
METHODS
published: 20 March 2020

doi: 10.3389/frobt.2020.00032

Frontiers in Robotics and AI | www.frontiersin.org 1 March 2020 | Volume 7 | Article 32

Edited by:

Marco Bibuli,

Italian National Research Council, Italy

Reviewed by:

Ning Wang,

Dalian Maritime University, China

Farah Bouakrif,

University of Jijel, Algeria

*Correspondence:

Andreas B. Martinsen

andreas.b.martinsen@ntnu.no

Specialty section:

This article was submitted to

Robotic Control Systems,

a section of the journal

Frontiers in Robotics and AI

Received: 06 November 2019

Accepted: 20 February 2020

Published: 20 March 2020

Citation:

Martinsen AB, Lekkas AM, Gros S,

Glomsrud JA and Pedersen TA (2020)

Reinforcement Learning-Based

Tracking Control of USVs in Varying

Operational Conditions.

Front. Robot. AI 7:32.

doi: 10.3389/frobt.2020.00032

Reinforcement Learning-Based
Tracking Control of USVs in Varying
Operational Conditions
Andreas B. Martinsen 1*, Anastasios M. Lekkas 1,2, Sébastien Gros 1, Jon Arne Glomsrud 3

and Tom Arne Pedersen 3

1Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2Centre for

Autonomous Marine Operations and Systems, Norwegian University of Science and Technology, Trondheim, Norway, 3Digital

Assurance Program, Group Technology and Research, DNV GL, Trondheim, Norway

We present a reinforcement learning-based (RL) control scheme for trajectory tracking of

fully-actuated surface vessels. The proposed method learns online both a model-based

feedforward controller, as well an optimizing feedback policy in order to follow a

desired trajectory under the influence of environmental forces. The method’s efficiency is

evaluated via simulations and sea trials, with the unmanned surface vehicle (USV) ReVolt

performing three different tracking tasks: The four corner DP test, straight-path tracking

and curved-path tracking. The results demonstrate the method’s ability to accomplish

the control objectives and a good agreement between the performance achieved in the

Revolt Digital Twin and the sea trials. Finally, we include an section with considerations

about assurance for RL-based methods and where our approach stands in terms of the

main challenges.

Keywords: reinforcement learning, trajectory tracking, optimal control, model-based adaptive control,

approximate dynamic programming (ADP), dynamic positioning (DP), autonomous ships, system identification

1. INTRODUCTION

Control of marine vehicles is a challenging problem, mostly due to the unpredictable nature
of the sea and the difficulty in developing accurate mathematical models to represent the
varying marine vehicle dynamics. As a result, considerable research effort has been dedicated to
the topic since the early 90’s (Fossen, 1994), resulting in a vast literature utilizing ideas from
virtually every branch of control engineering: Linear, non-linear, adaptive, intelligent, optimal,
fuzzy, and stochastic control approaches, to name a few, have been developed and tested over
the years, and many of their properties are well-understood (Hasegawa et al., 1989; Pettersen
and Egeland, 1996; Katebi et al., 1997; Fossen, 2000; McGookin et al., 2000; Soetanto et al.,
2003; Wang et al., 2015; Do, 2016). Due to the fact that the hydrodynamic coefficients, and
consequently the behavior, of a marine vehicle can vary significantly in different speed regimes,
a common approach has been to design controllers for specific motion control scenarios. This
approach simplifies the vessel modeling process and has led to dynamic positioning (DP) and
station keeping controllers for speeds close to zero, and trajectory tracking or path following
(depending on whether temporal constraints are considered) controllers when a vessel is in
transit mode. Naturally, the main drawback is that, when moving from one speed regime to
another, controllers and/or models with different properties are needed. Two well-researched

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00032&domain=pdf&date_stamp=2020-03-20
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:andreas.b.martinsen@ntnu.no
https://doi.org/10.3389/frobt.2020.00032
https://www.frontiersin.org/articles/10.3389/frobt.2020.00032/full
http://loop.frontiersin.org/people/712782/overview
http://loop.frontiersin.org/people/858056/overview
http://loop.frontiersin.org/people/844238/overview
http://loop.frontiersin.org/people/923435/overview

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

ways to achieve such performance diversity with conventional
methods are to design numerous controllers and switch among
them when needed, or to use adaptive approaches. To this
end, research effort has been dedicated to developing flexible
methods for updating the model parameters by, for instance,
using system identification methods or parameter estimation
via neural networks (Källström and Åström, 1981; Kallstrom,
1982; Fossen et al., 1996; Sutton et al., 1997; Mišković et al.,
2011; Dai et al., 2012; Wang et al., 2017). In the majority of
the aforementioned works, model-based approaches exploiting
human knowledge on hydrodynamics and the laws of motion
were considered.

Reinforcement learning (RL), also known as neuro-dynamic
programming or approximate dynamic programming, is a
field of research developed by the Artificial Intelligence (AI)
community for achieving optimal sequential decision making
under system and environment uncertainty. The roots of RL
can be traced back to the 60’s and a thorough overview of
its evolution can be found in Sutton and Barto (2018) and
Bertsekas (2019). Contrary to optimal control theory, RL is based
on evaluative, rather than instructive, feedback and comes in
different forms, which may or may not include partial knowledge
of the environment or the system. The process typically involves
hand-engineering a reward function, which assigns a reward,
or penalty, to the actions that induce desired, or undesired,
outcomes, respectively. An RL algorithm is then assigned to
find a policy (or controller, in control engineering terminology)
that solves the control objective optimally, given the problem
constraints and uncertainties. To sum up, RL algorithms use
the reward function as a guide, and through trial and error,
learn to model the system and its environment, which then
leads to a policy that provides an optimal solution to the
assigned problem.

Despite a number of successes for RL on simple problems,
including algorithms, such as Q-learning and REINFORCE,
the field has seen limited interest. In recent years there has
however been a resurgence of interest due to the development of
Deep Reinforcement Learning (DRL), starting with Deep Mind
developing the Deep Q-Network (DQN) algorithm that achieved
superhuman performance in several Atari games (Mnih et al.,
2013), followed by Deep Mind’s AlphaGo algorithm becoming
the first computer program to beat a human champion in the
game of Go (Silver et al., 2016). Since then, DRL has been
successful in surpassing all previous computer programs in chess
and learning how to accomplish complex robotic tasks (Silver
et al., 2017; Andrychowicz et al., 2018). Given DRL’s ability
to tackle problems with high uncertainty, implementations to
motion control scenarios involving marine vessels have been
presented recently (Shen and Guo, 2016; Zhang et al., 2016;
Pham Tuyen et al., 2017; Yu et al., 2017; Cheng and Zhang,
2018; Martinsen and Lekkas, 2018a,b). In most of these works
the authors implemented algorithms pertaining to the class
of actor-critic RL methods, which involves two parts (Konda
and Tsitsiklis, 2000): The actor, where the gradient of the
performance is estimated and the policy parameters are directly
updated in a direction of improvement. The main drawbacks
of the actor are that it is prone to variance and the new

gradient is estimated independently of past estimates. The
critic, learns an approximation of the value function, leading
to an approximate solution to the Bellman or Hamilton-
Jacobi-Bellman equation, which then is expected to prescribe
a near-optimal policy. The critic’s main drawback is that it
lacks reliable guarantees in terms of near-optimality of the
resulting policy. The actor-critic approach involves the actor
improving the policy parameters’ estimation based on the
approximations learned by the critic. In the case of DRL,
one main novelty was the use of two DNNs as function
approximators of the policy and the value function, which
resulted in considerably improved performance compared to
previous approaches. However, DNNs have drawbacks, with
some of the most important being lack of transparency and
interpretability, lack of robustness, and inability to generalize to
situations beyond their past experiences.

In this paper, we follow and extend the work by Kamalapurkar
et al. (2018) and Walters et al. (2018) in order to build a
trajectory tracking control system for a fully-actuated unmanned
surface vehicle (USV). Conceptually, the approach is quite
similar to dynamic positioning (DP) (Sørensen, 2011), but
extends to higher velocity operational domains, while also
trying to optimize tracking performance and compensate for
environmental forces (Lekkas and Fossen, 2014). The method
combines elements from reinforcement learning, Lyapunov
stability theory and system identification: We assume the
structure of the vessel model is known but all of its
parameters are unknown and have to be estimated online, as
well as updated accordingly when the operational conditions
change. Then we derive the tracking error dynamics for
a generic reference trajectory and a stabilizing parametric
control law (the actor), whose parameters are estimated
during operation.

