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Impedance control has been widely used in robotic applications where a robot has

physical interaction with its environment. However, how the impedance parameters

are adapted according to the context of a task is still an open problem. In this

paper, we focus on a physical training scenario, where the robot needs to adjust its

impedance parameters according to the human user’s performance so as to promote

their learning. This is a challenging problem as humans’ dynamic behaviors are difficult to

model and subject to uncertainties. Considering that physical training usually involves a

repetitive process, we develop impedance learning in physical training by using iterative

learning control (ILC). Since the condition of the same iteration length in traditional ILC

cannot be met due to human variance, we adopt a novel ILC to deal with varying

iteration lengthes. By theoretical analysis and simulations, we show that the proposed

method can effectively learn the robot’s impedance in the application of robot-assisted

physical training.

Keywords: impedance learning, impedance control, iterative learning control, physical human-robot interaction,

robotic control

1. INTRODUCTION

With recent development of mobile intelligence, it has seen a clear trend that robots will come
into interact with humans in industries, health care, medical applications, etc. (Ajoudani et al.,
2018). Among various types of human-robot interaction, physical human-robot interaction (pHRI)
has been actively studied in the past decades by researchers in robotics and human motor control
(Haddadin and Croft, 2016).

It is widely acknowledged that impedance control is one of the most effective and robust
approaches for pHRI, which differentiates from position control and force control by developing
a relationship between the position and interaction force (Hogan, 1985). Such a relationship
is usually represented by a desired or target impedance model that enables a robot to behave
like a mass-damper-spring system (Albu-Schäffer et al., 2007). Therefore, a robot’s dynamics
under impedance control are effectively affected by impedance parameters that in general
include mass/intertia, damping and stiffness components. While impedance control can be
realized passively (through hardware design) (Vanderborght et al., 2013; Wu and Howard,
2018) and actively (through software) (Lippiello et al., 2018), the latter provides feasibility to
adapt impedance parameters which is essential in many situations. Indeed, constant impedance
parameters cannot fulfill requirements in a task where the robot’s environment dynamically
changes. In Ganesh et al. (2010), a robot manipulator increases its impedance when there is
an external disturbance and decreases it when the disturbance vanishes to save its control
effort. In Kim et al. (2010), a robot gripper that is catching a flying object needs to be
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compliant in the direction in which the object is moving but stiff
in another direction to hold its position. In Dimeas et al. (2019),
a variable stiffness controller is designed for pHRI where the
robot’s stiffness increases when a new path is close to the previous
ones and otherwise decreases to allow the human operator to
adjust. Therefore, predefining constant impedance parameters is
impractical, if not impossible, to achieve the task objectives in
impedance control.

Researchers have attempted impedance adaptation and
impedance learning using various techniques. One group of
works measure humans’ impedance and use this knowledge
to adapt the robot’s impedance. In Rahman et al. (2002),
human’s impedance is estimated so that the robot can adapt
its own impedance to improve their collaborative manipulation.
In Erden and Billard (2015), human’s hand impedance is
measured for the robot to assist the human in manual welding.
These approaches are model-based as they require estimation
of the human’s impedance parameters, so their quality relies
on accurate modeling of the human. Another group of works
on impedance learning are based on reinforcement learning
(RL), which appreciate a fact that in many situations the robot’s
environment (including humans) is difficult to model. In Kim
et al. (2010), natural actor-critic algorithm is used to learn
impedance parameters to maximize a given reward function.
In Buchli et al. (2011), another RL algorithm named policy
improvement with path integrals (PI2) is used to develop
variable impedance control. These works can be very useful
in applications where a training phase is allowed or sufficient
training data are available. However, in some pHRI applications,
these conditions may be invalid as the human-in-the-loop means
that the interaction can be gradually improved but needs to
be constantly safe and efficient. The third group of works use
an idea of transferring humans’ impedance skills to the robot.
In particular, researchers have developed various HRI interfaces
for a robot to learn the humans’ impedance (Ajoudani, 2015;
Yang et al., 2018). These works present interesting results for
specific applications, but how they can be generalized to other
applications is not clear.

