
ORIGINAL RESEARCH
published: 16 April 2020

doi: 10.3389/frobt.2020.00047

Frontiers in Robotics and AI | www.frontiersin.org 1 April 2020 | Volume 7 | Article 47

Edited by:

Séverin Lemaignan,

Bristol Robotics Laboratory,

United Kingdom

Reviewed by:

Soheil Keshmiri,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Chenguang Yang,

University of the West of England,

United Kingdom

*Correspondence:

Judith Bütepage

butepage@kth.se

Specialty section:

This article was submitted to

Human-Robot Interaction,

a section of the journal

Frontiers in Robotics and AI

Received: 31 October 2019

Accepted: 17 March 2020

Published: 16 April 2020

Citation:

Bütepage J, Ghadirzadeh A,
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To coordinate actions with an interaction partner requires a constant exchange of

sensorimotor signals. Humans acquire these skills in infancy and early childhood mostly

by imitation learning and active engagement with a skilled partner. They require the ability

to predict and adapt to one’s partner during an interaction. In this work we want to

explore these ideas in a human-robot interaction setting in which a robot is required to

learn interactive tasks from a combination of observational and kinesthetic learning. To

this end, we propose a deep learning framework consisting of a number of components

for (1) human and robot motion embedding, (2) motion prediction of the human partner,

and (3) generation of robot joint trajectories matching the human motion. As long-term

motion prediction methods often suffer from the problem of regression to the mean,

our technical contribution here is a novel probabilistic latent variable model which does

not predict in joint space but in latent space. To test the proposed method, we collect

human-human interaction data and human-robot interaction data of four interactive

tasks “hand-shake,” “hand-wave,” “parachute fist-bump,” and “rocket fist-bump.” We

demonstrate experimentally the importance of predictive and adaptive components as

well as low-level abstractions to successfully learn to imitate human behavior in interactive

social tasks.

Keywords: imitation learning, human-robot interaction, generative models, deep learning, sensorimotor

coordination, variational autoencoders

1. INTRODUCTION

Physical human-robot interaction requires the robot to actively engage in joint action with human
partners. In this work, we are interested in robotic learning of physical human-robot tasks which
require coordinated actions. We take inspiration from psychological and biological research
and investigate how observational and kinesthetic learning can be combined to learn specific
coordinated actions, namely interactive greeting gestures.

In a more general context, coordinated actions between humans can be of functional nature,
such as handing over an object, or of social importance, such as shaking hands as a greeting
gesture. Thus, joint actions encompass any kind of coordination of actions in space and time in
a social context. In general, joint actions require the ability to share representations, to predict
others’ actions and to integrate these predictions into action planning (Sebanz et al., 2006). On a
sensorimotor level coordinated actions require a constant coupling between the partners’ sensory
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and motor channels (Vesper et al., 2017). We aim at making
use of sensorimotor patterns to enable a robot to engage with
a human partner in actions that require a high degree of
coordination such as hand-shaking.

The acquisition of the ability to engage in joint action during
human infancy and early childhood is an active field of research
in psychology (Brownell, 2011). Interaction is mostly learned
in interaction, from observation, active participation, or explicit
teaching. While cultural differences exist, children are commonly
presented with the opportunity to learn through guided
participation in joint action with more experienced interacting
partners (Rogoff et al., 1993). In the robotics community two
prominent techniques to learn actions from others are learning
from demonstration and imitation learning (Billard et al., 2008;
Osa et al., 2018). Learning from demonstration can be seen as a
form of imitation learning. It requires a teacher to intentionally
demonstrate to a learner how an action should be performed.
In a robotic learning scenario, this can imply direct kinesthetic
teaching of trajectories. General imitation learning on the
other hand includes also learners who passively observe an
action and replicate it without supervision. When observing a
human, who often has a different set of degrees of freedom,
the robotic system first needs to acquire a mapping between
embodiments before a motion can be imitated (Alissandrakis
et al., 2007).

In this work, we are interested in teaching a robot to
coordinate with a human in time and space. Therefore,
we require adaptive and predictive models of sensorimotor
patterns such as joint trajectories and motor commands of
interactive tasks. To this end, we develop deep generative
models that represent joint distributions over all relevant
variables over time. The temporal latent variables in these
models encode the underlying dynamics of the task and allow
for a sensorimortor coupling of the human and the robot
partner. As depicted in Figure 1, collecting data by kinesthetic
teaching for human-robot interaction tasks is tedious and
time-consuming. We propose to first model the dynamics of
human-human interaction and subsequently use the learned
representation to guide the robot’s action selection during
human-robot interaction.

Before diving into the theory, in the next section we will
shortly introduce the field of robotic imitation learning and point
out how the general field differs from the requirements needed
for imitation learning for interaction. Finally, we will motivate
our choice of model and explain the basic assumptions of deep
generative models.

2. BACKGROUND

Traditionally, robotic imitation learning is applied to individual
tasks in which the robot has to acquire e.g., motor skills and
models of the environment. Our goal is to extend these ideas to
interactive settings in which a human partner has to participate
in action selection. Thus, we aim at transferring knowledge form
observing human-human interaction (HHI) to human-robot
interaction (HRI).

2.1. Robotic Imitation Learning of
Trajectories
Imitation learning is concerned with acquiring a policy, i.e., a
function that generates the optimal action given an observed
state. While reinforcement learning usually solves this task with
help of active exploration by the learning agent, in imitation
learning the agent is provided with observations of states and
actions from which to learn. These demonstrations can either be
generated in the agent’s own state space, e.g., by tele-operation
(Argall et al., 2009), or in the demonstrators embodiment, e.g.,
a human demonstrating actions for a robot. In this work we
combine these approaches to teach a robot arm trajectories
required for a number of interactive tasks.

