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Several approaches have been proposed to assist humans in co-manipulation and

teleoperation tasks given demonstrated trajectories. However, these approaches

are not applicable when the demonstrations are suboptimal or when the

generalization capabilities of the learned models cannot cope with the changes in

the environment. Nevertheless, in real co-manipulation and teleoperation tasks, the

original demonstrations will often be suboptimal and a learning system must be able

to cope with new situations. This paper presents a reinforcement learning algorithm

that can be applied to such problems. The proposed algorithm is initialized with a

probability distribution of demonstrated trajectories and is based on the concept of

relevance functions. We show in this paper how the relevance of trajectory parameters

to optimization objectives is connected with the concept of Pearson correlation. First,

we demonstrate the efficacy of our algorithm by addressing the assisted teleoperation

of an object in a static virtual environment. Afterward, we extend this algorithm to deal

with dynamic environments by utilizing Gaussian Process regression. The full framework

is applied to make a point particle and a 7-DoF robot arm autonomously adapt their

movements to changes in the environment as well as to assist the teleoperation of a

7-DoF robot arm in a dynamic environment.

Keywords: assisted teleoperation, path planning, movement primitives, reinforcement learning, policy search,

Gaussian processes

1. INTRODUCTION

Learning from demonstrations is a promising approach toward human-robot co-manipulation and
teleoperation. With this approach, a user can easily demonstrate trajectories to a robot, for instance
in gravity compensation mode. Subsequently, the robot fits a model to these trajectories, which
allows it to assist the user in the execution of repetitive tasks. The robot assistance can potentially
reduce the cognitive load in the user and prevent unintended collisions. Moreover, training a
teleoperated robot through demonstrations can give it a certain degree of autonomy, which is
desirable in the face of communication latency and intermittency.
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Recently, methods have been proposed to assist humans in
co-manipulation and teleoperation tasks given demonstrated
trajectories (Raiola et al., 2015; Havoutis and Calinon, 2016,
2017). Our work contributes to this field by providing a new
reinforcement learning algorithm, Pearson-Correlation-Based
Relevance Weighted Policy Optimization (PRO), to improve
upon demonstrated trajectories when these are suboptimal
or when solutions to new situations must be found. These
trajectories need to be optimized with respect to objectives,
such as minimizing distances to via points, keeping a certain
minimum distance from obstacles, achieving minimal length,
minimal jerk, etc.

In Ewerton et al. (2018), we have introduced the concept
of relevance to optimize trajectory distributions. By using this
concept, it is possible to preserve the variance of trajectory
parameters that are not relevant to the objective currently being
optimized for. This property is helpful for optimizing trajectories
sequentially with respect tomultiple objectives because the search
for optimal parameters for a certain objective does not disturb
other parameters that are irrelevant to the objective currently
under consideration. In that work, a relevance function was
represented by a weighted sum of basis functions. The relevance
weights were learned through an iterative process. The new
algorithm presented in this paper, PRO, is based on the insight
that the Pearson correlation coefficient (Benesty et al., 2009) can
be used to determine how each trajectory parameter influences
each objective. It does not require designing basis functions for
the relevance. Moreover, the relevance is now determined in
one shot in contrast to the previous iterative approach. The
efficacy of the proposed algorithm is demonstrated in an assisted
teleoperation experiment involving a haptic device, the Haption
Virtuose 6D (see Figure 1).

Finally, we extend PRO with Gaussian Processes (GP)
regression to cope with dynamic environments. A GP is
initialized with demonstrations and prior knowledge. Given a
new environment, it outputs a distribution of trajectories which
guides the movements of a robot to solve a certain task. PRO is
used to optimize upon the GP inferences, gradually improving
the mapping from environment to trajectory distribution. After
a phase of self-optimization, our learning system is able to
compute successful trajectories on the fly face to changes
in the environment. This paper presents applications of this
framework in two problems. The first problem involves a
point particle that needs to achieve a dynamic target while
avoiding moving walls. The second one consists in controlling
a 7-DoF robot arm to reach a target while avoiding a
cylinder on a table. Both the position of the target and
the position of the cylinder can be changed by a human
(see Figure 2).

The main contribution of this paper is a new algorithm
that learns trajectory distributions to solve planning tasks both
in static and dynamic environments. The learned trajectory
distributions are appealing because they function as virtual
guides for users in shared-autonomy tasks, e.g., assisted
teleoperation, as it is demonstrated in our experiments.
Excerpts of this work have been accepted for presentation at
Ewerton et al. (2019).

2. RELATED WORK

Assisted teleoperation is intensely investigated because, at the
same time that it is useful to leverage the superior cognitive
capabilities of a human operator, humans may not have the
necessary accuracy or perception of the environment to solve
a task. In addition, teleoperation involves several technical
challenges, such as dealing with communication delays and
noise. Xu et al. (2016) presented a framework to assist users
in teleoperation tasks with visual and haptic feedback based on

artificial potential fields and on the parameters of geometric
and dynamic models. The parameters of the dynamic models

are online updated. That framework helps the user to succeed
in teleoperation tasks even in the presence of round-trip

communication delays of 2 s. In our work, we address the
problem of optimizing suboptimal trajectories and use the
solution of this optimization problem to help the user to perform
a teleoperation task with less effort. The framework proposed
in Xu et al. (2016) and our approach could be used together to
address problems, such as delay while at the same time guiding
the user to perform more efficient trajectories than he/she could
originally perform.

