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Recognizing material categories is one of the core challenges in robotic nuclear waste

decommissioning. All nuclear waste should be sorted and segregated according to

its materials, and then different disposal post-process can be applied. In this paper,

we propose a novel transfer learning approach to learn boundary-aware material

segmentation from a meta-dataset and weakly annotated data. The proposed method

is data-efficient, leveraging a publically available dataset for general computer vision

tasks and coarsely labeled material recognition data, with only a limited number

of fine pixel-wise annotations required. Importantly, our approach is integrated with

a Simultaneous Localization and Mapping (SLAM) system to fuse the per-frame

understanding delicately into a 3D global semantic map to facilitate robot manipulation

in self-occluded object heaps or robot navigation in disaster zones. We evaluate the

proposed method on the Materials in Context dataset over 23 categories and that our

integrated system delivers quasi-real-time 3D semantic mapping with high-resolution

images. The trained model is also verified in an industrial environment as part of the EU

RoMaNs project, and promising qualitative results are presented. A video demo and the

newly generated data can be found at the project website1 (Supplementary Material).

Keywords: material segmentation, 3D material reconstruction, transfer learning, deep neural network,

nuclear applications

1. INTRODUCTION

Materials recognition is in high-demand in many industries, such as nuclear waste
decommissioning and recycling in a circular economy. Take robotic nuclear waste
decommissioning as an example. The legacy of nuclear waste clean-up is one of the largest
environmental remediation problems in the UK as well as in Europe. An estimated over 100
billion pounds will be spent on waste clean-up over a few decades (of Commons Committee of
Public Accounts, 2013). Humans can handle radioactive waste but only for limited periods and
by wearing special air-fed protection suits, which then become contaminated. In other words,
conventional nuclear waste decommissioning turns becomes an open-ended problem as more
nuclear waste is generated. For these reasons, autonomous robotic nuclear waste sorting and
segregation will be the only solution for reducing secondary waste.

1https://sites.google.com/view/dense-semantic-mapping/home
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Recognizing the material of which waste objects are composed
is important in nuclear waste decommissioning, as different post-
process and levels of segregation will be applied according to
the material. For example, combustible materials (e.g., wood
and clothing) can be burned, and deformable materials (e.g.,
rubber and plastic) can be melted and compressed. Our team
is part of NCNR (the National Center for Nuclear Research)
and works closely with the National Nuclear Lab on advanced
robot perception and manipulation for waste decommissioning.
This paper uniquely tackles the material recognition problem for
the nuclear industry, and we propose a visual-based semantic
segmentation approach to identify waste material categories in
cluttered scenes.

Deep learning-based semantic understanding is the state-of-
the-art in fundamental computer vision challenges, and large-
scale annotation is required to learn a robust model to deal
with the variability of the real world. However, in novel
robotic applications, e.g., nuclear waste material recognition,
very limited data can be provided because confidential nuclear
data is not publicly available. Hence, leveraging public datasets
and transferring the knowledge from other vision tasks to this
novel application is highly desirable. Moreover, the capability
to perform boundary-aware annotation and 3D semantic
reconstruction can provide high-level semantic knowledge to
robots, which allows the manipulator to dexterously fetch or
remove waste objects from highly self-occluded heap or bin.

Facing these challenges, in this paper, we mainly focus
on the following two problems. (i) Recognizing the material
categories pixel-wise and simultaneously fusing per-frame
recognition into a dense 3D map for robotic applications in
the nuclear industry. (ii) Transferring knowledge from meta
computer vision data to the material recognition problem and
transferring knowledge from a relatively simple task (i.e., material
categorization) to a more challenging task (i.e., boundary-aware
material segmentation).

Specifically, we present a material semantic reconstruction
system that can perform real-time 3D reconstruction while
simultaneously recognizing and labeling each voxel according
to its material in the generated dense 3D map. We evaluate
the proposed approach using both a public material dataset
and real-world industrial data from qualitative, quantitative, and
running-time perspectives to verify the feasibility of the proposed
system. The main contributions of this paper can be summarized
as follows:

1. To the best of our knowledge, this is the first system to
achieve simultaneous material recognition and dense scene
reconstruction. It can integrate high-level semantic knowledge
into conventional 3D geometry reconstruction.