In order to validate the control scheme, the proposed method
was tested in both in simulations, and on a physical model of
DNV GL’s ReVolt platform.

2. REINFORCEMENT LEARNING-BASED
TRAJECTORY TRACKING

In this section we will derive a trajectory tracking control
system for fully-actuated USVs. Since the approach is a model
based reinforcement learning approach, we will start by looking
at how ASVs can be modeled, and how the models can be
approximated online using system identification. We will derive
a feedforward control law for tracking the desired trajectory,
and a feedback control law based on reinforcement learning, for
controlling the drift of the vessel in a way that minimizes a given
cost function.

2.1. Vessel Model
The mathematical model used to describe the system can then
be kept reasonably simple by limiting it to the planar position
and orientation of the vessel. The motion of a surface vessel can
be represented by the pose vector η = [x, y,ψ]⊤ ∈ R

2 × S,
and velocity vector ν = [u, v, r]⊤ ∈ R

3. Here, (x, y) describe

Frontiers in Robotics and AI | www.frontiersin.org 2 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

the Cartesian position in the earth-fixed reference frame, ψ
is yaw angle, (u, v) is the body fixed linear velocities, and r
is the yaw rate, an illustration is given in Figure 1. Using the
notation in Fossen (2011) we can describe a 3-DOF vessel model
as follows

η̇ = J(η)ν,

Mν̇ + D(ν)ν + C(ν)ν = τThrust + τEnvironment
(1)

where M ∈ R
3×3, D(ν) ∈ R

3×3, C(ν) ∈ R
3×3,

τThrust, τEnvironment ∈ R
3 and J(η) ∈ SO(3) are the inertia

matrix, damping matrix, coriolis matrix, control input vector,
environmental forces, and rotation matrix, respectively. The
rotational matrix J(η) ∈ SO(3) is given by

J(η) =





cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (2)

and is the rotation from the body frame to the earth-fixed North
East Down (NED) reference frame.

D(ν) =





−Xu − X|u|u · |u| 0 0
0 −Yv − Y|v|v · |v| − Y|r|v · |r| −Yr − Y|v|r · |v| − Y|r|r · |r|
0 −Nv − N|v|v · |v| − N|r|v · |r| −Nr − N|v|r · |v| − N|r|r · |r|



 (5)

2.2. Model Approximation
While the structure of a vessel model, as given above, is well-
known, the model parameters are often difficult to find. For
our approach we wish to make as few assumptions on the
parameters of the vessel model as possible, and use online system
identification in order to model the vessel based on gathered
data. For this we assume that we know the model structure
as given in (1), but that the model parameters are unknown.
Splitting the model into a known and unknown part, we get
the following:

ẋ = fθ (x)+ f1(x)+ g(x)u (3)

FIGURE 1 | 3-DOF vessel centered at (x, y), with surge velocity u, sway

velocity v, heading ψ in a North-East-Down (NED) reference frame.

where f1(x) and g(x) are known, and fθ (x) is unknown. For the
vessel model in (1), with the state vector x = [η, ν]⊤ and the
control vector u = τThrust. We have the following:

fθ (x) =
[

03×1
−M−1

(

D(ν)ν + C(ν)ν − τEnvironment
)

]

f1(x) =
[

J(η)ν
03×1

]

g(x) =
[

03×3
M−1

]

hence we assume the mass matrix is known, but the
damping and coriolis matrix are unknown. For the
damping and coriolis matrices we assume the vessel has
port starboard symmetry, from Fossen (2011) this gives the
following structure.

C(ν) =





0 0 Yv̇ · v+ Yṙ · r
0 0 −Xu̇ · u

−Yv̇ · v+ Yṙ · r Xu̇ · u 0



 (4)

For the damping matrix D(ν), both linear and non-linear
terms are included. The linear terms are important for low
speed maneuvering and station keeping, while ensuring the
velocity converges exponentially to zero. The non-linear terms
are required as they dominate at higher velocities. This ensures
that the model is able to handle a large range of velocities, i.e.,
it can be used for both high speed trajectory tracking and low
speed station keeping and dynamic positioning. For the coriolis
matrix, we use only the added mass terms. Since the structure of
the rigid body, and addedmass is the same for the coriolis matrix,
the coriolis matrix given above will be able to capture both the
added mass and rigid body dynamics.

In addition to learning the vessel dynamics, we also wanted to
be able to compensate for environmental forces. In order to allow
for the environmental forces to be learned, they aremodeled as an
additional unknown pressure vector pNEDenv = [pNorth, pEast, 0]⊤

assumed constant in the NED frame. The resulting force in the
body frame is then assumed to be proportional to the cross
sectional area of the vessel times the pressure in the body frame,
giving the following relationship.

τ
body
Environment = diag([w, l, 0])J⊤(ν)pNEDEnvironment (6)

where w and l are the width and length of the vessel, respectively,
note that for better accuracy calculated pressure coefficients
based on the design of the hull may be used instead of the width
and length. The unknown parameters are

θ = [Xu̇,Yv̇,Yṙ ,Xu,Yv,Yr ,Nv,Nr ,X|u|u,Y|v|v,Y|v|r ,Y|r|v,Y|r|r ,

N|v|v,N|v|r ,N|r|v,N|r|r , pNorth, pEast]
⊤ (7)

Frontiers in Robotics and AI | www.frontiersin.org 3 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

and the function fθ (x) can be written as a linear function in θ :

fθ (x) = Y(x)θ (8)

where Y(x) is:

Y(x) =
[

03×3
−M−1

]




0 v · r r2 −u 0 0 0 0 −|u|u 0 0 0 0 0 0 0 0 w cosψ w sinψ
−u · r 0 0 0 −v −r 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0 0 0 −l sinψ l cosψ
u · v −v · u −r · u 0 0 0 −v −r 0 0 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0



 (9)

We therefore obtain the following parametric model:

ẋ = Y(x)θ + f1(x)+ g(x)u, (10)

which is linear in the parameters θ .

2.2.1. Model Assumptions
• The vessel is port starboard symmetric, with a structure as

given as in (Figure 1).
• The vessel dampening is linear and quadratic with respect to

the linear and angular velocity.
• Environmental forces are constant in the NED frame, and

proportional to vessel cross section.
• The vessel is fully actuated.

2.3. Trajectory Tracking
In this section we will develop an adaptive feedforward control
law which given a time-varying trajectory, finds the control
inputs required to follow the trajectory, given the model
approximation found in the previous section.

When the control objective is to track a bounded continuously
differentiable signal xd, the dynamics of the tracking error e =
x− xd can be written as

ė = f (x)+ g(x)u− ẋd (11)

Assuming g(x) is bounded and has full column rank for
all x (Kamalapurkar et al., 2018), then the system is
controllable, which in this case holds as the vessel is fully
actuated. This gives the feedforward control for the reference
trajectory as :

ud(xd, ẋd) = g+(xd)(ẋd − f (xd)) (12)

where g+ is the left Moore–Penrose pseudo-inverse, given as
g+ = (g⊤g)−1g⊤. Using a reference model ẋd = hd(xd),
the feedforward control for the reference trajectory can be
written as:

ud(xd) = g+(xd)(hd(xd)− f (xd)) (13)

We can then formulate the tracking problem as the following
time-invariant optimal control problem.

[

ė

ẋd

]

︸︷︷︸

ζ̇

=
[

f (e+ xd)+ g(e+ xd)ud(xd)
hd(xd)

]

︸ ︷︷ ︸

F(ζ)

+
[

g(e+ xd)
0

]

︸ ︷︷ ︸

G(ζ)

π (14)

Where π is an input correction for the drift dynamics, which
we will define in the next section. Given the parametric model
in (10), the parametric version of the tracking problem is
given as:

[

ė

ẋd

]

︸︷︷︸

ζ̇

=
[

Y(e+ xd)θ + f1(e+ xd)+ g(e+ xd)ud(xd; θ)
hd(xd)

]

︸ ︷︷ ︸

F(ζ ;θ)

+
[

g(e+ xd)
0

]

︸ ︷︷ ︸

G(ζ)

π (15)

where the parametric feedforward control for the reference
trajectory ud(xd; θ) is given as:

ud(xd; θ) = g+(xd)(hd(xd)− Y(xd)θ − f1(xd)) (16)

Given the formulation above, with the feedforward control
for the reference trajectory ud(xd), and the optimal model
parameters θ∗, the exact feedforward control for the reference
trajectory is possible to compute. The dynamics above guarantee
trajectory tracking when ė = 0, i.e., when the tracking error
is zero. When the tracking error is not zero however, we need
to control the drift dynamics in order to ensure convergence
to the desired trajectory by designing the feedback control π(t)
such that limt→∞ e(t) = 0. The objective of the optimal control
problem is to design the feedback control law π(t) such that it
minimizes a given cost function.