To assist users in teleoperation or potentially in
co-manipulation tasks given suboptimal attempts or
demonstrations, our algorithm has to be able to refine
continuous paths to avoid obstacles, pass through via points,
etc. CHOMP (Ratliff et al., 2009) and STOMP (Kalakrishnan
et al., 2011) are two prominent methods for continuous path
refinement. CHOMP is a gradient-based optimization technique
to minimize a cost function while changing an initial trajectory as
little as possible. STOMP is a gradient-free, stochastic trajectory
optimization technique based on Policy Improvement with
Path Integrals (PI2) (Theodorou et al., 2010). Our algorithm,
PRO, presents some similarities to STOMP. It is a gradient-free,
stochastic trajectory optimization technique based on Reward
Weighted Regression (RWR) (Peters and Schaal, 2007). While
in STOMP, trajectories are generated by perturbing an initial
trajectory with a certain noise, in our work, a distribution of
trajectories based on demonstrations (and potentially also on
prior knowledge) is optimized. Differently from the original
works on CHOMP and STOMP, in our work, a mapping from
environment configurations to probability distributions is
learned. Subsequently, this mapping is used to adapt movements
on the fly to changes in the environment, without the need for
further optimization. The query of the appropriate trajectory
distribution given the environment configuration is made in
one shot while optimizations, such as the ones performed by
CHOMP and STOMP are iterative procedures. Therefore, our
framework can achieve online adaptation without making so
much computation online. Moreover, computation is saved by
using the solutions to similar environments to infer the solution
to a new environment.

An effective method for assisting users in shared-autonomy
tasks, e.g., co-manipulation, with probabilistic models learned
from demonstrations has been proposed in Raiola et al. (2015).
In that paper, Gaussian Mixture Models (Calinon et al., 2007)
are used to create multiple probabilistic virtual guides, which
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FIGURE 1 | A haptic device, the Haption Virtuose 6D, is operated by a user to move a beam in a virtual environment. The haptic device uses a trajectory distribution

learned with Pearson-Correlation-Based Relevance Weighted Policy Optimization (PRO) to assist the user in moving the beam from a start position and orientation to

an end position and orientation through a window in the wall.

FIGURE 2 | In this experiment, the robot has to reach the target (pink object) while avoiding the obstacle (cylinder). (A) Demonstrations. (B) Our learning system is

able to adapt on the fly a distribution of trajectories to changes in the environment. This distribution can be used for path planning tasks as well as for co-manipulation

and assisted teleoperation in dynamic environments.

constrain the movements of the user to a region close to
the demonstrations.

As in our work, in Havoutis and Calinon (2016), probabilistic
models are used to assist users in teleoperation tasks with
shared control. In that work, task-parameterized Gaussian
Mixture Models (TP-GMMs) (Calinon, 2016) have been used to
encode the probability distribution of demonstrated trajectories.
Gaussian Mixture Regression (GMR) (Calinon, 2016) has been
used to generate a behavior according to the learned model. The
learning agent assists the user with the teleoperation of a device
to scan a surface.

Our work is in line with Raiola et al. (2015) and Havoutis
and Calinon (2016), with the important difference that our

approach addresses cases where demonstrations are suboptimal
or when the learned model cannot generalize well enough to
a new scenario. This is possible due to the optimization of
the original distribution through reinforcement learning. An
approach for improving upon suboptimal initial demonstrations
is presented in Abi-Farraj et al. (2017). Nevertheless, that
approach is based on iterative refinement by the human user
instead of reinforcement learning.

Learning from demonstrations has also been applied in
supervisory control. In this paradigm, after training, the remote
system can execute a task autonomously, needing only high-
level task goals to be provided by the user. In Havoutis
and Calinon (2017), task-parameterized hidden semi-Markov
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models (TP-HSMMs) are used to build probabilistic models of
manipulation motions and Model Predictive Control (MPC) is
used to execute these motions. In that work, TP-HSMMs have
been shown to generalize better to changes in the environment
than Probabilistic Movement Primitives (ProMPs) (Paraschos
et al., 2018), which are used in our work. We believe that our
work can contribute to enhancing the generalization capabilities
of frameworks using probabilistic models, such as TP-HSMM
and ProMP by using reinforcement learning to let the remote
system look for solutions to new tasks by trial and error.

Previous works have proposed approaches to adapt initial
movements learned from demonstrations to new environments
with obstacles (Koert et al., 2016; Osa et al., 2017; Rana
et al., 2018). As a contribution to this area of research, our
approach creates in an offline self-optimization procedure a
mapping between environment configurations and trajectory
distributions, which can be used to online adapt these
distributions in dynamic environments. This is achieved by
using Gaussian Process (GP) regression to map variables
describing the environment to parameters (mean vector and
covariance matrix) of a probability distribution of trajectories
in the form of a ProMP. Our proposed reinforcement learning
algorithm, Pearson-Correlation-Based Relevance Weighted
Policy Optimization (PRO), is used to iteratively refine this
mapping. In a sense, PRO is providing the GPs with new
optimized ProMPs for any given environment, which gradually
improves the mapping. PRO performs Reinforcement Learning
while GP regression performs Supervised Learning. This process
resembles the way Guided Policy Search (GPS) (Levine et al.,
2016) uses trajectory optimization in combination with the
constraint that the actions output by a Convolutional Neural

Network (CNN) must track the optimized trajectories. In our
approach, PRO assumes the role of the trajectory optimizer while
the GPs assumes the role of the CNN. In contrast to GPS, while
the CNN outputs actions for any given state, in our approach,
GP regression outputs ProMPs (distributions of trajectories) for
any given environment. These distributions are used in our work
as virtual guides that can constrain the movements of the human
and the robot to certain regions of the state space.

