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Self-organization offers a promising approach for designing adaptive systems. Given

the inherent complexity of most cyber-physical systems, adaptivity is desired, as

predictability is limited. Here I summarize different concepts and approaches that can

facilitate self-organization in cyber-physical systems, and thus be exploited for design.

Then I mention real-world examples of systems where self-organization has managed to

provide solutions that outperform classical approaches, in particular related to urban

mobility. Finally, I identify when a centralized, distributed, or self-organizing control is

more appropriate.
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1. INTRODUCTION

We are submerged in complexity. And this complexity is increasing. But what is complexity? There
are dozens of definitions and measures in the literature (Lloyd, 2001; Gershenson and Heylighen,
2005), but not a definite one. Well, life is not properly defined either, and it is not a hindrance for
biology. Still, to have an idea of what we refer to, let us go to its etymological root. Complexity comes
from the Latin plexus, which means entwined. In other words, something complex is difficult to
separate. This is because the interactions among its components are relevant (Gershenson, 2013b).
Relevant because they co-determine the future of the system. Thus, if we do not consider such
interactions, but study components in isolation, we will not be able to understand the system
properly. Also, interactions can generate novel information, not present in initial nor boundary
conditions. This novel information limits predictability (Gershenson, 2013a) and is the source of
computational irreducibility (Wolfram, 2002), i.e., there is no shortcut to know the future: onemust
go through all intermediate steps, because the information produced in the process is required to
reach/compute the future.

A recent collaborative effort produced this definition: “Complexity science, also called complex
systems science, studies how a large collection of components—locally interacting with each
other at small scales—can spontaneously self-organize to exhibit non-trivial global structures and
behaviors at larger scales, often without external intervention, central authorities or leaders. The
properties of the collection may not be understood or predicted from the full knowledge of its
constituents alone. Such a collection is called a complex system and it requires new mathematical
frameworks and scientific methodologies for its investigation.” (De Domenico et al., 2019).

One of the core concepts explained in De Domenico et al. (2019) is self-organization:
“Interactions between components of a complex system may produce a global pattern or behavior.
This is often described as self-organization, as there is no central or external controller. Rather,
the “control” of a self-organizing system is distributed across components and integrated through
their interactions. Self-organization may produce physical/functional structures like crystalline
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patterns of materials and morphologies of living organisms,
or dynamic/informational behaviors like shoaling behaviors of
fish and electrical pulses propagating in animal muscles. As the
system becomes more organized by this process, new interaction
patterns may emerge over time, potentially leading to the
production of greater complexity.” Common examples of self-
organizing systems include flocks of birds, schools of fishes,
insect swarms, herds, crowds, and other collective phenomena
(Camazine et al., 2003; Vicsek and Zafeiris, 2012), although
self-organization is not restricted to living systems (Nicolis and
Prigogine, 1977; Haken, 1988; Gershenson and Heylighen, 2003;
Prokopenko et al., 2009).

There are many cases where self-organization has been used as
an approach in engineering (Di Marzo Serugendo et al., 2004; De
Wolf et al., 2005; Zambonelli and Rana, 2005; Mamei et al., 2006;
Helbing et al., 2007; Dressler, 2008; Müller-Schloer et al., 2011;
Rohden et al., 2012; Brambilla et al., 2013; Rubenstein et al., 2014;
Vásárhelyi et al., 2018). In these cases, we can describe a system
as self-organizing when elements interact to achieve dynamically
a global function or behavior (Gershenson, 2007). In other
words, instead of designing directly a solution, one regulates
the potential interactions among elements. This is useful in
non-stationary problems: when the situation changes, then the
system adapts by itself. Since interactions in complex systems
produce novel information, it is common that this information
will change a complex problem. Not only its state, but also
its state space. Thus, self-organization can be useful to face
complexity by providing general adaptation mechanisms. Several
methodologies using self-organization have been proposed (see
Frei and Di Marzo Serugendo, 2011 for an overview), although
the approach has not been widely applied.

In a parallel effort, guided self-organization attempts to
combine seemingly opposed processes: design to define and
regulate the properties and behavior of a system (one tells the
system what to do), and self-organization that implies certain
autonomy and adaptability (the system follows its own dynamics)
(Prokopenko, 2009, 2014; Ay et al., 2012; Polani et al., 2013).
Guided self-organization can be understood as “the steering
of the self-organizing dynamics of a system toward a desired
configuration” (Gershenson, 2012).

In this paper, I compile concepts and approaches useful
for designing self-organizing systems in the physical realm. I
illustrate these with case studies from urban mobility before
discussing implications. A diagram of the paper structure is
shown in Figure 1.

2. CONCEPTS

Several concepts are useful to design and guide self-organizing
systems. In this section, a non-exhaustive list is presented.

2.1. Adaptation
Adaptation can be defined as a change in an agent or system as
a response to a state of its environment that will help the agent
or system to fulfill its goals (Gershenson, 2007). Living systems
naturally adapt to changes in their environment, and artificial

systems can benefit from exhibiting adaptation (Holland, 1975;
Steels and Brooks, 1995; Bedau et al., 2013).