Learning trajectory generating policies from demonstration
has been addressed with for example a combination of Gaussian
Mixture Models and Hidden Markov Models (Calinon et al.,
2010), probabilistic flow tubes (Dong and Williams, 2011, 2012),
or probabilistic motion primitives (Maeda et al., 2017b). The
general strategy in this case is to first gather training data
in the form of trajectories and to align these temporally e.g.,
with the help of Dynamic Time Warping (Sakoe and Chiba,
1978). Once the training data has been pre-processed in this
way, the model of choice is trained to predict the trajectory
of robotic motion for a certain task. During employment of
the model, the online trajectory needs to be aligned with
the temporal dynamics of the training samples in order to
generate accurate movements. Depending on the trajectory
representation, e.g., torque commands or Cartesian coordinates,
the model’s predictions might be highly dependent on the
training data. For example, when the task is to learn to grasp an
object at a certain location, the model might not generalize to
grasping the same object at a different location.

This constant need of alignment and reliance on
demonstrations hampers the models to work in a dynamic
environment with varying task demands. For example, if the task
is to shake hands with a human, the number of shaking cycles
and the length of each individual shake can vary from trial to
trial and have to be estimated online instead of being predicted
once prior to the motion onset. These requirements for online
interaction are discussed in more detail below.

2.2. Requirements for Online Interaction
Interaction with humans requires a robotic system to be flexible
and adaptive (Dautenhahn, 2007; Maeda et al., 2017a). To meet
these requirements, the robot needs to be able to anticipate future
human actions and movements (Koppula and Saxena, 2015).
Thus, imitation learning for interaction is different from non-
social imitation learning as it requires to learn a function not only
of one’s own behavior, but also of the partner’s behavior.

These requirements stand therefore in contrast to the
approaches to imitation learning discussed in section 2.1 which
focus on learning a trajectory of a fixed size. Maeda et al.
(2017a) address the problem of adjusting to the speed of the
human’s actions by introducing an additional phase variable. This
variable can be interpreted as an indication of the progress of
the movement of the human to which the robot has to adapt.
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FIGURE 1 | Kinesthetic teaching of a human-robot hand shake. The human partner is wearing a motion capture suit to record joint positions.

However, such an approach is only feasible for interactions which
require little mutual adaptation beyond speed. For example,
during a hand-shake interaction, it is not only important to meet
the partner’s hand at an appropriate time, but also to adjust to the
frequency and height of every up-and-down movement. Thus,
online interaction requires the prediction of the partner’s future
movements in order to adapt to them quickly and a continuous
update of these predictions based on sensory feedback.

An additional requirement for natural human-robot
interaction is to provide precise coordination. We envision a
robot to actively engage in an interaction such that the human
partner does not have to wait with a stretched arm until the robot
reacts and moves its arm to engage in a hand-shake. Making use
of predictive models allows the robot to initiate its movements
before the human has reached the goal location. These models
also provide a basis for collision-free path planning to assure safe
interaction in shared workspaces.

Since humans are involved in the data collection process
and kinesthetic teaching is time consuming and requires expert
knowledge, the amount of training data is restricted. Therefore,
any method used to learn trajectories must be data efficient.
Many modern imitation learning techniques build on ideas from
deep reinforcement learning (Li et al., 2017; Zhang T. et al.,
2018) which is often data intensive. We rely on a model class
which is regularized by its Bayesian foundation and therefore less
prone to overfit to small datasets. This model class of deep latent
variable models has been mostly used to model images. Here, we
take inspiration from earlier work in which we model human
motion trajectories (Bütepage et al., 2018a) and robot actions
(Ghadirzadeh et al., 2017) with help of deep generative models.
We extend the ideas to represent the dynamics of human-robot
interaction in a jointmodel. For those unfamiliar with the ideas of
Variational Autoencoders, we introduce the underlying concept
of this model class below.

2.3. Deep Generative Models and Inference
Networks
In this work, we model human and robotic motion trajectories
with help of Variational Autoencoders (VAEs) (Rezende et al.,
2014; Kingma and Welling, 2015), that is a class of deep
generative models. In contrast to Generative Adversarial
Networks (Goodfellow et al., 2014) and flow-based methods
(Dinh et al., 2017; Kingma and Dhariwal, 2018), VAEs allow us to
define our assumption in terms of a probabilistic, latent variable
model in a principled manner. While we focus on the main

concepts and the mathematical foundations of VAEs, we refer the
reader to Zhang C. et al. (2018) for an in-depth review onmodern
advances in variational inference and VAEs. In the next section,
we will shortly introduce the concepts of variational inference.

2.3.1. Variational Inference
To begin with, we assume that the observed variable, or data
point, x ∈ R

dx depends on latent variables z ∈ R
dz . If

the dataset consists of images, the latent variables or factors z
describe the objects, colors, and decomposition of the image.
If, as we will introduce later, the dataset consists of human
or robot joint movements, the underlying factors describe the
general movement patterns. For example, a waving movement,
in which many joints are involved, can be described by a single
oscillatory latent variable. The dimension of z is smaller than the
dimension of x, i.e., dz < dx, as it is a compressed representation
of the observation. The precise size of the dimension is a
modeling choice.