2. The pixel-wise material segmentation is achieved via transfer
learning from general object recognition to specific material
recognition and from an image-wise classification task to
a pixel-wise segmentation task. The proposed approach is
end-to-end learned, without requirements for hand-crafted
features or post-processing optimization.

3. The running-time performance of the well-implemented
system can be boosted to around 10 Hz using a standard GPU,

which is enough to deploy quasi-real-time material semantic
reconstruction in industrial scenarios.

4. Because the large-scale material dataset, i.e., Materials in
Context (MINC) (Bell et al., 2015), only provided very
coarse annotated data for the material classification and
segmentation, we generated high-quality new data including
RGB image patches (821,092 patches for training, and 96,747
patches for testing) and fully pixel-wise annotated RGB images
(1,498 images for training, and 300 images for testing).
Those data are released as an important supplement of the
MINC dataset for benchmarking material classification and
segmentation research.

2. RELATED WORK

Vision-based material understanding, including classification,
segmentation, and reconstruction, has as yet been little
investigated, even though it is highly desirable for industrial
robotics applications, e.g., nuclear robotics. As it must deal with
the variation in brightness and illumination in the real world
as well as learning a generalizable model from observations,
material recognition in unconstrained environments is known to
be a challenging research task.

CURet (Dana et al., 1999) was the first material dataset to
be established. This consists of 61 material categories, and each
category is captured with images taken under 205 different
illumination and pose conditions. Eric et al. proposed the KTH-
TIPS (Hayman et al., 2004) and KTH-TIPS (Caputo et al.,
2005) datasets as supplementary to CURet, providing variations
in scale in addition to in pose and illumination. The Flickr
Material Database (Sharan et al., 2009) provides 10 different
material categories, with 100 different samples for each category.
The GeoMat (DeGol et al., 2016) dataset is the first dataset
to provide material images with 3D geometry data. However,
all of the above datasets are built for material classification
rather than the pixel-wise material segmentation. The Materials
in Context (MINC) (Bell et al., 2015) dataset is the first large-
scale material dataset that is of good diversity and is well-
sampled across 23 category materials. It provides two kinds of
annotated data: RGB image patches and pixel-wise labeled RGB
images. Moreover, a 4D light field material dataset proposed
byWang et al. (2016) captures the material images frommultiple
viewpoints through a light-field camera.

For material classification, most previous research has
employed hand-crafted visual features, e.g., reflectance-based
edge features (Liu et al., 2010), pairwise local binary patterns (Qi
et al., 2014), local binary patterns (Li and Fritz, 2012), and
variances in oriented gradients (Hu et al., 2011) for classifiers
such as Fisher Vector (FV) (DeGol et al., 2016) and Support
Vector Machines (SVMs) (Hayman et al., 2004; Caputo et al.,
2005). Since deep learning dominates the computer vision
community, deep-learned features (Schwartz and Nishino, 2013;
Cimpoi et al., 2014) are also adopted to achieve state-of-the-
art accuracy of material classification. Moreover, DeGol et al.
(2016) not only employ 2D visual features, e.g., texture and
color, but also 3D geometrical features, e.g., surface normals,
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to improve the material classification. However, this research
can only perform material classification with RGB patches, and
pixel-wise material recognition, i.e., semantic segmentation of
materials, is not achieved.

In order to achieve pixel-wise material recognition, Bell et al.
(2015) converted CNN classifiers trained on image patches into
an efficient fully convolutional framework with a fully connected
conditional random field (CRF) for the material segmentation.
Schwartz and Nishino (2016) took advantage of the abilities of
both CNN and RNN to perform superior segmentation using
local appearance and separately recognized global contextual
cues, e.g., objects and places. Cimpoi et al. (2015) proposed a new
texture descriptor, FV-CNN, obtained by Fisher Vector pooling
of a CNN filter bank and achieved state-of-the-art performance
on the Flickr Material Database (Sharan et al., 2009). Wang
et al. (2016) utilized proposed new 4D light-field images to train
an FCN with post-processing to achieve material segmentation.
Further research (Giben et al., 2015; Purri et al., 2019) achieved
interesting material segmentation applications on the Satellite
and Railway Track images, respectively.

In contrast to our proposed approach, all of the above
studies focus on material classification or segmentation without
reconstruction so that the semantic information of material
cannot be integrated into the 3D geometry map. The proposed
approach in this paper can perform material segmentation
and reconstruction simultaneously to generate a 3D semantic
map. With the assistance of this high-level semantic (material)
knowledge, a robot can perform robot-environment interactive
tasks or motion planning in industrial scenarios.