If problems are stationary, i.e., do not change, then it is
worthwhile attempting to predict the future of a system to control
it. However, for non-stationary problems, predictability by
definition is limited. Novel information generated by interactions
in complex systems can lead to non-stationarity. In this case,
adaptation is desirable to complement the unpredictable aspects
of a problem (Gershenson, 2013a). And self-organization offers a
method for building adaptive systems.

For example, city traffic is changing constantly: every time
a red light switches to green, the number of waiting vehicles
is different. Thus, the timing of the traffic lights should also
change to prevent idling. Traditional adaptive traffic light control
methods (e.g., Sydney, Dublin, Singapore) use sensors to shift
phases depending on recent average demands. This is usually
better than not having adaptation, where the best possible option
would be to take average measurements, set fixed phases, and
perhaps change the programs a few times per day. However, if
traffic lights can adapt at the same timescale as the traffic demand
does, i.e., every cycle, then the performance would be much
improved (Goel et al., 2017).

Adaptation implies flexibility and can take place at different
timescales: learning is relatively fast, development occurs
during the lifetime of an individual, and evolution acts
across generations.

2.2. Robustness
A system is robust if it continues to function in the face of
perturbations (Wagner, 2005), and in general any type of change.
As with adaptation, robustness is prevalent in living systems and
desirable in artificial ones (Jen, 2005).

Robustness and adaptability are complementary: a system has
to be robust enough to survive while it adapts, and adaptation can
favor robustness.

For example, the Internet is quite robust. The TCP/IP protocol
was designed to resist nuclear warfare. If any server goes down,
other servers will manage to transmit packages, unless the
network becomes disconnected. At the structural level (which
servers are linked, which pages are linked), self-organization
has led to a scale-free topology (Barabási et al., 2000), which
is also robust to random failures (although fragile to directed
attacks Caldarelli, 2007). This is because only few nodes have
several connections, so most probably a random failure will affect
a non-important node. However, directed attacks can aim for
the hubs.

Robust systems aremore prone to be scalable than fragile ones.
Adding new components or functionality to a system can be seen
as a type of perturbation, so in this sense robustness becomes a
requirement for scalability.

2.3. Antifragility
A fragile system is damaged by perturbations. A robust system is
unaffected by perturbations. An antifragile system benefits from
perturbations (Taleb, 2012). Particular examples of systems that
benefit from noise had been already identified (Atlan, 1974), and
the concept of antifragility can be seen as a generalization.
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FIGURE 1 | Diagram of the paper structure depicting sections and subsections.

For example, the immune system is antifragile. Children who
grow up in extremely sanitized conditions are not exposed to
pathogens (perturbations), so their immune systems do not
develop, leading to stronger infections and allergies in adulthood.
Certainly, children should not be infected intentionally, but being
exposed to a “normal” amount of pathogens and falling ill now
and then is helpful for training the immune system.

We have recently proposed a measure of antifragility (Pineda
et al., 2019), which is positive when perturbations improve the
performance of a system, negative when perturbations decrease
the performance (fragility), and zero when perturbations do
not affect the performance (robustness). An important aspect
is that there is no “optimal” antifragility independent of
an environment. A system should be as antifragile as its
environment varies (this is related with requisite variety,
discussed in section 3.1).

2.4. Mediators
Interactions can be classified as positive, neutral, or negative,
depending on the effect they have on the goals of a system
(Gershenson, 2007, 2011b).

A mediator arbitrates among the elements of a system,
to minimize conflict, interferences and frictions (negative
interactions); and to maximize cooperation and synergy (positive
interactions) (Michod, 2003; Heylighen, 2006; Gershenson,
2007).

Negative interactions, by definition, are those that prevent or
damage the functionality, performance, goals, or behavior of a
system. Positive interactions would benefit, facilitate, or promote
them. Neutral interactions do not affect them. For example,
actions that generate a cost but fail to provide a benefit for a
society can be said to generate friction, e.g., aggression. If the
benefit provided by actions is greater than the cost, one can say
that they are synergistic, e.g., politeness. If the cost and benefit
balance out, the interactions would be neutral, e.g., tolerance.

Traffic rules can be seen as examples of mediators. They aim
at reducing conflict in urban mobility. Without these rules, we

would need to decide constantly on which side of the streets to
drive, how to give way, make turns, etc. Even when rules and
norms vary from country to country, and in some cases from city
to city, when everybody follows the same set of rules (mediators),
conflicts tend to be reduced.

Money is another example. It mediates transactions that are
much facilitated compared to bartering.

Designing mediators can be useful for regulating systems
where the elements cannot be modified. Still, mediators can
change the interactions between elements, leading to different
systemic behavior and properties (see case study in section 4.1).