3. PEARSON-CORRELATION-BASED
RELEVANCE WEIGHTED POLICY
OPTIMIZATION (PRO)

This section explains PRO, a policy search algorithm which
uses the relevance of each trajectory parameter to each
optimization objective to optimize policies in the form of
trajectory distributions. The relevance is computed in one shot
by using Pearson correlation coefficients.

3.1. Relevance Functions
PRO is a stochastic policy search algorithm based on Reward
Weighted Regression (RWR) (Peters and Schaal, 2007). In each
iteration of RWR applied to trajectory optimization, trajectory
parameters are sampled from a probability distribution, e.g.,
a Gaussian. Subsequently, the parameters of that probability
distribution, e.g., mean vector and covariance matrix, are
optimized to maximize the expected reward.

In PRO, the relevance of each trajectory parameter to each
optimization objective is estimated. This information is then used
to determine how the trajectory parameters should be sampled

FIGURE 3 | Pearson-Correlation-Based Relevance Weighted Policy Optimization (PRO) vs. Reward Weighted Regression (RWR). Here, w1 and w2 are the trajectory

parameters. These trajectory parameters could be for example the weights for some basis functions. For visualization purposes, it is assumed in this example that only

two parameters suffice to parameterize the trajectories. The red line represents the region in the space of trajectory parameters where the reward is the maximum. The

reward for any point in this space is R = exp (−βd), where β is a hyperparameter chosen by the user and d is the distance between the point and the red line. Both

RWR and PRO were applied to optimize a Gaussian distribution of w = [w1,w2]
⊤ with 1,000 iterations and 200 samples per iteration. The variances of RWR collapse

while PRO is able to keep the variance of w1 because this parameter is not relevant to this optimization problem. PRO can thus optimize the mean and variance of a

certain parameter without disturbing the mean and variance of parameters which are irrelevant to the objective being optimized for. This property is helpful when

sequentially optimizing trajectory distributions with respect to several objectives or to conserve as much as possible of the variance of the initial distribution.
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FIGURE 4 | Comparison between Relevance Weighted Policy Optimization (RWPO), proposed in Ewerton et al. (2018), and Pearson-Correlation-Based Relevance

Weighted Policy Optimization (PRO), proposed in this paper. In this problem, a trajectory must be found that starts at the green ×, goes through the window in the

center and ends at the red ×. RWPO took 84.47 s to learn the relevance functions while PRO took only 0.02 s. Both algorithms were implemented in Python. The

machine used for both computations was the same. The hyperparameters for RWPO were the same as used in Ewerton et al. (2018). PRO used 200 trajectory

samples to compute the relevance function. The vast difference in execution time is due to the iterative nature of the relevance computation in RWPO while PRO has a

one-shot approach to compute the relevance. (A) Five demonstrations provided by a user. (B) Both algorithms find solutions that satisfy the given criteria. The larger

deviation from the direct path observed in the solution by RWPO does not represent an error because there is no cost for larger deviations from the direct path. The

cost function used by both algorithms is the same and depends only on the distances to the start, window center and end. (C,D) Relevance for the 10 weights that

parameterize the x trajectory computed by RWPO and by PRO, respectively. The relevance for the 10 weights that parameterize the y trajectory has not been plotted

here. Differently from RWPO, PRO does not use basis functions for the relevance.

when optimizing the distribution of trajectory parameters with
respect to each objective. This procedure prevents undesirable
changes in the distribution of trajectory parameters that do
not influence the objective under consideration. On the other
hand, only the trajectory parameters that actually influence the
objective under consideration are subject to exploration in the
sampling procedure. Figure 3 illustrates the difference between
RWR and PRO.

The key observation in PRO is that the relevance of the
trajectory parameter wn to the objective o, denoted by fo (n),
can be represented by the absolute value |ρn,o| of the Pearson
correlation coefficient

ρn,o =
cov (wn, o)

σwnσo
, (1)

where cov (wn, o) is the covariance between wn and the value of
the objective o, σwn is the standard deviation of wn and σo is the
standard deviation of the values of the objective o. The values ρn,o

can be computed from samples of w = [w1, · · · ,wN]
⊤, where N

is the number of trajectory parameters. In this work, the samples
w to compute ρn,o are drawn from a Gaussian with mean vector
µw and covariance matrix σ 2

relevance
IN×N . The mean µw can be

based on demonstrations and σ 2
relevance

is chosen by the user to
produce small disturbances around the mean. The underlying
assumption in this method of quantifying relevance is that the
trajectory parameters are locally linearly correlated with the
optimization objectives. This is why σ 2

relevance
needs to be small.