3. METHODOLOGY

3.1. System Overview
This paper proposes a fully integrated system for material
segmentation and reconstruction. It can perform real-time 3D
dense mapping while simultaneously recognizing and labeling
each point cloud in the map according to its material category.
As Figure 1 shows, the system consists of two main parts: single-
frame material segmentation and 3D semantic reconstruction
(mapping). To be specific, the RGB image captured by the
RGB-D camera is fed into a Deep Neural Network (DNN) to
achieve pixel-level material segmentation. The semantic point
cloud is then generated using the data pair of the semantically
labeled RGB image and the corresponding depth image via
back-projection. A sequence of semantic point clouds are
incrementally combined via visual odometry, andmeanwhile, the
label probability of each point is refined by Bayesian updating.
Finally, a dense 3D semantic map indicating voxel-wise material
categories is generated. Please note that the color palette used in
all of the Figures in this paper can be found in Figure 2.

3.2. Dataset and Data Preprocessing
The Materials in Context (MINC) dataset (Bell et al., 2015) is
used to train and evaluate the proposed neural network. MINC is
diverse and well-sampled across 23 categories, including ceramic,
fabric, leather, stone, wood, etc.

Nuclear waste can be categorized into fuel waste and technical
waste, and both are radioactive. The technical waste makes up
more than 97% of the total waste and includes all types of
waste produced during power generation, for example, liquid
containers (such as bottles, cans), disposable protective items
(e.g., suits, masks, gloves), and even construction materials (e.g.,
bricks and wood) used in the nuclear power station. Because
nuclear waste containers are very expensive and space in a
container is limited, the waste will be processed according
to its materials to best utilize the space in containers. For
example, wood and clothes can be burned, and the ashes can
be stored, while objects like plastic bottles and metal cans
can be compressed into blocks with small volumes. Therefore,
material recognition is a critical task for nuclear waste sorting
and segregation.

This paper focuses on recognizing the material categories of
nuclear technical waste and the challenges of dealing with the
variation of materials (i.e., inter-class dissimilarities) and the
variability of the real world (e.g., brightness and illumination).
In addition, we cannot obtain real nuclear technical waste at the
current stage for network training. For these reasons, we choose
to use a large-scale material dataset, MINC, which includes most
kinds of materials found in technical waste, to train and evaluate
our model.

MINC provides two different types of annotations for training:
a set of RGB patches with class labels, as shown in Figure 3A,
and another set of partially pixel-wise labeled RGB images, as
shown in Figure 3B. However, neither of these can be used
directly for training end-to-end semantic segmentation network.
There are many NaN values (shown as gray parts in Figure 3)
in the original RGB patches, which give rise to a need for
strong error supervision to prevent the classification network
from converging. On the other hand, in the partially pixel-
wise labeled RGB image, only the foreground object is labeled,
whereas the background objects are masked. Thus, these images
cannot provide contextual information during the training of the
segmentation network.

Therefore, data preprocessing is applied to the MINC dataset.
We first resize the original RGB image (500 × 500) and
then extract RGB patches of different sizes (56 × 56, 156 ×

156, 256 × 256, and 356 × 356) from it. This ensures that
there are no NaN values in extracted patches and that only
one type of material is at the center of each patch. Finally,
821,092 patches with corresponding class labels are generated
for training, and 96,747 patches with class labels are generated
for testing.

Next, we combine all of the partially pixel-wise labeled
images that belong to the same original image to generate a
single fully pixel-wise labeled image, as shown in Figure 3D.
Since not all pixels are labeled in original images, the newly
generated ground truth images are not 100% labeled. We
further label all the unlabeled pixels, and repeated labeled
pixels are treated as a category to be ignored during the
training process. Finally, we generate 1,498 pixel-wise labeled
training images and 300 pixel-wise labeled testing images. The
size of the pixel-wise labeled ground truth images is also set to
500× 500.
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FIGURE 1 | The pipeline of the proposed system of simultaneous material segmentation and reconstruction.

FIGURE 2 | The color palette used in this paper.