While not aiming at providing a general solution to
impedance learning for pHRI, in this paper we focus on a
specific scenario of robot-assisted physical training. Our idea
is to adopt learning control in the field of control engineering
to pHRI, so that the system stability and performance can be
continuously evaluated. A potential difficulty is that human’s
behavior is hard to be modeled, so a model-free method is
preferred. Another point of consideration is that physical training
usually involves a repetitive process, which allows us to improve
the robot’s control strategy gradually. Based on these discussions,
iterative learning control (ILC) has been chosen as a proper
tool to fix the problem under study. In particular, ILC has been
adequately studied in control engineering (Arimoto, 1990; Xu
and Yan, 2006; Huang et al., 2013; Chu et al., 2016), which
does not require the model knowledge but uses the historical
information (in the case of pHRI, data collected from previous
interactions). The use of ILC for impedance learning has proven
to be successful in existing works (Tsuji and Morasso, 1996; Yang
et al., 2011; Li and Ge, 2014; Li et al., 2018; Fernando et al., 2019;

Ting and Aiguo, 2019), where a general robot’s environment is
studied. However, these works did not consider a challenge that
is specially present in pHRI: due to a human individual’s variance
and uncertainty, one cannot guarantee that the interaction can
be repeated with a fixed period. In physical training, a human
partnermay interact with a robot for a time duration that changes
in a different iteration, even if the human partner tries their
best to follow pre-set guidance. In this paper, we will address
this issue by employing a recent work on ILC for iterations
with time-varying lengths (Li et al., 2015; Shen and Xu, 2019).
We will show that impedance learning for physical training is
achieved despite that the human partner cannot repeat a motion
with a fixed period. We will also elaborate how the proposed
method provides assistance-as-needed, which is an important
property that has proved to be useful for human patients’ learning
(Emken et al., 2007). We will rigorously prove the convergence
of the proposed learning method, and simulate different human
behaviors to demonstrate its features. The contributions of our
work compared to the existing ones are 2-fold: the first is the
formulation of a robotic physical training problem as an ILC
problem with varying lengths; second, the design of the learning
law and stability analysis are different from Shen and Xu (2019).
In Shen and Xu (2019), a general system is considered and the
system function is locally Lipschitz continuous with respect to
the state, while the robot’s dynamics are considered with specific
properties in this paper.

The remainder of this paper is organized as follows. In section
2, the description of a pHRI system is given and the problem
to be studied is formulated. In section 3, an impedance learning
method is derived and its convergence is proved. In section 4,
various human behaviors in physical training are simulated to
demonstrate the features of the proposed method. In section 5,
conclusions of this work are drawn.

2. PROBLEM FORMULATION

In this paper, we consider a case of robot-assisted physical
training for upper-limbs, where a human arm is attached to
a robot platform (see Figure 1). The robot is driven by its
embedded motors and also moved by the human arm to reach a
target position or to follow a desired trajectory. In this section, we
will first establish the system model, including robot’s controller
and human’s control input. Then, we will elaborate the learning
control problem that one needs to address for the robot to
provide desired assistance-as-needed to the human, subject to
human’s unknown control input.

2.1. System Description
The dynamics of a robot in the joint space can be described as

Mj(q)q̈+ Cj(q, q̇)q̇+ Gj(q) = τ + JT(q)uh (1)

where q is the coordinate in the joint space, Mj(q) is the inertia
matrix, Cj(q, q̇)q̇ is the Coriolis and centrifugal force, Gj(q) is
the gravitational torque, τ is the joint torque supplied by the
actuators, uh is the force applied by the human and J(q) is the
Jacobian matrix which is assumed to be non-singular in a finite
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FIGURE 1 | Robot-assisted upper-limb physical training. A human hand holds

a handle on a planar robotic platform, while the robot is moved by its

embedded motors and also by the human hand to reach a target position or

track a desired trajectory.

FIGURE 2 | H-Man diagram. Dashed lines: linear glides. Black dot: handle,

fixed to its carriage (white rectangle). White disks: pulleys. The two motors

ML and MR have the same inertia I. qL, qR: motor rotation angles. τL, τR:

motor torques. ρ: radius of leading pulleys. m1: mass of handle and its

support. m2: mass of carriage with lateral linear guide without handle.

workspace. T stands for the transpose of a matrix or a vector.
Through kinematic transformation, the dynamics of the robot in
the task space can be obtained as

M(q) ẍ+ C(q, q̇) ẋ+ G(q) = u+ uh (2)

where x is the position/orientation of the robot’s end-effector in
the task space, and M(q), C(q, q̇), G(q), and u are respectively
obtained as

M(q) = J−T(q)Mj(q)J
−1(q)

C(q, q̇) = J−T(q)(Cj(q, q̇)−M(q)J−1(q)J̇(q))J−1(q)

G(q) = J−T(q)Gj(q), u = J−T(q)τ (3)

Property 1. (Ge et al., 1998) The matrix 2C(q, q̇) − Ṁ(q) is a
skew-symmetric matrix if C(q, q̇) is in the Christoffel form, i.e.,
ρT(2C(q, q̇)− Ṁ(q))ρ = 0, where ρ is an arbitrary matrix with a
proper dimension.