2.4. Approximate Optimal Control of Drift
Dynamics
In the previous section we developed a feedforward control law
ud(xd; θ) for tracking a desired trajectory. Due to inaccuracies
in model approximation and disturbances, using only the
feedforward control law, the vessel will experience drift. In order
to compensate for the inevitable drift, we will in this section
develop a feedback control law π(·), which controls the drift
dynamics in a way that optimizes a given cost function. We will
additionally show how the parameters of the feedback control law
can be learned by using reinforcement learning.

The optimal control problem we wish to solve is that of
minimizing the cost function:

J(ζ ,π) =
∫ ∞

t0

r(ζ (τ),π(τ))dτ (17)

Where r(·) is scalar function defining the local cost, and should
not be confused with the yaw rate. The cost function is defined as:

r(ζ ,π) = Q(ζ)+ π⊤Rπ (18)

Frontiers in Robotics and AI | www.frontiersin.org 4 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

where R ≻ 0 is a positive definite symmetric matrix. And Q(ζ) is
a positive definite function. Assuming that a minimizing control
policy π(·) exists, the optimal value function is given as:

V∗(ζ) = min
π(τ), τ∈[t0 ,∞)

∫ ∞

t0

r(ζ (τ),π(τ))dτ (19)

We can now note that for a small time step 1t, the above
expression can be formulated as:

V∗(ζ (t)) = min
π(τ), τ∈[t,t+1t)

∫ t+1t

t
r(ζ (τ),π(τ))dτ+V∗(ζ (t+1t))

Taking the limit of this as1t→ 0, for the optimal value function
under the optimal policy, we get (Doya, 2000):

V∗(ζ (t)) = min
π(t)

r(ζ (t),π(t))+ V∗(ζ (t))+ V̇∗(ζ (t))

Simplifying this we get the Hamilton-Jacobi-Bellman (HJB)
equation for the optimal control problem as follows:

H∗ = V̇∗(ζ)+ r(ζ ,π∗(ζ))

= ∇ζV
∗(ζ)⊤ζ̇ + r(ζ ,π∗(ζ))

= ∇ζV
∗(ζ)⊤

(

F(ζ)+ G(ζ)π∗(ζ)
)

+ r(ζ ,π∗(ζ)) = 0

(20)

Where H∗, π∗ and V∗ is the optimal hamiltonian, policy
and value function, respectively. From calculus of variation
(Liberzon, 2011) we have the Hamiltonian minimization
condition, which states that a value function V is the optimal
Value function if and only if there exists a controller π(·) and
trajectory ζ (·) under π(·) satisfy the equation:

∇ζV(ζ)
⊤ (

F(ζ)+ G(ζ)π(ζ)
)

+ r(ζ ,π(ζ))

= min
π̂∈U
{∇ζV(ζ)

⊤ (

F(ζ)+ G(ζ)π̂(ζ)
)

+ r(ζ , π̂(ζ))} (21)

The necessary conditions for this to hold are:

∇π

(

∇ζV(ζ)
⊤ (

F(ζ)+ G(ζ)π(ζ)
)

+ r(ζ ,π(ζ))
)

= 0 (22)

which gives the closed form solution of the optimal controller as:

G⊤(ζ)
(

∇ζV(ζ)
)

+ ∇π r(ζ ,π) = 0⇔
2Rπ = −G⊤(ζ)

(

∇ζV(ζ)
)

⇔

π∗(ζ) = −1

2
R−1G⊤(ζ)

(

∇ζV(ζ)
)

(23)

Hence assuming that an optimal controller exists, the closed form
solution given by the HJB equation is given by (23). Note that the
value function is assumed time independent, and hence we are
looking for a stationary solution of the HJB equation. This holds
true, as the reformulation into a trajectory tracking problem (15)
gives a time independent system.

The Universal Approximation theorem (Kamalapurkar et al.,
2018, Property 2.3) states that a single layer neural network can

simultaneously approximate a function and its derivative given
a sufficiently large number of basis functions. Using this, we can
approximate any continuous function as:

V(x) =W⊤σ (x)+ ǫ(x) (24)

where W is the weighting matrix, σ (x) is the vector of basis
functions, and ǫ(x) is the approximation error, which can
be made arbitrarily small by increasing the number of basis
functions. Note that the basis functions can here be chosen
to be any parameterization, such as Radial-Basis functions,
polynomials or even a Fourier series. Using this we can represent
the value function as a neural network which is linear in the
parameters, giving the optimal value function:

V∗(ζ) =W⊤σ (ζ)+ ǫ(ζ) (25)

and the optimal policy as a feedback control law on the form:

π∗(ζ) = −1

2
R−1G⊤(ζ)

(

∇ζσ (ζ)
⊤W + ∇ζ ǫ

⊤(ζ)
)

(26)

By making the parameterizations sufficiently rich, we
make the approximation error small. We can then use the
approximations given below, for the value function and control
policy, respectively.

V̂(ζ ; Ŵc) = Ŵ
⊤
c σ (ζ) (27)

π̂(ζ ; Ŵa) = −
1

2
R−1G⊤(ζ)∇ζσ (ζ)

⊤Ŵa (28)

In order to find the parameters Ŵc and Ŵa, we will in the next
section find update laws, based on reinforcement learning, to be
able to optimize performance online.

Unfortunately, policy (28) does not account for the saturating
constraints, such as the maximum force the actuators of the
physical vessel can produce. In order to account for the actuator
limitations, we propose a different control policy which uses a
saturating function (Doya, 2000) in order to avoid this problem.
Using the following cost function:

r(ζ ,π) = Q(ζ)+ 2
m

∑

i=1
ri

∫ πi

0
tanh−1(ξ)dξ (29)

where ri is the ith entry of the diagonal of R, i.e.,
R = diag([r1, r2 . . . rm]). Figure 2 shows a comparison of
the saturating input cost, and a pure quadratic cost. Performing
the same analysis as for the quadratic penalty, we can get the
following saturating control law:

π∗(ζ) = − tanh

(
1

2
R−1G⊤(ζ)

(

∇ζV(ζ)
)
)

(30)

Since tanh(·) saturates at±1, this means that the feedback control
law π will saturate at ±1, the outputs can then be easily scaled
to fit other bounds. It can be shown that since tanh(·) is a
monotonically increasing continuously differentiable function,

Frontiers in Robotics and AI | www.frontiersin.org 5 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 2 | Comparison between saturating cost (29) and quadratic cost (18).

Here the quadratic cost is scaled by ln(4).

the control law satisfies the first order necessary conditions,
and the second order sufficient conditions of the Hamiltonian
minimization condition. This means that if an optimal controller
exists the closed form solution is given by (30). Using an
approximation we get the following approximate optimal policy

π̂(ζ ; Ŵa) = − tanh

(
1

2
R−1G⊤(ζ)∇ζσ (ζ)

⊤Ŵa

)

(31)

It should be noted, that while the policy in (31) uses a value
function approximation in order to approximate the optimal
policy, the parameters Ŵa are not the same as the parameters
Ŵc in the value function approximation in (27). In this way we
can separate the learning of the policy and value function, this
is known as an actor critic method, where the value function is
known as the critic, and the policy is known as an actor. The
intuitive reason for doing this, is that it allows the critic to learn
the value function resulting from the behavior of the policy, and
in this way it ca critique the policy. Similarly, the policy or actor,
can learn to improve its performance based on the criticism of
the critic. How the learning is performed is further discussed in
the next section.

2.5. Update Laws
Now that we have expressed the control laws ud(xd; θ̂), π̂(ζ ; Ŵa)
and value function V̂(ζ ; Ŵc), the challenge becomes finding
update laws for the parameters of the system identification θ̂ ,
the critic Ŵc and the actor Ŵa. For the model parameters θ̂ , we
will use methods from system identification and adaptive control,
to try to optimize the fit between the parameterized model, and
the observed vessel states. For the actor and critic parameters
Ŵa and Ŵc, we will use model based reinforcement learning to
find the parameters that gives the optimal value function, and
consequently the optimal feedback control policy.