2.5. Slower-Is-Faster Effect
Probably this effect was first described about 20 years ago while
modeling crowd dynamics (Helbing et al., 2000a,b). If people
trying to evacuate a room are panicked (trying to exit faster),
then they create friction (negative interactions) that leads to
a “turbulent” flow that is slower than if people exit calmly
(neutral interactions), thus with a “laminar” flow. The same effect
has been studied in vehicular traffic, logistics, public transport,
social dynamics, ecological systems, and adaptive processes
(Gershenson and Helbing, 2015).

In general, the slower-is-faster effect occurs when a system
performs worse as its components try to do better. This
implies that a balance between doing “too few” and doing
“too much” is necessary. However, in many cases this balance
is dynamic, as with antifragility. For example, the optimal
speed for highway traffic (that maximizes flow) depends on the
vehicular density. For this reason, systems that present a slower-
is-faster effect, require constant adaptation, that can be achieved
through self-organization.

The slower-is-faster effect may refer to any variable, not
only speed. For example, growth or profits are not necessarily
maximized in the long term with a short-term maximization
strategy. Managing natural resources, such as fisheries, requires
this understanding: if all resources are depleted, then in the
near future there will be no profits. Maximizing profits requires
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a careful balance between short-term action and long-term
planning. As with the case of highway traffic, usually this balance
is non-stationary.

2.6. Heterogeneity
Most of our models of complex systems are homogeneous:
all components have the same properties. This simplification
is useful when we face computational limitations. However,
increasing processing power and data availability have allowed
us to make more realistic models, where different elements of a
system have varying properties.

Perhaps the most studied heterogeneity in complex systems
is the one of network topologies (Albert and Barabási,
2002; Newman et al., 2006; Gershenson and Prokopenko,
2011; Barabási, 2016) (see section 3.5). Many networks are
heterogeneous, with few elements having lots of connections and
many elements having few connections. This leads to important
differences with homogeneous, regular networks, where all
elements have the same number of connections. Apart from
the robustness already mentioned, heterogeneous networks can
also transmit information faster (they have shorter average path
lengths) (Aldana, 2003).

More recently, temporal heterogeneity has been also studied
(Cocho et al., 2015; Morales et al., 2018), i.e., systems where
different components change at different rates. In a similar
way to structural heterogeneity, few elements change slower
than most elements. This heterogeneity seems to lead to a
balance where slow elements are robust and fast elements are
adaptable. In homogeneous systems, this balance is achieved
only in phase transitions, which can be characterized as “critical”
(Balleza et al., 2008). However, heterogeneity seems to expand the
balance beyond criticality, making it easier to search an unknown
parameter space, simply because different components diversify
any search procedure (Martínez-Arévalo et al., in preparation).

3. APPROACHES

How to implement the properties related to self-organization in
cyber-physical systems? The concept of self-organizing systems
originated within cybernetics (Ashby, 1947, 1962; von Foerster,
1960; Heylighen et al., 1993), where useful approaches were
already developed.

3.1. Cybernetics
Ashby not only coined the term “self-organizing system,” but
he also proposed the law of requisite variety (Ashby, 1956;
Heylighen and Joslyn, 2001; Bar-Yam, 2004; Gershenson, 2015).
Variety can be understood as the possible number of states that
a system can have. This law states that an active controller
must have at least as much variety as the system it is trying to
control. For example, if we want a robot at a manufacturing
plant to deal with seven different types of boxes, then it should
be able to distinguish and make the appropriate decisions to
handle each type of box. A common problem is that complexity
explodes variety and vice versa. Therefore, traditional (non-
adaptive) approaches become limited. To handle the variety of
a system, we can either reduce its variety (using mediators), or

increase the variety of the controller, but then the latter will imply
an increase in the complexity of the controller as well.

Everything else being equal, the variety of non-stationary
domains will be greater or equal than those of stationary ones, as
their change usually implies a greater number of potential states.
Therefore, adaptive controllers and antifragilemechanisms have
to consider this increased variety.

Active controllers are related with feedforward and feedback
(positive or negative) control. Feedback occurs in response to a
signal or perturbation, so it can be seen as a type of adaptation
(Gershenson, 2007). Negative feedback reduces the effect of the
perturbation, trying to reach stability, while positive feedback
amplifies perturbations, leading to greater change. Feedforward
control might be preferred, as it acts on a perturbation or
signal before it can affect the controlled. However, this requires
anticipation, and since complexity implies a limited predictability
due to novel information being generated by relevant interactions
(non-stationarity), this type of control will also be limited.

Complementary to active controllers, passive controllers were
also studied in cybernetics, related to buffering. Passive control
can increase the robustness of systems, since it prevents
perturbations from affecting the controlled. Figure 2 illustrates
active and passive controllers.