For each w, the value of each objective o is computed. Given
the samples w and the corresponding objective values o, the
computation of ρn,o is straightforward and can be implemented
with a single line of code using libraries, such as NumPy.

The Pearson correlation coefficient ρX,Y of any two random
variables X and Y is a measure of the linear correlation between
X and Y and −1 ≤ ρX,Y ≤ 1. Thus, the relevance function
f = |ρX,Y | is such that 0 ≤ f ≤ 1. The relevance fo (n) of
wn to the objective o expresses how strongly changes in wn are
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linearly correlated to changes in the values of the objective o.
In practice, to explore a large range of parameter values, it is
helpful to normalize the relevance functions fo (n) such that their
maximum value is 1 instead of a smaller value. The normalized
relevance functions are thus given by

fo(n)
maxn fo(n)

. Assuming our

probability distribution of trajectory parameterswn is a Gaussian,
i.e., w ∼ N

(

µw,6w

)

, PRO samples wn from the distribution

N

(

µw,6
fo
w

)

, where

6
fo
w = diag

(

σ 2
w1
fo (1) , · · · , σ 2

wN
fo (N)

)

. (2)

In our work, the initial distribution N
(

µw,6w

)

is based on
demonstrations. The parameters w for each demonstration
are learned through Linear Ridge Regression and Maximum
Likelihood Estimation (MLE) is used to determine µw and 6w.

3.2. Optimization of Trajectory
Distributions Using Relevance Functions
Once a number S of trajectory parameter vectors w have

been sampled from N

(

µw,6
fo
w

)

, Reward Weighted Regression

(RWR) is used to optimize the mean µw and the covariance

matrix 6
fo
w of this distribution to maximize the expected reward.

The optimization problem

{µk+1
w ,Ck+1} = argmax

{µw ,6w
fo }

S
∑

i=1

Ro,iN
(

wi;µw,6
fo
w

)

(3)

has the solution

µk+1
w =

∑S
i=1 Ro,iwi

∑S
i=1 Ro,i

,

Ck+1 =

∑S
i=1 Ro,i

(

wi − µk
w

) (

wi − µk
w

)⊤

∑S
i=1 Ro,i

. (4)

The variable k in the expressions above represents the iterations
of the algorithm. The variable S is the number of sampled vectors
w. This number is chosen by the user of the algorithm to enable
an adequate approximation of the expected reward. The variable
Ro,i represents the reward with respect to objective o obtained
by the sampled trajectory i. The reward is non-negative and
usually has the form Ro,i = exp (−βo (i)), where o (i) is the value
obtained by the sampled trajectory i for objective o and β is a
hyperparameter chosen by the user.

Finally, the new covariance matrix 6w is determined. It is a
diagonal matrix with the variances in the diagonal given by

σ 2
wn ,k+1 =

(

1− fo (n)
)

σ 2
wn ,k

+ fo (n)Ck+1
nn , (5)

where σ 2
wn ,k

is the variance of wn in iteration k and Ck+1
nn is the

element at row n and column n of the covariance matrix Ck+1.
Equation (5) keeps the variance of irrelevant trajectory

parameters unchanged and updates the variance of relevant
trajectory parameters. If fo (n) = 0, for example, σ 2

wn ,k+1
= σ 2

wn ,k
,

i.e., the variance of wn at iteration k+ 1 is the same as at iteration
k. On the other hand, if fo (n) = 1, σ 2

wn ,k+1
= Ck+1

nn , i.e.,

the variance of wn at iteration k + 1 is the result of the RWR
optimization at iteration k, yielding Ck+1

nn . For other relevance
values, which must lie by definition between 0 and 1, the new
variance is a weighted average of its previous value and the
optimized one.

Algorithms 1, 2 present a description of PRO in the form of
pseudocode. Figure 4 shows a comparison between the algorithm
proposed in Ewerton et al. (2018), Relevance Weighted Policy
Optimization (RWPO), and the one proposed in this paper, PRO.
PRO has two main advantages over RWPO: (1) in PRO, it is
not necessary to design problem-specific basis functions for the
relevance; (2) The relevance computation in PRO is performed
in one shot, which is much faster than the iterative procedure
used in RWPO. A fast computation of the relevance is crucial
because, in general, the relevance may need to be reevaluated
during the optimization of the trajectory distributions. This
necessity is due to the fact that the relevance is computed from
samples of a Gaussian with mean µw and covariance matrix
σ 2
relevance

IN×N . Therefore, the relevance depends on µw, which
needs to be optimized.

Algorithm 1: Relevance learning

1: Inputs: mean µw, variance σ 2
relevance

and objective function
corresponding to objective o

2: Sample trajectory parameters w fromN
(

µw, σ
2
relevance

IN×N

)

3: for each sample w do

4: Compute the value for the objective o obtained by the
trajectory with parameters w

5: end for

6: for each wn do

7: Compute the Pearson correlation coefficient ρn,o
(Equation1)

8: Compute the relevance function fo (n) = |ρn,o|

9: Normalize the relevance function
10: end for

11: return the normalized relevance functions fo (n)

4. ONLINE ADAPTATION OF TRAJECTORY
DISTRIBUTIONS

In this work, Probabilistic Movement Primitives
(ProMPs) (Paraschos et al., 2018) are used to represent trajectory
distributions. In ProMPs, each trajectory is approximated by a
weighted sum of Gaussian basis functions evenly spaced along the
time axis. Each trajectory can thus be represented by a vector of
weights w = [w1, · · · ,wN]

⊤, where N is the number of Gaussian
basis functions. Given a number of demonstrated trajectories
for a certain task, a Gaussian distribution N (µw,6w) of w is
computed through Maximum Likelihood Estimation (MLE).