For the system identification parameters θ̂ , the goal is to
find the parameters for which the model behaves as similarly as
possible to the observed behavior. Running our physical system,
and collecting observations (ẋi, xi, ui) i ∈ 1, 2, . . . ,N, we can
formulate a least squares optimization problem for finding the
parameters that minimize the difference between the observed
state derivative ẋi and the parametric model (3) as follows.

θ∗ = argmin
θ̂

N
∑

i=1

1

2
||ẋi − Y(xi)θ̂ − f1(xi)− g(xi)ui||22

︸ ︷︷ ︸

L(θ̂)

This is a linear least squares optimization problem for which
there exists a closed form solution, however we can also solve
the problem by performing stochastic gradient decent on the
parameters θ̂ , as follows:

θ̂ ← θ̂ − ∇
θ̂
L(θ̂)

The gradient decent law above, works in discrete iteration,
however we can reformulate it as a an ordinary differential
equation (ODE). Doing some further changes motivated by the
stability analysis of the convergence of the parameter estimates,
we get the concurrent learning based approach proposed in
Chowdhary and Johnson (2011b) as:

˙̂
θ(t) = ŴθY

⊤(x(t))x̃(t)+ kθ

N
Ŵθ

N
∑

i=1
Y⊤(xi)

(

ẋi − f1(xi)

−g(xi)ui − Y(xi)θ̂
)

(32)

where Ŵθ is a parameter weight matrix, and kθ is a scalar weight
factor. Assuming that the prerecorded data is sufficiently rich
such that the matrix

∑N
i=1 Y

⊤(xi)Y(xi) is full rank, the parameter
error can be shown to converge. As the convergence rate of the
system identifier is proportional to the minimum singular value
of

∑N
i=1 Y

⊤(xi)Y(xi), replacing data in the data stack can be done
by using a singular value maximizing algorithm (Chowdhary and
Johnson, 2011a) in order to get faster convergence. Note, that
since we are assuming a sufficiently rich prerecorded data set,
we no longer need persistence of excitation (PE), in order to
guarantee parameter convergence.

In order to find the update laws for the critic or value function
parameters Ŵc, we need a way of evaluating the optimality of
the value function given the current parameters. For this we look
back at the HJB Equation (20) given as:

0 = r(ζ ,π∗(ζ))+ ∇ζV
∗(ζ)⊤

(

F(ζ)+ G(ζ)π∗(ζ)
)

Substituting the estimates V̂ and π̂ for the optimal value function
V∗ and optimal policy π , we can formulate the Bellman error as
the error in the HJB equation as follows:

δ(ζ ; θ̂ , Ŵc, Ŵa) = Q(ζ)+ π̂
⊤(ζ ; Ŵa)Rπ̂(ζ ; Ŵa)

︸ ︷︷ ︸

r(ζ ,π̂(ζ ;Ŵa))

+ ∇ζ V̂(ζ ; Ŵc)
⊤

(

F(ζ ; θ̂)+ G(ζ)π̂(ζ ; Ŵa)
)
(33)

Frontiers in Robotics and AI | www.frontiersin.org 6 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

The Bellman error can intuitively be thought of as the error
between the optimal value function under the policy, and the
estimates. Since the goal for the value function or critic is
to find the parameters Wc that best approximates the value
function, a natural choice becomes to find the parameters that
minimize the bellman error. With reinforcement learning we
can use a data stack of prerecorded state transitions ζ i(t) =
[xi − xd,i, xd,i]⊤ i ∈ 1, 2, . . .N, to formulate the following
optimization problem:

min
Ŵc

N
∑

i=1

1

2
δ(ζ i; θ̂ , Ŵc, Ŵa)

2

This is a non-linear optimization problem, but we may again
use a methods like gradient decent in order to iteratively learn
parameters that improve the optimization problem given above.
Writing the gradient decent in terms of an ODE, and making
some changes motivated by a stability analysis (Kamalapurkar
et al., 2018). A least-squares update law with forgetting factor
(Ioannou and Sun, 2012) can be formulated for the critic
as follows:

˙̂
Wc(t) = −kc,1Ŵ(t)

ω(ζ (t), t)

ρ(ζ (t), t)
δ̂(ζ (t), t)− kc,2

N
Ŵ(t)

N
∑

i=1

ω(ζ i(t), t)

ρi(ζ i(t), t)
δ̂(ζ i(t), t) (34)

Ŵ̇(t) =
{

βŴ(t)− kc,1Ŵ(t)
ω(ζ (t),t)ω⊤(ζ (t),t)

ρ2(ζ (t),t) Ŵ(t) If ||Ŵ|| ≤ Ŵ̄

0 Otherwise
(35)

In critic update law above kc,1 and kc,2 are scalar learning rates,
while Ŵ is an adaptive weight matrix, and β is a scalar forgetting
factor, which controls how previous data samples are discounted.
For brevity of notation we used the functions ω(·), ρ(·), and δ̂(·)
defined as:

ω(ζ , t) = ∇ζσ (ζ)
(

F(ζ ; θ̂(t))+ G(ζ)π̂(ζ ; Ŵa(t))
)

ρ(ζ , t) = 1+ ω⊤(ζ , t)Ŵ(t)ω(ζ , t)

δ̂(ζ , t) = δ(ζ ; θ̂(t), Ŵc(t), Ŵa(t))

Here, ω can be considered a regressor vector, while ρ is a
normalization factor, and δ̂ the Bellman error.

The actor update law (36) is chosen such that it learns from
the critic, while at the same time trying to stay close to the initial
control law.

˙̂
Wa(t) = proj

(

−ka,1
(

Ŵa(t)− Ŵc(t)
)

− ka,2

(

Ŵa(t)−W0

))

(36)
In the actor update law above, the first term will make the actor
parameters follow the critic parameters, while the second term
will try to keep the actor parameters close to the initial parameters
W0. ka,1 and ka,2 are scalar learning rates for the two terms.
A smooth projection (Ioannou and Sun, 2012) is added such

that the actor weights are within a predefined region, for which
the control law is stable. Any smooth projection can be chosen,
however we chose a projection ensuring the actor weights were
bounded within a region of the initial weightsW0.

2.6. Stability Analysis
For the system identification parameters θ , we consider the
candidate Lyapunov function:

Vp(x) = θ̃
⊤
Ŵ−1

θ
θ̃ , (37)

where θ̃ = θ̂ − θ∗ is the difference between the predicted
and optimal model parameters. Assuming the system is time
invariant (including time invariant environmental forces in the
NED frame), and given a positive definite weighting matrix Ŵθ .
The time derivative of the candidate Lyapunov function is:

V̇P(x) = 2θ̃
⊤
Ŵ−1

θ
θ̇

= 2θ̃
⊤
Ŵ−1

θ
ŴθY(x)

⊤x̃+ 2kθ

N
θ̃
⊤
Ŵ−1

θ
Ŵθ

N
∑

i=1
Y⊤(xi)x̃i

.

(38)
Using the fact that: x̃ = ẋ− f1(x)− Y(x)θ̂ − g(x)τ = −Y(x)θ̃ we
get:

V̇P(x) = −2x̃⊤x̃−
2kθ

N
θ̃
⊤

N
∑

i=1

(

Y⊤(xi)Y(xi)
)

θ̃ ≤ 0, (39)

hence the model error x̃ and parameter error θ̃ converge
exponentially to zero as t → ∞. We can also note that the rate
of the parameter convergence is given by the singular values of
∑N

i=1
(

Y⊤(xi)Y(xi)
)

.
For the RL update laws in (34)–(36), it can be shown that

under a number of strict assumptions, a system on the form given
in (15), with an unconstrained policy, is uniformly ultimately
bounded in terms of the error dynamics e, as well as the weights
and parameters Wa, Wc, and θ . The stability analysis can be
found in Kamalapurkar et al. (2018). For our purposes, we further
constrain the parameters Wa of the feedback control law by
projecting them into a region close to a known stable initial
parameterization. Closed loop stability is important for assurance
of the control system, this is further discussed in section 4.