This specific property of robot’s dynamics is usually used to
prove the closed-loop system stability, as will be carried out in
the next section.

2.2. Problem Statement
From the above subsection, it is clear to see that the robot’s
motion is determined by both the robot’s and human’s control
inputs u and uh. Therefore, how to design the robot’s control
input u depends on the human’s control input uh. As the control
objective is to reach a target position or to track a desired
trajectory, the robot could take uh as a disturbance and design
a high-gain controller. However, this scheme is not desired for
a physical training robot as it does not actively encourage the
human to learn to complete the task by themselves. Instead, the
robot needs to understand how much the human can achieve in
tracking the reference trajectory and provide assistance only as
much as needed. As physical training usually involves a repetitive
process, iterative learning control or repetitive control may be
used to achieve this objective (Cheah andWang, 1998; Yang et al.,
2011; Li et al., 2018).

For this purpose, the human’s control input can be
constructed based on certain periodic parameters, as follows

uh = −Kh1(x− xd)− Kh2ẋ (4)

where Kh1 and Kh2 are the human’s stiffness and damping
parameters, respectively and xd is a desired trajectory that is
defined for a task. The above equation shows that the human can
complete the tracking task to some extent, and their performance
is determined by their control parameters Kh1 and Kh2 which are
unknown to the robot. For the robot to learn these parameters, it
is assumed that they are iteration-invariant, i.e.,

Ki
h1(t) = Ki−1

h1
(t), Ki

h2(t) = Ki−1
h2

(t) (5)

where i is the iteration number and t ∈ [0,T] with T as a fixed
time duration.

In the rest of the paper, the subscript i is omitted where no
confusion is caused. Different from traditional iterative learning
control where each iteration lasts for a fixed time duration T,
here we assume that each iteration can have a different length
Ti. This is a necessary assumption in robot-assisted physical
training, where it is difficult to require the human to repeat a
motion within exactly the same time duration: in one iteration,
the human may complete the motion in a shorter time duration,
while in another iteration, the human may need more time to
complete the motion.

This uncertainty from the human raises an issue to the robot’s
controller design. If Ti < T, there are no data between Ti and T
that can be used for learning in the next iteration; if Ti > T, how
to use the data beyond T for learning needs to be studied. In this
paper, we aim to address this problem to enable effective learning
for robot-assisted physical training. Without loss of generality,
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we assume that Ti ≤ T for all iterations, where T is known. In
practice, T can be set large enough to cover all possible iterations.

3. APPROACH

In this section, we develop the robot’s controller that assists the
human partner in tracking a desired trajectory, while it evaluates
the human partner’s performance by iterative learning.

3.1. Robot’s Controller
The robot’s control input u is designed as below

u = u1 + u2 (6)

where u1 is used to compensate for the dynamics of robot
and u2 is dedicated to learning the human’s control input and
determining the robot’s impedance.

How to design u1 has been studied extensively in the literature,
such as adaptive control (Slotine and Li, 1987), neural networks
control (Ge et al., 1998), etc. In this paper, to align with the
learning design, we develop u1 as below

u1 = θ̂TY(ẍe, ẋe, q̇, q)− Lε (7)

where Y(ẍe, ẋe, q̇, q) is a known regressor and θ̂ is an estimate of
θ that represents the physical parameters in the system’s dynamic
model, as below

M(q)ẍ+ C(q, q̇)ẋ+ G(q) = θTY(ẍ, ẋ, q̇, q) (8)

ẋe is an auxiliary variable that is defined as

ẋe = ẋd − αe (9)

where e = x− xd is the tracking error and α is a positive scalar. L
is a positive-definite matrix and ε is an auxiliary error defined as

ε = ė+ α e . (10)

The learning part in the robot’s controller u2 is designed as

u2 = K̂h1e+ K̂h2ẋ (11)

where K̂h1 and K̂h2 are estimates of Kh1 and Kh2 in Equation (4),
respectively. They are also the robot’s impedance parameters, i.e.,
stiffness and damping, respectively.

By substituting the robot’s controller in Equation (6) [with
Equations (7) and (11)] and the human’s control input in
Equation (4) into the robot dynamics in Equation (2), we obtain
the error dynamics as below

Mε̇ + Cε = θ̃TY(ẍe, ẋe, q̇, q)− Lε + K̃h1e+ K̃h2ẋ (12)

where

θ̃ = θ̂ − θ , K̃h1 = K̂h1 − Kh1, K̃h2 = K̂h2 − Kh2 (13)

The above error dynamics indicate that the error ε is due to
the estimation errors θ̃ , K̃h1 and K̃h2. Therefore, learning laws
of θ̂ , K̂h1 and K̂h2 need to be developed to eliminate these
estimation errors.