In general, this model describes a joint distribution over both
variables pθ (x, z) = pθ (x|z)pθ (z) where θ are parameters. This
modeling assumption allows us to generate new observations
with help of the mathematical model instead of employing a
physical system. First, a latent variable is sampled, from a prior
distribution z ∼ pθ (z). For example, to generate a waving arm
movement, we sample where in the oscillation the arm starts and
the initial velocity. Then we sample the actual poses conditioned
on these latent variables. The conditional distribution x ∼

pθ (x|z) encodes the mapping from the latent space to the
observed space. Thus, the generative process looks as follows:

x ∼ pθ (x|z), z ∼ pθ (z). (1)

In order to determine the structure of the latent variables that
were generated on an observed set consisting of n data points
X = {xi}i=1 : n, one requires access to the posterior distribution
pθ (zi|xi) for each data point xi. Often exact inference of this term
is intractable which is why one recedes to approximate inference
techniques such as Monte Carlo sampling and variational
inference (VI). VAEs combine VI for probabilistic models with
the representational power of deep neural networks. VI is an
optimization based inference technique which estimates the
true posterior distribution pθ (Z|X) with a simpler approximate
distribution qφ(Z) where φ are parameters and Z = {zi}i=1 : n

is the set of latent variables corresponding to the data set.
A common approach is the mean-field approximation which
assumes that the latent variables are independent of each other
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qφ(Z) =
∏n

i=1 qφ(zi). As an example, if qφ(zi) follows a Gaussian
distribution, we need to identify a mean µi and variance σi for
every data point qφ(Z) =

∏n
i=1 N (µi, σi). For the entire dataset

(X, Z), the parameters of this distribution are determined by
optimizing the Evidence Lower BOund (ELBO).

log pθ (X) ≥ Eqφ (Z) log
pθ (X, Z)

qφ(Z)

= Eqφ (Z) log pθ (X|Z)− DKL(qφ(Z)||pθ (Z)), (2)

where the Kullback–Leibler divergence DKL(q||p) = Eq log
q
p is a

distance measure between two distributions q and p.
Traditional VI approximates a latent variable distribution

qφ(zi) for every data point i which becomes expensive or
impossible when the number of data points n is large. VAEs
circumvent this problem by learning a direct functional mapping
from the data space to the latent space and vice versa. We will
detail this method in the next section.

2.3.2. Variational Autoencoders
Instead of approximating n sets of parameters, VAEs employ so
called inference networks to learn a functional mapping from
the data space into the latent space. Thus, we define each latent
variable to be determined by a distribution zi ∼ qφ(zi|xi) which is
parameterized by a neural network (the inference network) that
is a function of the data point xi. In the Gaussian case this would
imply that zi ∼ N (µ(xi), σ (xi)), where µ(·) and σ (·) are neural
networks mapping from the data space to the parameter space
of the latent variables. Likewise, the likelihood is represented
by neural network mappings (the generative network) xi ∼

pθ (xi|zi). In this way, VAEs do not estimate n sets of parameters
but only the parameters of the inference and generative network.
These are optimized with help of the ELBO

log pθ (X) ≥ L(X, θ ,φ)

=
1

n

n
∑

i=1

Eqφ (zi|xi) log pθ (xi|zi)− DKL(qφ(zi|xi)||pθ (zi)). (3)

Note that we replaced the expectation in Equation (2) with the
Monte Carlo estimate summing over the individual data points.

3. METHODOLOGY

Following the introduction of VAEs above, we will now detail
how we employ them to learn the sensorimotor patterns required
for interactive tasks. We will begin with a description of human-
human dynamics modeling which is subsequently used to guide
the human-robot interaction model.

3.1. A Generative Model of Interaction
In general we assume that a recording rec consists of
Trec observations xs11 :Trec and xs21 :Trec , where (s1, s2) =

(human1, human2), and xst represents a single frame containing
the joint positions of human s ∈ {s1, s2}. During testing time,
we would like to be able to infer a future window (of size w) of

observations after time t, i.e., we would like to predict xs1t : t+w and
xs2t : t+w. We assume a generative process that looks as follows

xs1t : t+w ∼ pθx (x
s1
t : t+w|z

s1
t ), zs1t ∼ pθz (z

s1
t |dt),

dt ∼ pθs (dt|h
s1
t ), hs1t = fψ (h

s1
t−1, x

s1
t−1) (4)

xs2t : t+w ∼ pθx (x
s2
t : t+w|z

s2
t ), zs2t ∼ pθz (z

s2
t |dt),

dt ∼ pθs (dt|h
s2
t ), hs2t = fψ (h

s2
t−1, x

s2
t−1). (5)

Here, the latent variables zs1t and zs2t for agent s1 and s2 encode
the next time window xs1t : t+w and xs2t : t+w, while hs2t is the
deterministic output of a recurrent model fψ . The role of h

s2
t is

to summarize the information contained in the past observations
t′ < t, which in turn is transformed into the shared task dynamics
dt . From a system perspective, dt is the stochastic output of a
neural network that driven by the hidden state vector hs2t . As
depicted in Figure 2, the dt can be derived from the movement
of either subject independently. These shared dynamics influence
how each partner moves through zs1t and zs2t . In summary, the
generative model for agent s1 represents the joint distribution
pθ (x

s1
t : t+w, z

s1
t , dt|h

s1
t ) conditioned on a deterministic summary of

the past hs1t and parameterized by θ = (θx, θz , θs).
In the following, we will describe how to learn each

of the components for human-human interaction and
subsequently how to transfer this knowledge to a human-robot
interaction scenario.

