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We consider the problem of autonomous acquisition of manipulation skills where

problem-solving strategies are initially available only for a narrow range of situations.

We propose to extend the range of solvable situations by autonomous play with the

object. By applying previously-trained skills and behaviors, the robot learns how to

prepare situations for which a successful strategy is already known. The information

gathered during autonomous play is additionally used to train an environment model. This

model is exploited for active learning and the generation of novel preparatory behaviors

compositions. We apply our approach to a wide range of different manipulation tasks,

e.g., book grasping, grasping of objects of different sizes by selecting different grasping

strategies, placement on shelves, and tower disassembly. We show that the composite

behavior generation mechanism enables the robot to solve previously-unsolvable tasks,

e.g., tower disassembly. We use success statistics gained during real-world experiments

to simulate the convergence behavior of our system. Simulation experiments show that

the learning speed can be improved by around 30% by using active learning.

Keywords: active learning, hierarchical models, skill learning, reinforcement learning, autonomous robotics,

robotic manipulation, behavior composition

1. INTRODUCTION

Humans perform complex object manipulations so effortlessly that at first sight it is hard to believe
that this problem is still unsolved in modern robotics. This becomes less surprising if one considers
how many different abilities are involved in human object manipulation. These abilities span from
control (e.g., moving arms and fingers, balancing the body), via perception (e.g., vision, haptic
feedback) to planning of complex tasks. Most of these are not yet solved in research by themselves,
not to speak of combining them in order to design systems that can stand up to a comparison with
humans. However, there is research by Meeussen et al. (2010), Mülling et al. (2013), Abu-Dakka
et al. (2014), and Hangl et al. (2014, 2015) on efficiently solving specific problems (or specific classes
of problems).

Not only the performance of humans is outstanding—most manipulation skills are learned
with a high degree of autonomy. Humans are able to use experience and apply the previously
learnt lessons to new manipulation problems. In order to take a step toward human-like robots
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we introduce a novel approach for autonomous learning that
makes it easy to embed state-of-the-art research on specific
manipulation problems. Further we aim to combine these
methods in a unified framework that is able to solve increasingly
complex tasks.

In this work we are inspired by the behavior of infants at an
age between 8 and 12 months. Piaget (1952) identified different
phases of infant development. A phase of special interest is the
coordination of secondary schemata which he identifies as the
stage of first actually intelligent behavior. At this stage infants
combine skills that were learned earlier in order to achieve more
complex tasks, e.g., kicking an obstacle out of the way such that
an object can be grasped. In this stage children do not predict
the outcome of actions and check the corresponding pre- and
post-conditions (Piaget, 1952) as it is done in many planning
systems (e.g., by Fainekos et al., 2005; Ferrein and Lakemeyer,
2008; Kress-Gazit et al., 2009). To them it is only important to
know that a certain combination of manipulations is sufficient to
achieve a desired task. The environment is prepared such that the
actual skill can be applied without a great need for generalization.
Even adults exhibit a similar behavior, e.g., in sports. A golf or
tennis player will always try to perform the swing from similar
positions relative to the ball. She will position herself accordingly
instead of generalizing the swing from the current position. This
is equivalent to concatenating two behaviors, walking toward the
ball and executing the swing.

In previous work by Hangl et al. (2016) we introduced an
approach that is loosely inspired by this paradigm. The robot
holds a set of sensing behaviors, preparatory behaviors, and basic
behaviors, i.e., behaviors that solve a certain task in a narrow
range of situations. It uses the sensing behaviors to determine the
state of the environment. Depending on the state, a preparatory
behavior is used to bring the environment into a state in which
the task can be fulfilled by simple replay of the basic behavior. The
robot does not need to learn how to generalize a basic behavior to
every possibly observable situation. Instead, the best combination
of sensing behaviors and preparatory behaviors is learned by
autonomous play.

We phrase playing as a reinforcement learning (RL) problem,
in which each rollout consists of the execution of a sensing
behavior, a preparatory behavior and the desired basic behavior.
Each rollout is time consuming, but not necessarily useful. If the
robot already knows what to do in a specific situation, performing
another rollout in this situation does not help to improve the
policy. However, if another situation is more interesting, it can
try to prepare it and continue the play, i.e., active learning.
Our original approach is model-free, which makes it impossible
to exhibit such a behavior. In this paper we propose to learn
a forward model of the environment which allows the robot
to perform transitions from boring situations to interesting
ones. We use the terms boring/interesting as metaphors for
situations in which the robot achieves already high/still low
success rates and therefore there is not much/much left to
learn. These terms do not attribute emotional responses to
the agent.

Our work strongly relates to work in active learning
in robotics (c.f. Sutton, 1990; Kaelbling, 1993; Koenig and

Simmons, 1993; Schaal and Atkeson, 1994), where the robot
aims to improve its environment model by asking for or
creating situations the maximize the learning rate. However,
there is an important distinction: the work presented in this
paper is not centered on creating an environment model
as the core is model-free. In our approach, active learning
capabilities are only unlocked if the model-free core is confident
it can resolve the situation, i.e., the robot is bored, and
the environment model is mature enough so the robot is
able to plan a transition to an interesting state. The robots
major goal is not to learn a model of the environment but
to solve the task at hand. It will only exploit the model
if the model-free approach does not provide a sufficient
success rate before the environment model becomes mature.
In this case plans can be created to switch between states
as required.

Another issue is the strict sequence of phases: sensing →

preparation → basic behavior. In this work we weaken this
restriction by enabling the robot to generate novel preparatory
behaviors composed of other already known behaviors. The
environment model is used to generate composite behaviors that
are potentially useful instead of randomly combining behaviors.

We illustrate the previously described concepts with the
example of book grasping. This task is hard to generalize but
easy to solve with a simple basic behavior in a specific situation.
The robot cannot easily get its fingers underneath the book in
order to grasp it. In a specific pose, the robot can squeeze the
book between two hands, lifting it at the spine and finally slide its
fingers below the slightly-lifted book. Different orientations of the
book would require adaption of the trajectory. The robot would
have to develop some understanding of the physical properties,
e.g., that the pressure has to be applied on the spine and that the
direction of the force vector has to point toward the supporting
hand. Learning this degree of understanding from scratch is a
very hard problem.

Instead, we propose to use preparatory behaviors, e.g., rotating
the book by 0◦, 90◦, 180◦, or 270◦, in order to move it to
the correct orientation (φ = 0◦) before the basic behavior is
executed. The choice of the preparatory behavior depends on the
book’s orientation, e.g., φ ∈ {0◦, 90◦, 180◦, 270◦}. The orientation
can be estimated by sliding along the book’s surface, but not by
poking on top of the book. The robot plays with the object and
tries different combinations of sensing behaviors and preparatory
behaviors. It receives a reward after executing the basic behavior
and continues playing. After training, the book grasping skill
can be used as preparatory behavior for other skills in order to
build hierarchies.

If the robot already knows well that it has to perform the
behavior rotate 90◦ if φ = 270◦ and is confronted with this
situation again, it cannot learn anything any more, i.e., it is
bored. It can try to prepare a more interesting state, e.g., φ =

90◦ by executing the behavior rotate 180◦. We refer to active
exploration of more interesting states as active learning. Further,
if only the behavior rotate 90◦ is available, the robot cannot solve
the situations φ ∈ {90◦, 180◦} by executing a single behavior.
However, it can use behavior compositions in order to generate
the behaviors rotate 180◦ and rotate 270◦.
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2. RELATED WORK

2.1. Skill Chaining and Hierarchical
Reinforcement Learning
Sutton et al. (1999) introduced the options framework for
skill learning in a RL setting. Options are actions of arbitrary
complexity, e.g., atomic actions or high-level actions, such as
grasping, modeled by semi-Markov decision processes (SMDP).
They consist of an option policy, an initiation set indicating the
states in which the policy can be executed, and a termination
condition that defines the probability of the option terminating
in a given state. Options are orchestrated by Markov decision
processes (MDP), which can be used for planning to achieve a
desired goal. This is related to our notion of behaviors, however,
behaviors are defined in a loser way. Behaviors do not have an
initiation set and an explicit termination condition. Behaviors are
combined by grounding them on actual executions by playing
instead of concatenating them based on planning. Konidaris and
Barto (2009) embedded so called skill chaining into the options
framework. Similar to our work, options are used to bring the
environment to a state in which follow-up options can be used
to achieve the task. This is done by standard RL techniques,
such as Sarsa and Q-learning. The used options themselves are
autonomously generated, however, as opposed to our method,
the state space is pre-given and shared by all options. Lee
et al. (2013) developed a framework for imitation learning in
which the taught actions are mapped to probabilistic symbols.
Skill chaining is achieved by combining these symbols with
probabilistic activity grammars. The robot searches for frequently
common sub-patterns, splits the actions and generates new
symbols. In contrast, in our approach the skills are shown per task
and behaviors are not split but combined when needed. Instead
of autonomously creating novel options, Konidaris et al. (2011)
extended this approach by deriving options from segmenting
trajectories trained by demonstration. On a more abstract level,
Colin et al. (2016) investigated creativity for problem-solving
in artificial agents in the context of hierarchical reinforcement
learning by emphasizing parallels to psychology. They argue that
hierarchical composition of behaviors allows an agent to handle
large search spaces in order to exhibit creative behavior.