3.2. Learning Law
In this subsection, we discuss how to design the learning
laws to obtain the estimated parameters θ̂ , K̂h1, and K̂h2. For
this purpose, some preliminaries and assumptions for ILC
are needed.

Assumption 1. At the beginning of each iteration, the actual
position is reset to the initial desired position, i.e., x(0) = xd(0).

The identical initial condition is applied to ensure perfect
tracking in ILC. Due to the fact that it may be difficult to reset
the initial state to a same value in practice, some efforts have
been made to relax this condition in ILC area, such as Chen
et al. (1999). In the context of this work, the identical initial
condition is assumed for simplicity purpose but it would not
be difficult to incorporate the techniques in Chen et al. (1999)
with the proposed controller if the resetting condition cannot
be guaranteed.

Then, according to ILC with randomly varying iteration
lengths in Shen and Xu (2019), a virtual position error is defined
as below

ε̄(t) =

{

ε(t), t ≤ Ti;

ε(Ti), Ti < t ≤ T.
(14)

The above definition indicates that the missing error beyond Ti

is supplemented by the error at time t = Ti.

Assumption 2. Ti is a random variable that has a range of [T0,T]
where T0 > 0. When the iteration number i → ∞, there are
infinite iterations with Ti = T.

The above assumption implies that although Ti is subject to
a certain probabilistic distribution, it will reach the maximum
length T for many times when the iteration number is
large enough.

In Shen and Xu (2019), a general system is considered where
the system function is locally Lipschitz continuous with respect to
the state. In this paper, the robot’s dynamics are considered with
specific properties so the design of the learning laws is different.
In particular, a virtual mass/intertia matrix is defined as

M̄(q) =

{

M(q(t)), t ≤ Ti;

M(q(Ti)), Ti < t ≤ T.
(15)

In order to show the convergence of ILC, let us consider a
composite energy function

E(t) = E1(t)+ E2(t), (16)

E1(t) =
1

2
ε̄(t)TM̄(q)ε̄(t),

E2(t) = tr[
1

2βθ

∫ t

0
θ̃T(τ )θ̃(τ )dτ

+
1

2β1

∫ t

0
K̃T
h1(τ )K̃h1(τ )dτ +

1

2β2

∫ t

0
K̃T
h2(τ )K̃h2(τ )dτ ]

where tr(·) is the trace of a matrix, and βθ , β1, and β2 are
learning rates that are set as positive scalars. The learning laws are
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then designed to minimize the above composite energy function
iteratively, as below

θ̂ i(t) = θ̂ i−1(t)− βθε(t)Y
T(ẍe, ẋe, q̇, q)

K̂i
h1(t) = K̂i−1

h1
(t)− β1ε(t)e

T(t)

K̂i
h2(t) = K̂i−1

h2
(t)− β2εẋ

T(t), t ≤ Ti (17)

where θ̂0(t) = 0, K̂0
h1
(t) = 0 and K̂0

h2
(t) = 0, t ∈ [0,T]. Note that

the above learning laws are driven by the error ε, which indicates
that the learning will terminate if ε = 0. This is a property
relevant to assistance-as-needed: if the human can complete the
task, i.e., ε = 0, then the robot will not update its parameters to
provide extra assistance.

Since there are no data for learning for Ti < t ≤ T, the
learning laws become

θ̂ i(t) = θ̂ i−1(t)

K̂i
h1(t) = K̂i−1

h1
(t)

K̂i
h2(t) = K̂i−1

h2
(t), Ti < t ≤ T (18)

The above learning laws indicate that the parameters will not be
updated if data are missing beyond Ti in the i−th iteration. This
is a novel mechanism that deals with varying iteration lengths.

3.3. Convergence of Learning
In this section, we show that the proposed robot’s controller
and learning laws guarantee assistance-as-needed to the human,
when the human’s controller is unknown but periodic in its
parameters with varying iteration lengths. Themain results of the
learning convergence are stated in the following theorem.

Theorem 1. Consider the system dynamics in Equation (2) and
the human’s controller in Equation (4), with Assumptions 1 and 2.
The robot’s controller in Equation (6) [including Equations (7) and
(11)] with the learning laws in Equations (17) and (18) guarantees
that the error ε converges to zero iteratively when the iteration
number i goes to infinity.