3.1.1. Motion Embeddings
One problem when it comes to predicting the future is that
there exist many possible ones. When using a mean-squared
error based cost function during training, this will lead the
model to rely on predicting only the average, not many different
trajectories. We will circumvent this problem by first learning a
latent space that encodes the future without knowledge of the past
and then to learn a distribution over the latent variables which is
conditioned on the past [e.g., p(zs1t |dt) in Equation 5]. At each
time step, we assume that there exists latent variables zs1t and zs2t
for agent s1 and s2 which encode the next time window xs1t : t+w
and xs2t : t+w. We assume that both humans are encoded into a
common space, therefore we will replace the superscripts s1 and
s2 with s in the following discussion.

To infer the latent variables efficiently from data, we apply
variational autoencoders (introduced in section 2.3). To this end,
we define the following generative process:

xst : t+w ∼ pθx (x
s
t : t+w|z

s
t),

zst ∼ pθz (z
s
t)

= N (0, 1), and approximate posterior zst ∼ qφz (z
s
t|x

s
t : t+w).(6)

The graphical model is depicted in Figure 3A. The parameters
(θx,φz) of the generative network pθx (x

s
t : t+w|z

s
t) and the inference

network qφz (z
s
t|x

s
t : t+w) are jointly trained on the training data

collected from both humans to optimize the Evidence Lower
BOund (ELBO).

L(xst : t+w, θ ,φ) = Eqφz (z
s
t |x

s
t : t+w)

log pθx (x
s
t : t+w|z

s
t)

−DKL(qφz (z
s
t|x

s
t : t+w)||pθx (z

s
t)). (7)
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FIGURE 2 | The task dynamics dt govern the activity of the latent variables of both partners z
s1
t and z

s2
t . These in turn determine the future movement of the partners

x
s1
t : t+w and x

s2
t : t+w.

3.1.2. Encoding Task Dynamics
Once the motion embeddings have been learned, the whole
generative model in Equation (5), as depicted in Figure 3B, can
be trained. To this end, we need to infer the parameters (θz , θs,ψ)
to estimate pθz (z

s
t|dt), pθs (dt|h

s
t) and fψ (h

s
t−1, x

s
t−1).

The loss function is defined as follows

S(xs1t−1 : t+w, x
s2
t−1 : t+w, θz , θs,ψ)

=
∑

s∈{s1 ,s2}

DKL(pθz (z
s
t|dt)||qφz (z

s
t|x

s
t : t+w))+

JSD(pθs (dt|h
s1
t )||pθs (dt|h

s2
t )). (8)

The first line in Equation (8) forces the distributions over latent
variables zst that depend on the past to be close to the expected
motion embedding at time t. The second line enforces that the
latent variable dt , which encodes the task dynamics are the same
for both agents. As the KL divergence is not symmetric, we
use here the Jensen–Shannon divergence, which is defined as
JSD(p||q) = 1

2 (DKL(p||
1
2 (p + q)) + DKL(q||

1
2 (p + q))) for two

distributions p and q.

3.1.3. Interactive Embodiment Mapping
Once trained, the generative model described above can be used
to generate future trajectories for both agents given that only one
agent has been observed. This is achieved by e.g., predicting the
task dynamics variable dt ∼ pθs (dt|h

s1
t ) with help of data collected

for agent s1 and using this variable to infer both zs1t ∼ pθz (z
s1
t |dt)

and zs2t ∼ pθz (z
s2
t |dt). We will make use of this fact to infer not

only a human partner’s future movement, but also to guide how
a robotic partner should react given the observed human.

As training data acquisition with a robot and a human in
the loop is cumbersome and time consuming, we do not have
access to as much training data of the human-robot interaction
compared to the human-human interaction. Therefore, we will
leverage the task dynamics representation learned from human-
human interaction to guide the robot’s corresponding motion
commands. To this end, we extract the task dynamics distribution
from the human partner for each time step of the human-robot

interaction recordings and learn a mapping to the robot’s motion
commands with a second dynamics model.

In more detail, given a recording rec which consists of Trec

observations xs11 :Trec and xr1 :Trec , where x
r
t represents the robot’s

state at time t, we first collect d1 :Trec which we set to the mean
of the distribution pθs (dt|h

s1
t ) for each time step t. We are now

equipped with a training data set, containing the data point pairs
(xrt : t+w, dt). In order to learn a predictive model from the task
dynamic variable dt to the future motion commands of the robot,
xrt : t+w, we design a similar approach to the model described for
human-human interaction. It includes a Variational Autoencoder
functioning as a motion embedding and a recurrent network
that encodes the robot motion over time. These two models are
depicted in Figures 3C,D, respectively.

3.1.3.1. Interaction model with predictive input
Similar to the human-human setting in Equation (5), the
generative model for the robot motion is as follows

xrt : t+w ∼ pθxr (x
r
t : t+w|z

r
t ), zrt ∼ pθzr (z

r
t |h

r
t ),

hrt = fψr (h
r
t−1, x

r
t−1, dt−1). (9)

Just as in the human-human setting, we first train a motion
embedding VAE on the robot data, i.e., we train the following
model with the same loss function as in Equation (7)

xrt : t+w ∼ pθxr (x
r
t : t+w|z

r
t ), zrt ∼ pθzr (z

r
t )

= N (0, 1), and approx. posterior zrt ∼ qφzr (z
r
t |x

r
t : t+w).(10)

Subsequently, we assume that the parameters (θzr ,ψr) in
Equation (9) are inferred by optimizing

S(xr1t−1 : t+w, dt , θz ,ψ) = DKL(pθzr (z
s
t|h

r
t )||qφzr (z

s
t|x

r
t : t+w)),(11)

where the dynamics dt ∼ pθs (dt|h
s1
t ) are extracted with help of

the models trained on the human-human data. We summarize
the training procedure of all our model in Algorithm 1.
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Algorithm 1: All four steps of our combined motion
embedding and dynamics modeling framework.