There is an interesting relationship between variety and
heterogeneity. Heterogenous systems by definition have more
variety, so in principle they should be able to control more
situations than similar homogeneous systems. However, they
might be less robust and more complicated to design and
understand. For example, “if there is a system of ten agents each
able to solve ten tasks, a homogeneous system will be able to
solve ten tasks robustly (if we do not consider combinations as
new tasks). A fully heterogeneous system would be able to solve
a hundred tasks, but it would be fragile if one agent failed.”
(Gershenson, 2007, p. 53). In this case, the homogeneous system
would be robust, because if one agent fails, others can perform
the same function. Still, the variety of the system would be
restricted to ten tasks. The heterogeneous system would have
a tenfold variety, but if a single agent fails, then no other
agent would be able to take over the task, and the system
would fail as well. Thus, a balance between homogeneity and
heterogeneity should also give us a balance between robustness

and adaptability (Langton, 1990; Kauffman, 1993).

3.2. Systems
Contemporary and overlapped with cybernetics, systems theory
has also permeated into all disciplines (von Bertalanffy, 1968).
The word “system” comes from the ancient Greek σ ύστǫµα

(sýstema), which means a whole made of several parts. It is
a useful abstraction that can be applied to describe several
phenomena at different scales. Moreover, it can be the basis for
understanding how elements interact to generate behavior or
properties at the system level, and how these properties regulate
or constrain the behavior or properties of the elements.

Cybernetics and systems theory naturally merge in cyber-
physical systems, where control and communication are required
in the understanding and engineering of systems composed
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FIGURE 2 | Diagrams of feedback control, feedforward control, and buffering. In different ways, they try to reduce or eliminate the effect of perturbations on the

controlled, either actively or passively. Arrows indicate the effects of perturbations: wider lines indicate greater effects. Ideally, the control mechanisms should be able

to eliminate completely the effect of perturbations.

of “bits and atoms,” i.e., digital information is entwined with
physical mechanisms.

In a similar way, cyber-social systems are those that merge
digital technology and social interactions. The “human factor”
increases the variety of such systems, and our “creativity” limits
even more their predictability.

3.3. Simulations
We can consider computers as telescopes of complexity (Pagels,
1989). In other words, without computers, our cognitive abilities
are limited to studying models considering not many more
than two or three variables. To explore models with thousands
or millions of variables, computer simulations are necessary
(Gershenson, 2007) because of computational irreducibility
(Wolfram, 2002). Complexity implies that new information is
generated by interactions, so there is no “shortcut” to the
future and all intermediate steps are necessary (Wuensche and
Lesser, 1992). This limits inherently the predictability of systems
(Gershenson, 2013a).

Simulations do not replace other approaches, but their
usefulness can be seen in the spreading of computational
methods to all disciplines.

Also, simulations allow us to contrast theories in a synthetic
way (Steels, 1993). The inductive method validates theories
through observation of phenomena.The synthetic method builds
artificial systems based on a theory, and then this is validated
observing the performance of the artificial system (Simon, 1996).

Since one can contrast different theories using computer
simulations, it can be said that computational social sciences are
“hardening” the social sciences (Axelrod, 1997; Lazer et al., 2009).

3.4. Agents
Agent-based modeling (Bonabeau, 2002; Schweitzer, 2003;
Epstein, 2006; Wilensky and Rand, 2015) has been a useful
approach to describe complex systems. An agent can be defined
as an entity that acts on its environment (Gershenson, 2007). As
such, they can be used to model active controllers.

Agents have been used to model cognitive systems of
different flavors, including rational (Wooldridge and Jennings,
1995), adaptive (Maes, 1994), social (Epstein and Axtell, 1996;
Gershenson, 2001), and economic (Arthur, 1999; Challet et al.,
2013).

Considering elements of a complex systems as agents, with
states, goals, and rules allows us to study how changes at one
scale lead to effects at another scale. The effects can go in both
directions: changes in agents leading to changes in the system
and vice versa.Moreover, systems can also be described as (higher
scale) agents.

Another advantage of agent-based modeling is that such
models are closer to common language than previous modeling
approaches based in e.g., differential equations. Therefore, people
do not require a strong mathematical background to develop
models using a multi-agent approach.
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3.5. Networks
Another approach that is becoming more and more popular
as data availability and computing power increase is network

science (Newman, 2003; Newman et al., 2006; Barabási, 2016).
Networks have the benefit of being able to represent naturally
elements (nodes) and interactions (links). The relationship
between the structure and function of networks has been an
intense area of study, where self-organization can play a relevant
role (Gershenson, 2012).

Different organizations of the same elements can lead
to radically different functionalities. A classical example is
different arrangements (allotropes) of carbon atoms, which
can lead to charcoal, diamond, graphite, graphene, nanotubes,
buckyballs, etc. The components are the same, but changing their
organization (structure) leads to radically different properties
(function) of these materials.

The robustness of systems can be promoted through different
mechanisms (Gershenson, 2012), such as redundancy (having
several copies of the same element), degeneracy (having different
elements perform the same function), modularity (short-
range links stronger than long-range ones), and scale-free-like
(heterogeneous) topologies (few elements with several links,
several elements with few links).