2.2. Model-Free and Model-Based
Reinforcement Learning in Robotics
Our work combines a model-free playing system and a model-
based behavior generation system. Work on switching between
model-free and model-based controllers was proposed in many
areas of robotics (e.g., by Daw et al., 2005; Dollé et al., 2010;
Keramati et al., 2011; Caluwaerts et al., 2012a,b; Renaudo et al.,
2014, 2015). The selection of different controllers is typically
done bymeasuring the uncertainty of the controller’s predictions.
Renaudo et al. (2014, 2015) proposed switching between so
called model-based and model-free experts, where the model is
learned over time. The switching is done randomly, or by either
majority vote, rank vote, BoltzmannMultiplication or Boltzmann
Addition. Similar work has been done in a navigation task by
Caluwaerts et al. (2012a,b). Their biologically inspired approach
uses three different experts, namely a taxon expert (model-free),

a planning expert (model-based), and an exploration expert, i.e.,
exploring by random actions. A so called gating network selects
the best expert in a given situation. All these methods hand over
the complete control either to a model-based or a model-free
expert. In contrast, our method always leaves the control with
the model-free playing system which makes the final decision on
which behaviors should be executed. The model-based system,
i.e., behavior generation using the environment model, is used to
add more behaviors for model-free playing. This way, the playing
paradigm can still be maintained while enabling the robot to
come up with more complex proposals in case the task cannot
be solved by the model-free system alone.

Dezfouli and Balleine (2012) sequence actions and group
successful sequences to so-called habits. Roughly speaking, task
solutions are generated by a dominant model-based RL system
and are transformed to atomic habits if they were rewarded many
times together. In contrast, the main driving component of our
method is a model-free RL system which is augmented with
behavioral sequences by a model-based system. This way, the
robot can deal with problems without requiring an environment
model while still being able to benefit from it.

2.3. Developmental Robotics
Our method shares properties with approaches in developmental
robotics. A common element is the concept of lifelong learning,
in which the robot develops more and more complex skills
by interacting with the environment autonomously. Wörgötter
et al. (2015) proposed the concept of structural bootstrapping
in which knowledge acquired in earlier stages of the robot’s
life is used to speed up future learning. Weng (2004) provides
a general description of a self-aware and self-affecting agent
(SASE). He describes an agent with internal and external
sensors and actuators, respectively. It is argued that autonomous
developmental robots need to be SASE agents and concrete
implementations are given, e.g., navigation or speech learning.
Our concept of boredom is an example of a paradigm,
in which the robot decides on how to proceed based on
internal sensing. Ivaldi et al. (2014) developed an architecture
for learning object properties and models through life-long
learning and intrinsic motivation based on physical interaction
with the environment. Moulin-Frier et al. (2017) developed
a cognitive architecture to solve the symbol ground problem.
They defined a layered architecture composed of structural
models that handle functional tasks. Similar to our approach,
their architecture allows the use of state-of-the-art models.
Their approach acts on a higher cognitive level but requires
definition of the structural models while in our approach
arbitrary structural modules can be used as long as they are
hidden in behaviors.

In general, developmental robotics shares some key
concepts with our method, e.g., lifelong learning, incremental
development or internal sensing. For a detailed discussion we
refer to a survey by Lungarella et al. (2003).

2.4. Active Learning in Robotics
In active learning the agent can execute actions which have an
impact on the generation of training data (c.f. Thrun, 1995).
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In the simplest case, the agent explores the percept-action
space by random actions (Whitehead, 2014). The two major
active learning paradigms, i.e., query-based and exploration-
based active learning, differ in the action selection mechanism.
Query-based learning systems request samples, e.g., by asking a
supervisor for it. Typically, the request is based on the agent’s
uncertainty (Atlas et al., 1990; Cohn, 1994; Cohn et al., 1996).
Chao et al. (2010) adopt query-based active learning for socially
guided machine learning in robotics. Task models are trained
by interaction with a human teacher, e.g., classifying symbols
assigned to tangram compounds. The robot could prepare a
desired sample by itself, i.e., arranging interesting tangram
compounds and asking the teacher for the class label. In contrast
to ourmethod, this is not done in practice, but the robot describes
the desired compound.

Exploration-based active learning paradigms, on the other
hand, select actions in order to reach states with maximum
uncertainty (Sutton, 1990; Kaelbling, 1993; Koenig and Simmons,
1993; Schaal and Atkeson, 1994). Salganicoff et al. (1996) and
Morales et al. (2004) used active learning for grasping. It was
used to learn a prediction model of how good certain grasp
types will work in a given situation. All these works deal with
how to select actions such that a model of the environment can
be trained more effectively. In our approach the training of the
environment model is not the major priority. It is a byproduct
of the autonomous play and is used to speed up learning and
generate behaviors on top of the playing system.

Kroemer et al. (2010) suggested a hybrid approach of active
learning and reactive control for robotic grasping. Active learning
is used to explore interesting poses using an upper confidence
bound (UCB) (Sutton and Barto, 1998; Auer et al., 2002) policy
that maximizes the merit, i.e., the sum of the expected reward
mean and variance. The actual grasps are executed by a reactive
controller based on dynamic movement primitives (DMPs) (c.f.
Schaal, 2006), using attractor fields to move the hand toward
the object and detractor fields for obstacle avoidance. This
approach is tailored to a grasping task, in which the autonomous
identification of possible successful grasps is hard due to high-
dimensional search spaces. In contrast, our approach is acting on
a more abstract level in which the described grasping method
can be used as one of the preparatory behaviors. A more
detailed investigation of active learning is outside the scope
of this paper and can be found in a survey by Settles (2010).
Special credit shall be given to work on intrinsic motivation by
Barto et al. (2004), Stoytchev and Arkin (2004), Oudeyer et al.
(2007), Schembri et al. (2007), Baranes and Oudeyer (2009),
Lopes and Oudeyer (2010), Ivaldi et al. (2014), Ribes et al.
(2015), and Ugur and Piater (2016). It is a flavor of active
learning which is commonly applied in autonomous robotics.
Instead of maximizing the uncertainty, these methods try to
optimize for intermediate uncertainty. The idea is to keep the
explored situations simple enough to be able to learn something,
but complex enough to observe novel properties. Schmidhuber
(2010) provides a sophisticated summary of work on intrinsic
motivation and embeds the idea into a general framework.
He states that many of these works optimize some sort of
intrinsic reward, which is related to the improvement of the

prediction performance of the model. This is closely related
to our notion of boredom, in which the robot rejects the
execution of skills in a well-known situation for the sake of
improving the policy in other situations. He further argues that
such a general framework can explain concepts like creativity
and fun.

Self-organization (Der and Martius, 2006; Martius et al., 2007,
2013; Martius and Herrmann, 2012) is a concept contrasting
active learning and intrinsic motivation. This paradigm is not
based on random exploration but on deterministic policies for
explorative action selection in order to overcome the curse of
dimensionality. For example this was done by Bialek et al. (2001)
by optimizing a generalization the of predictive information
measure (PI), or byMartius et al. (2013) by using neural networks
for modeling the system dynamics and gradient descent.

2.5. Planning
Many of the previously mentioned methods are concerned with
training forward models, which in consequence are used for
planning in order to achieve certain tasks. Ugur and Piater
(2015) proposed a system that first learns action effects from
interaction with the objects and is trained to predict single-
object cagetories from visual perception. In a second stage,
multi-object interaction effects are learned by using the single-
object categories, e.g., two solid objects can be stacked on top
of each other. Discrete effects and categories are transformed
into a PDDL description. Symbolic planning is used to create
complex manipulation plans, e.g., for creating high towers by
stacking. Konidaris et al. (2014) suggest a method in which
symbolic state representations are completely determined by the
agent’s environment and actions. They define a symbol algebra
on the states derived from executed actions that can be used for
high-level planning in order to reach a desired goal. Konidaris
et al. (2015) extend this set-based formulation to a probabilistic
representation in order to deal with the uncertainty observed
in real-world settings. A similar idea is present in our model-
free approach, where the selection of sensing behaviors and the
semantics of the estimated states depends on the desired skill.

All these approaches provide a method to build a bridge from
messy sensor data and actions to high-level planning systems for
artificial intelligence. In order do to so, similar to our approach,
abstract symbols are used. However, these systems require quite
powerful machinery in order to provide the required definition
of pre- and post-conditions for planning. In our approach the
robot learns a task policy directly, which is augmented by a simple
planning-based method for composite behavior generation.

3. PROBLEM STATEMENT

The goal is to increase the scope of situations in which a skill can
be applied by exploiting behaviors. A behavior b ∈ B maps the
complete (and partially unknown) state of system e ∈ A × E to
another state e′ ∈ A× E with

b :A× E 7→ A× E (1)
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The sets A, E denote the internal state of the robot and
the external state of the environment (e.g., present objects),
respectively. We aim for autonomous training of a goal-directed
behavior, i.e., a skill. This requires a notion of success, i.e., a
success predicate. We define a skill σ = (bσ , Successσ ) as a pair
of a basic behavior bσ , i.e., a behavior that solves the task in a
narrow range situations, and a predicate

Successσ
(

bσ (e)
)

= true (2)

with e ∈ Dσ . The non-empty set Dσ ⊆ A × E is the set of all
states in which the skill can be applied successfully, i.e., all states
in which the fixed success predicate holds. We call the set Dσ

the domain of applicability of the skill σ . The goal is to extend
the domain of applicability by finding behavior compositions
bl ◦ · · · ◦ b2 ◦ b1 with the property

Successσ
(

bl ◦ · · · ◦ b2 ◦ b1 ◦ b
σ (e)

)

= true (3)

with bi ∈ B and e ∈ D′σ ⊆ A × E such that D′σ ) Dσ ,
i.e., the domain of applicability is larger than before. A behavior
composition bl ◦ · · · ◦b2 ◦b1 ◦b

σ is a behavior itself and therefore
can be used to extend the domain of applicability of other skills.
This way, skills can become more and more complex over time
by constructing skill hierarchies.

