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An important step for assistive systems and robot companions operating in human

environments is to learn the compositionality of human activities, i.e., recognize both

activities and their comprising actions. Most existing approaches address action and

activity recognition as separate tasks, i.e., actions need to be inferred before the activity

labels, and are thus highly sensitive to the correct temporal segmentation of the activity

sequences. In this paper, we present a novel learning approach that jointly learns human

activities on two levels of semantic and temporal complexity: (1) transitive actions such

as reaching and opening, e.g., a cereal box, and (2) high-level activities such as having

breakfast. Our model consists of a hierarchy of GWR networks which process and learn

inherent spatiotemporal dependencies of multiple visual cues extracted from the human

body skeletal representation and the interaction with objects. The neural architecture

learns and semantically segments input RGB-D sequences of high-level activities into

their composing actions, without supervision. We investigate the performance of our

architecture with a set of experiments on a publicly available benchmark dataset. The

experimental results show that our approach outperforms the state of the art with

respect to the classification of the high-level activities. Additionally, we introduce a novel

top-down modulation mechanism to the architecture which uses the actions and activity

labels as constraints during the learning phase. In our experiments, we show how this

mechanism can be used to control the network’s neural growth without decreasing the

overall performance.

Keywords: human activity recognition, self-organizing networks, hierarchical learning, compositionality of human

activities, RGB-D perception

1. INTRODUCTION

The successful application of robots as companions and assistive systems requires a reliable
perception of the surrounding environment. Beyond the analysis of the structure of the
environment and the recognition of the present objects, the full understanding of human behavior
is a key component for such applications (Koppula and Saxena, 2013; Vrigkas et al., 2015;
Tianmin Shu and Zhu, 2016). An interactive robot system should be aware of the assisted person’s
daily activities in order to assess his/her well-being and to plan future actions accordingly.

Human daily actions and activities are diverse and complex. The same type of action can be
performed in many different ways and with different objects, e.g., a person can drink from a cup
or a bottle, he/she can sit on a chair but also on the floor. Even a small set of actions and objects
can create a large combination of possible activities. Additionally, human activities can achieve
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FIGURE 1 | An illustration of the hierarchical compositionality of human activity

visually perceived by a robot (the RGB image belongs to the CAD-120

dataset Koppula et al., 2013). The input to the robot is an RGB-D sequence

including the spatio-temporal dependencies of the human-object interaction.

The sequence represents a high-level human activity which can be

semantically segmented into smaller composing actions of varying lengths.

similar goals through a varying combination of smaller actions,
e.g., the activity of making cereal can include actions such as
pouring milk, pouring cereal, and opening or another set of
actions according to the person’s daily routine (see Figure 1).
The representation of actions and goals in the human brain are
ordered hierarchically according to their level of abstractness
or time of completion. We distinguish mainly between simple
movements (e.g., opening the hand), actions (often transitive
actions, e.g., reaching or grasping a cookie), immediate goals
(e.g., take a cookie) and task goals (e.g., prepare a snack;
Hamilton and Grafton, 2006). A task goal may involve several
immediate goals, to be achieved through a sequence of actions.
Finally, each action is composed of several movements. Learning
approaches can benefit from a similar hierarchical modeling of
human activities in order to anticipate task goals. Moreover,
the semantic compositionality analysis of the human activities is
beneficial for potential robotic applications such as the detection
of forgotten steps in a perceived sequence of human actions, e.g.,
detecting that a person has forgotten to put the milk back in the
fridge after having meal (Wu et al., 2015). On a more abstract
level, through the compositional learning of daily human-object
interactions, autonomous robots can gather knowledge about
object affordances and possible task execution strategies which
can be used to generate potential plans given a goal to be
reached (Kjellström et al., 2011; Pieropan et al., 2014a; Jamone
et al., 2016).

Despite the considerable progress on the recognition of the
human actions in the recent decade, the question remains open
on how to efficiently model and represent the rich hierarchical

structure of human-object interactions (Aggarwal and Xia,
2014). Quite often, the perceptual sequences learned at the
lower level are combined into more complex sequences, or
activities, by assigning them arbitrary symbols or rules (Wermter,
2000; Taniguchi et al., 2016). Such symbols are usually fixed
and defined a priori by the designers based on their domain
knowledgemaking the system less adaptable to previously unseen
sequences or action-object combinations. Moreover, most of
the previous work on the hierarchical recognition of human
activities addresses activity and action recognition as separate
tasks (Koppula and Saxena, 2013; Koppula et al., 2013), i.e., the
action labels need to be inferred before the activity labels. The
activity classification accuracy of such approaches is sensitive to
the correct classification of the composing actions.

In contrast to these approaches, in this work we seek to
jointly model actions and activities with one hierarchical
learning framework, whereby spatiotemporal dependencies
of human-object interactions are learned and stored
as neural representations. More formally, we propose a
hierarchical arrangement of Growing When Required (GWR)
networks (Marsland et al., 2002) which integrate multiple
visual cues regarding the body pose, the manipulated object,
and their spatial relation during human-object interaction,
accumulated over a short and a longer period of time in order
to jointly learn actions and human activities respectively. In our
previous research, we have successfully applied and evaluated
hierarchical architectures of the GWR network for clustering
human body pose and motion patterns as well as for learning
prototypical representations of human-object interactions
in an unsupervised fashion (Parisi et al., 2015; Mici et al.,
2018a,c). The generative properties of the GWR networks have
been shown to be particularly suitable for the human-object
interaction recognition due to generalizing well to unseen
action-object pairs.