3.3. Material Classification
We first train a deep classification network using the generated
RGB patches with the corresponding class labels. The VGG-
16 (Simonyan and Zisserman, 2014) network, consisting of
five convolution stacks and three dense connect layers, is
employed for the classification task. However, the VGG-16
network is designed for the ImageNet challenge2 and thus
can classify images into 1,000 object categories. We therefore
modify the number of output nodes (i.e., the last dense

2https://www.image-net.org/

connected layer of the VGG-16 network) to 23 instead of
1,000 for MINC material classification. Moreover, in order to
accelerate the training, we transplant the weights of VGG-16
from the off-the-shelf pre-trained model3 on ImageNet to our
neural network.

We provide performance evaluation of the classification
using different sizes of patches in the experiment section. For
feature representation learning, small patches can provide more
texture information, while fully annotated images can provide

3https://www.robots.ox.ac.uk/~vgg/research/very_deep/

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2020 | Volume 7 | Article 52

https://www.image-net.org/
https://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhao et al. Material Segmentation and 3D Reconstruction

FIGURE 3 | Data preprocessing. (A) A patch with NaN values in MINC. (B) A partially pixel-wise labeled image in MINC. (C) Extracting new patches from original

images in MINC. (D) Combining the partially pixel-wise labeled images to generate a fully pixel-wise labeled image.

more contextual information. Thus, the choice of patch size
for the classification task is a trade-off between textural and
contextual information.

3.4. Material Segmentation
Next, we train a segmentation network using the generated
pixel-wise labeled RGB images. As Figure 4 shows, the
segmentation network consists of two sequential sub-networks:
a Fully Convolutional Network (FCN) (Long et al., 2015) and
Conditional RandomFields as Recurrent Neural Networks (CRF-
RNN) (Zheng et al., 2015). FCN can provide a coarse
semantic segmentation with prediction potentials to CRF-
RNN, while CRF-RNN can smooth the label assignments
between neighboring pixels to refine the coarse segmentation
generated by FCN. Unlike the conventional approaches, which
employ CRF as post-processing, we plugged in CRF-RNN
after FCN as a unified framework that can be trained in an
end-to-end way.

3.4.1. FCN
FCN is a widely used end-to-end and pixel-to-pixel semantic
segmentation network that consists of a convolution stack, a
deconvolution stack, and a skip architecture. The convolution
stack has the same architecture as the VGG-16 network truncated
after pooling five layers. It can learn high-level semantic features
with context cues by enlarging the receptive fields. However, it
cannot retain significant boundary information on objects and
structures due to the application of a series of pooling layers. The
deconvolution stack can transform a feature map of the same
size as the input RGB image. The skip architecture combines
high-level and coarse semantic features from deep layers with
low-level and fine features from shallow layers. Therefore, FCN
can improve the performance of semantic segmentation by
fusing the feature maps from both deep and shallow layers.
However, FCN does not incorporate smoothness constraints
between neighboring pixels so that it can only give a coarse
pixel-wise prediction with some blob-like shapes.

3.4.2. CRF-RNN
CRF-RNN means Conditional Random Fields as Recurrent
Neural Networks, which is a hybrid model combining the
learning property of CNN with the probabilistic graphical
property of CRF. It can be inserted after a deep neural network
to refine the coarse segmentation results generated.

Fully connected CRF (Krähenbühl and Koltun, 2011) takes
account of contextual cues by minimizing the energy E(x)
function to generate the most likely label assignment x. There
are unary energy components and pairwise energy components
in the Energy function E(x):

E(x) =
∑

i

ψu(xi)+
∑

i<j

ψp(xi, xj). (1)

The unary term ψu(xi) obtained from the FCN measures the
inverse likelihood of each pixel i assigning the corresponding
label. However, the predicted pixel labels do not consider
the smoothness or consistency of label assignments between
neighboring pixels j. In contrast, the pairwise term ψp(xi, xj) can
penalize similar pixels that have different labels and encourage
similar labeling of pixels with similar properties.