4. CONTRIBUTION

We extend an approach for skill learning by autonomous playing
introduced by Hangl et al. (2016). It uses only one preparatory
behavior per state, i.e., allowing only behavior compositions of
length l = 1 (c.f. Equation 3). This limitation enables the robot
to perform model-free exploration due to the reduced search
space. Allowing behavior compositions of length l > 1 causes
the learning problem to be intractable, but would help to solve
more complex tasks.

Approaches dealing with problems of this complexity have
to strongly reduce the search space, e.g., by symbolic planning
by Ugur and Piater (2015) and Konidaris et al. (2014, 2015).
We do not follow a planning-based paradigm in the traditional
sense. The playing-based exploration of actions remains the
core component of the system. In order to allow behavior
compositions of length l > 1 while still keeping the advantage
of a small search space, we introduce a separate model-based
systemwhich generates potentially useful behavior compositions.
A forward model of the environment is trained with information
acquired during autonomous play. The environment model is
used to generate new behavior compositions that might be worth
trying out. The ultimate decision whether a behavior composition
is used, however, is still up to the playing-based system. This way,
the advantages of model-free and model-based approaches can
be combined:

1. Behavior compositions of arbitrary length can be explored
without having to deal with the combinatorial explosion of
possible behavior compositions.

2. No or only weak modeling of the environment is required
because the playing-based approach alone is still stable and
fully-functional.

3. Exploration beyond the modeled percept-action space can
still be done, e.g., a book flipping action can be used to open
a box (Hangl et al., 2016).

Proposals for novel preparatory behaviors are considered
proportional to their expected usefulness. This enables the robot
to first consider more conservative plans and to explore more
unorthodox proposals in later stages. We refer to this procedure
as compositional generation of behavior proposals. We relate to a
principal investigation of creative machines by Briegel (2012), in
which robots use a memory to propose combinations of previous
experiences in order to exhibit new behavioral patterns.

We further exploit the environment model for speeding up
the learning process by active learning. The robot can be bored
of certain situations and is not only asking for different situations
but also prepares them by itself.Whether or not the robot is bored
is part of the internal state eA ∈ A of the robot, which is made
explicit in Equation (1).

We believe that a lifelong learning robot must go through
different developmental stages of increasing complexity.
Optimally, these stages are not hard-coded to the system
but emerge automatically over the course of the robot’s life.
We extend our original system such that these additional
mechanisms are exploited as soon as the robot is ready for it, i.e.,
the environment model is mature enough.

5. PRELIMINARIES

For better understanding of the remainder of the paper, we
introduce the concept of perceptual states. We further provide a
brief description of the core reinforcement learning method used
in this paper—projective simulation (PS) introduced by Briegel
and De las Cuevas (2012).

5.1. Perceptual States
Let e ∈ A× E be the complete physical state of the environment.
In practice, it is impossible to estimate e. However, only a
facet (e.g., a books orientation) of e is required to successfully
perform a task. We use haptic exploration (e.g., sliding) in
order to estimate the relevant fraction of e. A predefined set
of sensing behaviors S is used to gather information. For many
tasks only one sensing behavior s ∈ S is required to estimate
the relevant information, e.g., the book’s orientation can be
determined by sliding along the surface. While the sensing
behavior s is executed, a multi-dimensional sensor data time
series (e.g., fingertip sensor data) M = {tτ } of duration T with
τ ∈ [1, . . . ,T] is measured. This time series is not the result
of a deterministic process but follows an unknown probability
distribution p (M | e, s).

In general, in every state e ∈ A × E potentially a different
behavior has to be executed in order to fulfill a task successfully,
e.g., how to grasp an object depends on the object pose. However,
in many manipulation problems, similar states require a similar
or even the same action. In these cases the state space can be
divided into discrete classes e, e.g., the four orientations of a
book in the book grasping task. We call such a class a perceptual
state, denoted e ∈ Esσ . Note that the perceptual state space Esσ
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is not to be confused with the state space of environment E.
The probability p (e |M, s, σ) of a perceptual state e to be present
depends on the measured sensor data M, the sensing behavior s
and the skill σ for which the sensing action s is used, e.g., poking
in book graspingmeans something different than in box opening.
The perceptual state spaces of two sensing behaviors s, s′ ∈ S
can coincide, partly overlap or be distinct, e.g., sliding along the
surface allows the robot to estimate the orientation of a book,
whereas poking does not.

5.2. Projective Simulation
Projective simulation (PS) introduced by Briegel and De las
Cuevas (2012) is a framework for the design of intelligent agents
and can be used, amongst other applications, for reinforcement
learning (RL). PS was shown to exhibit competitive performance
in several reinforcement learning scenarios ranging from classical
RL problems to adaptive quantum computation (Melnikov et al.,
2014, 2015; Mautner et al., 2015; Tiersch et al., 2015). It is a
core component of our method and was chosen due to structural
advantages, conceptual simplicity and good extensibility. We
briefly describe the basic concepts and the modifications applied
in this paper. A detailed investigation of its properties can be
found in work by Mautner et al. (2015).

Roughly speaking, the PS agent learns the probability
distribution p

(

b | λ, e
)

of executing a behavior b (e.g., a
preparatory behavior) given the observed sensor data λ (e.g.,
a verbal command regarding which skill to execute) in order
to maximize a given reward function r

(

b, λ, e
)

. In this paper,
reward is given if Successσ (b ◦ bσ (e) ) = true, given a command
λ to execute skill σ in the present environment state e. Note that
the state e is never observed directly. Instead, perceptual states
are estimated throughout the skill execution.

In general, the core of the PS agent is the so-called episodic and
compositional memory (ECM; first coined in biology by Tulving,
1972). An exemplary sketch of an ECM is shown in Figure 1. It
stores fragments of experience, so-called clips, and connections
between them. Each clip represents a previous experience, i.e.,
percepts and actions.

The distribution p
(

b | λ, e
)

is updated after a rollout, i.e.,
observing a percept, choosing and executing a behavior according
to p

(

b | λ, e
)

, and receiving reward from the environment.
The distribution p

(

b | λ, e
)

is implicitly specified by assigning
transition probabilities pc→c′ = p

(

c′ | c
)

to all pairs of clips
(

c, c′
)

(in Figure 1 only transitions with probability pc→c′ 6= 0
are visualized). Given a certain percept clip, i.e., a clip without
inbound transitions like clips 1 and 2, the executed behavior
clip, i.e., a clip without outbound transitions like clips 7 and
8, is selected by a random walk through the ECM. A random
walk is done by hopping from clip to clip according to the
respective transition probabilities until a behavior is reached.
Clips are discrete whereas sensor data is typically continuous, e.g.,
voice commands. A domain-specific input coupler distribution
I(cp | λ, e) modeling the probability of observing a discrete
percept clip cp given an observed signal λ is required. The
distribution p

(

b | λ, e
)

is given by a random walk through the

ECM with

p
(

b | λ, e
)

=
∑

cp



I(cp | λ, e)
∑

w∈3(b,cp)

p(b | cp,w)



 (4)

where p(b | cp,w) is the probability of reaching behavior b from
percept cp via the path w =

(

cp = c1, c2, . . . , cK = b
)

. The set
3(b, cp) is the set of all paths from the percept clip cp to the
behavior clip b. The path probability is given by

p(b | cp,w) =

K−1
∏

j=1

p
(

cj+1 | cj
)

(5)

The agent learns by adapting the probabilities pc→c′ according
to the received reward (or punishment) r ∈ R. The transition
probability pc→c′ from a clip c to another clip c′ is specified by the
abstract transition weights h ∈ R+ with

pc→c′ = p
(

c | c′
)

=
hc→c′

∑

ĉ hc→ĉ
(6)

After each rollout, all weights hc→c′ are updated. Let w be a
random walk path with reward r(t) ∈ R at time t. The transition
weights are updated according to

ht+1
c→c′ = max

(

1, htc→c′ + ρ
(

c, c′,w
)

rt
)

(7)

where ρ(c, c′,w) is 1 if the path w contains the transition c → c′

and 0 otherwise. Note that in the case of r ∈ R−, the reward
can be considered as punishment. A punishment only has effect
in case the initial weight hinit is >1 (c.f. Table 1) or if an action
was rewarded previously, but does not yield a successful skill
execution anymore.

In prior work by Melnikov et al. (2018) and Clausen et al.
(2019), PS was compared to RL methods like Q-Learning or
SARSA. The convergence behavior was found to be similar
to these methods. In addition, as PS exhibits parallels to
biological agents by incorporating the idea of an episodic and
compositional memory (ECM), it was demonstrated to be able
to naturally mimic behaviors of real biological agents (c.f. work
by Ried et al., 2019). As in this work we aim for drawing
parallels to biological agents (c.f. Piaget, 1952), we chose PS over
RL approaches like Q-Learning. In particular, Mautner et al.
(2015) describe mechanisms for clip composition/merging and
clip creation which will be used in this work in creating the
environment model and novel behaviors. Additionally, PS allows
us to parsimoniously represent the forward (environment) model
and the control policy model within the same formalism.

6. SKILL LEARNING BY ROBOTIC PLAYING

The following section describes the method for autonomous
skill acquisition by autonomous play introduced by Hangl et al.
(2016) on which this work is based. The sections 8–10 present
extensions that run in parallel and augment autonomous play.
In addition, the contribution of this section is to provide a more
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FIGURE 1 | Exemplary sketch of an episodic and compositional memory (ECM). A random walk always starts at a percept clip (e.g., clip 1, clip 2) and ends with a

behavior clip (e.g., clip 7, clip 8). A transition c → c′ from clip c to clip c′ is done with the probability pc→c′ . Intermediate clips (e.g., clip 3, clip 6) denote simulation of

previous experiences, i.e., behaviors and percepts. The extensions made in this work enable the robot to create transitions between perceptual states on Layer D (i.e.,

active learning) and to add create new preparatory behaviors on Layer E.

solid theoretical formulation of the previous approach described
by Hangl et al. (2016) such that the connection to the method
proposed in this work can be seen.