Similar to our previous work, we will make use of the three-
dimensional human skeleton and RGB-D features that can be
obtained through low-cost and non-invasive RGB-D sensors,
such as the Microsoft Kinect and Asus Xtion Pro cameras.
Moreover, skeleton body representations have been successfully
applied to the recognition and prediction of human-object
interactions (Mici et al., 2018b) as well as to the problem
of compositional learning of human-object interactions (Wu
et al., 2015). We evaluate our model by running a set of
experiments with the publicly available benchmark dataset CAD-
120 (Koppula et al., 2013), which allows for a compositionality
analysis of human daily activities. Experimental results show that
we outperform the state-of-the-art approaches with respect to the
recognition of high-level activities. A qualitative analysis of the
labels generated by the architecture during the test phase shows
that semantically meaningful representations of the composing
actions emerge.

The current work is novel in two main aspects: First, the
proposed architecture can jointly learn in an unsupervised
manner two levels of semantic and temporal complexity of
human actions, namely actions, and high-level activities that can
be composed of different actions. Second, we propose a top-down
modulation mechanism which uses the action and activity labels
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to modulate the neural insertion of the hierarchical architecture
during the learning phase. Through such a mechanism, the
neural representations of actions and activities are optimized
according to the classification error rather than according to the
error of the input representation.

The rest of this paper is structured as follows. In section 2,
we describe related work addressing the compositional learning
of human-object interactions from video data. In section 3,
we present our hierarchical self-organizing architecture and the
learning GWR algorithm extended with a top-down modulation
mechanism. In section 4, we provide experimental results on the
CAD-120 dataset. We conclude in section 5 and point toward
possible future work directions.

2. RELATED WORK

The recognition of human activities requires learning complex
spatiotemporal relationships between features of human body
actions and manipulated objects. Depending on the complexity
and duration of the activities, recognition approaches can
be separated into two categories: single-layer approaches and
hierarchical approaches (Aggarwal and Ryoo, 2011). Single-layer
approaches refer to methods that infer human activities directly
from the data without defining any activity hierarchy. Typical
hierarchical approaches, on the other hand, first estimate simple
actions, and then, the high-level activity labels are inferred based
on the action sequences.

2.1. Single-Layer Approaches
A great number of single-layer approaches address simple
and short actions, such as walking, jumping, and falling. The
study of hand-actions, such as grasping, placing and holding,
has also received particular interest in robotics in order to
accomplish the recognition of robotic grip apertures and the
learning of affordances (Prevete et al., 2008; Tessitore et al., 2010;
de Jesús Rubio et al., 2018).

Various approaches for the recognition of human-object
interactions do not explicitly model the interplay between
object recognition and body pose estimation. Typically,
objects are first recognized and activities involving them are
subsequently recognized by analyzing the objects’ motion
trajectories (Wu et al., 2007) or by considering possible
language trigrams <Object1, Action, Object2> extracted from
English sentences (Yang et al., 2015). Pieropan et al. (2014b)
proposed including action-related audio cues in addition to
the spatial relationship among objects in order to learn object
manipulations for the purpose of robot learning by imitation.
However, important descriptive visual features like body motion
or fine-grained cues like the hand pose during manipulation
were not considered.

Probabilistic approaches have been extensively used for
reasoning upon relationships and dependencies among
objects, motion, and human activities such as hidden Markov
Models (HMM) and Bayesian networks (Gupta et al., 2009;
Kjellström et al., 2011). Other research studies have modeled
the mutual context between objects and human pose through
graphical models such as the Conditional Random Fields

(CRF) (Kjellström et al., 2011; Yao and Fei-Fei, 2012). These
types of models suffer from high computational complexity and
require a fine-grained segmentation of the action sequences.
Other approaches extract novel low-level visual features
encoding the spatial relationships between the human and the
manipulated objects, such as the Grouplet feature proposed
by Yao and Fei-Fei (2010). Their method is able to distinguish
between interactions or just co-occurrences of humans and
objects in an image, but no applications to video data have
been ireported.

Neural network models have also been successfully applied
for the problem of understanding human-object interactions
from visual sensory input. Shimozaki and Kuniyoshi (2003)
proposed a hierarchical architecture based on the self-organizing
maps (SOMs) capable of integrating object categories, spatial
relationships, and movement. The architecture was shown to
perform well on simple 2D scenes of ball-handling actions.
However, compared to the static image domain, there is limited
work on understanding human-object relationships from video
data sequences with neural network architectures (Lea et al.,
2016; Ma et al., 2017).

Since the introduction of the low-cost depth sensing devices
such as Microsoft Kinect and Asus Xtion, there has been
extensive work in human action recognition from depth
data (Sung et al., 2012; Yang and Tian, 2014; Cippitelli et al.,
2016). From a large number of human body representation
approaches we can distinguish between two broad categories:
(1) representations based on the RGB-D information, and
(2) representations based on the 3D skeleton data. Methods
belonging to the first category compute, for instance, the
temporal evolution of the body 3D silhouettes during action
performance (Li et al., 2010; Yang et al., 2012), or use the
STIP descriptors which are invariant to spatiotemporal shifts
and scales and can deal with body occlusions during human-
object interactions. However, 3D silhouette-based algorithms are
usually view-dependent while the STIP-based methods require
the whole video as input and are very slow to compute, thus
limiting their real-time application. High computational cost
and poor real-time performance is also the major limitation of
approaches based on 3D optical flow or scene flow using RGB
and depth (see Aggarwal and Xia, 2014 for a review).