3.6. Living Technology
Ethology—the study of animal behavior—has been taken as
an inspiration to build adaptive systems (Beer, 1990; Maes,
1994; Steels and Brooks, 1995) and to study complex artificial
systems (Rahwan et al., 2019). Animals have evolved to survive in
complex environments, so adaptive strategies and self-organizing

mechanisms found in nature have been used in cyber-physical
systems. In this sense, living technology (Bedau et al., 2009;
Gershenson et al., 2018) takes the advantageous properties of
living systems and applies them in socio-technical systems, from
protocells (Rasmussen et al., 2008) to cities (Gershenson, 2013c).

Living technology has been defined as technology that
exhibits the properties of living systems, such as adaptation,
learning, evolvability, robustness, and self-organization. First-
order living technology is actually alive, either manipulating
existing living systems (Gibson et al., 2010; Kriegman et al., 2020)
or (eventually) building them from scratch (Rasmussen et al.,
2008; Čejková et al., 2017). Second-order living technology uses
living systems as components to achieve the desired properties
found in living systems (Benyus, 1997; Liu and Tsui, 2006).

4. CASE STUDIES

In this section, I illustrate the previous concepts and approaches
with case studies we have worked with in recent years, related
to urban mobility. Particular concepts are highlighted, although
approaches are implicitly used.

4.1. Crowd Control
More than a hundred million people use the hundred busiest
metro systems in the world every day, a number that is growing
fast as the urban population is increasing and cities develop.
In the Mexico City Metro and other cyber-social systems,
people would normally push each other, not letting passengers
exit trains, collapsing the systems. How to regulate passenger
behavior, when a selfish approach might seem to bring individual

FIGURE 3 | Signs installed to mediate passenger boarding and descent in Mexico City Metro. Reproduced from Carreón et al. (2017) under the Creative Commons

CCBY license https://doi.org/10.1371/journal.pone.0190100.g015.
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benefit but lead to collective inefficiency? One can think of
differentmediators, but they can be costly to try in real systems.
To explore alternatives, we first used simulations of a model of
crowd dynamics (Helbing et al., 2000a) and then implemented a
pilot study in the Balderas station of the Mexico City Metro on
December, 2016 (Carreón et al., 2017). The pilot was a success
and it has since been extended to several other busy stations.

The intervention consisted of “simple” signs that indicate
passengers roughly where the train doors will be, asking them
to leave free space for exiting passengers, as shown in Figure 3.
What we did not expect nor suggest was that people would queue
(Figure 4), and that these queues could even go upstairs as people
respected them.

This intervention managed to change the behavior of the
passengers and thus the crowd, without changing the elements of
the system (where could we get different “educated” passengers
from?). The signs mediated interactions between people. This
is an example of a passive control, where interactions are
regulated “simply” providing useful information. The mediators
managed to change the structure of the crowd, leading to a more
efficient function.

4.2. Traffic Light Coordination
The coordination of traffic lights is an EXP-complete problem,
meaning that in theory it takes exponentially more time to find
a solution as more intersections are added to a street network.
Also, the precise number of vehicles changes every cycle, so in
practice the problem changes faster than it can be optimized. An
active controller should adapt as fast as the controlled changes

(requisite temporal variety), and for that sensors are required to
provide relevant information to the controller.

With this in mind, we have proposed self-organizing
algorithms that can coordinate traffic flows and adapt to constant
changes in the demand as fast as it changes (Gershenson, 2005;
Zapotecatl et al., 2017), achieving close-to-optimal performance
(Gershenson and Rosenblueth, 2012). The main idea behind the
algorithms is that streets with a higher demand get a preference.
This is implemented by counting how many vehicles are
approaching or waiting behind red lights, and when the integral
over time of this counter reaches a threshold, then the green light
is requested. Thus, busier directions will wait less for a green light.
This increases the probability that vehicles will aggregate behind
red lights with few cars, leading to the formation of platoons. As
platoons reach a certain size, they can request a green light before
they even reach an intersection (because they quickly reach the
threshold), so vehicles do not need to stop, unless there are other
vehicles or pedestrians crossing. Platoons are easier to coordinate
than individual vehicles, as they leave spaces between them that
other platoons can use without interference. When densities are
high, the preference is given to the street that has more space after
the intersection, preventing gridlocks.

It is difficult to compare the performance of self-organizing
traffic lights, as there are no benchmarks in traffic light
coordination. However, they are close to optimal. We can define
optimality by calculating the maximum performance (measured
in terms of velocity or flow) of isolated intersections for different
densities. If a system with several intersections performs as
efficient at every intersection, we can say that the coordination

FIGURE 4 | Passengers queuing waiting for a train in Mexico City Metro during rush hour, San Lázaro metro station. Reproduced from Carreón et al. (2017) under the

Creative Commons CCBY license https://doi.org/10.1371/journal.pone.0190100.g016.
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FIGURE 5 | Results of self-organizing traffic lights: average velocity v and average flux J for different densities ρ. Optimality curves shown with dashed black lines.