2.7. Reference Model
When generating a reference path, we must ensure that it is
sufficiently smooth in order to be able to say something about
the convergence to the path. In practice however, we may have
a signal which is discrete, defining the desired pose only at
certain times. In order to smooth the trajectory we therefor
use a reference model, which tracks the discrete reference pose,
and generates a continuous reference trajectory pose ηd =
[xd, yd,ψd]⊤ and velocity vector νd = [ud, vd, rd]⊤. For the pose
we can make a reference model on the following form:





η̇d
η̈d...
ηd



 =





0 I 0
0 0 I

−�3 −(21+ I)�2 −(21+ I)�









ηd
η̇d
η̈d





Frontiers in Robotics and AI | www.frontiersin.org 7 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 3 | Block diagram of the proposed control scheme, solid lines represent state and control signals, while dashed lines represent adaption signals. Note that

the underlying vessel dynamics considered are unknown, and includes thrust allocation and state estimation.

+





0
0

�3



 ηref (40)

Where � = diag([ω1, . . . ,ωn]) and 1 = diag([δ1, . . . , δn]).
Choosing 1 = I ensures the reference model is critically
damped, while � controls the rate of convergence of the states.
We must also generate the velocity vector, however based on the
pose, the velocity can be calculated as:

νd = J⊤(ηd)η̇d

ν̇d = −S([0, 0, rd]⊤)J⊤(ηd)η̇d + J⊤(ηd)η̈d
(41)

where −S([0, 0, rd]⊤)J⊤(ηd) = J̇
⊤
(ηd), and S(ω) is the skew

symmetric matrix:

S([ω1,ω2,ω3]
⊤) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





The reason we here use a third order filter for the reference
model, is to ensure a smooth pose, velocity, and acceleration,
even when a step in the reference is observed. This ensures that
the feedforward control for the reference trajectory (16) can track
the reference.

A block diagram of the final control structure is given in
Figure 3. The diagram shows how the controller is split into a
feedback control law π , and a feedforward control law ud. Where
the Reference filter is used to generate the pose and velocity
reference xd, and the data stack collected from observing vessel
transitions, is used to update the parameters of the control laws.

3. EXPERIMENTS

In this section we present the results form simulations, and sea
trials on the ReVolt test platform (see Figure 4), when using

the control scheme proposed in the previous section. We will
first present the implementation details for the for the control
algorithm. After that we will briefly present the experimental
platform, before finally presenting the simulation, and sea trial
results for varying operational conditions. The experiments
include both low speed dynamic positioning, and high speed
trajectory tracking.

3.1. Implementation Details
For the implementation the parameter update laws (32), (36),
(35), and (34) were implemented with a 4th order Runge-Kutta
integration scheme, with a timestep of 0.1 s. Additionally the
reference model in (40) and (41) were implemented, also using a
4th order Runge-Kutta scheme, in order to generate the reference
trajectory xd = [ηd, νd]

⊤ and its derivative ẋd = hd = [η̇d, ν̇d]
⊤.

For the parameterization of the system identifier, the θ and
Y(x) were chosen as in (7) and (9), while for the actor and critic,
the parameterization σ (ζ) was chosen as the vector of all the
second order cross terms of the position and velocity error in the
body frame ebody = [η̃body, ν̃] where η̃body = J⊤(η)η̃, giving the
following expression:

Wσ (ζ) =
∑

xi∈ebody

∑

xj∈ebody
wi,jxixj (42)

The reason that we use the error in the body frame, is the
assumption that the cost is invariant to rotations when in the
body frame, as this is the same frame the dynamics of the
system are given in. The initial conditions for the actor and
critic weights were chosen such that theymatched the continuous
time algebraic Riccati equation for a simplified linear model of
the vessel.

For the control law, the constrained closed form controller
(30) was used. And the output was scaled to fit the max thrust
and torque τ̄ = 1√

3
[50.0, 20.0, 32.0]⊤ the vessel is able to

Frontiers in Robotics and AI | www.frontiersin.org 8 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 4 | ReVolt test platform courtesy of DNV GL.

produce. While [50.0, 20.0, 32.0]⊤ is the max force the vessel is
able to produce in each direction individually, due to the coupling
between thrusters, we assume the maximum thrust in any given
coupled direction can be approximated by the an ellipse with
axis lengths 50.0, 20.0, and 32.0. Since the proposed method only
allows us to constrain thrust in each individual direction, we
use the largest inner approximation of the ellipse as our thrust
bound, giving the max thrust and torque as τ̄ given above. It
should be noted, that while this constrains the thrust, we can
still not guarantee that the vessel is able to produce the desired
amount of thrust as τ̄ is only an inner approximation of the
elliptic approximation, whereas the true thrust bound may be
much more complex. It should also be noted that using the inner
approximation τ̄ as a bound, means we are not able to fully
utilize the full thrust that the vessel has to offer. One way of
solving these issues would be to include the thrust allocation
as part of the problem formulation, however this is beyond the
scope of this paper. It should also be noted that the desired
thrust vector includes both the path tracking control law and drift
correction τThrust = ud(xd; θ̂) + π̂(ζ ; Ŵa) where the saturation
is only considered in the drift controller and not the path tracking
control law. This means the desired path should be generated in
a way that satisfies the thrust constraints.

For the state cost function Q(ζ) a quadratic cost on the form
Q(ζ) = [η̃body, ν̃]⊤Q[η̃body, ν̃] was chosen, where Q is a positive
definite weight matrix. Given as:

Q =











1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0
0.0 1.0 10.0 0.0 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0
0.0 0.0 0.0 0.0 10.0 0.0
0.0 0.0 0.0 0.0 0.0 10.0











The weight matrix is given as a mostly diagonal matrix, with a
small cross term between the position error in sway direction,
and heading error. The cross term is added in order to encourage
the vessel to travel in the surge direction when there is a large
position error, as this is the most efficient direction of travel.

The data stack that was used consisted of 100 samples, and a
singular value maximization scheme was implemented in order
to increase the convergence rate. Using a purely singular value
maximization based data selection scheme, while giving good
performance on a stationary system, does not work for time

TABLE 1 | ReVolt hardware and software specifications.

Onboard computer: Tank-720

Sensors: Xsens MTI-G-710 IMU

Vector VS330 GNSS Receiver

Software: Linux Ubuntu LTS 16.04

ROS Kinetic Kame

varying system, and hence does not allow for estimating the
slowly varying environmental forces. In order to account for
this, weighting of the singular value maximization, and data
sample age was used in order to save recent samples with high
singular values.

3.2. Experimental Platform
The ReVolt, shown in Figure 4, is a 1:20 scale model of
a autonomous concept vessel developed by DNV GL in
collaboration with NTNU. The model is 3 m long, 0.72 m wide,
and weighs 257 kg. ReVolt has a top speed of 2 knots (∼1
m/s) with a total combined engine power of 360 W. The thrust
configuration is given as in Figure 1, with two identical stern
thrusters, and one slightly less powerful bow thruster, all of which
are fully rotatable azimuth thrusters, and are controlled by an
optimization based thrust allocation (TA) algorithm. The vessel
state is estimated using a non-linear observer consisting of an
Extended Kalman Filter (EKF), and combines measurements
from a Global Navigation Satellite System (GNSS) with Real-
Time Kinematic (RTK) correction data, on board accelerometer,
gyroscope, and compass. This provides accurate heading and
position down to ±0.2◦ and ±1 cm. A description of the ReVolt
hardware and software is given in Table 1.

While the physical vessel was used for the sea trials, a high
fidelity Digital Twin of ReVolt, developed by DNV GL, was used
for simulation. The Digital Twin is based on a full 6DOF model,
with parameters identified through tow-tank experiments, as well
as frequency domain analysis of a 3D model of the vessel hull.
The Digital Twin allowed for rapidly testing how the proposed
control scheme performed under ideal conditions, as well as
under different sea states, ocean currents and wind conditions.

3.3. Simulations and Sea Trials
In order to test the proposed control scheme, a number of
experiments were devised. As the control scheme was build to

Frontiers in Robotics and AI | www.frontiersin.org 9 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 5 | Four corner DP test, for testing trajectory tracking in individual,

and coupled degrees of freedom.

be able to handle both high speed and low speed maneuvering,
we wanted to test both, by doing low speed Dynamic Positioning
(DP), as well as higher speed path tracking.