A new skill is taught to the robot by human-robot interaction.
In the book grasping task (section 1), the human teacher shows
the robot to grasp the book in a situation in which the book has
an optimal orientation, i.e., the spine shows away from the robot
such that the robot can lift the book at the spine in order to get its
fingers under the book. The teaching can be done by kinesthetic
teaching, visual programming or any other robot programming
technique. This behavior is the basic behavior of the skill and
does not work if the book is oriented differently. The robot would
just try to lift the book and would open it instead of lifting it.
Next, the robot uses its sensing behaviors to explore the book in
different states, i.e., the four different orientations. If the human
prepares these different situations, she provides prior knowledge
to the robot about the semantics of the system without having
to know about internals of the robot. This draws a parallel to
infant-adult play in which the adult prepares different interesting
states of the toy for the child. Alternatively, the robot can prepare
different states using its preparatory behaviors, assuming that
the execution of a behavior results in a new state. The robot
gathers information about the object with its sensing behaviors,
e.g., poking, sliding, or pressing. At this point the robot has no
understanding of which sensing behaviors provide the best data
and what the semantics of the states actually is; it has no concept
of the orientation of the book. By running complete loops of
sensing → preparation → basic behavior execution → reward,
the robot learns which sensing behavior and which preparatory
behaviors are most useful. In this example the robot needs to
rotate the book before it applies the basic behavior. This way it
learns how to grasp the book in any arbitrary orientation. After
completion of the learning, the new skill is added the repertoire
of preparatory behaviors. For example, the book grasping skill
might be useful if the robot is asked to place the book on a shelf.

This example showcases an important difference of our notion
of play to traditional reinforcement learning methods. The
human is involved in the learning loop, but only insofar as it
is semantically meaningful. Knowledge about robot internals,

TABLE 1 | List of free parameters and values used.

Parameter Name Values

Skill success reward r(success) 1,000

Skill failure punishment r(failure) −50

Environment model reward renv 10

Skill ECM initial weight hinit 200

Environment model ECM initial weight henvinit 1

Stretching factor α 25

Boredom affinity β {0.1, 0.3, 0.5, 0.8, 1.0}

Boredom base βbase 0.5

Squashing scale γ 0.1

Squashing shift δ 0.95

Balancing factor ǫ 0.1

Maximum composition path length Lmax 4

such as controllers or sensing capabilities is not required. Human
domain knowledge is incorporated into the learning stage in a
way that resembles infant play.

6.1. ECM for Robotic Playing
A skill σ is executed by a random walk through the layered ECM
shown in Figure 2, where each clip corresponds to executing the
corresponding behavior. It consists of the following layers:

1. The input coupler maps user commands stating which skill
to execute to the corresponding skill clip.

2. Skill clips σ represent skills the robot is able to perform. If
the user commands the robot to execute a certain skill (e.g.,
grasping), the corresponding skill clip will be excited. From
there, the skill execution starts by performing a randomwalk
(c.f. section 5.2).

3. Sensing behavior clips s ∈ S correspond to the
execution of sensing behaviors. All skills share the same
sensing behaviors.

4. Perceptual state clips e ∈ Esσ correspond to perceptual states
under the sensing behavior s for the skill σ . Note that the
perceptual states are different for each skill/sensing behavior

Frontiers in Robotics and AI | www.frontiersin.org 7 April 2020 | Volume 7 | Article 42

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hangl et al. Skill Learning by Autonomous Robotic Playing

FIGURE 2 | ECM for autonomous robotic playing. For execution a random walk is performed from layer A to layer E. The transition from layer C to layer D is

performed by executing the corresponding sensing behavior s, measuring the haptic data and using a time series classifier. All other transitions follow Equation (6).

The preparatory behavior b∅ ≡ (void behavior) is always in the set of preparatory behaviors. The dashed box and lines refer to skills used as preparatory behaviors in

order to build skill hierarchies. After preparation, the basic behavior bσ corresponding to the desired skill σ is executed. The active learning approach presented in this

paper enables the robot to perform transitions between clips on layer D. The behavior composition extension helps the robot to add new preparatory behavior

compositions in layer E. The ECM shown in this figure is independent of the environment model and will only be influenced (e.g., by adding new clips) in case the

environment model becomes more mature.

pair (σ , s) and typically do not have the same semantics,
e.g., the states under sensing behavior s ∈ S might identify
the object pose, whereas the states under s′ ∈ S might
denote the object’s concavity. The perceptual states (and
the matching sensor data) are created during the creation
of the haptic database (c.f. section 6.2.1). During database
creation, similar to human play, different situations are
presented and the robot actively explores the object with its
sensing behaviors.

5. Preparatory behavior clips b correspond to behaviors which
can be atomic (solid transitions) or other trained skills
(dashed transitions). Since the basic behavior bσ of a skill
was shown to the robot in one perceptual state, there is at
least one state that does not require preparation. Therefore,
the void behavior b∅, in which no preparation is done, is in
the set of behaviors.

The robot holds the sets of skills {σ =
(

bσ , Successσ
)

}, sensing
behaviors S (e.g., sliding, poking, pressing) and preparatory
behaviors B (e.g., pushing). A skill is executed by performing a
random walk through the ECM and by performing the actions
along the path. The idle robot waits for a skill execution
command λ which is mapped to skill clips in Layer B by coupler
functions, e.g., Ikb and Isp mapping a keyboard input/voice
commands to the desired skill clip σ . A sensing behavior s ∈ S
is chosen and executed according to the transition probabilities
and a sensor data time series M is measured. The perceptual
state e ∈ Esσ is estimated from M. This transition is done

deterministically by a classifier and not randomly as in the steps
before. Given the perceptual state e, the environment is prepared
by executing a behavior b ∈ B. Finally, the basic behavior bσ is
executed. If a basic behavior of a skill requires an object to be
grasped, only the sensing behavior weighing is available in order
to estimate whether an object is grasped. We stress that this is
only a restriction enforced due to practical considerations and is
not required in principle.

6.2. Skill Training
A novel skill σ = (bσ , Successσ ) is trained by providing the
basic behavior bσ for a narrow range of situations, e.g., by hard
coding or learning from demonstration (Atkeson and Schaal,
1997; Lopes et al., 2007; Asfour et al., 2008; Argall et al., 2009;
Konidaris et al., 2011; Kormushev et al., 2011; Hangl et al., 2015).
The domain of applicability is extended by learning:

Problem A: which sensing behavior should be used to estimate
the relevant perceptual state;

Problem B: how to estimate the perceptual state from
haptic data;

Problem C: which preparatory behavior helps to achieve the
task in a given perceptual state.

The skill ECM (Figure 2) is initialized in a meaningful way
(sections 6.2.1, 6.2.2) and afterwards refined by executing the
skills and collecting rewards, i.e., autonomous play.
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6.2.1. Haptic Database Creation
In a first step, the robot creates a haptic database by exploring
how different perceptual states “feel,” (c.f. problem 6.2). It
performs all sensing behaviors s ∈ S several times in all
perceptual states es, acquires the sensor data M and stores the
sets {(es, s, {M})}. With this database the distribution p(e |M, s, σ )
(section 5.1) can be approximated and a perceptual state classifier
is trained. The haptic database size scales with the number of
sensing behaviors and perceptual states. However, experience
fromHangl et al. (2016) has shown that a small number of sensing
behaviors is sufficient to measure the relevant states of a wide
range of tasks. Moreover, many tasks can be solved with a small
number of perceptual states.

There are two ways of preparing different perceptual states.
Either the supervisor prepares the different states (e.g., all four
book poses) or the robot is provided with information on how
to prepare them autonomously (e.g., rotate by 90◦ produces all
poses). In the latter case the robot assumes that after execution
of the behavior a new perceptual state e′ is present and adds it to
the haptic database. This illustrates three important assumptions:
The state es ∈ Esσ is invariant under the sensing behavior s ∈ S
(e.g., the book’s orientation remains the same irrespective of how
often sliding is executed) but not under preparatory behaviors
b ∈ B (e.g., the book’s orientation changes by using the rotate
90◦ behavior), which yields

es
s
−→ es (8)

es
b
−→ e′s (9)

Further es is only invariant to the sensing behavior s but not
necessarily to any other sensing behavior (e.g., sliding softly along
a tower made of cups does not change the position of the cups
whereas poking from the side may cause the tower to collapse):

es
s
−→ es

s
−→ . . .

s
−→ es

s′
−→ es

′ s
−→ e′s (10)

6.2.2. ECM Initialization
The ECM in Figure 2 is initialized with the uniform transition
weights hinit except for the weights between layers B and C.
These weights are initialized such that the agent prefers sensing
behaviors s ∈ S that can discriminate well-between their
environment states es ∈ Esσ . After the generation of the haptic
database the robot performs cross-validation for the perceptual
state classifier of each sensing action s ∈ S and computes the
average success rate rs. A discrimination score Ds is computed by

Ds = exp (αrs) (11)

with the free parameter α called stretching factor. The higher the
discrimination score, the better the sensing action can classify
the corresponding perceptual states. Therefore, sensing behaviors
with a high discrimination score should be preferred over sensing
behaviors with a lower score. The transition weights between all

pairs of the skill clip σ and the sensing behavior clips s ∈ S,
i.e., the connections between layers B and C, are initialized with
hσ→s = Ds. This initialization biases the ECM to prefer sensing
behaviors which can differentiate well-between perceptual states.
In case uniform weights are used learning will converge slower.
Due to the semantically meaningful perceptual states, weights
between other layers (e.g., between the perceptual state layer and
the preparatory behavior layer) could be initialized if a teacher
provides initial guesses for useful preparatory behaviors or by
observing actions of other agents. However, in this work we focus
on learning these weights by autonomous play. We use a C-
SVM classifier implemented in LibSVM (Chang and Lin, 2011)
for state estimation.