Reproduced from Zubillaga et al. (2014) under the Creative Commons Attribution License.

is optimal. Figure 5 shows a comparison of the self-organizing
approach and a traditional top-down control method known
as the “green wave” that attempts to offset phases according
to the expected speed of vehicles. However, demands change
constantly and this method cannot adapt, leading to gridlocks
even at medium densities. The self-organizing method achieves
optimality for low densities (no vehicle stops) and medium
densities (all intersections are used at maximum capacity: there
are always vehicles crossing all intersections. Topologically
it is not possible to improve this). For other densities, the
performance is close to the optimality curves (for details, see
Gershenson and Rosenblueth, 2012).

More recently, we have found that self-organizing traffic
lights would improve traffic more than if all vehicles were
autonomous but with traditional traffic lights. Nevertheless,
autonomous vehicles and self-organizing traffic lights are even
better (Zapotecatl, 2019).

By distributing control locally, the requisite variety of the
traffic light coordination can be tackled robustly as conditions
change, while the formation of platoons self-organizes the traffic
flows and assists the coordination of intersection controllers at
the city scale. In this way, the traffic lights are mediators of
vehicles, but the vehicles are also mediators of traffic lights. We
have made simulations with up to ten thousand intersections
achieving efficient or optimal coordination, so this solution is
certainly scalable.

As there are so many variables involved in this system,
simulations are necessary to explore and test potential solutions.
It is natural to represent the topology of a city as a network,
where nodes are intersections and links are streets connecting
them. Vehicles and traffic lights can be usefully described
as agents, since they act on their environment. It is worth
noting that then traffic lights become part of the environment
of vehicles, while vehicles are part of the environment of
traffic lights.

4.3. Public Transport Regulation
In theory, passengers in public transport are served optimally
when vehicle headway—the time between arrivals at a station—
is equal. However, as we have shown, an equal headway
configuration is unstable by nature (Gershenson and Pineda,
2009), since delays become amplified by positive feedbacks. Thus,
many efforts have been made by transportation engineers to
prevent the “equal headway instability,” also known as the “bus
bunching problem.”

To keep equal headways, all vehicles—trains, trams, buses—
must wait the same time at each station. This time can vary from
station to station, but it must be fixed or some vehicles will go
faster than others, leading to unequal headways and potentially to
the collapse of the system. Since the precise number of passengers
varies each time a vehicle reaches a station, and thus the required
waiting time, then either vehicles will require a margin and be
idle, or they will depart before servicing all passengers when these
are more than expected.

We proposed a self-organizing algorithm inspired by ant
colony communication (Gershenson, 2011a; Carreón et al.,
2017), so this can be seen as an example of living technology.
Some ant species communicate via their environment, a
phenomenon known as stigmergy (Theraulaz and Bonabeau,
1999). When they find a food source, they return to their nest
leaving a pheromone trail. This indicates the food location to
other ants. When they find the food, they can reinforce the trail
while returning to their nest. Since pheromones evaporate, once
the food is finished, ants stop reinforcing the trail, and they start
exploring again. In the case of our algorithm, vehicles can be
seen as ants, and we wanted a pheromone-like environmental
signal to be used to indicate when the last vehicle had passed.
However, pheromones reduce their concentration, while we
needed an increasing signal, so we defined “antipheromones” that
are secreted by the environment, increase their concentration in
time, and are erased by vehicles as they pass.
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FIGURE 6 | Diagram showing positions of trains at different times. Trains move upwards in distance and rightwards in time. There is an interruption of service at ti ,

and it is reestablished 15 min later at tr . (A) Current control method. (B) Self-organizing method. Reproduced from Carreón et al. (2017) under the Creative Commons

CCBY license https://doi.org/10.1371/journal.pone.0190100.g014.

In our algorithm, each vehicle “simply” tries to keep
equal distance to the vehicles in front and behind (using
antipheromones as mediators), but is flexible enough to serve
passengers at stations and at the same time prevent idling.
Equal headways are not maintained, but the system does not
collapse. Rather, its performance is even better than the case
with equal headways, i.e., it is supraoptimal. This is because of
the slower-is-faster effect: It is true that passengers minimize
their waiting time at stations with equal headways (as expected
by theory). But their total travel time is not independent of
the equal headways, so idling will increase their total travel
time. With the self-organizing algorithm, passengers wait more
at stations, but once they board a vehicle, they will reach
their destination faster, as there is no idling. Again, adaptation
takes place at the scales at which the system changes. We
can say that this approach is antifragile, as supraoptimality
is achieved precisely because of the “noise.” (heterogeneity)

of arriving passengers. If all stations had always the same
demand (homogeneous), then the self-organizing algorithm
would perform as good as the theoretical optimum, i.e., less
than supraoptimal.