3.3.1. Dynamic Positioning (DP)
In order to test the dynamic positioning capabilities of the control
method, the four corner test seen in Figures 5, 6 is used. The four
corner DP test is used, as it shows the tracking capabilities of the
vessel for individual degrees of freedom, as well as the coupled
motion of all degrees of freedom, it is also worth noting that
the vessel returns to the initial pose, meaning the test can easily
be repeated. The four corner test starts with the vessel pointing
north 0◦, then performs the following commands:

1. Change position l meters due north, and come to a complete
stop. This tests the surge motion of the vessel.

2. Change position l meters due east, and come to a complete
stop. This tests the sway motion of the vessel.

3. Change heading 45◦, and come to a complete stop. This tests
the yaw motion of the vessel.

4. Change position l meters due south, and come to a complete
stop. This tests the coupled surge and sway motion of
the vessel.

5. Change position l meters due west, and heading to 0◦ and
come to a complete stop. This tests coupled motion of all
degrees of freedom.

For the box test we chose the box side length l to be 5 m, and the
reference path was generated by linearly interpolating the pose
between the commands, with 55 s to execute each command and
a 5 s pause between commands in order for the reference filter to
catch up to the reference, and ensure that the vessel comes to a

FIGURE 6 | Time-lapse drone photo of four corner DP test. It should be noted

that the time-lapse above is of an early test, where errors in the navigation

system resulted in poor performance.

TABLE 2 | Reference pose for four corner DP test, note that the reference that

was used was a linear interpolation of the poses in the table.

Time [s] 0 55 60 115 120 175 180 235 240 295 300

xr [m] 0 5 5 5 5 5 5 0 0 0 0

yr [m] 0 0 0 5 5 5 5 5 5 0 0

ψr [deg] 0 0 0 0 0 45 45 45 45 0 0

stop. The reference poses used for the experiments are given in
Table 2.

In order to evaluate the performance of the dynamic
positioning, The Integral Absolute Error (IAE) given in (43)
was used.

IAE(t) =
∫ t

0

√

(η̄ − η̄d)⊤(η̄ − η̄d)dt (43)

Where η̄ and η̄d are the normalized pose vectors, normalized
between±5 m in north and east direction, and±50◦ in heading,
giving the following.

η̄ =
[
x

5
,
y

5
,
ψ

50

]⊤
, η̄d =

[
xd

5
,
yd

5
,
ψd

50

]⊤

Running the proposed control scheme in simulations on the
Digital Twin of the ReVolt vessel, we got the trajectory and errors
seen in Figure 7. For the same test performed on the physical
vessel during the sea trials, we got the trajectory and errors seen
in Figure 8. The IAE for the tests are shown in Figure 9.

3.3.2. Path Tracking
For both straight line path tracking and curved path tracking,
the way-points in Table 3 were used to generate a linearly, and

Frontiers in Robotics and AI | www.frontiersin.org 10 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 7 | Simulation results for four corner DP tests.

FIGURE 8 | Sea trial results for four corner DP tests.

quadratically interpolated path, respectively. For the heading, the
path direction was used to generate the desired heading, giving
the following reference heading.

ψr = atan2(ẏr , ẋr) (44)

In order to encourage the vessel to converge to path in the surge
direction, a small cross term was added in the state cost function
Q(ζ) between the heading error, and the position error in the
surge direction of the body frame. The key insight here, is that
the for large errors in surge, this term will encourage the vessel
to turn the bow toward the desired position, meaning the vessel
is encouraged to travel in the surge direction, which is the most
efficient direction of travel, due to the design of the hull. For our
implementation, where pose error is given in the body frame of
the vessel, and the state penalty is given as a quadratic function
Q(ζ) = ζ⊤Qζ , this penalty is added by simply adding a term to

the off-diagonals of Q corresponding to the cross terms between
position error in the y direction, and the heading error.

Running the straight line path tracking on the Digital Twin of
the ReVolt vessel we got the results seen in Figure 10. Running
the same tests on the physical vessel, we got the results seen in
Figure 11. As we can see, the proposed control scheme is able to
follow the path quite well.

3.4. Results
Based on the results, the proposed method seems to work
very well, in both simulations and the physical platform. While
the simulator has been designed to perform as closely as
possible to the physical platform, there are slight discrepancies
that may explain the performance drop. The main factors
of the performance drop is however most likely due to the
measurement and observation noise that is present on the
physical vessel. While the RTK GNSS is able to give a good

Frontiers in Robotics and AI | www.frontiersin.org 11 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

measurement for the pose of the vessel, the estimated vessel
velocities that the algorithm is dependent on become very
inaccurate, especially at low speeds when the signal to noise
ration becomes small. Another error source is likely the thruster
dynamics. While the algorithm above assumes the desired thrust
is produced immediately, in reality producing the desired thrust
vector takes time, as the thrust allocation involves rotating
the thrusters to a given angle, as well as spinning up to a
desired motor RPM. An additional source of error may also
have been a vertical stabilizer, which had recently been added
to the vessel between the two rear thrusters, but had not
been taken into account in the thrust allocation algorithm.
Overall, the results are quite good, especially considering
the size of the vessel, the relatively low thrust capability,
and the precision to which the maneuvers are performed,
even under the uncertainty created by the sensor noise, and
environmental forces.

4. ASSURANCE OF RL-BASED
CONTROLLERS

Assurance is the structured collection of evidence supporting
claims and arguments that a system is safe or fit for its intended
purpose. Assurance is required to develop trustworthy systems
and solutions for use in real-world applications. Principles
of assurance can be found in any certification or verification
framework, where claims and arguments most often can be
considered requirements of verification, while evidence is the
result from this verification. Two types of verification are used:
(1) Product verification, which performs direct verification of the
developed product or system and produces primary evidence;
(2) process verification, which performs verification of some
part of the development process and produces circumstantial
evidence. Using established verification frameworks applied to
conventional marine control systems, experience has shown
what requirements and evidence are most important when
verifying these conventional control systems. With novel
technology, such as data-driven methods, the verification
requirements and evidence that is needed for assurance are still
unknown, as they pose a new set of challenges when assuring
the system.

Data-driven approaches are not new, but with increasing
computational power and abundance of data there has been
an increasing interest in these methods. Within control theory,
the field of system identification has been a key part of control
engineering for many years (Åström et al., 1965; Ho and Kálmán,
1966), and data-driven modeling for control purposes has been
practiced since. Such models are typically based on the physical
properties that govern the system, and hence the parameters
estimated by such methods may reflect measurable properties
of the system, thus providing benchmarks for verification.
However, most models represent the physical system only within
certain operational limits, e.g., weather or sea states, or for
certain vessel speed ranges, which restricts the validity of the
models accordingly.

FIGURE 9 | Integral absolute error (IAE) for the dynamic positioning task, the

gray and white bands mark the different commands/phases of the four

corner test.

TABLE 3 | Reference pose for the straight line path and curved path, note that the

reference that was used was for straight line path tracking was a linear

interpolation of the poses, and the reference pose for the curved path, was a

quadratic interpolation of the poses.

Time [s] 0 100 200 300

xr [m] 0 50 100 150

yr [m] 0 0 50 50

Contrary to the more static nature of classical data-driven
approaches, where tuning the control parameters relies on offline
estimation of the model parameters, in this paper the key
difference is that model based-RL is used for online tuning of
both the vessel model (including an estimation of unknown
disturbances) and the control policy parameters. The vessel
model and the control policy are based on proven methods used
in the maritime industry for vessel station keeping and guidance,
but there are still some key issues that must be considered.
For instance, the control policy is highly dependent on an
instantaneously valid vessel model, which in turn means the
behavior of the vessel is highly dependant on the validity of the
learned model. Both the vessel model and the control policy
parameters are all continuously learned, but it is critical that all
allowed parameter combinations give a sufficiently safe behavior.
The proposed control scheme in this paper continuously learns
and updates the parameters in order to optimize the tracking
behavior. In terms of safety, the main concern is whether the
learnedmodel and policy parameters lead to a safe and acceptable
behavior. Verifying this in a setting where the parameters are
learned online is still an open problem.

Frontiers in Robotics and AI | www.frontiersin.org 12 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 10 | Simulation results for straight line and curved path tracking.

Amodei et al. (2016) discusses five basic concrete problem
areas related to RL and safety, which must be taken into account
for any application of RL.