Unlike the features from 3D silhouettes, the skeletal joint
features are invariant to the camera location and subject
appearance or to body size. Human action recognition methods
based on skeletal joints have been successfully applied in real time
in order to recognize finer human-object interaction activities
than 3D silhouette-based approaches (Aggarwal and Xia, 2014).
The main limitation of the skeletal body representation is the
lack of information about surrounding objects. For this, Wang
et al. (2014) proposed a new 3D feature, named local occupancy
pattern (LOP), which computes the local occupancy information
based on the 3D point clouds surrounding a 3D joint. In this
way, an LOP feature can capture the relations between the
human body parts, e.g., hands, and the objects that the person
is interacting with. Although this method produced state-of-the-
art results, the identity of the manipulated objects is completely
ignored, and it is unclear how much discriminative are the
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FIGURE 2 | Overview of the proposed architecture (Mici, 2018). The GWRb and GWRo networks process low-level features extracted from the skeletal body

representation and the RGB images of the manipulated objects, respectively. Additional visual features are extracted to capture the body-object and object-object

spatial relationships. The GWRa and GWRA networks learn spatiotemporal dependencies of the human-object interactions over two different time windows. Both

networks have associative connections to two symbolic layers holding information about actions and activities. The top-down modulation mechanism, when enabled,

modulates the learning of the GWRb, GWRa, and GWRA networks.

3D features when objects are small and partially occluded.
Alternatively, other methods model human-object interactions
considering the skeletal features combined with the object’s
identity (Rybok et al., 2014; Mici et al., 2018c).

2.2. Hierarchical Approaches
One of the earliest approaches toward hierarchical recognition
of human activities was proposed by Ryoo and Aggarwal
(2007). The author modeled motion patterns with HMMs and
introduced an additional semantic layer providing feedback to
the modules for object identification and motion estimation
leading to an improvement of object recognition rates and better
motion estimation. Nevertheless, the subjects’ articulated body
pose was not considered as input data, leading to applications
in a restricted task-specific domain such as airport video
surveillance. Aksoy et al. (2017) proposed the Semantic Event
Chain (SEC) concept, i.e., a matrix whose entries represent the
spatial relationship between extracted image segments for every
video frame. Action classification is obtained in an unsupervised
way through maximal similarity. While this method is suitable
for teaching object manipulation commands to robots, the
representation of the visual stimuli does not allow for reasoning
upon semantic aspects such as the congruence of the action being
performed on a certain object.

A number of approaches for learning the hierarchical
representations of human activities first segment and classify
actions and then infer the high-level activities based on the action
sequences. Hybrid approaches, for instance, learn perceptual
sequences, e.g., through a neural network model, at the lower
level and combine them into more complex sequences, or

activities, by assigning them arbitrary symbols or rules (Wermter,
2000; Taniguchi et al., 2016). Their main limitation is the fixed set
of symbols which is usually pre-defined based on the designers’
domain knowledge. More related to our approach is the work
from Wu et al. (2015), in which the k-means algorithm is used
to cluster video data of human activities and discover the so-
called action-words. Then, the video sequences are represented as
sequences of action-words and an unsupervised model is trained
on them to learn action co-occurrence and action temporal
relations. The authors, however, do not provide experimental
results on the compositional learning of the human activities,
but rather focus on the actions co-occurrence and on detecting
a forgotten action in a perceived action sequence. Koppula and
Saxena (2013) presented a CRF for learning the hierarchical
compositionality of human activities by modeling the temporal
and spatial relations between humans and manipulated objects.
In contrast to their approach, in this paper, we propose a
hierarchical model that jointly learns actions and activities.
In our neural architecture, the correct classification of high-
level activities is not sensitive to the correct segmentation and
classification of the composing actions.

3. METHODOLOGY

We propose a self-organizing hierarchical architecture for
learning human actions on two levels of semantic and temporal
complexity: (1) actions such as reaching or opening which are
completed in a relative short period of time, and (2) the high-level
activities that can be composed of different actions. An overall
diagram of the architecture is shown in Figure 2.

Frontiers in Robotics and AI | www.frontiersin.org 4 August 2019 | Volume 6 | Article 72

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Mici et al. Compositional Learning of Activities With Self-Organization

The architecture consists of two main network streams
processing separately visual representations of the body postures
and of the objects being manipulated. The advantage of
having two distinct network streams for learning prototype
body pose and prototype objects is 2-fold: (1) it leads to
greater generalization capabilities of the architecture in terms of
recognizing unseen action-object pairs (Mici et al., 2018c), and
(2) it attenuates to some extent the noise in the tracked body
skeleton sequences (Parisi et al., 2015). For the perception of the
body pose and motion, we rely on three-dimensional articulated
body tracks provided in real time by depth sensor technologies,
such as the Asus Xtion camera. For classifying objects, on the
other hand, we consider the RGB object images which supply
richer representations such as texture.

The GWRb, GWRo, and GWRa networks process and
subsequently integrate the body pose and the information about
the manipulated object(s), while the GWRA network integrates
spatiotemporal dependencies over longer time windows and
learns to classify human activities. Both theGWRa and theGWRA
networks capture different temporal ranges of actions by the
accumulation of body movement patterns over a short and a
longer time period respectively. The feedforward hierarchical
computation of the spatiotemporal inputs will be introduced
in section 3.3. Besides the identity of the manipulated objects,
we consider additional visual features capturing the object-
object and object-body spatial relations, as will be described in
section 4.2.

Additionally, we introduce delayed feedback connections and
extend the traditional GWR learning algorithm with a top-
down modulation mechanism. Thus, during training, the error
regarding the misclassification of the actions and of the activities
is propagated not only to the GWRa and GWRA respectively
but also to the network layers preceding them (the feedback
connections are depicted with red arrows in Figure 2). This is
done in order to (1) allow changes of the topological structures
for all the body processing GWR networks, and (2) better match
the input space in order to jointly learn the actions and the
high-level activities. We apply the proposed neuron insertion
strategy to each network layer. Nevertheless, at the current
state, the action classification error is not propagated to the
object recognition module which provides the identity of the
manipulated objects at the beginning of each action sequence.