Figure 6 shows results from a simulation of Line 1 of the
Mexico City Metro. On the top panel, the trajectories of trains
using the current regulation method is depicted. There is a 15
min interruption of the service, and it can be seen that the
system does not recover. In reality, the system does recover,
but it requires human intervention and can take one, two, or
more hours, depending on the passenger demand. On the bottom
panel of Figure 6, the trajectories of a similar scenario are shown,
but using our self-organizing method. It can be seen that even
before the service is reestablished, the vehicles try to maintain
equal headways with their neighbors, delaying vehicles ahead
of the station where service was interrupted. Once service is
reestablished, since the intervals between trains did not collapse,
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trains can quickly adapt and respond to the delayed service,
recovering a desired configuration in less than half an hour.

5. DISCUSSION

We cannot reduce the complexity of several systems we have to
deal with. Novel information produced by interactions leads to
changes, making problems non-stationary. For example, in the
case of traffic lights, one cannot try to optimize intersections
in isolation and expect the system to be coordinated. Since the
“output” of one intersection becomes the “input” of the next one
downstream, this information should be constantly updated by
sensors and taken into consideration by controllers.

Self-organization has been used in a broad variety of cyber-
physical systems. It allows systems to adapt at the scales at
which the problem they are solving changes in a robust fashion.
In addition to the case studies mentioned in the previous
section, dynamic road pricing in Singapore and variable parking
cost in San Francisco are examples of self-organization being
used to regulate urban mobility. We can see that the same
principles apply in other cyber-physical and cyber-social systems,
from telecommunications (Amoretti and Gershenson, 2016) to
organizations (Gershenson, 2008).

As in the case of crowd control, there are many systems
where we cannot change the components. Still, we can try to
mediate interactions to control the function of the system. We
will not change politicians. But perhaps we can regulate their
interactions to improve politics. We cannot change teachers. But
maybe novel mediators can improve education. Businesspeople
will not change. But probably promoting certain interactions
and restricting others can improve economies. It can take lots
of energy to turn charcoal into diamond, but it can be done.
They are made of the same atoms. “Only” their organization
is different.

A relevant step toward adopting self-organizing controllers
is to give up the desire to control completely our systems. This
implies accepting that predictability is limited by complexity, and
that adaptation should complement this inherent uncertainty,
even if we do not know how systems will adapt. As
complexity limits our predictability, systems require certain
autonomy to make the “right decisions.” Even if we use
traditional approaches, we do not have full control of
our systems, as they are constantly entering unexpected
situations. We would like to be able to be sure that
our systems will never fail, but they will. We can have
formal proofs but these are also limited, since they assume
idealized/closed/predefined situations. Self-organizing systems
can do the same as traditional engineered systems and more,
as they can deal with more realistic/open/variable situations.
We just have to (systematically and cautiously) try and see,
constantly adapting (Gershenson, 2007). Even if a solution
already worked, it does not assure that it will continue working
(as conditions change) or that it can be applied in the same way
in a different context.

The best solution depends on the context/environment
/problem. In some cases, centralized control will be good,

TABLE 1 | Different control approaches are more appropriate for different

causalities, complexities, and diversities.

Control Causality Complexity Diversity

Centralized Top-down Low Homogeneous or heterogeneous

Distributed Bottom-up Medium Homogeneous

Self-organizing Multiscale High Homogeneous or heterogeneous

TABLE 2 | Different control types are more related to certain concepts,

approaches, and aspects.

Control Concepts Approaches Aspects

Active Adaptation/antifragility Agents Functional

Passive Robustness/heterogeneity Networks Structural

in others distributed is more appropriate, in yet others
self-organizing. As shown in Table 1, centralized control is
appropriate when causality should be top-down. Because of the
law of requisite variety, systems with a high variety/complexity
will require a controller with a high variety/complexity, so the
centralized approach becomes less viable. Distributed control
can deal with a greater complexity, but it is still limited, because
the integration of the distributed solutions is not necessarily
trivial. This limits distributed control to homogeneous systems:
since information flow across the system is restricted, the
local solutions assume that each local problem is similar. As
illustrated in the traffic lights example, self-organizing control
can deal with top-down and bottom-up causality (multiscale),
as components can interact in a distributed fashion to change
system properties (bottom-up), but then the system properties
can mediate (top-down) to regulate the behavior of components.
Self-organization can be scalable, adaptive, robust, and can deal
with a high complexity and homogenous or heterogeneous
problems. It is not that one approach is better than others, but
they are more appropriate for different problems. Centralized
control is easier to implement and understand, but is useful
for low complexity/variety problems. Distributed control can
deal with a greater complexity, but only for homogeneous,
separable systems. Self-organizing systems might be more
difficult to design and test, but they can handle greater
complexity/variety/diversity.

