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Complexity measures and information theory metrics in general have recently been

attracting the interest of multi-agent and robotics communities, owing to their capability

of capturing relevant features of robot behaviors, while abstracting from implementation

details. We believe that theories and tools from complex systems science and information

theory may be fruitfully applied in the near future to support the automatic design of robot

swarms and the analysis of their dynamics. In this paper we discuss opportunities and

open questions in this scenario.
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1. INTRODUCTION

Metrics that quantify the complexity of a system and measure information processing are used
in a wide range of scientific areas, including neuroscience, physics, and computer science. In the
scientific literature, the word complexity is overloaded, as it may refer to the amount of effort needed
to describe a system, or to create it, or also to quantify its structure both in terms of components
and dynamical relations among its parts. For example, let us consider a swarm of robots: we may
ask what is the complexity of a function describing the overall behavior of the swarm, or what is the
complexity of the problem of optimally assigning tasks to the robots, or what is the complexity of
each of the tasks. These objectives require different measures, each addressing a specific question.
As a consequence, there is no unique and all-encompassing complexity measure: a plethora of
metrics are available. Most come from information theory, which abstracts from specific system’s
details and focuses on information processing. While notable results have been attained, we believe
that the potential of these methods has still to be fully exploited in the automatic design of robot
swarms and in the analysis of their behaviors.

In automatic design methods, the design problem is cast into an optimization problem that is
solved either off-line or on-line, i.e., either before the swarm is deployed in its target environment
or while the swarm is operating in it. A prominent example of automatic design is evolutionary
robotics (ER), where the control software—typically an artificial neural network (ANN)—is
optimized by means of an evolutionary algorithm (Nolfi and Floreano, 2000). A number of
alternative methods depart from the classical ER by employing control software architectures other
than ANNs and/or optimization techniques other than evolutionary computation (Watson et al.,
2002; Hecker et al., 2012; Francesca et al., 2014; Gauci et al., 2014). A review of the main studies
on automatic design of robot swarms—both off-line and on-line—is provided by Francesca and
Birattari (2016).
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The aim of this paper is to outline what we think are the
most important open questions and to describe opportunities to
use complexity measures for supporting the automatic design of
swarms of robots and the analysis of their behaviors. In section 2,
we provide an introduction to complexity measures. In section 3,
we highlight the main contributions to the robotics field. In
section 4, we illustrate our perspective and outline relevant
open questions.

2. A CAPSULE INTRODUCTION TO
COMPLEXITY MEASURES

The notion of complexity is multifaceted. If, by the term
“complex,” one means “difficult to predict,” then a suitable
metric is provided by information theory with Shannon
entropy (Shannon, 1948). Let us consider a simple system of
which we observe the state at a given time. The observations
can be modeled as a random variable X, which can assume
values from a finite and discrete domain X . If the observation
is x ∈ X , which has a probability P(x), then the amount
of information carried by the observation of x is defined as

1
log P(x)

= − log P(x)1. Shannon entropy is defined as the

expected value of the information of all symbols: H(X) =

−
∑

x∈X P(x) log P(x). Intuitively, H(X) measures the amount
of surprise—or, equivalently, the lack of knowledge—about the
system; we may also observe that Shannon entropy measures
the degree of disorder in a system or process. Many complexity
measures are based on Shannon entropy. For example, the
reciprocal influence between two parts of a system can be
estimated by computing their mutual information, defined as
I(X;Y) = H(X) + H(Y) − H(X,Y), where H(X,Y) is the joint
entropy of the variables X and Y , defined on the basis of the joint
probability P(x, y). I(X;Y) provides a measure of the information
we can gain on a variable, by observing the other. Information-
theoretic metrics are currently widely applied, as they have the
property of being model independent and able to capture non-
linear relations. In practice, probabilities are usually estimated
through the observed frequencies.

When the objective is to measure the complexity of the
description of a system, then algorithmic complexity may be
used, as proposed by Kolmogorov (1965): the complexity of
a string of symbols is defined as the length of the shortest
program producing it. This measure is not computable in
general, but approximations are available, such as the ones
based on compression algorithms (Lempel and Ziv, 1976).
Shannon entropy and Kolmogorov complexity are conceptually
different (Teixeira et al., 2011). The former measures the average
uncertainty of a random variable X, and so it estimates the
difficulty of predicting the next symbol of a sequence received
from a source. Conversely, Kolmogorov complexity measures
the length of the minimal (algorithmic) description of a given
sequence of symbols σ , therefore it estimates the difficulty of
describing or reconstructing the sequence. However, they both

1Usually, the logarithms are taken to the base 2, so as to express information in

terms of bits.

capture the notion of compressibility of a signal and, in particular,
they are null when X (resp. σ ) is constant and maximal when X
(resp. σ ) is random.