Proof: Since the definitions of ε̄(t) and the learning laws are
different when t ≤ Ti and Ti < t ≤ T, we study the change
of the composite energy function E in two cases.

Case 1: t ≤ Ti

In this case, we have ε̄(t) = ε(t) and M̄(q) = M(q) according
to their definitions. Thus, the time derivative of E1(t) is

Ė1(t) = εTMε̇ +
1

2
εTṀε

= εTMε̇ + εTCε (19)

where the second equation comes from Property 1.
By substituting the error dynamics in Equation (12) into

Equation (19), we obtain

Ė1(t) = εT(θ̃TY + K̃T
h1e+ K̃T

h2ẋ− Lε) (20)

where the arguments of Y are omitted. By integrating Ė1 from 0
to t, we obtain

1E1 = Ei1(t)− Ei−1
1 (t) ≤ Ei1(t)

=

∫ t

0
[−εTLε + tr(θ̃TεYT)+ tr(K̃T

h1εe
T)+ tr(K̃T

h2εẋ
T)]dτ (21)

where 1(·) = (·)i(t) − (·)i−1(t) is the difference between two
consecutive periods with T and we have Ei1(0) = 0 according
to Assumption 1.

Then, we consider the difference between E2(t) of two
consecutive periods as below

1E2 = Ei2(t)− Ei−1
2 (t) (22)

=

∫ t

0
{tr[

1

2βθ

θ̃ i,T(τ )θ̃ i(τ )− θ̃ i−1,T(τ )θ̃ i−1(τ )

+
1

2β1
(K̃i,T

h1
(τ )K̃i

h1(τ )− K̃i−1,T
h1

(τ )K̃i−1
h1

(τ ))

+
1

2β2
(K̃i,T

h2
(τ )K̃i

h2(τ )− K̃i−1,T
h2

(τ )K̃i−1
h2

(τ ))]} dτ

By expanding the first component in the above equation, we have

1

2βθ

tr[θ̃ i,T(τ )θ̃ i(τ )− θ̃ i−1,T(τ )θ̃ i−1(τ )]

=
1

2βθ

tr[θ̃ i,T(τ )θ̃ i(τ )− θ̃ i,T(τ )θ̃ i−1(τ )]

+
1

2βθ

tr[θ̃ i,T(τ )θ̃ i−1(τ )− θ̃ i−1,T(τ )θ̃ i−1(τ )]

=
1

2βθ

tr[θ̃ i,T(τ )1θ̂(τ )+ θ̃ i−1,T(τ )1θ̂(τ )] (23)

where we have used the assumption that θ(t) is iteration-
invariant. By substituting the learning laws in Equation (17), the
above equation can be further written as

1

2βθ

tr[θ̃ i,T(τ )θ̃ i(τ )− θ̃ i−1,T(τ )θ̃ i−1(τ )]

=
1

2βθ

tr[2θ̃ i,T(τ )− 1θ̂T(τ )]1θ̂(τ )

6
1

βθ

tr[θ̃ i,T(τ )1θ̂(τ )] = −tr[θ̃ i,T(τ )ε(τ )YT] (24)

By expanding the other components in Equation (22), we can
similarly obtain

1

2β1
tr[K̃i,T

h1
(τ )K̃i

h1(τ )− K̃i−1,T
h1

(τ )K̃i−1
h1

(τ )]

6 −tr[K̃i,T
h1
(τ )ε(τ )eT(τ )]

1

2β1
tr[K̃i,T

h2
(τ )K̃i

h2(τ )− K̃i−1,T
h2

(τ )K̃i−1
h2

(τ )]

6 −tr[K̃i,T
h2
(τ )ε(τ )ẋT(τ )] (25)

By substituting Inequations (24) and (25) into Equations (21) and
(22), we obtain

1E = 1E1 + 1E2 6 −

∫ t

0
εTLεdτ ≤ 0 (26)
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FIGURE 3 | Tracking errors in the x direction (top left) and y direction (bottom left) and trajectories in the x − y plane (right column). The learning process is shown by

the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

FIGURE 4 | Stiffness ellipse (left) and damping ellipse (right) in all iterations. The learning process is shown by the color bar, which changes from blue (iteration number

i = 1) to red (i = 30).

Therefore, so far we have shown that the composite energy
function E does not increase when the iteration number increases
for t ≤ Ti.