ProMPs allow for computing the posterior probability
distribution of trajectories given via points. This operation,
however, produces sensible results only if the via points are
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Algorithm 2: Pearson-Correlation-Based Relevance Weighted
Policy Optimization

1: Inputs: mean µw, covariance 6w of trajectory parameters
w,variance σ 2

relevance
and objective functions

2: repeat

3: for each objective o do
4: Compute relevance functions fo (n) (Algorithm 1)

5: Compute matrix 6
fo
w (Equation 2)

6: Sample trajectory parameters w fromN

(

µw,6
fo
w

)

7: for each sample wi do

8: Compute the reward Ro,i of the trajectory with
parameters wi associated with objective o

9: end for

10: Update µw and compute C (Equations 4)
11: Update the variances of the trajectory parameters σ 2

wn

(Equation 5)
12: end for

13: until convergence of the rewards Ro,i
14: return the mean µw and the variances σ 2

wn

close to the original ProMP. For our purposes, we need to
adapt ProMPs to environment configuration variables like via
points and others also when they are very different from the
configurations observed during the demonstration phase.

To adapt ProMPs on the fly to changes in the environment,
our learning system must be able to compute these ProMPs
quickly. To deal with this challenge, we propose using Gaussian
Process (GP) regression to map variables describing the
environment to mean vector µw and covariance matrix 6w

of a ProMP. Our learning system is trained according to the
following steps: (1) Initialization with demonstrations and prior
knowledge; (2) Given a random state of the environment, infer
a ProMP using GP regression; (3) PRO optimizes upon the
inferred ProMP; (4) Update dataset of environment states and
corresponding ProMPs with the solution provided by PRO. Steps
2–4 are repeated several times until the learning system is able
to solve a given task for a range of possible configurations of
the environment. For a task in which a robot needs to move
from a start position to an end position while avoiding an
obstacle, for example, a suitable initialization based on prior
knowledge can be a distribution of trajectories with mean going
directly from the start position to the end position and a certain
amount of noise for exploration by PRO. Figure 5 depicts our
proposed architecture.

The vector of variables describing the current state of the
environment is denoted by e. The elements of this vector can be
for example obstacle positions, via points, target positions, etc.

The user is asked to initialize our learning system by providing
multiple demonstrations for each environment configuration em
in the set {e1, · · · , eM} containing M different configurations.
Based on these demonstrations, the variables µwn,m and σ 2

wn,m

are computed through Maximum Likelihood Estimation (MLE),
where n ∈ N,m ∈ N, 1 ≤ n ≤ N, 1 ≤ m ≤ M. The variables
µwn,m and σ 2

wn,m
are the mean and the variance, respectively,

FIGURE 5 | Architecture to adapt trajectory distributions, in this case,

ProMPs, to changes in the environment. Our learning system is initialized with

demonstrations and potentially with trajectories based on prior knowledge

about the task at hand. Gaussian Process (GP) regression is used to infer

ProMPs given variables describing the current state of the environment.

Pearson-Correlation-Based Relevance Weighted Policy Optimization (PRO)

optimizes the inferences made by GP regression, updating the dataset of

environment configurations and corresponding ProMPs, gradually improving

the quality of the inferences.

of weight wn based on the demonstrations for environment
configuration em. The set of demonstrations can be augmented
for additional environment configurations by trajectories based
on prior knowledge, as previously mentioned. In this case, the
trajectories based on prior knowledge are treated just as the
demonstrations directly provided by the user.

Givenµwn,m and σ 2
wn,m

,∀m, 1 ≤ m ≤ M, the variablesµwn and

σ 2
wn

are computed. These variables represent the average mean

µwn = 1
M

∑M
m=1 µwn,m and the average variance σ 2

wn
=

1
M

∑M
m=1 σ 2

wn,m
for each weight wn.

A new environment enew is sampled at random from a
set containing both the environments e1, · · · , eM for which
there were demonstrations as well as environments for
which there were no demonstrations. Gaussian Process (GP)
regression is used to infer the trajectory parameters wn,new

for the new configuration enew, given the demonstrations.
There is one Gaussian Process (GP) for each parameter wn.
The GPs use the squared exponential kernel k

(

ei, ej
)

=

exp
(

−α
(

ei − ej
)⊤ (

ei − ej
)

)

,α ∈ R,α > 0. The variables ei

and ej represent any two arbitrary environment configurations.