Kolmogorov complexity also provides a theoretical
framework for the principle known as Occam’s razor that
states that among all the possible explanations of a set of data,
the simplest one is preferable. A similar argument supports the
notion of stochastic complexity, proposed by Rissanen (1986),
which is the shortest description of the data with respect to a
given probabilistic model.

The term “complex” is often used for capturing the notion
of structure or pattern observed in data or in the dynamics of a
system, once random elements are discarded. This concept is also
related to the extent to which correlations distribute across the
parts of the system observed (Grassberger, 1986a). The intuition
is that high complexity should be associated to conditions
characterized by a mixture of order and disorder, structure and
randomness, easily predictable dynamics and novelty. Along this
line, several measures have been proposed (Grassberger, 1986a;
Lindgren and Nordahl, 1988; Li, 1991; Crutchfield, 1994; Gell-
Mann and Lloyd, 1996; Shalizi and Crutchfield, 2001). A survey
on complexity metrics is out of the scope of this contribution
and we refer the interested reader to prominent works on the
subject (Grassberger, 1986a; Lindgren and Nordahl, 1988; Badii
and Politi, 1999; Lloyd, 2001; Prokopenko et al., 2009; Lizier,
2013; Moore et al., 2018; Thurner et al., 2018; Valentini et al.,
2018).

3. COMPLEXITY MEASURES IN ROBOTICS

A possibility for using information theory in robotics is enabled
by the notion of sensory-motor coordination (Pfeifer and Scheier,
1997) which emphasizes the role of the loop between sensors and
actuators in robots performing cognitive tasks. Sensory-motor
coordination models can be described in terms of dynamical
systems and control theory, which are suitable for analyses
based on information theory. More specifically, the sensory-
motor loop expresses both the effect that sensors have on
actuators and the effect that actuators have on sensors. The
former is mediated by the robot’s control software; the latter
by the environment. Information-theoretic measures can be
used to study some properties of system dynamics (Islam and
Murase, 2005; Lizier, 2013; Beer and Williams, 2015; Da Rold,
2018) and to characterize the information flow in the sensory-
motor loop (Lungarella and Pfeifer, 2001; Lungarella et al., 2005;
Lungarella and Sporns, 2006; Ay and Zahedi, 2014). Notably,
this approach makes it possible to quantitatively study the
relation between the robot and the environment (Beer, 1995,
2008; Smithers, 1995; Tarapore et al., 2004, 2006; Nehmzow,
2008; Schmidt et al., 2013; Butail et al., 2014; Izquierdo et al.,
2015), which is fundamental in embodied systems (Pfeifer and
Scheier, 2001). A sound and thorough treatise on the dynamics
emerging from the interaction among robot, control program
and environment is provided by Nehmzow (2008).

Information-theoretic measures typically used in these
contexts are mainly based on Shannon entropy (Cover and
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Thomas, 2012) and range from mutual information (Lindgren,
2014) and transfer entropy (Schreiber, 2000) to predictive
information (Grassberger, 1986b; Crutchfield and Young, 1989;
Bialek et al., 2001; Martius et al., 2013). Predictive information
(PI) has been successfully used to quantify properties of emergent
behaviors and as an objective function for designing robots able
to show the so-called self-organization dynamics (Der et al., 2008;
Martius and Olbrich, 2015). The PI of a system is computed
by extracting a time series from a set of variables, e.g., the
robot’s sensor readings. The PI of the system is then defined as
the mutual information of the future and the past within the
time series. If the robot’s behavior is such that features of the
environment (e.g., a light gradient) are exploited to achieve the
robot’s goals (e.g., phototaxis), then the sensory-motor loop tends
to produce coordinated patterns. These patterns are captured by
high values of PI computed across sensor time series. Conversely,
maximizing PI produces self-organized behaviors (Ay et al.,
2008).

