dminAO , calculated over the best trajectory of all the EPi of the subject, from each AO separately (I). The

illustrative scene of 5960 single-case scenario has been taken from 3D Slicer 4.7.0 (II).

FIGURE 7 | Success rate of RT(red) and CT(green) in reaching the STN, displayed in Table 1. The illustrative scene of single-case example has been taken from 3D

Slicer 4.7.0 (II).

restricted group of human subjects with the aim of expanding
this cohort in future studies. Indeed, the concrete medical need
that is addressed actually represents the main strength of our
technical innovation in the field of artificial intelligence, as the
practical advantages of our strategy emerge at the real interface
between engineering and medical challenges. Furthermore, for

the first time, state-of-the-art MRI methods including the newest
diffusion MR Tractography technique have been integrated
with an automatically computing trajectory planner that relies
on sophisticated new steerable devices. The comprehensive
MR imaging database exploited for the study is unique and
distinctive, and will be publicly available at the end of the EU’s
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TABLE 3 | Results in term of computational time are shown.

Computational time

Step 25th Median 75th

RRT* [sec] 35.93 61.54 78.87

EOP [sec] 63.57 84.16 103.97

Fcost [sec] 2.02 2.05 2.45

Horizon EDEN2020 project. This database includes advanced
diffusion MR imaging acquisitions for an enhanced dissection
of white matter pathways in regions with higher microstructural
brain tissue complexity, as well as high resolution morphological
images providing exhaustive information on brain anatomy,
arterial and venous vessels. Given the complexity of connecting
all these features to the fully integrated system, the 10 real case-
scenarios are necessary to support the technological innovation
in this exploratory validation setting. The promising preliminary
data support the feasibility of this approach and encourage its
wide implementation in a larger cohort of patients to define its
impact in a clinical setting.

6.1. Clinical Performance-Related
Considerations
Different tests have been executed to evaluate the proposed path
planning algorithm. The first study, performed over multiple
EODs, demonstrates that solutions for curvilinear planning do
exist even using an electrode larger than the usual ones. Limits
imposed by RTs result less restrictive for CTs, opening up the
possibility to consider different catheter designs for DBS (Amon
and Alesch, 2017).

The second phase of investigations was performed on 10
subject, keeping the EOD and Kmax, respectively fixed to 1.3
mm and a Kmax of 0.015 mm−1 and comparing CTs to RTs.
The most important observation concerns the greater success
in safeguarding pivotal anatomical obstacles by exploiting CTs
instead of RTs. Curvilinear paths essentially find the best balance
between all the structures, that must be considered altogether in
their integer reciprocal complexity in order to fully appreciate
the actual work of our algorithm. In fact, if single structures are
analyzed unconnectedly, the focus on the calibrated equilibrium
optimized for every single subject-specific anatomy may be lost.
For instance, when a computed RT passes particularly near to
one of the anatomical obstacles, the corresponding improved
CT may even move closer to the other anatomical obstacles
if this is necessary to ensure a minimal level of safety to the
obstacle previously at extreme risk. Up to a limit of course, not
to culminate in endangering another brain structure. Having
elucidated this mechanism, it is clear how concentrating on
a single anatomical obstacle may be misleading and how the
advantages of CTs should be valued globally.

A further point is represented by the superior success rate
reported by CTs in reaching the COM of the STN, that is hardly
accessible by RTs. Overall, such notable results may be traced
back to the combination of NURBS and GA implemented in
CTs planning which demonstrates, on average, larger d̄ and dmin

(+145%, +22%) and an increased rate of success with respect

to previous literature. As already quoted in the “Experimental
setup” section, this study does not only concern themathematical
issue of automatically computing the COM of the nucleus,
but it also encompasses relevant clinical implications. Human
STN has been sub-parcellated in three functional sub-zones, of
which the postero-mesial, including the COM, seems associated
to pure motor functions (Accolla et al., 2014). Stimulating
behind the classical anterior STN target is reported to offer
statistically superior tremor benefit with respect to other targets
(Ramirez-Zamora et al., 2016), probably due to the straight
stimulation of at least one of the three identified hyperdirect
pathways connecting the STN to Primary Motor Cortex (M1-
motion execution), Supplementary Motor Area (SMA-motion
planning), and Prefrontal Cortex (PFC-cognitive motor response
selection) (Akram et al., 2017; Chen et al., 2018). In common
clinical practice, since conventional MRI on 1.5T scanners hardly
visualize the whole STN at a high resolution (Massey et al.,
2012), it would be tough to precisely target its COM by manual
planning. Conversely, taking advantages from the automatic
planner and the possibility of computing CTs, this strategy could
be concretely accomplished.

Moreover, another interesting aspect of our planner that
can lead to clinically relevant advantages is the capability of
minimizing the entry angle into the target, aiming to align
the electrode with the main axis of STN. Even if statistically
significant, it can be argued that a reduction of 1 or 2 degrees in
the entry angle may not imply a huge gain in terms of stimulated
STN area. Nonetheless, it should be taken into account that
the STN is a very small structure (6 × 4 × 5 mm along the
anteroposterior, mediolateral and dorsoventral axes, respectively;
Richter et al., 2004), so even a minor improvement could be
beneficial. Additionally, the strict curvature constraints that we
considered refer to a particular electrode design but, if a different
prototype with a greater flexibility is used, further optimization
should be reached because the planner is implemented to look
for it.

However, this tool may be useful when different surgical
approaches are exploited in order to cure diverse pathologies,
such as in occipital access for the amygdalohippocampectomy for
epilepsy (Jermakowicz et al., 2017; Yin et al., 2017), or if the skull
surface is bumpy or less easily accessible, such as in experimental
approaches for reaching the hippocampus through the foramen
ovale (Comber et al., 2017). Further validations are needed
on real patients in order to understand if the aforementioned
advantages can be gained even in actual clinical cases, but,
globally, it can be stated that the new functions integrated in our
algorithm allow the computing of extremely precise CTs for DBS,
safer than ordinary RTs.