The posterior p
(

wn,new|wn,1 :M

)

= N

(

µwn,new , σ
2
wn,new

)

is a

Gaussian with

µwn,new = µwn + Knew,1 :M

(

K1 :M,1 :M + 6wn

)−1

(

µwn,1 :M
− µwn

)

, (6)

σ 2
wn,new

= Knew,new + σ 2
wn

− Knew,1 :M

(

K1 :M,1 :M + 6wn

)−1

K1 :M,new, (7)

where µwn
=

[

µwn , · · · ,µwn

]⊤
is a column vector with µwn

repeatedM times,µwn,1 :M
=

[

µwn,1 , · · · ,µwn,M

]⊤
, the covariance
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matrix of each GP is

K =

(

Knew,new Knew,1 :M

K1 :M,new K1 :M,1 :M

)

(8)

and

6wn = diag
(

σ 2
wn,1

, · · · , σ 2
wn,M

)

. (9)

The covariance matrix K comprises four blocks. Knew,new is
here just the scalar k (enew, enew). Knew,1 :M is a row vector with
elements k

(

enew, ej
)

, j ∈ N, 1 ≤ j ≤ M. K1 :M,new is a column
vector with elements k (ei, enew) , i ∈ N, 1 ≤ i ≤ M. Finally,
K1 :M,1 :M is a matrix with elements k

(

i, j
)

.
After computation of the posterior distribution given by

µwn,new (Equation 6) and σ 2
wn,new

(Equation 7), PRO optimizes
upon this distribution as described in section 3. The dataset of
known environments and corresponding trajectory distributions
is updated with enew, µwn,new and σ 2

wn,new
, ∀n, 1 ≤ n ≤

N. Subsequently, this entire process is repeated for another
enew. After several iterations, as it will be shown in the
experimental section, the learning system is able to generate
successful distributions of trajectories for a pre-defined range of
environment configurations.

5. EXPERIMENTS

Four experiments demonstrate the efficacy of our proposed
framework. The first experiment demonstrates that PRO can be
applied to assist the teleoperation of an object in a static virtual
environment. PRO achieves that by optimizing a probability
distribution of trajectories based on failed attempts by the
user. Depending on our reward functions, initial attempts of
the user can be optimized for example to avoid obstacles,
achieve a target position with higher accuracy, produce smoother
and more efficient movements, etc. The next two experiments
demonstrate how PRO in combination with Gaussian Process
(GP) regression can tacklemotion planning problems in dynamic
environments. Finally, the fourth experiment demonstrates that
our full framework can help users teleoperate a real robot arm in
dynamic environments. Please see the Supplementary Video 1.

5.1. Assisted Teleoperation of a Virtual
Object
In this experiment, the user manipulates the Haption Virtuose
6D to move a beam in a virtual environment (see Figure 1). This
experiment can be seen as a teleoperation task, where the haptic
device is the master and the beam is the slave. The goal of the
user is to move the beam from a start position and orientation
to an end position and orientation through the window without
hitting the wall. This task is hard for humans in part due to
the difficulty in visually estimating the 3D position and the
orientation of the beam.

First, the user tries ten times to perform the task without
force feedback. A distribution of trajectories based on the trials
of the user is created using a ProMP. Subsequently, PRO is used
to optimize this ProMP such that sample trajectories from the

optimized ProMP pass through four via points with the right
beam orientations to avoid collisions with the wall.

In this experiment, the original optimization problem has
been separated into two optimization problems: one taking into
consideration only the Cartesian coordinates of the via points
and another taking into consideration only the orientation of
the beam at each via point. This separation helped PRO to find
successful trajectories in this problem. The reward function for
both problems is Ro = exp

(

−β
(

o+ βll+ βjj
))

, with β = 200,
βl = 0.1 and βj = 105. The value for β was empirically
determined by trying a few values between 1 and 300. The
values for βl and βj were determined by trying different powers
of 10. The variable o represents the distances to each of the
four via points. The two via points closest to the window
are computed given the current position of the window. The
variables l and j represent the length and the average jerk
magnitude of the trajectory, respectively, and are computed by
using finite differences. The terms βl and βj are used to regulate
the importance of the length and average jerk magnitude to the
reward. PRO optimized the ProMP in 150 iterations with 200
trajectory samples per iteration.

Figure 6A shows the initial trials of a user to solve the task
for a given scenario without the assistance of the haptic device.
Figures 6B–F represents the optimized ProMP, which is used by
the haptic device to guide the user with force feedback inverse
proportional to the standard deviation.

5.2. Adaptation in Dynamic
Environments—Point Particle
The problem addressed in this section is depicted in Figure 7.
First, a human was presented with 30 random environments. The
environments differed in c =

(

xc, yc
)

, the position of the center
of the hole in the wall, and in g =

(

xg , yg
)

, the position of the end
goal (red× in Figure 7). By using a computer mouse, the human
provided three demonstrations for each environment.

The random environments e =
[

xc, yc, xg , yg
]⊤

were
uniformly distributed in the range 2 ≤ xc ≤ 8, 1 ≤ yc ≤ 9,
xc + 1.5 ≤ xg ≤ 10, 0 ≤ yg ≤ 10. The start position s =

(

xs, ys
)

was always the same.
PRO used reward functions of the form Ro = exp (−βo),

where β = 20 was empirically determined by observing the
trajectory distributions learned by PRO for a few values of β : 1,
10, 20, 30, 40, and 50. In this problem, three objectives need to be
minimized: the distance to the start position o1 = ||τ (0) − s||,
the minimal distance to the center of the hole in the wall o2 =

mint ||τ (t) − c|| and the distance to the end goal o3 = ||τ (T) −

g||. The term τ (t) represents the position along trajectory τ at
time step t, τ (0) is the first position and τ (T) is the last position.