To the best of our knowledge, Odagiri et al. (1998) were
the first to study the complexity of an ANN controlling a
robot and to highlight its correlation with the complexity of the
environment in which it is evolved2. In their work, the ANN
controlling a Khepera robot is evolved in different environments
characterized by different levels of complexity (obtained by
construction) and the complexity of the ANN is evaluated in
terms of non-zero weights in the network. While this way of
estimating ANN complexity is common in machine learning and
is not based on information theory, this paper provides a clear
statement of the problem. Results show that the ANN complexity
is correlated with the complexity of the environment and the
authors suggest to use this metric to estimate the complexity
of the environment “as seen by the robot.” A similar work
achieving analogous conclusions has been proposed by Capi
(2007). Yang and Anderson (2011) address the same problem
by evolving artificial agents that have to reach a target cell in
a grid with obstacles; robots are guided by means of a depth
search algorithm. The authors propose a metric for estimating
environmental complexity based on entropy and compressibility
of the grid in which the agents move. A linear regression model
on these two variables is then inferred and used to estimate the
average number of steps required by the agent to reach the target.

As different complexity measures capture different features of
a system, one should aim at producing a complexity fingerprint
by computing several metrics, rather than identifying a single
metric able to summarize all the relevant properties related to
complexity (Roli et al., 2018). Teo and Abbass (2005) address
this issue by proposing a multidimensional complexity measure,
consisting of several different metrics by means of which a partial
ordering can be defined.

A prominent question in natural and artificial evolution
is whether complexity increases over generations and what
is its relationship with fitness. A recent work (Joshi et al.,
2013) addresses this issue in simulation by evolving artificial
agents controlled by extended ANNs. The metrics used in this

2The generation of environments with different degrees of complexity for testing

or evolutionary purposes is not new. E.g., see Stirling et al. (2010).

research are mutual information, predictive information and also
integrated information (Balduzzi and Tononi, 2008). This latter
metric has been proposed with the aim of capturing to what
extent a system is able to integrate information coming from
the environment. Agents controlled by a network of stochastic
transition functions have been subject to artificial evolution with
the goal of finding the exit of a maze in the shortest time. The
outcome of the research is that complexity is positively correlated
with fitness. More precisely, the minimal complexity among
all the evolved ANN corresponding to any one fitness value
is a quantity increasing with fitness. A measure of behavioral
diversity in a group of robots has been proposed by Balch (2000)
who defines ametric based on hierarchical clustering of behaviors
across the group of robots. This information-theoretic approach
enables us to quantitatively correlate the heterogeneity of the
group of robots with performance.

Information-theoretic measures have also been used as task-
agnostic merit factors for the design of coordinated behaviors
in evolutionary robotics3. An example of this approach is
the achievement of a coordinated behavior by maximizing
the average mutual information between all pairs of robot
motors (Olsson et al., 2005; Sporns and Lungarella, 2006;
Salge and Polani, 2011; Sperati et al., 2014). The aim of
using information-theoretic measures in this setting is to
bias evolution toward robot control software that enables the
robots to attain some useful emergent property, which can be
exploited for the specific task at hand4. Of similar spirit are
the works of Martius et al. (2013) and Ay et al. (2008), which
present a principled approach to derive control software on the
basis of integrated information for attaining self-organized and
explorative behaviors. The coordination of a group of robots is
the focus of work by Capdepuy et al. (2007), in which the multi-
robot case is subjected to an information-theoretic analysis.
Finally, we mention the work by Klyubin et al. (2008), where
a new metric called empowerment is proposed with the aim
of guiding evolution to producing robots that, all things being
equal, choose actions that maximize the number of their future
possible actions.

4. OPEN QUESTIONS AND
OPPORTUNITIES FOR FUTURE
RESEARCH

Recent results attained by using information-theoretic and
complexity measures in analysing and designing robot behaviors
motivate further investigations. Some questions are still open and
we believe that addressing them will improve swarm robotics,
in particular. Here we focus on a specific subject that we
think has still to be thoroughly addressed: the relation between
complexity of individual robot, swarm and environment. As
the observed behavior of a robot is the result of the interplay