3.1. Growing When Required Networks
The building block of our neural framework is the Growing
When Required network (GWR) proposed by Marsland et al.
(2002). The GWR algorithm is a growing extension of the SOMs
which learns to represent the input data distribution through a
finite set of prototype neurons. During learning, the prototype
neurons adaptively form topology preserving maps of the input
space in an unsupervised fashion, i.e., similar inputs are mapped
to neurons that are near to each other on the map.

The GWR network has two main components: the nodes
associated with a weight vector and the edges that link the
nodes to form neighborhood relationships. The dynamics of the
network are defined by two main steps: (1) the competition
among the neurons for representing an input data sample, and (2)

the adaptation of the network’s topology toward the input space.
The first step uses a similarity measure, namely the Euclidean
distance, between an input data sample x(t) and the weight
vector of each neuron in the network. Thus, the index of the
best-matching unit (BMU) at time step t is given by:

b = argmin
j∈A

||x(t)− wj||, (1)

where wj is the weight vector of the jth neuron and A is
the set of all weight vectors. The topology adaptation step
affects the BMU as well as all neurons that have established
a neighborhood relationship with the BMU according to the
structure of the network.

In the initial state, the network consists of a set of two nodes
randomly initialized from within the training data. Both nodes
and edges can be created and removed during each learning
iteration. The network growth rate is a function of the overall
network activation with respect to the input, which is computed
as a function of the Euclidean distance between the weight of the
best-matching unit, wb and the input data sample x(t) at time
step t:

a(t) = exp(−||x(t)− wb||). (2)

The output of the activation function is equal to 1 when the
BMU perfectly matches the input, i.e., the Euclidean distance
between the weight of the BMU and the input is 0, and it
decays exponentially toward 0 for greater distances. When the
activity of the best-matching unit is lower than a predefined
threshold, named insertion threshold aT , new neurons will
be inserted between the BMU and the input. The insertion
threshold parameter modulates the amount of generalization,
i.e., the discrepancy between an incoming stimulus and its best-
matching unit.

Edges are created by applying the competitive Hebbian
learning method (Martinetz, 1993), i.e., they are generated
between the two nodes with the smallest distance from the
input data sample. As a consequence, after several learning
iterations, two nodes with an existing edge may result far from
each other, thereby not representing similar perceptions. An
aging mechanism together with a threshold amax takes care of
removing such edges and unconnected, hence redundant, nodes
consequently. Additionally, a firing counter mechanism named
habituation, h, measures how often each node has fired. Every
time a neuron matches the input data sample, its habituation is
updated following (Equation 8) in Algorithm 1. The habituation
is part of the neuron weight update equation in a way that
nodes that have fired frequently are trained less (see Equation 7
in Algorithm 1). This learning mechanism affects the network’s
local adaptations at each learning iteration and leads to a
decreased response of the network to a stimulus that has been
frequently presented.

3.2. Classification
While keeping the learning process unsupervised, the GWR
algorithm can be extended with a labeling strategy in order to
solve classification tasks as well (Parisi et al., 2017b; Mici et al.,
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2018b). Similar to our previous work, we apply a labeling method
based on the majority vote strategy.

We link each neuron to a symbolic action label l ∈ L, where
L is the set of action classes. The GWR neurons will then have
a many-to-many relationship with the symbolic layer. The set of
weights5, which are initialized to zero, are updated according to
a Hebbian learning rule:

1πilj = γ · ai(t), (3)

where 0 < γ < 1 is the learning rate, ai(t) is the activity of
the winner neuron at time step t and lj is the target action label.
After the training phase is complete, the weights are normalized
by scaling them with the corresponding inverse class frequency
and with the inverse neuron activation frequency. In this way,
class labels that appear less during training are not penalized, and
the vote of the neurons is weighted equally in spite of how often
they have fired.

At recognition time, given one temporal segment of a human-
object interaction at the time step t, the best-matching unit b is
computed following (Equation 1) and the action label is given by:

lj = argmax
l∈L

(πb,l). (4)

In order to classify an entire action sequence, a majority vote
labeling technique is applied on the labels of its composing
temporal segments.

3.3. Feedforward Sequence Processing
In order to process and integrate the spatiotemporal information
about the human body pose and the manipulated objects, we
apply a hierarchical learning approach, whereby the output of
each sequence processing GWR network is augmented with a
window-in-timememory (Barreto, 2007; Parisi et al., 2017b).

In order to do so, we compute the neural activations of
the GWRb, GWRa, and GWRA networks and apply the delay
embedding technique (Takens, 1981). We take the weight vectors
of the BMUs over time and group them into vectors of the form:

o(t) = {wb(xi),wb(xi−ξ ), ...wb(xi−(q−1)ξ )}, i ∈ [q, k], (5)

where k is the total number of training frames and q and ξ are the
embedding parameters denoting the width of the time window
and the lag or delay between two consecutive frames respectively.
The choice of the embedding parameters are data-dependent and
can be set following a heuristic method or, as in our case, can
be chosen empirically. Moving up in the hierarchy, the output
o(t) will represent the input for the GWR network of the higher
layer. In this way, the GWRb network learns a dictionary of
prototypes of the spatial body configurations domain, while the
GWRa and GWRA networks encode human-object interaction
prototype segments accumulated over a short and a longer period
of time respectively.

Objects are classified only at the beginning of an activity
sequence. Therefore, the object representations to be learned
contain no temporal information and the computation of the
output reported in Equation (5) is not performed for the

GWRo network. The label of the GWRo BMU is represented
in the form of one-hot encoding, i.e., a vectorial representation
in which all elements are zero except the ones with the
index corresponding to the recognized object’s category.
When more than one object is segmented from the scene,
the object data processing and classification with GWRo
is repeated as many times as the number of additional
objects. The resulting labels are merged into one multiple-
hot-encoded vector for the following integration step. This
vector is then concatenated with the visual features representing
object-object and object-body relationships and with the
output of the GWRb before being given as input to the
GWRa network.