6.2.3. Extending the Domain of Applicability
The domain of applicability of a skill σ is extended by running
the PS as described in section 5.2 on the ECM in Figure 2.
The robot collects reward after each rollout and updates
the transition probabilities accordingly. Skills are added as
preparatory behaviors of other skills as soon as they are well-
trained, i.e., the average reward r̄ over the last tthresh rollouts
reaches a threshold r̄ ≥ rthresh. This enables the robot to create
increasingly complex skill hierarchies. The complete training
procedure of a skill σ is shown in Figure 3. Only the non-shaded
parts and solid transitions are available in this basic version.

A key aspect of our method is the analogy to human play.
The main idea is that a human teacher plays with the robot in
a sense that she is interacting with it while the robot explores the
object and the given task. The following stages in Figure 3 require
interaction with the human teacher:

• Provide new basic behavior bσ : The human teacher provides a
simple skeleton of how to solve a skill in a specific situation.
This can be done by simple kinesthetic teaching (by non-
experts), by providing sophisticated state-of-the-art learning
methods or by simple hard-coding [e.g., with the simple visual
programming language by Hangl et al. (2017)].

• Create haptic database: The human teacher selects the objects
used by the robot to learn the skill. The teacher also
provides the robot with different, semantically-meaningful
perceptual states, allowing the robot to explore the task in
diverse situations. Moreover, certain situations may have to
be provided several times if the robot destroys the perceptual
states or is not able to reproduce them by itself. We stress
the parallel to early-stage human play where a teacher selects
objects and guides the infant by preparing situations that may
be helpful in learning.

• Collect reward and update ECM: The robot requires rewards
in order to update the ECM probabilities after it has executed
a certain sequence of behaviors. The reward is provided by
the teacher.

In this way, teaching can be done by non-experts without
particular robotics knowledge by a simple way of interacting
with the robot. The teacher does not have access to internals of
the robot (sensors, actuators) but provides input to the robot
in a simple manner while the robot will use its own repertoire
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FIGURE 3 | Flow chart of the skill training procedure. A novel skill is trained by showing a new basic behavior. The robot extends the domain of applicability by playing

the object, i.e., by performing a random walk through the network shown in Figure 2. The solid lines indicate the behavior of the basic approach (Hangl et al., 2016).

The shaded areas and dashed lines show the proposed extensions, i.e., training of an environment model, boredom, and composite behavior generation.

of (sensing and preparatory) behaviors and previously-trained
skills, including the internal sensing used by these behaviors.

7. PROPERTIES AND EXTENSIONS

An important property of our methods is that state-of-the-art
research on object manipulation can be embedded by adding
the controllers to the set of behaviors. Algorithms for specific
problems (e.g., grasping, pushing by Whitney, 1987; Li, 1997;
Omrcen et al., 2009;Mülling et al., 2013; Krivic et al., 2016) can be
re-used in a bigger framework that orchestrates their interaction.

Hangl et al. (2016) have shown that typical scenarios can be
done by using a small number of sensing behaviors/perceptual
states/preparatory behaviors (e.g., 4/4–10/5–10). This enables
the robot to learn skills without an environment model.
Further, the robot still learns fast while preserving the ability
to learn quite complex skills autonomously. However, the lack
of an environment model can be both an advantage and a
disadvantage. Testing a hypothesis directly on the environment
enables the robot to apply behaviors outside of the intended
context [e.g., a book flipping behavior might be used to open
a box (Hangl et al., 2016)]. This is hard to achieve with
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model-based approaches if the modeled domain of a behavior
cannot properly represent the relevant information. On the
other hand, the lack of reasoning abilities limits the learning
speed and the complexity of solvable problems. We overcome
this problem by additionally learning an environment model
from information acquired during playing. The robot learns
a distribution of the effects of behaviors on given perceptual
states by re-estimating the state after execution. We use the
environment model for two purposes: active learning and
compositional generation of novel preparatory behaviors.

The basic version intrinsically assumes that all required
preparatory behaviors are available. This constitutes a strong
prior and limits the degree of autonomy. We weaken this
requirement by allowing the robot to generate potentially useful
combinations of behaviors. These are made available for the
playing system which tries them out. Further, experiments will
show that the overall learning speed is decreased by performing
rollouts in situations that were already solved before. This is
because the rollout could be spent on situations where there
is still something to learn. We use the environment model to
implement active learning. Instead of asking a supervisor to
prepare interesting situations, the robot prepares them by itself.

8. LEARNING AN ENVIRONMENT MODEL

The environment model predicts the effect, i.e., the resulting
perceptual state, of a behavior on a given perceptual state. An
environmentmodel is the probability distribution p

(

e′s | es, b, σ
)

where es, e′s ∈ Esσ are perceptual states of the sensing behavior
s ∈ S for a skill σ , and b ∈ B is a behavior. It denotes the

probability of the transition es
b
−→ e′s. The required training data

is acquired by re-executing the sensing behavior s after applying
the behavior b, c.f. shaded center part in Figure 3. Given a playing

sequence σ
s
−→ es

b
−→ e′s (c.f. Figure 3) the effect can be observed

by re-executing s with

σ
s
−→ es

b
−→ e′s

s
−→ e′s (12)

The assumptions in Equations (8)–(9) forbid to additionally
execute other sensing behaviors s′ ∈ S without influencing the
playing based method. This limitation prevents the robot from
learning more complex environment models as done in related
work by Barto et al. (2004), Stoytchev and Arkin (2004), Oudeyer
et al. (2007), Schembri et al. (2007), Baranes and Oudeyer (2009),
and Ugur and Piater (2016), e.g., capturing transitions between
perceptual states of different sensing behaviors. However, the
purpose of the environment model is not to perform precise
plans but to feed the core model-free playing component with
suggestions for new behaviors to try out.

We represent the distribution p
(

e′s | es, b, σ
)

by another
ECM for each skill—sensing behavior pair (σ , s). The percept
clips consist of pairs

(

es, b
)

of perceptual states es ∈ Esσ and
preparatory behaviors b ∈ B. The target clips are the possible
resulting states e′s ∈ Esσ . The environment model is initialized
with uniform weights henv

(es ,b)→e′s
= 1. When a skill σ is executed

using the path in Equation (12), a reward of renv ∈ R+ is given
for the transition

(

es, b
)

→ e′s (13)

and the weights are updated accordingly (c.f. Equation 7). When
a novel preparatory behavior bK+1 is available for playing, e.g.,
a skill is well-trained and is added as a preparatory behavior, it
is included into the environment models for each skill-sensing
behavior pair (σ , s) by adding clips (es, bK+1) for all states e

s ∈ Esσ
and by connecting them to all e′s ∈ Esσ with the uniform initial
weight henvinit = 1.

9. AUTONOMOUS ACTIVE LEARNING

In the basic version an optimal selection of observed perceptual
states is required in order to learn the correct behavior in
all possible states, i.e., in a semi-supervised setting a human
supervisor should mainly prepare unsolved perceptual states.
This would require the supervisor to have knowledge about the
method itself and about the semantics of perceptual states, which
is an undesirable property. Instead, we propose to equip the robot
with the ability to reject perceptual states in which the skill is well-
trained already. In an autonomous setting, this is not sufficient
as it would just stall the playing. The robot has to prepare a
more interesting state autonomously. We propose to plan state
transitions by using the environment model in order to reach
states which (i) are interesting and (ii) can be prepared with high
confidence. We can draw a loose connection to human behavior.
In that spirit, we call the rejection of well-known states boredom.

9.1. Boredom
The robot may be bored in a given perceptual state, if it is
confident about the task solution, i.e., if the distribution of which
preparatory behavior to select is highly concentrated. In general,
every function reflecting uncertainty can be used. We use the
normalized Shannon entropy to measure the confidence in a
perceptual state e ∈ Esσ , given by

Ĥe =
H

(

b | e
)

Hmax
= −

∑

b′∈B p
(

b = b′ | e
)

log2 p
(

b = b′ | e
)

log2 J
(14)

where J is the number of preparatory behaviors. If the entropy
is high, the robot either has not learned anything yet (and
therefore all the transition weights are close to uniform) or
it observes the degenerate case that all preparatory behaviors
deliver (un)successful execution (in which case there is nothing
to learn at all). If the entropy is low, few transitions are strong,
i.e., the robot knows well how to handle this situation. We use
the normalized entropy to define the probability of being bored
in a state e ∈ Esσ with

p
(

bored = true | e
)

= min
(

β

(

1− Ĥe

)

+ βbase, 1.0
)

(15)

The constant β ∈ [0, 1] defines how affine the agent is to
boredom and βbase provides a boredom base. The robot samples
according to p

(

bored | e
)

and decides on whether to refuse
the execution.
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9.2. Transition Confidence
If the robot is bored in a perceptual state e′ ∈ Esσ , it autonomously
tries to prepare a more interesting state ê ∈ Esσ . This requires
the notion of a transition confidence for which the environment
model can be used. We aim to select behaviors conservatively
which allows the robot to be certain about the effect of the
transition. We do not use the probability of reaching one
state from another directly, but use a measure considering the
complete distribution p(e | e′, b). By minimizing the normalized
Shannon entropy, we favor deterministic transitions. For each
state-action pair (e′, b) we define the transition confidence
νs
e′b

by

νse′b = 1−
H

(

e | (e′, b)
)

Hmax
= 1−

H
(

e | (e′, b)
)

log2 Lσ ,s
(16)

where e′ ∈ Esσ , b ∈ B, and Lσ ,s is the number of perceptual states
under the sensing behavior s ∈ S, i. e. the number of children
of the clip

(

e′, b
)

. In contrast to the entropy computed in section
9.1, the transition confidence is computed on the environment
model. The successor function su(e, b) returns the most likely
resulting outcome of executing behavior b in a perceptual state
e ∈ Esσ and is defined by

su(e, b) = argmax
e′

p(e,b)→e′ (17)

In practice, single state transitions are not sufficient. For paths

e = es1
b1
−→ es2 = su(es1, b1)

b2
−→ . . .

bL−1
−−→ su(esnL−1

, bL−1) = esL =

e′ of length L we define the transition confidence with

νseb =

L−1
∏

l=1

νselbl
(18)

where the vector b =
(

b1, b2, . . . , bL−1

)

denotes the sequence of
behaviors. This is equivalent to a greedy policy, which provides
a more conservative estimate of the transition confidence and
eliminates consideration of transitions that could occur by
pure chance. A positive side effect is the efficient computation
of Equation (18). Only the confidence of the most likely
path is computed instead of iterating over all possible paths.
The path b is a behavior itself and the successor is given
by su(e, b) = su(esnL−1

, bL−1).