Pairwise potentials can be modeled as a linear combination

of M Gaussian edge potential kernels k
(m)
G using different

weights ω(m):

ψp(xi, xj) = µ(xi, xj)

M
∑

m=1

ω(m)k
(m)
G (fi, fj). (2)

The Gaussian kernel k
(m)
G is applied to feature vectors fi of pixel i,

e.g., spatial or color information. The label compatibility function
is described as a Potts model µ(xi, xj) = [xi 6= xj]. The Gaussian

kernel k
(m)
G in the pairwise potentials consists of a bilateral

appearance potential and a spatial smoothing potential (M = 2):

k(fi, fj)G = ω(1)exp(−
|pi − pj|

2

2θ2α
−

|Ii − Ij|
2

2θ2
β

)+ω(2)exp(−
|pi − pj|

2

2θ2γ
), (3)
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where pi and pj refer to the spatial feature x, y, z and Ii and Ij refer
to the color feature R,G,B. The parameters of Gaussian kernels
are described using θα , θβ , and θγ .

Due to the consideration of pairwise potentials over all pixel-
pairs in the whole image, minimizing the energy function in the
fully connected CRF exactly is intractable. Therefore, the mean-
field approximation is adopted to approximate the maximum
posterior marginal inference. In CRF-RNN, one mean-field
iteration can be formulated as a stack of common neural
layers. The Initialization, Message Passing, Weighting Filter
Outputs, Compatibility Transform, Adding Unary Potentials,
and Normalizing operations in the mean-field iteration are
implemented through Softmax, Convolutional, Convolutional,
Convolutional, Concatenated, and Softmax layers, respectively.
The repeated multiple mean-field iterations can be further
formulated as a Recurrent Neural Network via repeating the
above stack of layers.

In this work, the CRF-RNN is plugged in after the FCN to
form a unified framework, and it is trained in an end-to-end
manner. During the training process, the error differentials of
CRF-RNN are passed to FCN via backward propagation through
time, so that the FCN is able to generate better unary potentials
for CRF-RNN optimization via forward propagation. More
importantly, the parameters in CRF, e.g., the weights of Gaussian
kernels and the label compatibility function, are automatically
optimized during the full network end-to-end training.

3.5. Transfer Learning
The public VGG-16 model is well-trained using the large-
scale ImageNet dataset and can classify objects from daily life
belonging to 1,000 different categories. The learned knowledge
from object classification should be helpful for the material
classification. On the other hand, there are a huge number of
sparsely labeled RGB patches (821,092) but a limited number
of pixel-wise labeled RGB images (1,498) generated from the
MINC dataset. Hence, we transfer the learned knowledge of
the classification network to enhance the performance of the
segmentation network via transfer learning.

As shown in Figure 4, there are two steps of knowledge
transfer during the overall training process. The first step
transfers the learned weights of the VGG-16 network pre-
trained on ImageNet to the material classification network. The
second step transfers the learned weights of the classification
network, i.e., the VGG-16 network truncated after pooling five
layers, to the segmentation network, i.e., the convolution stack
of FCN. Both of them are implemented by learned network
weights initialization followed by network fine-tuning. The first
transfer learning focuses on the same network architecture
but transfers the learned knowledge from object classification
to material classification, while the second transfer learning
focuses on two different network architectures but transfers
the learned knowledge from a classification network to a
segmentation network.

3.6. Material Reconstruction
A graph-based SLAM, i.e., RGB-D SLAM (Endres et al., 2014),
is employed to achieve dense 3D material reconstruction. Given

a semantic labeled image with the corresponding depth image,
a 3D semantic point cloud (X,Y ,Z) can be generated through
back projection:

du,v





u
v
1



 =





fx s cx
0 fy cy
0 0 1









X
Y
Z



 , (4)

where (u, v) refer to the pixel position in the image plane and
du,v refer to the corresponding depth value. fx, fy refer to the focal
length, and (cx, cy) refer to the principal point offset. s refers to
the axis skew.

The visual odometry of RGB-D SLAM can estimate the ego-
motion between two adjacent semantic point clouds and further
enable an incremental semantic label fusion. Finally, using the
global trajectory provided by the visual odometry, all of the
semantic point clouds are combined together to generate a global
semantic map. A Bayesian update is used for label hypothesis
fusion using the multi-view semantic point clouds. Each voxel
in a semantic point cloud stores the predicted label with the
corresponding discrete probability. The voxel’s label probability
distribution is updated by means of a recursive Bayesian update:

P(x = li|I1,...,k) =
1

Z
P(x = li|I1,...,k−1)P(x = li|Ik), (5)

where li refers to the predicted label, Ik refer to the kth image, and
Z refers to the constant for distribution normalization.