3The use of task-independent objective functions in artificial evolution is not a

new idea—e.g., see Lehman and Stanley (2011). However, in this paper we are

concerned only with approaches related to complexity and information-theoretic

measures.
4A similar approach is that of guided self-organization (Prokopenko, 2014).
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of control software, robot’s physical features and environment,
the complexity of an individual robot does not necessarily
correspond to the complexity of its control software. Complex
control software might produce simple behaviors because the
robot cannot exploit any significant property of the environment
or because the environment is overconstrained; conversely,
simple control software may generate rather complex behaviors
by exerting simple interactions in a complex environment. This,
in turn, poses the question as to what extent the complexity
of the environment can be assessed: is it possible to measure
environment complexity without referring to a specific robot
platform? If not, are there general approaches to assess relative
complexity? Should one abandon the idea of measuring the
complexity of the two entities separately and measure the
complexity of the compound instead? The situation is of course
more complicated in the case of robot swarms, as interactions
among robots produce an emerging behavior at a higher level.
The relation between the complexity of individual robot and the
swarm is again to be studied: is it in general possible to attain any
complexity level in the swarm independently of the individual
complexity by operating on the interactions? If not, are there
bounds on the complexity that can be computed? Concepts and
methods from the physics of collective systems and statistical
physics (Nicolis and Prigogine, 1977; Binney et al., 1992;
Kauffman, 1993; Bar-Yam, 1997; Badii and Politi, 1999) are likely
to provide useful tools for addressing these questions, especially
for what concerns the relation between micro and macro levels,
i.e., between robots and swarm. Nevertheless, the hypothesis
that robots behave as particles is seldom verified and new
advancements of these theories should be developed to properly
address these questions. Furthermore, we may ask if meso-levels
appear as intermediate structures between micro and macro
levels, as in the case of the so-called sandwiched emergence (Lane,
2006); these meso-levels have indeed a bidirectional effect as they
influence both upper and lower levels.

We believe that addressing these questions would lead to
important improvements to the automatic design of robot
swarms. Swarm robotics is a promising approach to coordinating
large groups of robots (Dorigo et al., 2014; Yang et al., 2018),
which has already attracted the attention of the wider scientific
community (e.g., see Rubenstein et al., 2014; Werfel et al.,
2014; Garattoni and Birattari, 2018; Slavkov et al., 2018; Yu
et al., 2018; Li et al., 2019; Xie et al., 2019). As observed
by Brambilla et al. (2013), an engineering approach to the
development of robot swarms is still in its infancy (Winfield
et al., 2005; Brambilla et al., 2012, 2015; Francesca et al.,
2015; Francesca and Birattari, 2016; Khaluf et al., 2016). In
automatic design, a space of possible design instances is explored
by an optimization algorithm with the goal of maximizing
an appropriate mission-specific performance measure. In the
off-line case, the performance of candidate design instances
explored by the optimization algorithm is assessed via computer
simulations (Birattari et al., 2019). One of the main issues to
be addressed in this case is the discrepancy between simulation
and reality. This discrepancy—usually named the reality gap—is
often the reason for performance drops when control software
developed in simulation is deployed on real robots. Recently,

Birattari et al. (2016) show that the reality gap is the cause
of what has been named overdesign: in an off-line automatic
design process, the performance in simulation steadily increases
with design effort (e.g., iterations of the optimization algorithm),
while the one in reality increases up to a certain level and then
starts decreasing. Furthermore, the performance drop due to the
reality gap is a relative problem: different design methods are
affected to a different extent by the same difference between
simulation and reality (Francesca et al., 2014) and a rank
inversion can be observed: on the same mission, the control
software produced by design method A might perform better
than the one produced by design method B when they are
evaluated in simulation; while it could be the other way around
when the control software is ported to the robots. Overdesign and
eventually performance drop and rank inversion have a statistical
interpretation in terms of model identification: the choice of
the structure of a statistical model implies—even implicitly—a
trade-off between bias and variance, which represent two kinds
of error affecting an estimator. Models of a relatively simple
structure are characterized by high bias and tend to under-fit
data, whilst those of a relatively complex ones are affected by a
large variance and tend to overfit (Geman et al., 1992). As it has
been recently shown, performance drop and rank inversion may
be observed also in a simulation-only experiments (Ligot and
Birattari, 2018, 2019): that is, when behaviors are designed using
a simulation model and tested using another one. This indicates
that performance drop and rank inversion should not be ascribed
to some unique relationship between reality and the simulation
environment used in the design process, but rather to an intrinsic
characteristic of a design method—i.e., the complexity of the
control software produced: high complexity exposes a method
to the risk of overfitting the simulation environment used in the
design process. Overfitting is commonly addressed by invoking
the parsimony principle, stating that a model should be as simple
as possible. In fact, this principle can be seen as a statistical
formalization of the Occam’s razor, usually expressed as “shave
away all that is unnecessary” or “everything should be made as
simple as possible, but not simpler” (Burnham and Anderson,
2002).