After the initialization with the demonstrations, the self-
improvement loop (Figure 5) was repeated 1,000 times, each
time with a new random environment. Each PRO optimization
took at most 200 iterations (less if convergence was achieved
sooner) and used 100 trajectory samples per iteration. The kernel
of the GPs used in this problem had parameter α = 10−3. This
value was empirically determined by trying a few different powers
of 10 and observing the GP inferences. During test, our learning
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FIGURE 6 | (A) Cartesian coordinates of demonstrated trajectories. (B) Cartesian coordinates of trajectories sampled from the ProMP optimized with PRO. (C–F)

Orientations in quaternions of the mean trajectory of the ProMP optimized with PRO. The yellow dots represent via points.

FIGURE 7 | The magenta point particle has to move from the start position (green ×) to the target position (red ×) without hitting the walls (blue rectangles). The

position of the hole in the wall and the target position change with time. As these positions change, our learning system computes the corresponding trajectory

distributions on the fly to solve this task. The red line corresponds to the mean of the computed trajectory distribution. The light gray trajectories are samples from the

computed distribution. The black star-shaped marker moves forward along the mean of the current distribution. The magenta point particle tracks the black

star-shaped marker with a PD controller. This figure depicts four frames of a test case.

system can compute ProMPs on the fly, solving the task in a
dynamic environment (see Figure 7).

In order to verify if the performance observed during test
was due to the self-optimization procedure or simply due to
the human demonstrations, we have performed the comparison
depicted in Figure 8. Note that by simply applying Gaussian
Process Regression based on the demonstrations to infer ProMPs
given a new random scenario leads to high errors with respect
to the desired start and end distances as well as negative
signed Euclidean distances indicating collisions with the walls.
On the other hand, the self-improvement procedure involving
PRO gradually leads to a better mapping from environments to

ProMPs, which is evidenced by smaller errors with respect to the
desired start and end positions as well as higher signed Euclidean
distances to the obstacles.

5.3. Adaptation in Dynamic
Environments—Autonomous Robot Arm
The problem addressed in this section is depicted in Figures 2,
9. The obstacle (cylinder) and the target (pink object) are
tracked by using a motion capture system (OptiTrack). First, a
human provides demonstrations by moving the 7-DoF robot arm
in gravity compensation mode. Demonstrations were provided
for 20 different environment configurations. There were three
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FIGURE 8 | Gaussian Process regression (GPR) plus PRO vs. GPR based only on the human demonstrations without refinement by PRO. These learning curves refer

to the problem depicted in Figure 7. The algorithm using GPR + PRO used GPR to compute a ProMP given a random environment, optimized the inferred ProMP by

using PRO, updated its dataset of environments and corresponding ProMPs and repeated this procedure for a new random environment. The algorithm using only

GPR did not optimize the GPR inferences. In this case, the dataset of environments and corresponding ProMPs was solely based on the demonstrations. Both

algorithms performed 1,000 inferences of ProMPs given the same random environments. These plots show the performance measurements for the ProMPs inferred

by GPR before PRO optimization for each of the 1,000 random environments. We conclude that GPR based only on the demonstrations does not generalize well to

new environments as our proposed method, which uses PRO. PRO gradually improves the mapping from environments to ProMPs.

FIGURE 9 | Our learning system infers a distribution of trajectories (ProMP) given the current state of the environment. An inverse-dynamics based feedback controller

tracks the mean of the inferred distribution. (A) The robot goes around the obstacle (a cylinder) from the right side to reach the target (a pink object). (B) Given that the

user changes the position of the target while the robot is moving, the robot switches on the fly to another ProMP, going around the obstacle from the left side.

demonstrations for each environment. The configurations were
determined by arbitrarily choosing positions on the table for the
obstacle and the target. The start position for the robot arm was
always the same.

Each environment in this problem was represented by the

vector e =
[

xp, yp, xg , yg
]⊤

, where (xp, yp) was the position of the
cylinder and (xg , yg) was the end goal position.

We have noticed that initializing our learning system only
with the human demonstrations for 20 different situations was
not enough to learn a mapping capable of dealing with any
obstacle and target positions on the table. For this reason, we
have decided to extend the set of demonstrations with ProMPs
based on prior knowledge. These ProMPs had mean trajectory

going directly from the start position to the target position
irrespective of the obstacle position and the variance of each
ProMP weight was the average variance for that weight based on
the demonstrations. The GPs were thus initialized with ProMPs
for 2,024 different environments (including environments for
which human demonstrations were given). The additional 2,004
environments were generated by taking obstacle and target
positions of a grid inside a range of possible positions delimited

by the corners of the table and excluding configurations with the

obstacle and the target too close to each other.
PRO used reward functions of the form Ro = exp (−βo),

where β = 200 was empirically determined by observing the
trajectory distributions learned by PRO for a few values of β :
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FIGURE 10 | GPR + PRO vs. GPR based only on demonstrations for experiment where a 7-DoF robot arm learns to autonomously perform a reaching movement

with obstacle avoidance in a dynamic environment. The performance of GPR + PRO is clearly superior. We conclude that our proposed self-optimization loop based

on GPR and PRO successfully learns a mapping from environment configurations to trajectory distributions that start at the desired position, reach the target and

avoid the obstacle. This learned mapping is subsequently used to produce online adaptation to changes in the environment. The performance of GPR based only on

the demonstrations is relatively good for the first inferences because these inferences correspond to environments that are similar to the demonstrated ones.