9.3. Active Learning
If the robot encounters a boring state e ∈ Esσ , the goal is to
prepare the most interesting state that can actually be produced.
We maximize the desirability function given by

(b, L) = argmax
b,L

[

Ĥsu(e,b)νeb +
ǫ

cost (b)

]

(19)

where Ĥsu(e,b) is the entropy of the expected final state and
νeb is the confidence of reaching the final state by the path b.
The balancing factor ǫ defines the relative importance of the
desirability and the path cost. The path cost cost (b) can be
defined by the length of the path L, i.e., penalizing long paths,

or, for instance, by the average execution time of b. Equation (19)
balances between searching for an interesting state while making
sure that it is reachable. In practice it can be optimized by
enumerating all paths of reasonable length, e.g., L < Lmax, with
typical values of Lmax ≤ 4.

The basic method is extended by sampling from the boredom
distribution after the state estimation. If the robot is bored, it
optimizes the desirability function and executes the transition
to a more interesting state if it is more interesting than the
current one. This is followed by restarting the skill execution with
boredom turned off in order to avoid boredom loops (c.f. right
shaded box in Figure 3).

10. COMPOSITE BEHAVIOR GENERATION

In many cases, the required preparatory behavior is a
combination of other available behaviors, e.g., rotate 180◦ ≡

rotate 90◦ + rotate 90◦. Without using some sort of intelligent
reasoning, the space of concatenated behaviors explodes and
becomes intractable. However, any sequence of behaviors that
transfers the current unsolved state to a target state, i.e., a state
in which the solution is already known, is potentially useful
as a compound behavior itself. Sequences can be generated by
planning transitions to target states. If the robot is bored, it
uses active learning, if not, the situation is not solved yet and
novel compound behaviors might be useful. A perceptual state
etarget ∈ Esσ is a target state if the strongest connection to a
child clip btarget in the playing ECM (Figure 2) exceeds a certain

threshold. If there exists a path es
b̄
−→ etarget from the current

perceptual state es ∈ Esσ to a target state etarget, the sequence

b =
(

b̄, su(etarget)
)

=
(

b1, . . . , bL, su(etarget)
)

is a candidate for a
novel behavior. The robot is “curious” about trying out the novel
compound behavior b, if the transition confidence νesb and the
probability petarget→btarget of the state actually being a real target
state are both high. This is measured by the curiosity score of the
compound behavior given by

cu(es, b) = νesb̄ petarget→btarget (20)

The factor petarget→btarget reduces the score in case etarget is a target
state with low probability. This can happen if in previous rollouts
all other behaviors were executed and were punished. We use
a probability instead of a confidence value to allow behavior
composition even in early stages where a target state was not
identified with a high probability.

The compound behavior b with the highest score is added as
novel behavior bJ+1 with the probability given by squashing the
curiosity score into the interval [0, 1] with

padd
(

bJ+1, e
s
)

= sig
[

γ cu
(

es, b
)

+ δ
]

(21)

where sig is the logistic sigmoid. The parameters γ , δ define how
conservatively novel behavior proposals are created. The novel
behavior bJ+1 is added as preparatory behavior for all perceptual
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states under the current skill σ with the weights

he→bJ+1
=

{

hinit [1+ cu (es, b)] if e = es

hinit otherwise
(22)

It is added with at least the initial weight hinit, but increased
proportional to the curiosity score for the current perceptual state
es ∈ Esσ (c.f. Figure 4A). The novel behavior is also inserted to
the environment model of all sensing behaviors s ∈ S. For each
perceptual state e ∈ Esσ , a clip (e, b) is added and connected to the
clips e′ ∈ Esσ in second layer with the weights

h(e,b)→e′ =

{

hmin

(

b
)

if e = es, e′ = su(es, b), b = bJ+1

henvinit otherwise
(23)

where hmin

(

bJ+1

)

= hmin (b) is the minimum transition value
on the path b through the environment model, following the idea
that a chain is only as strong as its weakest link. The weights of all
other transitions are set to the initial weight henvinit (c.f. Figure 4B).

11. EXPERIMENTS

We evaluate our method using a mix of simulated and real-
world experiments. Our real-world experiments cover a wide
range of skills to show the expressive power. We show how skill
hierarchies are created within our framework. Success statistics
of the single components (sensing accuracy, success rate of
preparatory behaviors, success rate of basic behaviors) were used
to assess the convergence behavior by simulation. Table 1 lists
the used parameter values. We execute all skills and behaviors
in impedance mode in order to prevent damage to the robot.
Further, executed behaviors are stopped if a maximum force is
exceeded. This is a key aspect for model-free playing, which
enables the robot to try out arbitrary behaviors in arbitrary tasks.

11.1. Experimental Setup
The robot setting is shown in Figure 5. For object detection
a Kinect mounted above the robot is used. All required
components and behaviors are implemented with the kukadu
robotics framework1. The perceptual states are estimated from
joint positions, Cartesian end-effector positions, joint forces and
Cartesian end-effector forces/torques. Objects are localized by
removing the table surface from the point cloud and fitting
a box by using PCL. Four controllers implement the available
preparatory behaviors:

• Void behavior: The robot does nothing.
• Rotation: The object is rotated by a circular finger movement

around the object’s center. The controller can be parameterized
with the approximate rotation angle. The rotation behaviors
incorporate vision feedback loops in order to achieve a success
rate close to 100% with the used objects.

• Flip: The object is squeezed between the hands and one hand
performs a circle with the radius of the object in the XZ-plane
which yields a vertical rotation.

1https://github.com/shangl/kukadu

• Simple grasping: The gripper is positioned on top of the object
and the fingers are closed.

The haptic database consists of at least 10 samples per perceptual
state. Before sensing, the object is pushed back to a position in
front of the robot. We use four sensing behaviors:

• No Sensing: Some tasks do not require any prior sensing and
have only one state. The discrimination score is computed with
a success rate of rs = 0.5 (c.f. Equation 11).

• Slide: A finger is placed in front of the object. The object is
pushed toward the finger with the second hand until contact
or until the hands get too close to each other (safety reasons).
Sensing is done by bending the finger.

• Press: The object is pushed with one hand toward the second
hand until the force exceeds a certain threshold.

• Poke: The object is poked from the top with a finger.
• Weigh: Checks a successful grasp by measuring the z-

component of the Cartesian force. The perceptual states are
fixed, i.e., not grasped/grasped.

For all skills described below, there was at least one sensing
behavior that yielded an average success rate rs of at least 95%.

All described behaviors were optimized for maximum success
rate instead of high execution speed. This is also possible as a key
concept of our method is that sub-behaviors can be arbitrarily
complex while hiding all complexity to the outside. In addition,
the basic behaviors only have to work on a narrow range of
situations, which makes it much easier to implement these with
a high success rate. Objects are always pushed back in front of
the robot after executing a behavior in order to increase success
rate and reduce complexity in the behavior controllers. Sensing
behaviors typically required an execution time of about 2 min,
the execution of the previously described preparatory behaviors
took between 1 and 6 min (c.f. videos2,3). The execution time of
basic behaviors ranged from 1 to 3 min. A complete randomwalk
through the skill ECM took between 4 and 11 min. Typical skill
training required around 6 h, however, the training time could be
significantly improved by optimizing for more execution speed.

11.2. Real-World Tasks
We demonstrate the generality of our method in several
scenarios. Each skill can use the described preparatory behaviors,
and additionally, the skills trained before. A skill is considered
to be trained successfully, if the success rate over a sliding
window is >0.9. If not stated otherwise, all basic behaviors are
dynamic movement primitives (DMPs) (Schaal, 2006) trained
by kinesthetic teaching. A video of the trained skills including
a visualization of the generated skill hierarchies can be viewed
online and is included in the Supplementary Material of this
paper2. Note that only the skills and behaviors with non-zero
probabilities are shown in the hierarchies. The training of skills
does not look different to the training in the basic method except
for the additional execution sensing behavior after the performed
preparation3. Some skills were already implemented with the
original approach by Hangl et al. (2016), in which a citation is

2https://www.youtube.com/watch?v=8G-vqAWtRCE
3https://iis.uibk.ac.at/public/shangl/iros2016/iros.mpg
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FIGURE 4 | Insertion of the novel compound behavior bJ+1 = b, generated in the current perceptual state es ∈ Esσ , to the playing ECM of skill σ (left) (c.f. Figure 2),

and the environment models of the used sensing behavior s ∈ S (right), respectively. (A) The behavior bJ+1 is added as child clip to all perceptual states except for the

current state es with the initial weight hinit (dashed lines). In this case it is added with a higher weight proportional to the curiosity score (solid line) (c.f. Equation 22).