In the light of this last consideration, we believe that a
principled estimation of the complexities of swarm, individual
robots and environment may help address this issue by
suggesting the best levels of complexity to attain in the
design. Contrary to some established fields like statistics
and machine learning in which the scientific community
has agreed on the adoption of some complexity measures—
e.g., and Akaike’s information criterion (Akaike, 1973) and
Vapnik-Chervonenkis dimension (Vapnik, 1995)—the swarm
robotics community has not yet reached consensus on any
complexity measure.

In a futuristic scenario, we imagine the possibility of
measuring the complexity of a swarm robotics task and
designing the control software accordingly. Besides the
questions already stated, this perspective poses further
issues, as measuring the complexity of a task is a non-
trivial problem and in general it depends on the robot’s
model. We believe that information theory may provide a
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FIGURE 1 | Generic design cycle: the control software is deployed onto the robots, which are then evaluated; on the basis of the evaluation, some parameters of the

control software are changed by means of an optimization method. Complexity metrics are fed into the evaluation block. Off-line design: robots are evaluated in

simulation. The metrics can be used as a regularization component of the fitness function used in the evaluation block: besides a fitness component accounting

for the performance of the swarm on the specific task, a further component can be added to penalize (i) individual robots or (ii) swarms that exhibit a complexity level

not complying with the requirements. In the first case, the average predictive information (PI) of the robots can be taken, whilst in the second case the average

pairwise mutual information can be used (see Figure 2). Alternatively, a multi-objective approach can be chosen, in which the swarm performance and the complexity

metric are the two criteria considered in the optimization process. In this latter case, the user can choose a personal trade-off between performance and complexity.

Mixed off-line and on-line design: an off-line design phase is first run, in which the complexity of the swarm (or the individuals, or both) is maximized. Subsequently, an

on-line design process takes place for tuning the control software parameters with the goal of specializing the swarm to the task at hand and to keep the complexity in

a given range.

FIGURE 2 | An example of the evaluation of complexity metrics. We suppose that robots are controlled by a probabilistic finite state automaton, hence the swarm

state is given by a tuple composed of symbols from a finite alphabet, each representing one state in the automaton (this choice is not a limitation, as it is possible to

compute complexity metrics for any choice of the variables representing robots’ state). Individual metrics can be computed by considering the time sequence of

states for each robot, while global swarm measures are a function of the whole swarm state (or a portion of it). In the figure, the predictive information (PI) of each

robot can be computed on the basis of the time sequence of robot states; conversely, as a swarm measure the average pairwise mutual information can be

computed. Indeed, high values of this metric are expected to favor global coordinated behaviors (Sperati et al., 2014).

suitable framework for addressing these questions because it
makes it possible to abstract from implementation details and
focus on interactions and dynamics related to information

processing. In Figures 1 and 2, an example of the use
of complexity measures inside the automatic design flow
is sketched.
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Besides the open questions already mentioned, we also
envision room for improvement in the use of task-agnostic merit
factors in automatic design of robot swarms. While some results
have been attained (Sperati et al., 2008; Der and Martius, 2012;
Mouret and Doncieux, 2012), we believe that the potential of
this approach has still to be fully expressed. For example, we
expect that combining complexity measures with task-specific
objective functions—e.g., in a multi-objective framework—may
lead to swarms characterized by fast re-calibration in case
of environmental or task changes. In the longer term, we
envision the possibility of tuning the complexity of an adaptive
swarm depending on the—possibly changing—requirements. For
example, highly complex control software may be employed
with its complexity controlled during the design process or
even dynamically during operation. A viable way to attain
this could be either a priori designing the control software
instances so as to tune their complexity by means of specific
variables acting on their structure and parameters (internal
regulation) or by properly calibrating the interactions between
robot and environment, and between the robots of the swarm.
This last kind of control (external regulation) may be achieved,
for example, by properly choosing type and properties of
environmental features (i.e., by tuning the robots’ environmental
niche) or by selecting which sensors and actuators the robots
can use.

Apart from few preliminary investigations (Roli et al., 2013,
2015, 2018), there is still much room for application of
information-theoretic and complexity measures in the analysis of

robot behavior. Besides the use of such metrics during the design
process (e.g., to assessing the complexity of the swarm or the
individual robots), we envisage a real-world scenario in which
the complexity level of a robot swarm is monitored in order to
detect specific phases of its behavior (e.g., when a decision has
to be collectively taken) and possible failures—e.g., when a large
discrepancy between the expected and actual complexity of the
swarm is observed it might be the case that some malfunctioning
dynamics is taking place.
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