Human-human interaction

Data: xs1 ,s2 = {xs11 :Trec , x
s2
1 :Trec

}rec∈HHI recordings

Step 1: Human motion embedding

Fit pθx (x
s
t : t+w|z

s
t) and qφz (z

s
t |x

s
t : t+w) to x

s1 ,s2 ,
following Equation 7.

Step 2: Task dynamics

Fit pθz (z
s
t |dt), pθs (dt|h

s
t) and fψ (h

s
t−1, x

s
t−1) to x

s1 ,s2 ,
following Equation 8.

Human-robot interaction

Data: xs1 ,r = {xs11 :Trec , d1 :Trec , x
r
1 :Trec

}rec∈HRI recordings,
where dt = mean of pθs (dt|h

s
t)

Step 3: Robot motion embedding

Fit pθxr (x
r
t : t+w|z

r
t ) and qφzr (z

r
t |x

r
t : t+w) to x

s1 ,r ,
combining Equation 7 and 10.

Step 4: Interactive embodiment mapping

Fit pθzr (z
r
t |h

r
t ) and fψr (h

r
t−1, x

r
t−1, dt−1) to xs1 ,r ,

following Equation 11.

3.2. Generating Interactions
In order to employ our models during an ongoing interaction,
we need to predict future time steps. As the dynamics and the
motion embeddings encode a window of the next w time steps,
the prediction up to this horizon is straight forward as it only
requires a propagation of the observed data. To go beyond a time
frame of w is made possible by our generative design. Instead of
propagating observed data, one can let the models predict the
next w time frames based on the observed data and provide these
as an input to the model. In case of the human-robot interaction
model, one has to first predict the human’s future motion to
extract the matching dynamics variables and can subsequently
use these variables together with predictions of the robot’s motion
to generate long-term robot motion. During online interaction
these predictions can be updated on the fly when new data
is observed.

3.3. Baselines
We benchmark our approach on three baselines. Our own
approach will be called Human Motion Embedding in
the following.

The first baseline tests whether our predictive and adaptive
approach is necessary or whether more static imitation learning
techniques suffice. To test this, we group the robot trajectories in
the training data according to action type and use Dynamic Time
Warping (DTW) to align them. We fit Gaussian distributions
with full covariance matrices to the trajectory of each of the
robot’s joints. If DTW resulted in a trajectory length of TDTW for
a certain action type and joint, then the Gaussian is of dimension
TDTW . A sample from each Gaussian model constitutes therefore
a trajectory in joint angle space without input from the current
human movement. We call this approach Gaussian model.

The second baseline tests whether our approach actually
benefits from the encoded dynamics learned with the HHI data.
Thus, in this case we train the same model as described in section

3.1.3. However, instead of feeding the dynamics variable dt into
the recurrent network hrt = fψr (h

r
t−1, x

r
t−1, dt−1) in Equation

(9), we feed the current human joint position xst−1, i.e., h
r
t =

fψr (h
r
t−1, x

r
t−1, x

s
t−1). This also affects the loss in Equation (11),

which now is a function of xst−1, i.e., S(x
r1
t−1 : t+w, x

s
t−1, θzr ,ψr).

We call this approach Raw Data HR which symbolizes that we
provide raw human and robot data as input to the model.

The third baseline tests whether the human observation is
required at all or whether the approach is powerful enough to
predict based on robot joint position alone. In this case we train
the samemodel as described in section 3.1.3, but provide only the
current robot joint positions xrt−1, i.e., h

r
t = fψr (h

r
t−1, x

r
t−1). This

also affects the loss in Equation (11), i.e., S(xr1t−1 : t+w, θzr ,ψr). We
call this approach Raw Data R which symbolizes that we provide
only raw robot data as input to the model.

4. EXPERIMENTAL SETUP AND MODELS

In this section we describe the experimental setup as well as
modeling decisions and the model training procedure. For more
details regarding model architectures and model training, such as
train and test splits (please see the Supplementary Material).

4.1. Task Description
Our interactive tasks consist of performing four different greeting
gestures with a human partner. In each task execution we assume
the identity of the gesture to be known apriori as the focus of
this work lies on learning continuous interactive trajectories.
However, our method can easily be extended to automatically
infer the action type (Bütepage et al., 2018b). Two of the gestures
fall into the category of dyadic leader–follower interaction,
while the other two partners carry equal roles. The interactive
gestures are detailed inTable 1. Between actions, the two partners
are standing in an upright position with both arms directed
downwards close to the body.

As the robot is not necessarily equipped with a hand-like
gripper, the actions involving finger movement are omitted
during human-robot interaction. Furthermore, we assume the
robot to take the role of the follower.

4.2. Data Collection
We collected data from human-human and human-robot
interaction, respectively. The robotic setup and the human
motion recording setup are described below, followed by the data
collection procedure.

4.2.1. Robotic System Setup
In this work, we use a dual-armed YuMi-IRB 14000 robot
which has been developed by ABB specifically with human-robot
collaboration in mind. As depicted in Figure 4A, each arm has
seven joints Arm 1 (rotation motion), Arm 2 (bend motion),
Arm 7 (rotationmotion), Arm 3 (bendmotion),Wrist 4 (rotation
motion), Wrist 5 (bend motion), and Flange 6 (rotation motion).
To control the robot, we work in the joint angle space, i.e., at each
time step we have access to a seven dimensional vector consisting
of radial measurements. To control the robot, we provide the
system with the next expected joint angle configuration or a
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TABLE 1 | Gesture descriptions for both equal and leader-follower roles.