1. Avoiding reward hacking: the first problem, is that of hacking
or gaming the cost function. For the tracking problem in
this paper, a positive definite quadratic penalty on the error
dynamics is used. From control theory these methods are
known to converge to the origin, i.e., where the error is zero.
This means the intended behavior is guaranteed when the
policy converges to the optimal policy.

2. Avoiding negative side effects: the second problem of avoiding
negative side effects, is similar to the first, but addresses the
issue of choosing the cost function such that the optimal
policy does not give bad or unintended behavior. For the
method proposed in this paper, making such guarantees is
quite difficult, as tuning the parameters of the quadratic cost
function will still have an effect on the vessel behavior when
converging to the origin. One example of this is that we
typically want the vessel to approach the path head on if we

have a large deviation between the position we are at, and the
desired position. Tuning the parameters of cost function in
order to get this behavior is not trivial.

3. Scalable oversight: this pertains to how we can ensure that the
RL agent respects aspects of the objective that are encountered
infrequently. In terms of the trajectory tracking problem,
the environment is quite limited, and the objective is clearly
defined, hence the problem of scalable oversight is of limited
relevance to the work presented in this paper.

4. Safe exploration: exploration is necessary in order to improve
performance, but bears risk, and thus performing exploration
in a safe manner is not trivial. Safe exploration also
encompasses the evaluation of the quality of the training data
that is gathered. For a real world application, this means
accounting for faulty hardware, and noisy measurements,
which may lead to problematic training data. For the
method proposed in this paper, where the system is learning
continuously online, the problem of safe exploration and
learning is highly relevant. Some measures are taken, such

Frontiers in Robotics and AI | www.frontiersin.org 13 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

FIGURE 11 | Sea trial results for straight line and curved path tracking.

as using batches of training data and restricting the values
that the policy parameterization may take. However, these
measures only serve to mitigate potential problems, hence safe
exploration and learning is still an open problem.

5. Robustness to distributional shift: this refers to how we
can ensure the agent is robust to changes in the operating
environment. For the proposed method, this is mostly solved
by continuously learning online, which ensures that the
agent learns the distributional shift when the environment
changes. However, as discussed in the fourth problem of
safe exploration, learning online complicates the matter of
ensuring data quality.

In order to produce the evidence needed for verification
of data driven methods, there are two main approaches,
namely scenario based verification, and theoretical verification.
Scenario based verification would be to conduct extensive testing
in representative scenarios, which in practice would mean
simulation-based testing as this would be the only feasible
online solution. More limited real testing should also be used,

but targeted toward validating the simulation accuracy. Many
RL solutions are in practice not viable without simulation-
based training or development and this would mean the same
tool can be utilized both for testing, and offline training. The
challenge in this case would be to induce a representative set
of scenarios to prove the safety or validity of the solution, and
such scenario selection is an open question for testing AI or
systems operating in complex environments in general. The
second approach theoretical verification, would be to impose
constraints on the RL algorithm in order to avoid unwanted
behavior. This would entail combining methods from control
theory, a physical or mathematical understanding of the system,
and experience or insights of the control scheme, in order to
express and implement various constraints on the learnable
model and policy parameters. Thismay not conceptually be a new
approach since similar methods already exist, but this approach
is difficult to use in practice, as finding parameter constraints that
ensure safe operations is non-trivial.

In conclusion, an assurance framework for technologies, such
as the one presented in this paper is an open research question.

Frontiers in Robotics and AI | www.frontiersin.org 14 March 2020 | Volume 7 | Article 32

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

However, one can with confidence state that it should include
both process and product verification, i.e., considering not only
what is developed, but also how it is developed. This would
mean that adequate development and assurance processes should
be developed, including verification methods that can produce
the required evidence both for efficient development, as well
as assurance. In addition, novel data-driven methods should be
combined with prior knowledge, verified solutions and proven
physical or mathematical relations (Eldevik, 2018). This, in order
to be able to explain the behavior, and in turn guarantee that the
methods are safe and fit for the intended purpose.

5. CONCLUSION

The proposed method performed very well in all three tested
tracking scenarios both in simulations and in sea trials. The
method is also versatile, as using it on different vessels only
requires knowledge of the inertia matrix, with the update laws
providing a tool for learning the other model parameters, and a
control policy. For future work, it may be interesting to improve
and update the thrust allocation algorithm to get a smaller
error between produced and desired thrust, and investigate
whether this results in better accuracy. Alternatively, feedback
from the thrusters can be used to get better estimates of the
thrust vector for use in the data stack, and model estimation.

For the value function, polynomial basis functions were used,
and the estimator was linear in the parameters, which leads to
a limited estimation capability. Deep learning methods could
lead to more accurate value function approximation, albeit at
the expense of transparency and interpretability. Procedures for
implementing online assurance would add great value to current
research practices. One possible way to do this is by using a new
parameterization of the control law once it has been verified,
either by simulation, or by constraining the parameterization to
a set of parameters that is known to be safe.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

AM and AL conceived the presented idea. AM developed the
theory and performed the simulations, while AM, TP, and AL
carried out the experiments. JG and TP contributed with the
assurance section from a classification society perspective. AM,
AL, and SG discussed the results and methods. All authors
contributed to the final manuscript.

REFERENCES

Åström, K. J., Bohlin, T., and Wensmark, S. (1965). Automatic Construction

of Linear Stochastic Dynamic Models for Stationary Industrial Processes

With Random Disturbances Using Operating Records. Technical
Paper TP 18, IBM Nordic Laboratory, Stockholm.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D.
(2016). Concrete problems in AI safety. arxiv [Preprint] arXiv:1606.06565.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki,
J., et al. (2018). Learning dexterous in-hand manipulation. arXiv 1808.00177.
doi: 10.1177/0278364919887447

Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Belmont,
MA: Athena Scientific.

Cheng, Y., and Zhang, W. (2018). Concise deep reinforcement learning obstacle
avoidance for underactuated unmanned marine vessels. Neurocomputing 272,
63–73. doi: 10.1016/j.neucom.2017.06.066

Chowdhary, G., and Johnson, E. (2011a). “A singular value maximizing
data recording algorithm for concurrent learning,” in Proceedings of the

2011 American Control Conference (San Francisco, CA: IEEE), 3547–3552.
doi: 10.1109/ACC.2011.5991481

Chowdhary, G. V., and Johnson, E. N. (2011b). Theory and flight-test validation of
a concurrent-learning adaptive controller. J. Guid. Control Dyn. 34, 592–607.
doi: 10.2514/1.46866

Dai, S.-L., Wang, C., and Luo, F. (2012). Identification and learning control of
ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8, 801–810.
doi: 10.1109/TII.2012.2205584

Do, K. D. (2016). Global path-following control of underactuated ships
under deterministic and stochastic sea loads. Robotica 34, 2566–2591.
doi: 10.1017/S0263574715000211

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
Comput. 12, 219–245. doi: 10.1162/089976600300015961

Eldevik, S. (2018).AI + Safety. Available online at: https://ai-and-safety.dnvgl.com/
Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. New York, NY: John

Wiley & Sons Inc.

Fossen, T. I. (2000). A survey on nonlinear ship control: from theory
to practice. IFAC Proc. Vol. 33, 1–16. doi: 10.1016/S1474-6670(17)
37044-1

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion

Control. John Wiley & Sons.
Fossen, T. I., Sagatun, S. I., and Sørensen, A. J. (1996). Identification

of dynamically positioned ships. Control Eng. Pract. 4, 369–376.
doi: 10.1016/0967-0661(96)00014-7

Hasegawa, K., Kouzuki, A., Muramatsu, T., Komine, H., and Watabe, Y. (1989).
Ship auto-navigation fuzzy expert system (safes). J. Soc. Naval Archit. Jpn. 1989,
445–452. doi: 10.2534/jjasnaoe1968.1989.166_445

Ho, B., and Kálmán, R. E. (1966). Effective construction of linear state-variable
models from input/output functions. AT-Automatisierungstechnik 14, 545–548.
doi: 10.1524/auto.1966.14.112.545

Ioannou, P. A., and Sun, J. (2012). Robust Adaptive Control. Mineola, NY: Courier
Corporation.

Kallstrom, C. G. (1982). Identification and Adaptive Control Applied to Ship

Steering. Technical report, Department of Automatic Control, Lund Institute
of Technology (LTH), Lund.