3.4. A Top-Down Modulation Approach
As described in section 3.1, the insertion criterion of new
neurons in the original GWR algorithm is decided based on
the local representation errors of the network. If the activity
of the BMU at time t, a(t), is lower than the insertion
threshold aT , then a new neuron will be inserted. However,
when target labels are available, the fact that the habituated
BMU has been assigned a different label than the input
it matches at time step t, for instance, can indicate that
a new neuron should be inserted near the existing one.
With this argument in mind, we take the local classification
error information into consideration and introduce a new
neuron insertion strategy which acts as a top-down training
modulation mechanism.

The GWR algorithm decides the moment and place for the
insertion of a new neuron at each learning iteration. For this
reason, we equip each neuron with a way of measuring how often
it has misclassified. We associate each neuron i with a counter
ci, which is incremented whenever that neuron is the BMU of
an input with a different label. Whenever the misclassification
counter cb of the habituated BMU at time step t exceeds a
threshold mT , a new neuron will be inserted between the badly
matched winning neuron and the input and will take the label
of the input. If there is no mismatch between the input and the
BMU, then the algorithm will proceed normally with the weight
updates (see Algorithm 1).

As can be seen in Algorithm 1, step 6, we combine both
quantization error with the classification error for the neuron
insertion strategy. This would allow for the higher density of
neurons in the regions where most misclassifications occur
while guaranteeing that, at least, all the training data have a
good prototype representation. Moreover, the use of the two
conditions can serve as a stopping criterion for the learning
process, i.e., when the network has learned to represent the input
data in the best way possible, the growth will stop even though
misclassifications may still take place. It should be noted that
the sensibility of the network’s growth with respect to the value
of the insertion threshold parameter is more relaxed. Finding
an optimal value for this parameter is no longer necessary
for maximizing the classification performance of the model
as long as both insertion conditions are used. Regarding the
misclassification threshold parameter, setting the mT to 0 is
equivalent to having a GWRnetwork where neural growth occurs
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as soon as misclassifications occur for a habituated neuron. A
high threshold, on the other hand, causes the slow-down of the
growth of the network and the available resources might not be
enough to solve the classification task.

Algorithm1:TheGWR algorithm extendedwith the new neuron
insertion strategy

1. Create a set A of two neurons at random positions.
2. Initialize an empty set of connections C = ∅.
3. (Introduced symbolic connections) Initialize the set of

symbolic weights 5 to zero.
4. At each iteration t, generate an input sample x(t) with

label y(t).
5. Select the best and second-best matching unit as introduced

in Equation 1:

b = argmin
n∈A

||x(t)− wn||,

s = arg min
n∈A/{b}

||x(t)− wn||.
(6)

6. Create a connection E = E ∪ {(b, s)} if it does not exist and
set its age to 0.

7. (New insertion condition) If (a(t) < aT) and (hb < fT) and
(cb > mT) then:

• Add a new neuron r (A = A ∪ {r}) with a weight vector:
wr = 0.5 · (x(t)+ wb), hr = 1.

• Update edges: E = E ∪ {(r, b), (r, s)} and E = E/{(b, s)},

where a(t) is the BMU’s activation computed following
Equation 2, hb its habituation, and cb its misclassification
counter.

8. If no new neuron is added:

• Update BMU and its neighbors i:

1wb = ǫb · hb · ||x(t)− wb||,

1wi = ǫi · hi · ||x(t)− wi||,
(7)

where the learning rates are 0 < ǫi < ǫb < 1.
• Increment the age of all edges connected to b by 1.

9. (Introduced symbolic connections) Update the symbolic
connection weight between the BMU and the target label y(t)
following Equation 3.

10. (New insertion condition) If lb 6= y(t), increase the
misclassification counter: cb = cb + 1.

11. Reduce the firing counters of the best-matching neuron and
its neighbors i:

1hb = τb · κ · (1− hb)− τb,1hi = τi · κ · (1− hi)− τi (8)

with constant τ and κ controlling the curve behavior.
12. Remove all edges with ages larger than a pre-defined

threshold and remove neurons without edges.
13. If the stop criterion is not met, repeat from step 2.

Figure 3 illustrates an example of the neuron placement when
using the new neuron insertion strategies during classification.
The dataset used for training the models is composed of one
thousand data samples, drawn from a two-dimensional normal
distribution, arranged in two nested clusters. The exact same
parameters were used in each experiment: fT = 0.3, aT = 0.9,
ǫb = 0.1, ǫi = 0.01, 50 training epochs and maximum edge age
50.We set a misclassification thresholdmT = 10. As can be easily
noted in Figure 3, the neurons in a GWR algorithm try to cover
the whole data distribution in the best way possible, no matter
what class each data point belongs to. The use of the new neuron
insertion criteria leads to the creation of a significantly smaller
number of neurons, which are distributed evenly over the data
samples. In the case of the original GWR, the neural growth stops
way before the first 10, 000 learning iterations, i.e., the first epoch,
and doesn’t change much during training. The effect of applying
the new neuron insertion conditions is, in this example, slightly
different. We can observe a smaller number of neurons created
for each class and the growth does not halt but tries to counteract
the classification error during training. The overall classification
error, on the other hand, remains similar to the original GWR.