Case 2: Ti < t ≤ T
In this case, we have ε̄(t) = ε(Ti) and M̄(q) = M(q(Ti)). Thus,

according to Equation (21), we have

1E1 = Ei1(t)− Ei−1
1 (t) ≤ Ei1(T

i)

=

∫ Ti

0
[−εTLε + tr(θ̃TεYT)+ tr(K̃T

h1εe
T)

+tr(K̃T
h2εẋ

T)]dτ (27)

On the other hand, according to the learning laws in Equation
(18) and Inequations (24) and (25), we have

1

2βθ

tr[θ̃ i,T(t)θ̃ i(t)− θ̃ i−1,T(t)θ̃ i−1(t)] = 0 (28)

1

2β1
tr[K̃i,T

h1
(t)K̃i

h1(t)− K̃i−1,T
h1

(t)(t)K̃i−1
h1

(t)] = 0

1

2β2
tr[K̃i,T

h2
(τ )K̃i

h2(τ )− K̃i−1,T
h2

(τ )(τ )K̃i−1
h2

(τ )] = 0

Therefore, the difference between E2(t) of two consecutive
periods becomes

1E2 = Ei2(t)− Ei−1
2 (t) = Ei2(T

i)− Ei−1
2 (Ti) (29)

By considering Inequation (26), we obtain

1E = 1E1 + 1E2 6 −

∫ Ti

0
εTLεdτ ≤ 0 (30)

By Inequations (26) and (30), we have shown that the composite
energy function E does not increase when the iteration number
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FIGURE 5 | Sum of the learning part in the robot’s control input and the human’s control input, i.e., u2 + uh in the x direction (top) and y direction (bottom). The

learning process is shown by the color change from blue (iteration number i = 1) to red (i = 30).

FIGURE 6 | Tracking errors in the x direction (top left) and y direction (bottom left) and trajectories in the x − y plane (right column) when the human’s control

parameters are time-varying within an iteration. The learning process is shown by the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

increases for t ∈ [0,T]. Then, we will have the boundedness of E
if E in the first iteration is bounded, i.e., E1 < ∞.

Let us consider the time derivative of E1 as below

Ė1 = Ė1 + Ė2 (31)

According to Inequations (26), for t ≤ T1 we have

Ė1 6 −εTLε ≤ 0 (32)

Therefore, by integrating Ė1 from 0 to t, we obtain

E1 − E1(0) ≤ 0 (33)

According to Assumption 1, we have E1(0) = 0 as ε(0) = 0.
Since the period T and true values of parameters θ , Kh1, Kh2

are bounded and θ̂0(t) = 0, K̂0
h1
(t) = 0, K̂0

h2
(t) = 0, E2(0) is

bounded. Therefore, E1(0) is bounded, and thus E1 is bounded.

For T1 < t ≤ T, since E1(t) = E1(T
1), E1(t) is bounded. By

integrating Ė2 from T1 to t, we obtain

E2(t)− E2(T
1) = tr(

1

2βθ

∫ t

T1
θTθdτ +

1

2β1

∫ t

T1
KT
h1Kh1dτ

+
1

2β2

∫ t

T1
KT
h2Kh2dτ ) (34)

where we have considered that θ̂1(t) = θ̂0(t) = 0, K̂1
h1
(t) =

K̂0
h1
(t) = 0 and K̂1

h2
(t) = K̂0

h2
(t) = 0 according to Equation

(18). Since the time duration T1 and true values of parameters
θ , Kh1, Kh2 are bounded, E2(t)−E2(T

1) is bounded. Since E2(T
1)

is bounded, E2(t) is bounded. Therefore, E
1 is bounded.

Finally, by Inequations (26) and (30), we have

1Ei 6

{

−
∫ t
0 εTLεdτ , t ≤ Ti;

−
∫ Ti

0 εTLεdτ , Ti < t ≤ T.
(35)
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FIGURE 7 | Stiffness ellipse (left) and damping ellipse (right) in all iterations when the human’s control parameters are time-varying within an iteration. The learning

process is shown by the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

FIGURE 8 | Tracking errors in the x direction (top left) and y direction (bottom left) and trajectories in the x − y plane (right column) when the human can partially

accomplish the reaching task. The learning process is shown by the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

From the above inequality, we obtain

Ei − E1 6

{

−6i−1
j=1

∫ t
0 εTLεdτ , t ≤ Tj;

−6i−1
j=1

∫ Ti

0 εTLεdτ , Tj < t ≤ T.
(36)

which leads to

E1 ≥

{

6i−1
j=1

∫ t
0 εTLεdτ , t ≤ Tj;

6i−1
j=1

∫ Ti

0 εTLεdτ , Tj < t ≤ T.
(37)

Since E1 is bounded, we can conclude that ‖ε‖ → 0 when the
iteration number i → ∞. Note that this result is valid for the
whole iteration of t ∈ [0,T], as there are infinite iterations with
Ti = T when i → ∞ according to Assumption 2. This completes
the proof.