Källström, C. G., and Åström, K. J. (1981). Experiences of system
identification applied to ship steering. Automatica 17, 187–198.
doi: 10.1016/0005-1098(81)90094-7

Kamalapurkar, R., Walters, P., Rosenfeld, J., and Dixon, W. (2018). Reinforcement

Learning for Optimal Feedback Control: A Lyapunov-Based Approach. Springer.
Katebi, M., Grimble, M., and Zhang, Y. (1997). H-∞ robust control design for

dynamic ship positioning. IEEE Proc. Control Theory Appl. 144, 110–120.
doi: 10.1049/ip-cta:19971030

Konda, V. R., and Tsitsiklis, J. N. (2000). “Actor-critic algorithms,” in Advances in

Neural Information Processing Systems, eds S. A. Solla, T. K. Leen, and K.Müller
(Denver, CO: MIT Press), 1008–1014.

Lekkas, A. M., and Fossen, T. I. (2014). “Trajectory tracking and ocean
current estimation for marine underactuated vehicles,” in 2014 IEEE

Conference on Control Applications (CCA) (Juan Les Antibes: IEEE), 905–910.
doi: 10.1109/CCA.2014.6981451

Frontiers in Robotics and AI | www.frontiersin.org 15 March 2020 | Volume 7 | Article 32

https://doi.org/10.1177/0278364919887447
https://doi.org/10.1016/j.neucom.2017.06.066
https://doi.org/10.1109/ACC.2011.5991481
https://doi.org/10.2514/1.46866
https://doi.org/10.1109/TII.2012.2205584
https://doi.org/10.1017/S0263574715000211
https://doi.org/10.1162/089976600300015961
https://doi.org/10.1016/S1474-6670(17)37044-1
https://doi.org/10.1016/0967-0661(96)00014-7
https://doi.org/10.2534/jjasnaoe1968.1989.166_445
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1016/0005-1098(81)90094-7
https://doi.org/10.1049/ip-cta:19971030
https://doi.org/10.1109/CCA.2014.6981451
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Martinsen et al. Reinforcement Learning-Based Tracking Control of USVs

Liberzon, D. (2011). Calculus of Variations and Optimal Control Theory: A Concise

Introduction. Princeton, NJ; Oxford: Princeton University Press.
Martinsen, A. B., and Lekkas, A. M. (2018a). “Curved path following with deep

reinforcement learning: results from three vessel models,” in OCEANS 2018

MTS/IEEE (Charleston, SC: IEEE), 1–8. doi: 10.1109/OCEANS.2018.8604829
Martinsen, A. B., and Lekkas, A. M. (2018b). “Straight-path following for

underactuated marine vessels using deep reinforcement learning,” in 11th IFAC

Conference on Control Applications in Marine Systems, Robotics, and Vehicles

(CAMS) (Opatija). doi: 10.1016/j.ifacol.2018.09.502
McGookin, E. W., Murray-Smith, D. J., Li, Y., and Fossen, T. I. (2000). Ship

steering control system optimisation using genetic algorithms. Control Eng.
Pract. 8, 429–443. doi: 10.1016/S0967-0661(99)00159-8

Mišković, N., Vukić, Z., Bibuli, M., Bruzzone, G., and Caccia, M. (2011). Fast in-
field identification of unmanned marine vehicles. J. Field Robot. 28, 101–120.
doi: 10.1002/rob.20374

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
et al. (2013). Playing Atari with deep reinforcement learning. arxiv [Preprint]
arXiv:1312.5602.

Pettersen, K. Y., and Egeland, O. (1996). “Exponential stabilization
of an underactuated surface vessel,” in Proceedings of 35th IEEE

Conference on Decision and Control, Vol. 1 (Kobe: IEEE), 967–972.
doi: 10.1109/CDC.1996.574602

Pham Tuyen, L., Layek, A., Vien, N., and Chung, T. (2017). “Deep reinforcement
learning algorithms for steering an underactuated ship,” in IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)

(Daegu: IEEE), 602–607. doi: 10.1109/MFI.2017.8170388
Shen, H., and Guo, C. (2016). “Path-following control of underactuated ships

using actor-critic reinforcement learning with mlp neural networks,” in Sixth

International Conference on Information Science and Technology (ICIST)

(Dalian: IEEE), 317–321. doi: 10.1109/ICIST.2016.7483431
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

et al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature 529:484. doi: 10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al.
(2017). Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arxiv [Preprint] arXiv:1712.01815.

Soetanto, D., Lapierre, L., and Pascoal, A. (2003). “Adaptive, non-singular path-
following control of dynamic wheeled robots,” in 42nd IEEE International

Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 2 (IEEE),
1765–1770. doi: 10.1109/CDC.2003.1272868

Sørensen, A. J. (2011). A survey of dynamic positioning control systems. Annu.
Rev. Control 35, 123–136. doi: 10.1016/j.arcontrol.2011.03.008

Sutton, R., Roberts, G., and Taylor, S. (1997). Tuning fuzzy ship autopilots
using artificial neural networks. Trans. Inst. Meas. Control 19, 94–106.
doi: 10.1177/014233129701900204

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press.

Walters, P., Kamalapurkar, R., Voight, F., Schwartz, E. M., and Dixon, W. E.
(2018). Online approximate optimal station keeping of a marine craft in
the presence of an irrotational current. IEEE Trans. Robot. 34, 486–496.
doi: 10.1109/TRO.2018.2791600

Wang, N., Qian, C., Sun, J.-C., and Liu, Y.-C. (2015). Adaptive robust finite-time
trajectory tracking control of fully actuatedmarine surface vehicles. IEEE Trans.
Control Syst. Technol. 24, 1454–1462. doi: 10.1109/TCST.2015.2496585

Wang, N., Su, S.-F., Yin, J., Zheng, Z., and Er, M. J. (2017). Global asymptotic
model-free trajectory-independent tracking control of an uncertain marine
vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans Fuzzy

Syst. 26, 1613–1625. doi: 10.1109/TFUZZ.2017.2737405
Yu, R., Shi, Z., Huang, C., Li, T., and Ma, Q. (2017). “Deep reinforcement

learning based optimal trajectory tracking control of autonomous underwater
vehicle,” in 36th Chinese Control Conference (CCC) (Dalian: IEEE), 4958–4965.
doi: 10.23919/ChiCC.2017.8028138

Zhang, L., Qiao, L., Chen, J., and Zhang, W. (2016). “Neural-network-based
reinforcement learning control for path following of underactuated ships,”
in 35th Chinese Control Conference (CCC) (Chengdu: IEEE), 5786–5791.
doi: 10.1109/ChiCC.2016.7554262

Conflict of Interest: JG and TP were employed by the company DNV GL.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Martinsen, Lekkas, Gros, Glomsrud and Pedersen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 16 March 2020 | Volume 7 | Article 32

https://doi.org/10.1109/OCEANS.2018.8604829
https://doi.org/10.1016/j.ifacol.2018.09.502
https://doi.org/10.1016/S0967-0661(99)00159-8
https://doi.org/10.1002/rob.20374
https://doi.org/10.1109/CDC.1996.574602
https://doi.org/10.1109/MFI.2017.8170388
https://doi.org/10.1109/ICIST.2016.7483431
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/CDC.2003.1272868
https://doi.org/10.1016/j.arcontrol.2011.03.008
https://doi.org/10.1177/014233129701900204
https://doi.org/10.1109/TRO.2018.2791600
https://doi.org/10.1109/TCST.2015.2496585
https://doi.org/10.1109/TFUZZ.2017.2737405
https://doi.org/10.23919/ChiCC.2017.8028138
https://doi.org/10.1109/ChiCC.2016.7554262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Reinforcement Learning-Based Tracking Control of USVs in Varying Operational Conditions
	1. Introduction
	2. Reinforcement Learning-Based Trajectory Tracking
	2.1. Vessel Model
	2.2. Model Approximation
	2.2.1. Model Assumptions

	2.3. Trajectory Tracking
	2.4. Approximate Optimal Control of Drift Dynamics
	2.5. Update Laws
	2.6. Stability Analysis
	2.7. Reference Model

	3. Experiments
	3.1. Implementation Details
	3.2. Experimental Platform
	3.3. Simulations and Sea Trials
	3.3.1. Dynamic Positioning (DP)
	3.3.2. Path Tracking

	3.4. Results

	4. Assurance of RL-Based Controllers
	5. Conclusion
	Data Availability Statement
	Author Contributions
	References