4. EXPERIMENTAL RESULTS

We run experiments with the publically available benchmarking
dataset of human activities, CAD-120. This dataset provides 120
videos of 10 long daily activities composed of a varying number
of actions (Figure 4A). The dataset is challenging in the following
aspects: (1) The activities in the dataset are performed by four
different actors, who behave quite differently, e.g., using their
left or right hand or following a different order of actions. (2)
There is a large variation even for the same activity, e.g., the
action opening can refer to opening a bottle or opening the
microwave. Although both of them have the same label, they
appear significantly different from each other in the video. (3)
Occlusion is a critical issue for this dataset, e.g., in some of
the videos, legs are occluded by the table, leading to completely
unreliable leg tracks (see Figure 4B).

Since in this set of experiments we will use the object motion
information provided by the dataset, an additional issue is
presented by the objects being occluded by other objects (e.g.,
the pizza box is not tracked while inside the microwave) or
not being tracked due to their small size, e.g., the apple object
appearing in the having meal activity. This means that object
location annotations provided by the dataset are often unreliable.

4.1. Feature Extraction
In order to process the body pose information, we extract
the skeletal quad features (Evangelidis et al., 2014), which are
invariant with respect to location, viewpoint as well as body-
orientation. We consider only the position of the upper body
joints (shoulders, elbows, hands, center of torso, neck, and head).
They carry more significant information about the human-object
interactions we focus on this paper than, for instance, the feet
and the knees joints. We compute the positions of the hands
and elbows with respect to the torso center and the neck joints
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FIGURE 3 | An experiment with a 2D dataset of two nested clusters demonstrates the effects of learning with a standard GWR network (first row) compared to the

new neuron insertion strategy (second row) (Mici, 2018). The first plot of both rows shows the neuron placement after a complete training, the second plot shows the

class-specific neural growth during each learning iteration, and the third shows the classification error measured every 100 iterations.

FIGURE 4 | The CAD-120 dataset. (A) Examples of high-level activities from the dataset. (B) A skeleton sequence representing a person standing behind a table and

microwaving food: the legs and feet have a very high tracking noise in this position due to not being visible (Mici, 2018).

by selecting two quadruples of joints: [center torso, neck, left
hand, left elbow] and [center torso, neck, right hand, right elbow]
and following the skeletal quad features method. We choose

the neck instead of the head position due to the noisy tracking
of the head caused by occlusions during actions such as eating
and drinking.
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FIGURE 5 | An illustration of how we represent the spatial relationships between objects and humans in a scene from the CAD-120 dataset (Mici, 2018). We extract

the three-dimensional centroids of the objects, cO1
and cO2

, and compute the Euclidean distance between them and the left hand, right hand, and head joints. This is

then concatenated to the Euclidean distances between the objects’ centroids. In this example, the person first interacts with the microwave and then with the

bowl. Hence, the tracks of the microwave will take the first place in the concatenated vector of the spatial relationships.

From the RGB object images segmented at the beginning
of each video sequence, we extract dense SIFT features with
four different window sizes in order to achieve scale invariance
between images.We relax the descriptors’ invariance with respect
to the objects’ rotation by fixing the orientation of each of
these descriptors. With this kind of object representation, the
neurons of the trainedGWRo network are invariant to translation
and scale, yet tuned to different object views. Then, we apply
the Vector of Locally Aggregated Descriptors (VLAD) (Jegou
et al., 2012) encoding method. This set of body and manipulated
object visual features has been previously successfully applied
to the problem of human-object interaction recognition with a
self-organizing architecture (Mici et al., 2018c).

4.2. Adding Objects’ Motion and Spatial
Relationships
The recognition of human activities can be guided by the
information regarding the objects involved and the way their
spatial relationships change over time. For instance, putting
a pizza box inside the microwave indicates that the person
is microwaving food or bringing the cup toward the mouth
indicates that the person is drinking. The use of objects’ spatial
relationships as visual features, though, raises an important
question: How can such features be invariant to the scene despite
the varying number and type of objects appearing in it?

One way to represent object relationships is through the
scene graphs proposed by Aksoy et al. (2017). However, their
approach requires the manual definition of discrete labels for
spatial relations. In contrast, our goal is to keep continuous
position values. Thus, we take the tracked position of the
objects and form a vector whereby the order is given by the
manipulation order, e.g., if the activity sequence is composed
of opening (microwave) → moving (bowl) into the microwave,
then the object motion vector will contain the microwave
tracks concatenated to the bowl’s tracks (see Figure 5). From

the x, y coordinates given in pixels for the left upper corner
and right bottom corner of the bounding boxes surrounding
each tracked object, we extract the three-dimensional centroids
from the corresponding depth image patches. We capture the
body-object relationships by computing the Euclidean distance
between the centroid of the objects to the left hand, right hand,
and the head joints of the body skeleton. The object-object
relationships are computed as the Euclidean difference between
the three-dimensional object centroids. To capture the objects’
motion information, we compute the mean velocity and the
displacement of the object’s centroid along the x, y, and z axis
across consecutive video frames.

It should be noted that our representation of the objects’
motion and spatial relationship comprises only a fraction of
the input features used by the related work on the CAD-120
dataset. This is due to the fact that the input features provided
by the dataset authors are suitable for learning with graphical
models, such as the conditional random field (CRF) model. For
instance, some features about the objects’ relative positions are
provided for the first, middle and the last frame of the temporal
segments, which are extracted before training the model. Unlike
thesemethods, both the learning and the recognition phase of our
architecture are performed on a continuous stream of input data
and no prior temporal segmentation of the actions is necessary.

4.3. Impact of the Top-Down Modulation
During Training
Now we evaluate our architecture by running experiments with
the CAD-120 dataset under two conditions: (1) considering
only the architecture’s feedforward connections and using the
standard GWR neuron insertion strategy, and (2) considering
both feedforward and top-down connections, thus applying
the proposed neural growth modulation mechanism. For the
first experimental setup, the architecture is trained through
the hierarchical learning strategy described in section 3.3, thus
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FIGURE 6 | Comparison of the classification results on the training data of CAD-120 when training is conducted only with a feedforward input stream and when using

the proposed neural growth modulation (Mici, 2018). (A) The accuracy of the GWRa network which learns to classify actions, and (B) the accuracy of the GWRA
network which learns to classify the activities. The results are averaged over 4-fold cross-validation experiments.