Equal roles

Hand waving: Both: Lifting the right arm into an upright, 90-degree angle with the open palm facing the partner; moving the lower arm

sideways in an oscillatory motion (around 3–6 cycles); lowering the arm.

Hand Shaking: Both: Stretching the right arm forward to meet the partner’s hand, grasping the partners hand; moving the lower arm up and

down in an oscillatory motion (around 3–6 cycles); releasing the partner’s hand, lowering the arm.

Leader-follower roles

Parachute fist-bump: Both: Stretching the right arm upwards with the hand closed to a fist to meet the partner’s hand, touching the partner’s fist

with one’s own;

Leader: (parachute) Opening the hand and tilting it so that the flat, inner palm faces downwards; keeping the hand above the

follower’s hand; moving the hand in a slight sideways oscillatory motion while simultaneously moving downwards;

Follower (person): Keeping the hand closed and slightly below the leader’s hand; following the slight sideways oscillatory

motion of the leader and moving the hand downwards;

Both: Lowering the arm when the hand is approximately on the height of the hip.

Rocket fist-bump: Both: Stretching the right arm downwards with the hand closed to a fist to meet the partner’s hand, touching the partner’s

fist with one’s own;

Leader (rocket): Opening the hand slightly to point to fingers upwards; keeping the hand above the follower’s hand; moving

the hand upwards;

Follower (fire): Opening the hand with all fingers stretched downwards; keeping the hand below the leader’s hand; wiggling

the fingers to simulate fire; moving the hand upwards;

Both: Lowering the arm when the hand is approximately on the height of the shoulders.

FIGURE 3 | An overview of the model structure. (A) Human motion embedding, (B) Task dynamics model, (C) Robot motion embedding, (D) Human motion

embedding, Interaction model with predictive input. Gray circles represent observed variables, white circles are unobserved variables, and a white square indicates a

deterministic unit. A filled line shows the generative process while dotted lines indicate inference connections.

FIGURE 4 | (A) The right arm of the Yumi robot used in the experiments. (B) A rokoko smart suit in action.
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TABLE 2 | Statistics of the collected dataset.

Human-human data Human-robot data

Action type # Trials Min.

duration

(s)

Max.

duration

(s)

# Trials Min.

duration

(s)

Max.

duration

(s)

Hand shake 38 8.5 12.5 10 10.4 14.5

Hand wave 31 8.5 17.5 10 12.7 17.4

Parachute 49 7.0 12.0 11 11.0 14.3

Rocket 70 3.0 6.0 10 11.1 13.8

whole trajectory thereof. We sample the robot’s joint angles at a
frequency of 40 Hz.

4.2.2. Human Motion Capture
We recorded the 3D position of the human joints in Cartesian
space during interaction with help of two Rokoko smart suits∗.
As shown in Figure 4B, these textile suits are equipped with
19 inertia sensors with which motion is recorded. Via wireless
communication with a Wi-fi access point, the suits are able to
record whole-body movements at a rate of up to 100 Hz. While
simultaneous recordings with several suits are possible, we align
the recordings offline. We record the 3D Cartesian positions of
each joint in meters with respect to a body-centric reference
frame. The data is sampled down to match the 40 Hz of the
robot recording.

4.2.3. Collection Procedure
For the human-human dataset, we asked two participants
to perform all four actions as described in section 4.1 for
approximately 6 min each. The exact number of repetitions of
each action type as well as duration statistics are listed in Table 2.
A recording of the action hand-shake is depicted in the top
of Figure 5.

For the robot-human dataset, we asked one of the participants
to perform all four actions together with the robot. To this end,
we made use of kinesthetic teaching, i.e., a human expert guided
the arm of the robot during the interaction. As shown in Table 2,
the duration of the human-robot trials is on average slightly
longer than the human-human trials. A recording of the action
hand-shake is depicted in the middle of Figure 5.

4.3. Modeling Decisions and Training
Procedure
All models are implemented in Tensorflow (Abadi et al., 2015).
Instead of training four separate models, one for each action,
we train a single model that can generate all actions. In order
to signal to the model, which action is currently performed, we
encode the actions as a one-hot vector which is passed as an
additional input to the model as described below.

∗https://www.rokoko.com/

4.3.1. Modeling Choices
All latent variables (zs1t , z

s2
t , z

r
t , d

s
t) are chosen to be independent

and identically distributed Gaussian units with a trainable mean
and variance. The prior of the VAEs is set to be standard normal
distributed pθz (zt) ∼ N (0, 1).

To indicate to the recurrent models which action is currently
performed, we provide the networks with a one-hot vector
indicating the current action. We add an additional not-active
action, which indicates those time steps after completion of the
interaction. Thus, the one-hot vector is of dimension 5 and is
concatenated with the observed joint positions of either human
or robot.

We train two identical models for the two human partners
while the model of the robot motion has a different structure.
Please see the Supplementary Material for details about
model architecture.

4.3.2. Data Representation
We represent the human by four joints “RightShoulder,”
“RightArm,” “RightForeArm,” and “RightHand” in 3D Cartesian
space, resulting a 12 dimensional vector. We center the arm
around the shoulder joint. The robot is represented by a seven
dimensional vector, each indicating a joint angle. We select 80%
of all trials of a certain interaction as training data and keep 20%
as testing data. In practice, we keep the last 20% of trials of the
recording. This results in 149 trials as training data and 39 trials
of testing data for the HHI recordings in 32 trials as training data
and 9 trials of testing data for the HRI recordings.