How the control is organized is certainly relevant, but also
whether the control is active or passive. As shown in Table 2,
active control is more related with adaptation and antifragility,
as these concepts imply constant change in the function of the
controller. An agent-based approach is natural here, as it is
straightforward to describe actions with agents, since these are
entities that act on their environment. On the other hand, passive
control is more related with robustness and heterogeneity, as
these are intrinsic properties of systems and their structure

(independently on whether there is change or not in the
environment). A network description is useful in this case, as
the relationships between elements can describe the organization
of a system. Note that these are not exclusive, e.g., one can
certainly use both active and passive controllers, or combine
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agents represented as networks, or study how structure and
function affect each other. Also, the concepts and approaches
not mentioned here apply to both control cases. Moreover, the
relationship between structure and function is far from trivial
and has been an open area of research (Heylighen, 1999), since
structure defines function but also function can change structure.
In many cases, we design structure for a desired function, but also
we can design function for a desired structure (Dorigo et al., 2004;
Werfel et al., 2014).

As the complexity of our cyber-physical systems increases, and
also our understanding of it, we will see more self-organizing
approaches. Perhaps names will differ, but the concepts presented
here are required to control cyber-physical and cyber-social
systems by guiding their self-organization.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This work was partially supported by UNAM’s PAPIIT projects
IN107919 and IV100120.

ACKNOWLEDGMENTS

I appreciate useful comments from János Kertész, special issue
editors, and reviewers.

REFERENCES

Albert, R., and Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Rev. Mod. Phys. 74, 47–97. doi: 10.1103/RevModPhys.74.47

Aldana,M. (2003). Boolean dynamics of networks with scale-free topology. Physica
D 185, 45–66. doi: 10.1016/S0167-2789(03)00174-X

Amoretti, M. and Gershenson, C. (2016). Measuring the complexity of adaptive
peer-to-peer systems. Peer Peer Netw. Appl. 9, 1031–1046.

Arthur, W. B. (1999). Complexity and the economy. Science 284, 107–109.
doi: 10.1126/science.284.5411.107

Ashby, W. R. (1947). Principles of the self-organizing dynamic system. J. Gen.
Psychol. 37, 125–128. doi: 10.1080/00221309.1947.9918144

Ashby, W. R. (1956). An Introduction to Cybernetics. London: Chapman & Hall.
doi: 10.5962/bhl.title.5851

Ashby, W. R. (1962). “Principles of the self-organizing system,” in Principles of

Self-Organization, eds H. V. Foerster and G. W. Zopf Jr. (Oxford: Pergamon),
255–278.

Atlan, H. (1974). On a formal definition of organization. J. Theor. Biol. 45, 295–304.
doi: 10.1016/0022-5193(74)90115-5

Axelrod, R. (1997). “Advancing the art of simulation in the social sciences,” in
Simulating Social Phenomena, Lecture Notes in Economics and Mathematical

Systems, eds R. Conte, R. Hegselmann, and P. Terna (Berlin; Heidelberg:
Springer), 21–40.

Ay, N., Der, R., and Prokopenko, M. (2012). Guided self-organization:
perception–action loops of embodied systems. Theory Biosci. 131, 125–127.
doi: 10.1007/s12064-011-0140-1

Balleza, E., Alvarez-Buylla, E. R., Chaos, A., Kauffman, S., Shmulevich, I., and
Aldana, M. (2008). Critical dynamics in genetic regulatory networks: examples
from four kingdoms. PLoS ONE 3:e2456. doi: 10.1371/journal.pone.0002456

Barabási, A.-L. (2016). Network Science. Cambridge: Cambridge University Press.
Barabási, A.-L., Albert, R., and Jeong, H. (2000). Scale-free characteristics of

random networks: the topology of the world-wide web. Physica A 281, 69–77.
doi: 10.1016/S0378-4371(00)00018-2

Bar-Yam, Y. (2004). Multiscale variety in complex systems. Complexity 9, 37–45.
doi: 10.1002/cplx.20014

Bedau, M. A., McCaskill, J. S., Packard, N. H., Parke, E. C., and Rasmussen, S. R.
(2013). Introduction to recent developments in living technology. Artif. Life 19,
291–298. doi: 10.1162/ARTL_e_00121

Bedau, M. A., McCaskill, J. S., Packard, N. H., and Rasmussen, S. (2009). Living
technology: exploiting life’s principles in technology. Artif. Life 16, 89–97.
doi: 10.1162/artl.2009.16.1.16103

Beer, R. D. (1990). Intelligence as Adaptive Behavior: An Experiment in

Computational Neuroethology. San Diego, CA: Academic Press.
Benyus, J. M. (1997). Biomimicry: Innovation Inspired by Nature. New York, NY:

William Morrow.
Bonabeau, E. (2002). Agent-based modeling: methods and techniques for

simulating human systems. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl. 3):7280–
7287. doi: 10.1073/pnas.082080899

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell. 7, 1–41.
doi: 10.1007/s11721-012-0075-2

Caldarelli, G. (2007). Scale-Free Networks. Oxford: Oxford University Press.
Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and

Bonabeau, E. (2003). Self-Organization in Biological Systems. Princeton, NJ:
Princeton University Press.

Carreón, G., Gershenson, C., and Pineda, L. A. (2017). Improving public
transportation systems with self-organization: a headway-based model and
regulation of passenger alighting and boarding. PLoS ONE 12:e0190100.
doi: 10.1371/journal.pone.0190100
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