FIGURE 7 | The number of neurons over the training epochs for the GWR networks with and without the top-down neural growth modulation (Mici, 2018). The results

are averaged over 4-fold cross-validation experiments.

the training remains unsupervised. For the second setup, at
each learning iteration, the delayed classification errors of the
activities and actions are propagated from the semantic layer to
the GWRA and GWRa respectively, and to the network layers
preceding them.

For each experimental setup, we run 4 trials, each time leaving
one subject out of training, and average the obtained results. We
empirically set a time window width of q = 30 and a lag ξ = 5
for the GWRa network and q = 5, ξ = 1 for the GWRa. Thus,
the first network has a temporal depth of 3 s, given that the data
has a frame rate of 10 fps due to the median filter applied every
3 frames for attenuating noise. The average duration of an action
in the CAD-120 dataset is around 3 s. The GWRA network will
have a temporal depth of 3.5 s thus developing spatiotemporal
segments representing frames from at least two actions. We set
a firing threshold fT = 0.2, activation threshold aT = 0.9, and
misclassification threshold mT = 4 for the GWRa network and
aT = 0.8, andmT = 2 for the GWRA network.

The recognition rates of the GWRa and GWRA networks
during training for both experiments are illustrated in Figure 6.
The neural growth of the body pose processing networks is

illustrated in Figure 7. As can be seen from Figure 7, the
number of neurons developed during learning for the second
experimental setup (illustrated in red) is significantly lower than
for the first setup. Most importantly, the reduced number of
neurons does not compromise the classification accuracy of
the activities. For the recognition of the actions, on the other
hand, the experimental setup with the feedback connections
results in a slightly lower accuracy. One reason for this might
be the fact that the two classification errors regarding the
actions and the activities are simultaneously intervening in the
topographic organization of the GWRA network causing this
slight performance decay. Another reason might simply be
that the segmentation of the actions of this dataset contains
errors, thus causing higher confusion among classes. A few
examples illustrating the second hypothesis will be shown in the
following section.

4.4. Comparison With the Other
Approaches
In Table 1, we report the accuracy, precision, and recall of our
two models on both the actions and the high-level activities of
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TABLE 1 | Classification results on the action hierarchy of the CAD-120 dataset (Mici, 2018).

Without ground-truth segmentation

Sub-activity Activity

Algorithm Acc. (%) Prec. (%) Rec. (%) Acc. (%) Prec. (%) Rec. (%)

Koppula and Saxena (2013),

(CRF, SVM)

70.3 ± 0.6 74.8 ± 1.6 66.2 ± 3.4 83.1± 3.0 87.0± 3.6 82.7± 3.1

Koppula et al. (2013),

(CRF, SVM)

68.2± 0.3 71.1± 1.9 62.2± 4.1 80.6± 1.1 81.8± 2.2 80.0± 1.2

Hierarchical feedforward,

(GWR)

45.9± 3.8 45.0± 4.2 55.9± 7.1 92.0 ± 3.6 92.5 ± 4.1 91.7 ± 3.7

Rybok et al. (2014),

(SVM)

– – – 78.2∗ – –

Tayyub et al. (2015),

(SVM)

– – – 75.8± 6.8 77.9± 11.0 75.4± 9.1

With ground-truth segmentation

Koppula and Saxena (2013),

(CRF, SVM)

89.3± 0.9 87.9± 1.8 84.9 ± 1.5 93.5± 3.0 95.0± 2.3 93.3± 3.1

Koppula et al. (2013),

(CRF, SVM)

86.0± 0.9 84.2± 1.3 76.9± 2.6 84.7± 2.4 85.3± 2.0 84.2± 2.5

Hierarchical with top-down,

(GWR)

43.8± 3.4 41.3± 3.1 58.6± 6.1 93.5± 3.2 94.4± 3.4 93.3± 3.3

Hu et al. (2014),

(CRF, SVM)

87.0± 1.9 89.2± 4.6 83.1± 2.4 – – –

Tayyub et al. (2015),

(SVM)

– – – 95.2 ± 2.0 95.2 ± 1.6 95.0 ± 1.8

Reported are accuracy, precision and recall (in percentage) averaged over the 4-fold cross-validation experiments. ∗Note that Rybok et al. (2014) have not provided the standard

deviation of their results. The best results are represented with bold values.

the CAD-120 dataset. We also compare our results with the other
approaches on this dataset (note that the authors of the dataset
refer to the actions with the name sub-activities). We report both
the average values of the performance measurements as well as
the standard deviation across the 4 validation folds. Our model,
equipped with the top-down modulation mechanism, has been
listed among approaches using ground-truth segmentation due
to the fact that we use the sub-activity labels during training to
modulate the learning of the GWRa network. The model with
only feedforward connections does not use the sub-activity labels
for modulating learning but associates them with each neuron
for evaluation purposes. The direct comparison of the results of
this table needs some caution though. The other approaches use
the input features provided by the authors of the dataset, which
are computed at each ground-truth temporal segment, whereas
in our approach the features are computed continuously at each
video frame.

We observed that the model with top-down connections
shows a better performance regarding the classification of high-
level activities and a slight decrease of the accuracy and precision
on the sub-activities. Yet, the feedforward model performs better
than state of the art on the high-level activities albeit the
relatively low recognition accuracy on the sub-activities. This
indicates that our approach does not require a fine-grained
manual segmentation and a successful recognition of the actions
in order to correctly classify high-level activities. The reasons for

the low accuracy on the sub-activities for both models need to be
further investigated.