4. EXPERIMENTS

In this section, the details of the network training process
are first introduced. We then present performance evaluations
of three different experiments: material classification, material
segmentation on the MINC dataset, and material semantic
reconstruction in an industrial scenario.

4.1. Network Training
We first train the VGG-16-based classification network using the
newly generated 821,092 RGB patches of four different sizes, 56
× 56, 156× 156, 256× 256, and 356× 356. The network weights
are initialized using the public VGG-16 model pre-trained on
ImageNet. Secondly, we train the FCN-32s, FCN-16s, and FCN-
8s segmentation networks step by step using the newly generated
1,498 pixel-wise labeled 500 × 500 RGB images. The weights of
the convolution stack in FCN are inherited from the fine-tuned
VGG-16 model truncated after pooling five layers.

Finally, we insert the CRF-RNN after FCN as the bottom part
of the whole network. After inheriting the learned FCN weights,
the FCNwith CRF-RNN network is trained again using the pixel-
wise labeled RGB images in an end-to-end manner. During the
training process, we set the number ofmean-field iterationsT to 5
in the CRF-RNN. This can reduce the training time and mitigate
the vanishing gradient problem. During the test process, we set
the number of mean-field iterations T to 5 or increase it to 10
according to the run-time required.

The parameters of all the trained networks, i.e., the learning
rate, momentum, batch size, weight decay, and the type of
training data, can be found in Table 1.
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FIGURE 4 | The architecture of the proposed network and transfer learning.

TABLE 1 | The parameters of network training.

Learning

rate

Momentum Batch size Weight

decay

Training

data

VGG-16 1e-4

reduction

with 0.1

0.95 50 0.0005 256×256

RGB patch

FCN-32s 1e-10 0.99 1 0.0005 500×500

RGB image

FCN-16s 1e-12 0.99 1 0.0005 500×500

RGB image

FCN-8s 1e-14 0.99 1 0.0005 500×500

RGB image

FCN with

CRF-RNN

1e-12 0.99 1 0.0005 500 × 500

RGB image

4.2. Material Classification
The newly generated 96,747 RGB patches are employed
for the material classification evaluation. We present the
experimental results for the VGG-16 network trained by
four differently sized patches in Table 2. It can be seen
that the accuracy of classification initially increases but then

TABLE 2 | The accuracy of material classification vs. patch size.

Patch size 56×56 156×156 256×256 356×356

Accuracy 69.20% 81.06% 80.18% 73.40%

The best performance is in bold.

decreases with increasing patch size. The optimal accuracy
is reached when the patch size accounts for about 30–
50% of the original image. The reason for the accuracy
increasing initially is that more contextual cues become available
with growth in the patch size, while the reason for the
accuracy then decreasing is that there is a loss in spatial
resolution with the growth of the path size. The best trade-off
patch size for balancing the spatial resolution and contextual
information is between 156 × 156 and 256 × 256 for the
500× 500 images.

4.3. Material Segmentation
The newly generated 300 pixel-wise labeled images are
employed for the material segmentation evaluation.
Following (Long et al., 2015), the standard parameters for
semantic segmentation evaluation, namely pixel accuracy,
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FIGURE 5 | Material segmentation in MINC dataset. From left to right, top to bottom, the IDs of the sub-figures are (A–P). The first row, i.e., (A–D), are original RGB

images, the second row, i.e., (E–H), are ground truth images, the third row, i.e., (I–L), are semantic segmentation results of FCN, and the fourth row, i.e., (M–P), are

semantic segmentation results of FCN with CRF-RNN.

mean accuracy, mean intersection over union (IoU),
and frequency weighed intersection over union (IoU),
are adopted for performance analysis. These metrics are
defined as:

• Pixel accuracy:
∑

i nii/
∑

i ti,
• Mean accuracy: (1/ncl)

∑

i nii/ti,
• Mean IoU: (1/ncl)

∑

i nii/(ti +
∑

j nji − nii),

• Frequency weighted IoU: (
∑

k tk)
−1

∑

i tinii/(ti+
∑

j nji−nii).

Here, ncl refers to the number of classes, nij refers to the number
of pixels of class i classified as class j, and ti =

∑

j nij refers to the

total number of pixels belonging to class i.