4. SIMULATION

In this section, we simulate a robot-assisted physical training
scenario, where the robot is a cable-actuated 2-DOF planar
manipulandum H-Man (see Figure 2) (Campolo et al., 2014).
Human and robot interact in the operational space and the
common system position at the robot’s handle changes due to
both of their control inputs. Two tasks are considered to simulate
a typical physical training process: one is tomove the handle from
a starting position to a target position, representing a reaching
task; and the other is to track a circular reference trajectory,
representing a tracking task. The target position and the reference
trajectory are known to both the robot and the human.

H-Man’s mass/inertial matrix is given by [m1 0; 0 m1 + m2]
where m1 = 1kg is the mass of the handle and m2=2kg is the
mass of the carriage, while the motors’ inertias are ignored. The
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FIGURE 9 | Stiffness ellipse (left) and damping ellipse (right) in all iterations when the human can partially accomplish the reaching task. The learning process is shown

by the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

FIGURE 10 | Tracking errors in the x direction (top left) and y direction (bottom left) and trajectories in the x − y plane (right column) when tracking a circular trajectory.

The learning process is shown by the color bar, which changes from blue (iteration number i = 1) to red (i = 30).

mechanical friction of the H-Man is ignored and thus itsCmatrix
is zero.

In each iteration, the position in the operational space is
initialized as x(0) = [0, 0]Tm. In the reaching task, the robot’s
reference trajectory is given as below

xd = t3(10− 15t + 6t2)[0, 0.1]T (38)

which indicates a smoothmotion in the y direction but nomotion
in the x direction. In the tracking task, the robot’s reference
trajectory is given as below

xd = [0.1 sin(4t), 0.1(1− cos(4t))]T (39)

which indicates a circular trajectory with a radius of 0.1 m. While
a complete iteration lasts for 2s, the length of each iteration is set
as Ti = 2(1 − 0.4rand)s where rand is a function generating a

random number between 0 and 1. Therefore, the time duration
of each iteration is uncertain and can change from 1.2 to 2 s.

In all the simulations, the robot’s parameters are set the
same: L = 12 in Equation (7) where 12 is a 2 × 2 unit
matrix, α = 10 in Equation (9) and β1 = β2 = 100 in
Equation (17). The human’s control parameters are first set
as Kh1 = −300 × 12 and Kh2 = −10 × 12, simulating
a human arm that deviates from the desired trajectory. They
will be changed to emulate different human arms in the
following sections.

4.1. Reaching of a Target
We consider a reaching task in the first simulation, with the
results in Figures 3–5. Figure 3 shows that the reaching task
cannot be accomplished before the impedance learning, as
the simulated human moves the robot’s handle away from
the desired trajectory. In particular, a large tracking error is
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FIGURE 11 | Stiffness ellipse (left) and damping ellipse (right) in all iterations when tracking a circular trajectory. The learning process is shown by the color bar, which

changes from blue (iteration number i = 1) to red (i = 30).

FIGURE 12 | Tracking errors in the x direction (top left) and y direction (bottom left) and trajectories in the x− y plane (right column) using impedance control with fixed

parameters and the proposed method in Cases 1 and 2. Results in Cases 1 and 2 are respectively represented by solid and dotted lines, while impedance control and

the proposed learning method, respectively by blue and red lines.

found in the y direction. When the iteration number increases,
the reaching performance is gradually improved as shown by
the decreasing tracking errors in both x and y directions.
Note that this is achieved despite each iteration having a
different length, thus verifying the validity of the proposed
learning method for repetitive processes with varying length
iterations. Impedance parameters through the learning process
are presented in Figure 4. To intuitively illustrate the change of
impedance parameters, we plot stiffness and damping ellipses in
each iteration, where the eigenvalues of stiffness and damping
matrices are used as the semi-major and semi-minor axes of the
respective ellipses and the eigenvectors are used to determine
the angle between the major axis and x axis. It is found that
the y component of these parameters is obviously larger than
the x component, which is in line with the expectation as there

is little motion in the x direction. Also it is important to point
out that these learned impedance parameters are not necessarily
equal to the human’s real control parameters Kh1 = −300 × 12
and Kh2 = −10 × 12, respectively, but the robot’s control
input u2 in Equation (11) should ideally compensate for uh. As
shown in Figure 5, u2 + uh iteratively decreases as the iteration
number increases.