4.3.3. Training Details
For optimization we use the Adagrad optimizer with a learning
rate of 0.001. The batch size is 5,000 for the VAEs and 500 for
the recurrent networks. If a dataset does not contain that many
samples, we replicate the training samples to get to 5,000. We
train all models until convergence. For the VAEs we use a form
of β-VAE (Higgins et al., 2017), where β = 0.5. For training the
recurrent networks, we pad all data sequences with ones to have
the same length.

5. RESULTS

In this section we present the performance of the proposed
approach. Online employment of our approach during the action
hand-shake is depicted in the bottom of Figure 5. More examples
can be found in the Supplementary Material in form of a video
(Supplementary Video 1). In the analysis we present results on
held-out test datasets. As described in section 4.3.1, each model
was trained on all actions simultaneously and subsequently tested
on each of the actions in the held-out test dataset.

We begin by investigating the predictive performance of
the models trained on the human-human dataset. This will
be followed by an analysis of the robot motion prediction. In
this case, we consider both the predictive error as well as the
entrainment of predicted vs. ground truth robot motion with the
human motion.

Frontiers in Robotics and AI | www.frontiersin.org 8 April 2020 | Volume 7 | Article 47

https://www.rokoko.com/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bütepage et al. Imitating by Generating

FIGURE 5 | The data collected during human-human interaction (top) and kinesthetic teaching (middle) is used train the proposed models. These are employed in

human-robot interaction tasks (bottom).

5.1. Predictive Performance on
Human-Human Data
We have two reasons for collecting additional human-human
interaction data. Firstly, we hypothesize that the dynamics
learned based on HHI data can guide robot action selection
during HRI experiments. Secondly, it is easier to collect HHI
data, allowing for larger datasets. To test the second hypothesis
we trained the human motion embedding and dynamics models
both on HHI data and only on the human data contained in the
HRI data. In the latter case, the dynamics variable is not restricted
to match a human partner. We test the predictive capacity of
both these models by computing the mean squared prediction
error (MSPE) for the time window w on both test data sets (HRI
andHHI). The results are depicted in Figure 6. Two observations
can be made. First of all, the model trained on HRI data does
not generalize well, mainly caused by the small training data set.
Secondly, the prediction error does not increase drastically over
time as should be expected. Due to the fact that we do not force
the model to predict a whole trajectory as e.g., (Bütepage et al.,
2018a) but only a latent variable which can be decoded into a
trajectory, our model is less prone to regress to the mean but to
encode the actual motion.

5.2. Predictive Performance on
Human-Robot Data
In this section we inspect how our proposed dynamics transfer
approach performs against the baselines. As the different joints
move to different extents, the range of joint angles varies.
Therefore, we measure the predictive error not with the MSPE
as in the case of HHI predictions but with the normalized
root-mean-square deviation (NRMSD) which is computed

TABLE 3 | NRMSD computed on robot testing data averaged over all joints.

Human motion embedding Raw data RH Raw data R Gaussian model

NRMSD computed on robot testing data

0.16 0.22 0.18 0.20

The bold value indicates which model performed best.

as follows:

NRMSD({xr1 :Ttr ,j}tr∈1 :TR, {x̂
r
1 :Ttr ,j

}tr∈1 :TR)

=
1

TR

∑

tr∈1 :TR

√

√

√

√

1

Ttr(jmax − jmin)

Ttr
∑

t=1

(xrt,j − x̂rt,j)
2, (12)

for the jth joint. Here tr denotes trial, i.e., one execution of an
interaction, and TR is the number of trials. jmax and jmin denote
the maximum andminimum value that has been recorded for the
jth joint in the training data.

We start by comparing our approach (Human Motion
Embedding) to the two models that have an identical structure
but that differ in the type of input data (Raw Data HR and
Raw Data R). To this end, we provide ten time steps as input
to the models and let the recurrent network predict 30 steps
as described in section 3.2. This process is repeated until the
end of a trial is reached. Since the Raw Data HR model is
not able to generate human motion, we provide it with the
last observed human pose. Through the motion embedding, the
models produce a prediction of the next 40 time steps (1 s). We
average over all time steps and present the results in Figure 7.
The Human Motion Embedding appears to produce the smallest
errors, especially for those joints that are vital for the interaction
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FIGURE 6 | The mean squared prediction error (MSPE) in meters for human-human interaction over a time horizon of 1 s. The human motion embedding and

dynamics models were trained on the HHI data and on the human data contained in the HRI data set. In the latter case, the dynamics variable is not restricted to

match a human partner.

(joint 2, 3, and 4). The wrist joints (joint 6 and 7) are of less
importance and do also show a larger degree of between-trial
variance in the training data. We depict the predictions of each of
the Human Motion Embedding model, the Raw Data HR model
and the ground truth trajectory for one testing trial of each action
in Figure 8.

When averaged over the forty time steps of prediction, the
difference becomes clear in Table 3, where we also include the
Gaussianmodel. As the RawData HRmodel is not able to predict
humanmotion, it produced the largest error. TheHumanMotion
Embedding outperforms both the adaptive Raw Data HR and
Raw Data R models as well as the non-adaptive Gaussian model.
The adaptive Raw Data R model produces a smaller error than
the non-adaptive Gaussian model, which also is trained on raw
robot data. We will investigate the difference between adaptive
and non-adaptive approaches in more detail in the next section.