Finally, in comparison with the other approaches in Table 1,
the proposed feedforward model seems more advantageous
than the model with the top-down modulation. However,
for applications where human activities need to be learned
incrementally during the lifetime of an intelligent agent, the
secondmodel provides a trade-off between high recognition rates
and the optimization of the neural resources.

4.5. Learning the Activity’s
Compositionality
We visually analyzed the output labels of the GWRa network
of the feedforward model during testing on unseen activity
sequences. In Figure 8, we illustrate some examples from the
subject 1. Each subfigure illustrates one activity sequence and the
frame rate is of 10 fps. The ground-truth temporal segmentation
provided by the dataset is depicted with vertical gray dashed
lines and each plotted line interpolates the output of the best-
matching neuron representing each video frame. An output
of 1 indicates that the BMU has one Hebbian connection
with a non-zero weight toward that particular category label,
whereas multiple lines indicate that the BMU is connected
to multiple category labels in the semantic layer. The second
case happens when the neuron has matched spatiotemporal
segments belonging to different categories during training and
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FIGURE 8 | Examples of output labels of the GWRa network (actions) for the test subject 1 of the CAD-120 dataset (Mici, 2018). The ground-truth temporal

segmentation of the actions is illustrated with vertical gray dashed lines. The ground-truth action labels are reported on top of each plot.

this may be due to either the similarity in the feature space
of these segments, the incorrect manual segmentation of the
actions or the pre-defined temporal window including several
actions in it. The second reason is not to be excluded given that
the segmentation of the actions in this dataset is particularly
fine-grained. In Figure 8C, for instance, we can see that the
activity making cereal is composed of 10 actions in only 100

video frames (corresponding to 10 s). There is a considerable
overlap between the actions of reaching, moving, and placing.
These actions compose more than half of the instances of the
CAD-120 dataset.

From the examples reported in Figure 8 we can also observe
the different temporal borders between the recognized actions
and the ground-truth segmentation. Again, the correctness of
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the ground-truth segmentation plays a role here. In Figure 8A,
for instance, the sequence of actions is opening (microwave),
reaching (for an object), moving (the object), placing (the
object inside the microwave), null (no action), closing (the
microwave), and then null. In this example, the ground-truth
segmentations do not take the action reaching (the microwave)
into account, which is, for instance, not the case in Figure 8D

where there is reaching and then opening (the microwave). In the
example reported in Figure 8A, however, although with incorrect
temporal boundaries, the sequence of output labels from our
model is plausible.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a hierarchical self-organizing
architecture for the compositional learning of the human-
object interactions. The architecture builds on top of our
previous work (Mici et al., 2018c), and is further equipped
with a top-down mechanism for the modulation of the
neural growth of each body feature processing GWR
network of the hierarchy. In particular, we focused on
analyzing in detail the learning effects of the proposed top-
down mechanism by conducting experiments with both
synthetic data as well as a real-world dataset composed of
human-object interactions. Overall, we observed that the
application of this mechanism can lead to the creation of
a considerably low number of neurons and to a higher
concentration of neurons in the areas where classification
is harder.

The experimental results with the CAD-120 dataset
demonstrate that the proposed architecture outperforms
the state-of-the-art approaches with respect to the classification
of the high-level activities. The experiments also show that
the average recognition accuracy for the actions is lower
than in the other approaches and we analyzed a few possible
reasons for this. Unlike the other methods, the proposed
architecture operates on a continuous stream of information
and the temporal boundaries between actions are certainly
hard to determine. However, this seems to not affect the
overall activity classification performance indicating that our
approach is not sensitive to the correct manual segmentation
and classification of the actions. Moreover, a qualitative
analysis of the action labels generated by the architecture on
the test data sequences showed that semantically meaningful
representations had emerged. Thus, the reported results
motivate further applications of the proposed architecture
on other datasets for the learning of the compositionality of
human activities.

The sliding time window applied in the current architecture
allows us to define an arbitrary memory depth of the neurons
at each level of the hierarchy, i.e., how far into the past
the internal memory of each neuron stores information. In
this way, we can learn short actions by setting a lower time
window than when learning higher-level human activities. A
similar behavior can be obtained by applying a Gamma memory
instead of the sliding time window computed at the output

of each GWR layer. The γ -GWR (Parisi et al., 2017b) models
have an arbitrary number of temporal context descriptors and
can thus be used in a hierarchical arrangement similar to
the one presented in this paper. However, in both cases, the
time window width hyper-parameter needs to be fine-tuned
according to the learning dataset. For this reason, extensions
of the GWR algorithm with variable temporal windows or
temporal context descriptors should be addressed in our
future work.

In this paper, we have considered only the visual stimuli
of human activities. However, there are certain human-object
interactions which cannot be perceived relying only on vision,
e.g., a person turning on an oven or boiling water with a kettle.
One approach to tackle this limitation is to add other sources
of information, such as the sound generated by the object.
Multimodal learning of human activities has gained a lot of
interest in recent years (Stork et al., 2012; Teo et al., 2012).
However, the audio-visual recognition of object manipulation
actions has so far remained an open challenge (Pieropan
et al., 2014b). To address this challenge, our architecture
can be extended with an additional associative learning
mechanism that establishes connections between networks
processing auditory and visual stimuli in an unsupervised fashion
(Parisi et al., 2017a).

Finally, the demonstrated capability of GWR-based
hierarchical models to generate learned sequences, for
instance, through lateral connections (Parisi et al.,
2017a; Mici et al., 2018b), motivates the extension of
our current approach toward a model that generates
action strategies given a goal or a high-level activity.
An interesting question would then be how to extend
the proposed top-down modulation mechanism in order
to retrieve the ordered sequence of actions composing
an activity.
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