During an iteration, the human arm’s control parameters
may be time-varying. To simulate this situation, we set Kh1 =

−300 sin (π
2 t) × 12. The tracking errors and position profiles

are shown in Figure 6 and impedance parameters are shown
in Figure 7. It is found that these results are similar to that in
Figures 3, 4, as the learning takes place in an iterative manner
and is thus independent of change of human’s parameters in a
single iteration.
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FIGURE 13 | Stiffness ellipse (left) and damping ellipse (right) in Cases 1 (solid line) and 2 (dotted line).

4.2. Assistance as Needed
Assistance-as-needed is an important property in physical
training for humans’ learning. In this simulation, we show that
this property can be realized by the proposed robot controller. In
particular, we assume that the human has an ability to accomplish
the reaching task partially, instead of destabilizing the system in
the previous simulation. Therefore, we set Kh1 = 100 × 12 and
keep other parameters the same. Simulation results are given in
Figures 8, 9. Figure 8 shows that the reaching performance is
improved iteratively, with the initial performance much better
than that in Figure 3. By comparing Figures 4, 9, we find that the
impedance parameters in the latter figure are smaller, suggesting
that the robot provides less assistance to the human as the human
has a better performance. These results demonstrate that this
learning method enables the robot to automatically change its
control input that provides assistance-as-needed to the human.

4.3. Tracking of a Circular Trajectory
In this simulation, we consider a task where the human and robot
need to track a continuous trajectory. Figure 10 shows iteratively
improved tracking performance in each direction and tracking
of a circular trajectory is achieved after 30 iterations. Figure 11
shows the impedance parameters with changing values in both x
and y directions, as the task includes tracking in both directions.
Due to similar motions in two directions, i.e., sine and cosine
waves, the stiffness ellipse is close to a circle. This is different from
that in Figure 4, where there is little motion in the x direction
so there is a little change of the impedance parameters in the
x direction. These comparative results further demonstrate the
assistance-as-needed property of the learning method which not
only handles variance of human parameters, but also variance of
system settings.

4.4. Comparison With Impedance Control
To demonstrate the advantages of the proposed method, we
compare it with impedance control with fixed impedance

parameters which is a method that is widely adopted in robot-
assisted physical training. Two cases are considered where the
human’s controllers are different, emulating uncertain human
behaviors. In Case 1, the human’s control parameters are set
as Kh1 = −50 × 12 and Kh2 = −10 × 12, and in
Case 2, they are respectively changed to Kh1 = −300 × 12
and Kh2 = −15 × 12. In both cases, impedance control is
implemented as u2 = −50e − 10ẋ and the proposed learning
method has the same parameters as mentioned above except
initializing the impedance parameters as K̂h1 = −50 × 12
and K̂h2 = −10× 12. The tracking errors in two directions
and trajectory under two methods are shown in Figure 12. It
is found that impedance control ensures tracking in Case 1
with fine-tuned parameters but it fails to track the circular
trajectory when the human’s parameters change in Case 2. In
comparison, the proposed learning method guarantees small
tracking errors and accurate tracking in both cases, as it
automatically updates impedance parameters as in Figure 13.
These results illustrate that the human uncertainties can be
handled by the learning method, which is critically useful in
physical training.

5. CONCLUSIONS

In this paper, we studied impedance learning for robot-
assisted physical training. Considering that the human
dynamics are difficult to identify but a repetitive process
is involved, we employed iterative learning control (ILC)
for the development of the learning algorithm. A unique
issue of human variance in repeating a motion in physical
training was addressed by adopting ILC with varying
iteration lengths. Learning convergence was proved in
rigor and various human behaviors in physical training
were simulated.

Compared to existing methods based on measurement or
estimation of the human impedance (Rahman et al., 2002;
Erden and Billard, 2015), the proposed method is model-free
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so does not require a training phase. Compared to those based
on reinforcement learning (Kim et al., 2010; Buchli et al.,
2011), the proposed one guarantees system stability throughout
the interaction and is simple to implement. Compared to the
methods of transferring human impedance skills to robots
(Ajoudani, 2015; Yang et al., 2018), the proposed one does not
require any extra human-robot interface, e.g., EMG sensors
or haptic devices. Although with these advantages, it is noted
that the proposed method is applicable to only repetitive tasks,
which is an assumption that cannot be met in many other
applications. In our future works, we are interested in testing
this method in a more complicated scenario where a part
of the task can be deemed as repetitive, e.g., object loading
and offloading. We will also apply the proposed method to
real-world physical training and evaluate how it promotes
patients’ learning.
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