FIGURE 11 | A 7-DoF robot arm is teleoperated by a user manipulating a haptic device while another human moves the objects in the slave site. The master site is

depicted in the left image of Figure 1. (Top) Different configurations of the slave site. The objective of the operator is to move the end effector of the robot from a start

position (colorful ball) to the target position (white cardboard) while avoiding the obstacle (cylinder). (Bottom) Corresponding virtual guides (orange tubes), virtual

representation of the end effector (coordinate system), virtual representation of the obstacle (red cuboid) and virtual representation of the target (green sphere). The

virtual guide adapts online to the changes in the environment.

1, 10, 20, 30, 40, 50, 100, 200 and 300. In this problem, three
objectives need to be minimized: o1 = ||τ (0) − s|| + d, o2 =

max(−mint ||τ (t) − p||,−0.2)+ d and o3 = ||τ (T) − g|| + d.

The term d = 1
T

∑T
t=0 ||τ (t) − τdirect (t) || is the average

distance to the direct path τdirect from the start to the end goal.
This term was added to each of the objectives to avoid large
deviations from the direct path to the end goal. Apart of this term,
o1 and o3 are very similar to objectives described in section 5.2.
The variable p =

(

xp, yp
)

in o2 is the position of the cylinder.
Minimizing o2 has the effect of avoiding the cylinder without
going too far away from it because distances to the cylinder larger
than 20 cm do not result in additional reward.

In the self-improvement loop (Figure 5) 2,024 inferences were
made (one inference for each environment in the initialization
data set). Each PRO optimization took at most 50 iterations (less
if convergence was achieved sooner) and used 100 trajectory
samples per iteration. The kernel of the GPs used in this problem
had parameter α = 1. This value was empirically determined
by trying a few different powers of 10 and observing the GP
inferences. During test, the robot is able to successfully execute
the reaching task even when the human moves the obstacle or
the target while the robot is moving (see Figures 2, 9).

As in section 5.2, we have compared the performance of
our framework based on GPR and PRO with the performance
of applying GPR based only on the human demonstrations.
This comparison is depicted in Figure 10. The first inferences
correspond to environments that are similar to the demonstrated
ones. This explains why the performance of GPR based only
on the demonstrations is better for the initial inferences and
gradually gets worse. In any case, the performance of GPR with
PRO is clearly superior to the performance of GPR only based on
the demonstrations.

5.4. Teleoperation of a Robot Arm in a
Dynamic Environment
Finally, we have used our framework to assist a human in the
teleoperation of a 7-DoF robot arm. The parameters describing
the environment as well as the reward functions used in this
experiment are identical to the ones described in section 5.3.

In this experiment, a human manipulated the haptic device
Haption Virtuose 6D (see the left image of Figure 1) to move a
7-DoF robot arm from a start position to a target while avoiding
an obstacle. Another human changed the positions in the slave
site during the teleoperation. Our framework computed online
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distributions of trajectories that served as virtual guides for the
user. The force feedback provided to the user by the haptic
device was inversely proportional to the standard deviation
along the trajectory distribution. This force feedback pulled the
user to the mean trajectory and allowed for free movement
back and forth along the mean trajectory. Figure 11 shows a
sequence of environment configurations and the corresponding
virtual representation providing a visualization of the inferred
virtual guides.

6. CONCLUSION AND FUTURE WORK

This paper presented a new algorithm to optimize trajectory
distributions, PRO. In this algorithm, the concept of Pearson
correlation is used to determine the relevance of each
trajectory parameter to each optimization objective. Moreover,
a framework which uses PRO and GP regression has been
presented, which is able to compute trajectory distributions on
the fly to solve tasks in dynamic environments. PRO can be
used to optimize upon suboptimal demonstrated trajectories.
Our full framework is able to solve planning problems in dynamic
environments in an experiment involving a point particle and in
a real robot experiment with a 7-DoF robot arm. In addition,
applications to the assisted teleoperation of an object in a static
virtual environment as well as of a 7-DoF robot arm in a dynamic
environment have been demonstrated.

In the future, we will investigate other reward functions for 6D
assisted teleoperation tasks to avoid the necessity of intermediate
via points and the separation in two optimization problems.

In this work, we have used Gaussian Processes with a fixed
covariance function instead of addressing the model selection
problem. In our case, it is a difficult problem because we do not
have a supervised learning setup. The ProMPs corresponding to
each new environment configuration are output by PRO, which
itself gets initialized by the inferences produced by Gaussian
Process Regression. As future work, it would be thus interesting
to investigate to which extent model selection can be helpful
in our setup.

A limitation of PRO is that it learns ProMPs with diagonal
covariance matrices instead of full covariance matrices. In the
problem depicted in Figure 3, if the red line had a certain slope,
the solution of PROwould converge to a dot just as RWR, instead
of preserving the original variance along the line. In the future, we

intend to investigate the practical implications of this limitation
and look for ways to learn a full covariance matrix while applying
the concept of relevance functions.
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