Eventually, speculating beyond the explored context of
DBS, the remarkable benefits of the automated steerable path
planning described in this work could potentially be exploited
in many other clinical scenarios. First of all, computation of
accurate curvilinear trajectories would allow the EDEN2020
programmable bevel-tip needle to reach deep inaccessible brain
areas not only to stimulate targets or to feasibly ablate neuronal
foci with aberrant activities, but also to deliver chemotherapy
or targeted immunotherapy to brain tumors (Mamelak, 2005;
Luther et al., 2014). In the second place, the technological
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impact of such an automated system could be reflected in the
delivery of innovative local treatments for neurodegenerative
disorders, such as β−amyloid degrading enzymes for Alzheimer’s
disease patients (Miners et al., 2011) or adenovirus-mediated
gene therapy for Parkinson’s disease (Sudhakar and Richardson,
2018). In conclusion, this automated steerable path planning
system has a high impact potential on a variety of clinical
applications, ensuring safety, and reproducibility to different
microsurgical procedures.

6.2. Technical Evaluations
The proposed method represents a trade off between the
pure optimality determined by methods such as graph-based
approaches and the approximation obtained with sampling-
based solutions. In the first case, the global optimality is reached
at the cost of a computational time unbearable for a clinical
scenario, evenwhen real time responsiveness is not a requirement
such as the case of a pre-operative neurosurgical planner.
Our solution consists in the combination of a sampling-based
approach with an EOP. The latter has the role of refining
the computed path to obtain a quasi-optimal solution in a
computational time consistent with the pre-operative surgical
application for which the planner is designed. In fact, as
stated by Razali and Geraghty (2011), although evolutionary
optimizationmethods do not guarantee the global optimum, they
can produce an excellent quasi-optimal solution without the high
computational effort typical of graph-based approaches. To avoid
the risk of falling into local minima when making a population of
NURBS to evolve via the EOP, the Rank-based Roulette Wheel
Selection method (Razali and Geraghty, 2011) is used for the
selection of the parents to combine. This method has proved
capable to reduce the risk for the algorithm to get trapped in
local minima.

7. CONCLUSION

The present work proposes a novel automatic DBS planner
developed as part of the EU’s Horizon EDEN2020 project, with
the goal of providing a state-of-the-art combined technology
platform for minimally invasive surgery. The main innovation
consists of integrating a new curvilinear trajectory approach for
stereotactic implantation of DBS electrodes with cutting-edge
neuroimaging planning, including advanced MR tractography
to depict WM corticospinal tracts and semi-automatic medical
image segmentation. Moreover, surgeons would have the
possibility to express their individual preferences assigning
different weights to the critical structures, creating a priority
list for maintaining safe distances. Besides offering precious
advantages also for standard RT computation, the great novelty of
our work is the possibility to evaluate the safety and efficiency of
steerable electrodes with respect to standard ones. CTs should be
potentially able to overcome the limits imposed by the standard
RTs in terms of minimum distance from critical gray and white
matter obstacles. Accordingly, the possibility to perform CTs
for STN targeting with the proposed algorithm gives us the
opportunity to optimize all the fundamental aspects of the

efficiency of the electrostimulation and, at the same time, to
maximize the safeness of the therapy.
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Supplementary Figure S1 | The population variability of all the distances

reported in Figure 5 is reported in terms of interquartile range IQR=[25–75].

p-values were calculated using Wilcoxon matched-pairs signed rank test (**p ≤

0.01, ****p ≤ 0.0001). (A) Comparison between RTs and CTs, reported for the 10

subjects, in terms of all the values of the dmin highlighting their population

variability, calculated over the best trajectory of all the EPi, from all critical AOs of

left and right hemisphere. (B) Comparison between RTs and CTs, reported for the

10 subjects, in terms of all the values of the d̄ highlighting their population

variability, calculated over the best trajectory of all the EPi , from all critical AOs of

left and right hemisphere. (C) Comparison between RTs and CTs, reported for the

10 subjects, in terms of all the values of the STN entry angle, α, highlighting their

population variability, calculated over the best trajectory of all the EPi , from all

critical AOs of left and right hemisphere.

Supplementary Figure S2 | The population variability of all the distances

reported in Figure 6B is reported in terms of interquartile range IQR=[25–75].

p-values were calculated using Wilcoxon matched-pairs signed rank test (****p ≤

0.0001). Comparison between RTs and CTs, in terms of all the values of the

dminAO , calculated over the best trajectory of all the EPi of all the subjects, from

each AO separately, of left (A) and right (B) hemisphere.

Supplementary Figure S3 | The variability between the 10 different selected

trajectories starting from the 10 EPs of the single subject reported in

Figures 6C,D is reported in terms of interquartile range IQR=[25–75]. p-values

were calculated using Wilcoxon matched-pairs signed rank test (*p ≤ 0.05). (A)

Comparison between RTs and CTs, reported for 9647 subject left hemisphere, in

terms of all the values of dminAO , calculated over the best trajectory of all the EPi

of the subject, from each AO separately. The illustrative scene of 9647 single-case

scenario has been taken from 3D Slicer 4.7.0. (B) Comparison between RTs and

CTs, reported for 5960 subject left hemisphere, in terms of all the values of

dminAO , calculated over the best trajectory of all the EPi of the subject, from each

AO separately. The illustrative scene of 5960 single-case scenario has been taken

from 3D Slicer 4.7.0.
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