The connections to all other preparatory behaviors are omitted in this figure. (B) All pairs (e,bJ+1) of perceptual states e ∈ Esσ and the behavior bJ+1 = b are added.

The weights are chosen according to Equation (23) (case 1: solid line, case 2: dashed lines). Note that case 1 only applies for the currently used sending action s ∈ S.

FIGURE 5 | Robot setting and used objects. The hardware included a Kinect, two KUKA LWR 4+ and two Schunk SDH grippers. The objects used for the trained

tasks were books of different dimensions and cover types, an IKEA shelf and boxes, and selected objects of the YCB object and model set (Calli et al., 2015).

added. These skills were extended, e.g., by relaxing restrictions
using the novel approach presented in this work.

11.2.1. Simple Placement
The task is to pick an object and place it in an open box on
the table. The basic behavior is a DMP that moves the grasped
object to the box, where the hand is opened. In this case, the
used sensing behavior is weigh (c.f. section 6.1), to determine
whether or not an object is in the hand already. After training
the simple grasp/nothing behavior is used if the object is not
grasped/grasped, respectively.

11.2.2. Book Grasping
The basic behavior grasps a book as described in section 1. The
perceptual states are the four orientations of the book. After
training, the robot identified sliding as a useful sensing behavior
to estimate the book’s rotation. The rotation could be determined
as the 4 different sides had different haptic properties. The skill
is trained with and without using behavior composition. Without
behavior composition, the available preparatory behaviors are the
void behavior, rotate 90◦, rotate 180◦, rotate 270◦, and flip. The
rotation and void behaviors are used for different rotations of the
book. This task was already solvable with the method by Hangl
et al. (2016), but with slower convergence (c.f. section 11.3) and
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FIGURE 6 | Comparison of the results on a book grasping task between the original approach by Hangl et al. (2016) (A) and the novel extension presented in this

work (B). (A) Resulting ECM after training with the original approach by Hangl et al. (2016) on a book grasping task. All required preparatory behaviors have to be

available at the beginning of the training process. As the training is only done model-free, training converges slower (c.f. section 11.3) and no preparatory behaviors

can be generated when needed. The colored edges denote strong connections with high transition probabilities. (B) Exemplary resulting ECM of our novel approach

on a book grasping task. At the beginning of the training process only the behaviors rotate 90, flip and void were available. The behaviors shown in brackets were

created using behavior composition. Note that due to the probabilistic nature of Equation (21) other behvaiors could be created like rotate 90, void, rotate 90. For the

sake of readability, the weak connections were omitted.

TABLE 2 | Number of rollouts required to converge to a success rate of at least

90% for different numbers of additional behaviors Jstable.

J Jstable Nno_ext Nactive Ncomp Nfull Ntrial_error

4/2 1 37 34 49 46 52

9/7 6 87 67 113 101 117

14/12 11 137 102 177 156 182

19/17 16 189 139 247 215 247

24/22 21 241 176 312 278 312

29/27 26 292 214 390 342 377

The two numbers in the column J denote the different numbers of behaviors for the

settings with and without behavior composition in order to make the two settings equally

expressive. The trial and error baseline could not solve the problem in the composite

generation setting.

with all preparatory behaviors necessarily being present. When
the behaviors rotate 180◦ and rotate 270◦ are removed from the
set of preparatory behaviors, the task is not solvable with the
original method but with the novel extensions presented in this
work. The robot creates these behaviors by composing rotate 90◦

two/three times, respectively. A comparison between the original
approach and the extension with behavior composition is shown
in Figure 6.

11.2.3. Placing Object in a Box
The task is to place an object inside a box that can be closed.
The basic behavior is to grasp an object from a fixed position and
drop it into an open box (c.f. Hangl et al. 2016). The perceptual
states determine whether the box is open or closed. After training,
the robot identifies poke as a good sensing behavior. The flip
behavior is used to open the closed box and the void behavior
is used if the box is open. This showcases a strong advantage of
model-free playing as behaviors can be used beyond their initial
purpose. The flip behavior is implemented to flip an object but
later proves useful to open the box in the box placement task. This
task is an example where the active learning approach does not
increase training speed in all cases, as not all unsolved perceptual

states can be produced from solved ones, e.g., if the closed state is
solved before the open state. The robot is only able to prepare

the transition closed
flip
−→ open. The transition open −→ closed

requires to close the cover, which is not among the available
behaviors. Moreover, behavior composition does not provide any
improvement in this scenario as all required basic behaviors are
already present.

11.2.4. Complex Grasping
The task is to grasp objects of different sizes. We use the void
behavior as the skill’s basic behavior. This causes the robot to
combine behaviors without additional input from the outside.
The perceptual states correspond to small and big objects. As

sensing behavior, sliding (r
sliding
s ≈ 1.0) is used for estimating the

object size for complex grasping instead of the expected pressing

(r
pressing
s ≈ 0.9) from which the object size could be derived from

the distance between the hands. The high success rate of sliding
is unexpected and is an artifact of the measurement process. The
object is pushed toward the second hand until the hands get too
close to each other. For small objects, the pushing stops before
the finger touches the object. This produces always the same
sensor data for small objects, which makes it easy to distinguish
small from big objects. It further demonstrates the strength of our
model-free approach as the exact semantics of the measurement
is not required.

The simple grasp/book grasping behavior is used for small/big
objects, respectively. We emphasize that the teaching of novel
skills does not necessarily have to follow the typical sequence
of sensing → preparation → basic behavior, e.g., in complex
grasping (no basic behavior) and shelf alignment (no sensing).
In the complex grasping task the basic behavior is the void
behavior, which causes the robot to coordinate different grasping
procedures for small and big objects.

11.2.5. Shelf Placement
The task is to place an object in a shelving bay, which is executed
using a DMP. The robot uses the weigh sensing behavior to
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determine whether or not an object is already grasped. The
complex grasp skill/void behavior is used if the object is not
grasped/grasped, respectively. Note that training of this skill can
result in a local maximum, e.g., by choosing the behaviors simple
grasp or book grasp, in particular if the reward is chosen too high.
In case the robot trained the skill with a small object, the robot
might learn to use the simple grasp behavior to pick up the object
and therefore is not able to place bigger objects like books on the

shelf. However, this can be unlearned by letting the robot play
with a bigger object, which will cause the robot to forget to use
the simple grasp behavior through punishment and to use the
complex grasp behavior instead.

11.2.6. Shelf Alignment
The task is to push an object on a shelf toward the wall to
make space for more objects. The basic behavior is a DMP

FIGURE 7 | Evolution of the simulated success rates over the number of rollouts for different numbers of preparatory behaviors. For each curve from left to right, five

behaviors are added. The red horizontal lines denote an average success rate of 90%. The total number of behaviors is given by J = Jchanging + Jstable, where Jchanging
denotes the number behaviors that change the perceptual state and Jstable denotes the number of behaviors that leave the perceptual state unchanged. Without

behavior composition we chose Jchanging = 4 so that the target state can be reached from every state. With behavior composition we chose Jchanging = 2 (one

behavior to hop to the next state and the void behavior) which makes both settings equally expressive. Note that the setting with behavior composition is significantly

harder as not all required preparatory behaviors are available to the robot. To robustly estimate the point of convergence, a sigmoid model of the form

sig [c1 − c2x]+ c3 (plotted in black) was fit for the interval [xconv − 1x, xconv + 1x] of each curve. xconv is the first point for which the average success rate surpasses

0.9 and 1x is 25% of the total length of the curve. (A) Without active learning and behavior composition (original method). (B) With active learning (β = 1.0) and

without behavior composition. (C) Without active learning and with behavior composition. (D) With active learning (β = 1.0) and behavior composition.
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moving the hand from the left end of the shelve bay to the right
end until a certain force is exceeded. As there is no object in
front of the robot, all sensing actions except no sensing fail. The
sensing behavior with the strongest discrimination score is no
sensing with only one perceptual state and shelf placement as
preparatory behavior.

11.2.7. Tower Disassembly
The task is to disassemble a stack of up to three boxes. The basic
behavior is the void behavior. The perceptual states correspond
to the number of boxes in the tower. Reward is given in case
the tower is completely disassembled. After training, the sensing
behavior used is poking to estimate four different states, i.e.,

height h ∈ {0, 1, 2, 3}, as a different height of a tower results in
different joint/Cartesian positions. The tower cannot be removed
with any single available preparatory behavior and therefore
the task is not solvable with our original approach. Instead,
using the behavior composition mechanism, the robot generates
combinations of simple placement, shelf placement and shelf
alignment of the form given by the expression

simple placement∗ [void | shelf placement | shelf alignment]
(24)

This task can only be solved by using the composite behavior
generation method, as for towers of height h > 1 several
pick-and-place actions are required. The generated behavior

FIGURE 8 | Evolution of the simulated success rates over the number of rollouts for different numbers of preparatory behaviors with different values for the boredom

affinity β parameter. For each curve from left to right, five behaviors are added. The red horizontal lines denote an average success rate of 90%. The selected

parameter values were β ∈ {0.1, 0.3, 0.5, 0.8, 1.0}. The graph for β = 1.0 is shown in Figure 7B. Increase of affinity yields a significant increase of the learning speed

proportional to β. (A) Experiment with boredom affinity β = 0.1. (B) Experiment with boredom affinity β = 0.3. (C) Experiment with boredom affinity β = 0.5.