5.3. Non-adaptive vs. Adaptive Motion
Generation
As discussed in section 2.2, Human-Robot interaction has
additional requirements compared to traditional imitation
learning. It does not suffice to learn a distribution over the
trajectories observed in the training data and sample a whole
trajectory during run-time. Instead, HRI requires adaptive and
predictive models that react to the human’s actions such that a
sensorimotor coupling between human and robot can arise. We
visualize this in Figure 9 by sampling from the Gaussian model
of joint 4 for the action hand-shake. It becomes apparent that
none of the samples is in accordance with any of the testing trials
that are also depicted. First of all, the motion onset differs and
the duration of the trajectory is predetermined due to the time
alignment, while the duration of natural interaction differs from
trial to trial. Additionally, the movement is not adapted to the
human’s hand-shake but has different degrees of phase shift. If
we compare these predictions to the predictions of joint 4 in the
second row of Figure 8, we realize that the adaptive approach
reacts in a timely manner and follows the oscillations of the
ground truth motion that match the human motion. We will
investigate the degree of entrainment of the predictions of robot
with the human motion in the next section.

5.4. Entrainment on Human-Robot Data
With this work we are aiming at developing models that allow
for sensorimotor coupling between humans and robots to benefit
physical HRI. We visualize the generated predictions of the
Human Motion Embedding model as well as the ground truth
robot motion data and the hand position of the human for a
testing trial of each interaction in Figure 10. As not all joints
are relevant to a task, we visualize joint 2–4. We see that the
predicted motion follows the oscillatory movement of the human
hand during hand-wave (see joint 3), hand-shake (see joint 4),
and the parachute (see joint 4) interaction as well the rise and fall
of the rocket action (see joint 2 and 3).

To investigate whether the models capture this coupling,
we extract the dynamics variables of the human motion of
an entire testing trial of the hand-shake interaction as well
as the latent variables that predict the robot motion. We
then apply factor analysis to these two streams of data and
compare the two first components to each other. The two
components are visualized in Figure 11. The first factor appears
to represent the general onset, duration and offset of the
interaction while the second factor encodes the oscillatory
motion of the hand and arm. We see that, although the factor
analysis is performed independently on the human and robot
latent variables, the overall structure is similar. Additionally, the
oscillatory motion is overlapping, indicating a coupling between
the two systems.

6. CONCLUSION

In this work, we propose a deep generative model approach
to imitation learning of interactive tasks. Our contribution
is a novel probabilistic latent variable model which does
not predict in joint space but in latent space, which
minimizes the chance of regression to the mean. We
employ this model both as a dynamics extractor of HHI
as well as the basis for the motion generation of a robotic
partner. Our experiments indicate that HRI requires
adaptive models which take the human motion and task
dynamics into account. These dynamics, which encode the
movement of both humans (see Figure 2), and therefore the

Frontiers in Robotics and AI | www.frontiersin.org 10 April 2020 | Volume 7 | Article 47

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Bütepage et al. Imitating by Generating

FIGURE 7 | The normalized root-mean-square deviation (NRMSD) for robot motion during human-robot interaction over a time horizon of 1 s. The error is averaged

over the time steps of all trials. The models are provided with 10 time steps as input and the recurrent network predict 30 steps as described in section 3.2. This

process is repeated until the end of a trial is reached. The Raw Data HR model receives the last observed human pose as it is not able to generate human motion.

FIGURE 8 | The joint angle trajectory of joint 1–6 for a testing trial of each of the actions hand-wave, hand-shake, parachute, and rocket (top to bottom). We depict

the ground truth data (red) compared to the predicted trajectory of the Human Motion Embedding model (blue) and the Raw Data HR model (orange). The predictions

are performed as described in section 3.2 after initializing the models with ten observation steps. The Raw Data HR model is not able to generate human motion

trajectories and is therefore provided with the last observed human pose.

FIGURE 9 | Five samples from the Gaussian model of joint 4 of the hand-shake action and two testing data trials. As the Gaussian model is not adaptive, none of the

samples is in accordance with any of the testing trials that are also depicted which is apparent in both the onset of motion and the phase shift.
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FIGURE 10 | The predictions of the Human Motion Embedding model as well as the ground truth robot motion data and the hand position (X or Y dimension) of the

human for a testing trial of each interaction hand-wave, hand-shake, parachute, and rocket (top to bottom). The values are normalized to facilitate comparison. As not

all joints are relevant to a task, we visualize joint 2–4. The predicted motion follows the oscillatory movement of the human hand during hand-wave (see joint 3),

hand-shake (see joint 4), and the parachute (see joint 4) interaction as well the rise and fall of the rocket action (see joint 2 and 3).

FIGURE 11 | The first two factor analysis (FA) components of a testing trial of the hand-shake interaction computed on both the latent variables extracted from the

human ground truth motion and the latent variables predicting the robot motion. The first factor appears to represent the general onset, duration, and offset of the

interaction while the second factor encodes the oscillatory motion of the hand and arm. Although the factor analysis is performed independently on the human and

robot latent variables, the overall structure is similar. Additionally, the oscillatory motion is overlapping, indicating a coupling between the two systems.

coupling of the human partners during interaction, guide
the generation of the robot which thus is coupled to its
human partner.

After having established that the cheaper HHI data is required
for high predictive performance (see section 5.1), we demonstrate
that the extracted dynamics facilitate the performance of the
predictive model of robot motion (see section 5.2). This indicates
that the encoding of the future human motion and task
dynamics can contribute to the robot’s motion planning. This
is in contrast to common approaches to imitation learning for

interaction which use non-adaptive models. As we discuss in
section 5.3, a non-adaptive trajectory model does not suffice
in interactive tasks such as hand-shaking. With help of our
generative approach, we can create synchronized behavior which
shows a level of entrainment between human and robot (see
section 5.4).

We believe that prediction and adaptation are essential to
allow for natural HRI in shared workspaces. In future work, we
plan to employ the system in real-time and to extend it to more
complex tasks.
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