(D) Experiment with boredom affinity β = 0.8.
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compositions of the form given in Equation (24) contain the
skills shelf placement and shelf alignment only at the end of
the sequence. The reason is that these skills can only remove
a box in a controlled way if only one box is left, i.e., h = 1.
Higher towers are collapsed because of the complex grasping skill,
which is used by shelf placement. It uses sliding to estimate the
object’s size and therefore pushes the tower around. Moreover,
the resulting behavior sequence depends on the individual history
of the robot. For example, the sequences (simple placement,
simple placement, simple placement) and (shelf placement, simple
placement, simple placement) both yield success for h = 3. The
autonomy of our approach can also be reduced in such a scenario,
as several behaviors destroy the tower and require a human to
prepare it again. This requires a human in the playing loop,
in particular if the required states cannot be prepared by the
robot itself.

11.3. Simulated Skill Learning
In order to evaluate the effect of active learning and
behavior composition on the convergence behavior, a large
number of agents have to be trained (data can be found in
Supplementary Material). We achieve this by simulating general
skills that use the experience on the success rates of the used
sub-behaviors (95%) gathered during the real-world experiments.
As real-world experiments show, typically there is one sensing
behavior s that enables the robot to estimate a useful aspect

of the environment. For this sensing behavior, we emulate the
environment by adding Jchanging preparatory behaviors bi that
change the environment with

ej
bi
−→ e(j+i)%Ls (25)

where ej, e(j+i)%Ls are perceptual states of the sensing behavior
s, and Ls is the number of perceptual states of s. For all
other sensing behaviors, we assume that the perceptual state
cannot be estimated reliably and therefore the outcome of any
preparatory behavior is random. For the failure cases, i.e., 5%
of the preparatory behavior executions, we simulate a random
resulting perceptual state. In order to assess the worst-case
convergence behavior, we add Jstable preparatory behaviors that
do not change the perceptual state. This is the worst case, as
our active learning/behavior composition system cannot use
such behaviors to generate different perceptual states. The total
number of preparatory behaviors is J = Jchanging + Jstable. We
choose one perceptual state e0 as state that will be rewarded,
i.e., if a preparatory behavior leads to the state e0, the skill
execution will be rewarded. The success rate is simulated and
averaged for N = 5, 000 robots for different numbers of
preparatory behaviors.

Note that most of the environments of the real-world
experiments shown in section 11.2 can be formulated as systems
that follow a similar behavior. For example the dominant sensing

FIGURE 9 | Comparison of the convergence of the success rates between the original method and the extensions. The two curves with behavior composition solve

a harder problem in which not all preparatory behaviors are available at the beginning. A linear fit kix + di was performed for all these curves (not shown) with the

coefficients (k1,d1) = (10, 36) (no active learning, no behavior composition), (k2,d2) = (7, 31) (with active learning, no behavior composition), (k3,d3) = (13, 46) (no

active learning, with behavior composition), and (k4,d4) = (12, 40) (with active learning, with behavior composition).
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behavior in the book grasping scenario (c.f. Figure 6B) is the
sliding behavior. The rotate 90◦ behavior performs a transition
between neighboring perceptual states. We therefore emphasize
the generality of the simulated experiments.

The number of rollouts required to reach a success rate of
at least 90% is given in Table 2 for an increasing number of
behaviors J and different variants of our method (Nno_ext ≡

no active learning/no behavior composition ≡ basic approach
by Hangl et al. (2016), Nactive ≡ active learning/no behavior
composition, Ncomp ≡ no active learning/behavior composition,
Nfull ≡ active learning/behavior composition, Ntrial_error ≡

TABLE 3 | Pairwise t-test results for the convergences derived from the

experiments shown in Figure 8.

β1 = 0.1 β2 = 0.3 β3 = 0.5 β4 = 0.8 β5 = 1.0

β1 = 0.1 0.00 0.69 0.85 0.96 1.00

β2 = 0.3 0.69 0.00 0.54 0.92 0.96

β3 = 0.5 0.85 0.54 0.00 0.65 0.96

β4 = 0.8 0.96 0.92 0.65 0.00 0.46

β5 = 1.0 1.00 0.96 0.96 0.46 0.00

For each pair of convergences matching by number of behaviors J ∈ [2, 29] between

experiments with different values β, a t-test was performed. This table shows the fraction

of points for which the improvement was statistically significant (significance level of

0.05). The analysis shows that the improvement becomes more significant the higher

the difference 1β = βj − βi is.

baseline). As baseline we use a trial-and-error policy in which
every combination of perceptual states and behaviors is tried out
only once, with Ntrial_error = 3 × 4 × J + J (3 sensing behaviors
with 4 states, 1 sensing behavior, i.e., no sensing with only one
state). In general, our method converges faster than the baseline
by reducing the space strongly and ignoring irrelevant parts of the
ECM. Further, the baseline method would not yield convergence
in a scenario with possible execution failures as each combination
is executed only once. The baseline approach also cannot solve
the task in the setting with a reduced number of behaviors.

The two versions without behavior composition, i.e., without
and with active learning, show continuous increase of the success
rate in Figures 7A,B. If the robot is bored, situations with a
low information gain are rejected. Therefore, the version with
active learning is expected to converge faster. Figure 9 shows the
number of required rollouts to reach a success rate of 90% for
each of the four variants in Figure 7. The number of required
rollouts is proportional to the number of available preparatory
behaviors. We apply a linear fit and gain an asymptotic speed-up

of sp = 1 − limx→∞
k1x+d1
k2x+d2

= 1 − k1
k2

≈ 30% for the variant

with active learning with the most optimal boredom affinity
β = 1.0 compared to the variant without extension. By using
more conservative values for the boredom affinity, the speed-up
decreases as shown in Figure 8. Statistical analysis was performed
to demonstrate the significance of the effect (c.f. Table 3).

Active learning can also be combined together with behavior
composition, in which the speed-up reaches sp = 8%

FIGURE 10 | Success rates without active learning and without behavior composition in a setting that requires behavior composition, i.e., not all preparatory

behaviors required to solve the task are available. In this case, the void behavior and the behavior to transition to the neighboring perceptual state are available. This

enables the agent to solve the task for two out of four perceptual states.
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(c.f. Figures 7C,D). As both mechanisms, active learning and
behavior composition, exploit the same model, the reduced
speed-up can be expected. As soon as the environment model is
mature enough to plan trajectories through the perceptual state
space, it can likely be used to generate behaviors that solve the
task in given states.

In the scenario with activated behavior composition the
convergence behavior is different (c.f. Figures 7C,D). It is
important to note that in this scenario not all preparatory
behaviors required to solve the task were available initially, as
the robot is only provided with a behavior to state at the current
state (void behavior) and a behavior that allows it to jump from
the current perceptual state to the next neighbor state. The
success rate exhibits a slow start followed by a fast increase and
a slow convergence toward 100%. The slow start is due to the
perceptual states that would require themissing behaviors. At this
point the robot cannot generate these behaviors using behavior
composition due to initially untrained environment models.
This causes the success rate to reach a preliminary plateau at
around 35%, this is in particular visible for higher numbers of J.
After this initial burn-in phase, the environment model becomes
more mature and behavior proposals are created which causes a
strong increase of the success rate. With the original approach
this tasks is not solvable for all situations as it is shown in
Figure 10.

12. CONCLUSION

We introduced a novel way of combining model-free and
model-based reinforcement learning methods for autonomous
skill acquisition. Our method acquires novel skills that work
for only a narrow range of situations acquired from a human
teacher, e.g., by demonstration. Previously-trained behaviors are
used in a model-free RL setting in order to prepare these
situations from other possibly occurring ones. This enables
the robot to extend the domain of applicability of the novel
skill by playing with the object. We extended the model-free
approach by learning an environment model as a byproduct
of playing. We demonstrated that the environment model can
be used to improve the model-free playing in two scenarios,
i.e., active learning and composite behavior generation. In the
active learning setting the robot has the choice of rejecting
present situations if they are already well-known. It uses the
environment model to autonomously prepare more interesting
situations. Further, the environment model can be used to
propose novel preparatory behaviors by concatenation of known
behaviors. This allows the agent to try out complex behavior
sequences while still preserving the model-free nature of the
original approach.

We evaluated our approach on a KUKA robot by
solving complex manipulation tasks, e.g., complex pick-
and-place operations, involving non-trivial manipulation,
or tower-disassembly. We observed success statistics of
the involved components and simulated the convergence
behavior in increasingly complex domains, i.e., a growing

number of preparatory behaviors. We found that by active
learning the number of required rollouts can be reduced
by ∼30%. We have shown that composite behavior
generation enables the robot to solve tasks that would
not have been solvable otherwise, e.g., complex book
grasping with a reduced number of preparatory behaviors
or tower disassembly.

The work presented in this paper bridges the gap from plain
concatenation of pre-trained behaviors behaviors to simple goal-
directed planning. This can be seen as early developmental stages
of a robot. We believe that a lifelong learning agent has to
go through different stages of development with an increasing
complexity of knowledge and improving reasoning abilities. This
raises the question of how the transition to strong high-level
planning systems could look like.

Our experiments show that the learning time is proportional
to the number of used preparatory behaviors. This makes
it efficient to learn an initial (and potentially strong)
set of skills, but hard to add more skills when there
is a large set of skills available already. Training more
sophisticated models could help to overcome this problem.
Further, in the current system, the composite behavior
generation only allows behavior compositions resulting
from plans within the same environment model, i.e., using
only perceptual states of the same sensing behavior. The
expressive power of our method could be greatly increased
by allowing plans through perceptual states of different
sensing behaviors. This could also involve multiple sensing
behaviors at the same time including passive sensing, such
as vision.
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