4.3.1. Qualitative Analysis
The qualitative results of material segmentation on the MINC
dataset are given in Figure 5. Due to the lack of neighborhood
consistency constraints, there are a lot of non-sharp boundaries
in the segmentation results of FCN. After plugging in CRF-RNN
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after FCN for the label assignment smoothing, the boundaries
of the segmentation results are much clear compared with when
using only FCN.

The first and second rows in Figure 5 show the original and
ground-truth images on MINC. The third and fourth rows in
Figure 5 show the 2D semantic segmentation results of FCN and
of FCN with CRF-RNN, respectively. It can be seen that FCN
with CRF-RNN generates semantic results with much clearer
shapes than FCN alone, e.g., table legs in (Figure 5M), a person
in (Figure 5N), a sofa in (Figure 5O), and a chair back and
vase in (Figure 5P). In (Figure 5L), a large section of “fabric” is
erroneously labeled as “carpet,” while the size of this erroneous
area greatly decreases in (P) because of the neighborhood
consistency constraints of the CRF-RNN optimization.

4.3.2. Quantitative Analysis
Quantitative results for the overall performance and class-
wise accuracy of material segmentation on the MINC dataset
are given in Tables 3, 4, respectively. As Table 3 shows, FCN
with CRF-RNN achieves 81.94, 74.19, 61.13, and 69.99% for
the pixel accuracy, mean accuracy, mean IoU, and frequency
weighed IoU, respectively, on the MINC dataset. Compared
to FCN without CRF-RNN, FCN with CRF-RNN exhibits an
improvement of 3.53, 2.28, 4.62, and 3.92%, respectively, for

TABLE 3 | The overall performance of material segmentation on the MINC

dataset.

Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

FCN 78.41 71.91 56.51 66.07

FCN with

CRF-RNN

81.94 74.19 61.13 69.99

The best performance is in bold.

the pixel accuracy, mean accuracy, mean IoU, and frequency
weighed IoU. As Table 4 shows, the class-wise accuracy for most
classes is satisfactory, e.g., Hair (92.11%), Sky (96.71%), and
Water (99.07%), but the performances for several classes are still
inferior, especially Plastic (35.94%), due to the limited amount
of training data. After introducing CRF-RNN following FCN-8s,
the class-wise accuracy of each class increases by around 3–6%.

To the best of our knowledge, material segmentation is
currently a less-studied research topic, and no good benchmark
ranking has yet been deployed on the large-scale material
datasets. The MINC dataset is the most popular material dataset
for deep learning research, but it is a very coarse dataset, so
a lot of data preprocessing and generation are required. The
newly generated data in this paper are released as an important
supplement to the MINC dataset, and the results provided can
be employed as a baseline for future research. We hope that
these can improve the benchmarking of research with respect to
material classification and segmentation.

4.3.3. Running-Time Analysis
We also provide the running-time performance of the proposed
network in Table 5. The network is deployed using the 500× 500
RGB images from the MINC dataset on a computer with an i7-
6800k (3.4 Hz) 8-core CPU and NVIDIA TITAN X GPU (12 G).

TABLE 5 | The running-time performance on the MINC dataset.

Running-time (s) CRF iterations Image size

FCN 0.13–0.15 – 500 × 500

FCN with

CRF-RNN

0.4–0.6 10 500 × 500

FCN with

CRF-RNN

0.2–0.3 5 500 × 500

TABLE 4 | Comparison of the class-wise accuracy on the MINC dataset.

Category Brick Carpet Ceramic Fabric Foliage Food

FCN 61.02% 84.87% 72.95% 80.88% 78.62% 65.04%

FCN with

CRF-RNN

63.82% 86.18% 80.84% 84.26% 77.38% 63.86%

Category Glass Hair Leather Metal Mirror Other

FCN 67.28% 92.08% 72.05% 72.35% 63.45% 39.44%

FCN with

CRF-RNN

62.66% 92.11% 71.91% 76.25% 69.81% 65.19%

Category Painted Paper Plastic P-Stone Skin Sky

FCN 90.62% 56.83% 43.94% 51.75% 81.72% 95.96%

FCN with

CRF-RNN

89.35% 62.82% 35.94% 65.12% 83.37% 96.71%

Category Stone Tile Wallpaper Water Wood Mean

FCN 62.68% 66.16% 77.11% 97.82% 79.28% 71.91%

FCN with

CRF-RNN

63.73% 63.98% 69.17% 99.07% 82.89% 74.19%

The best performance among the compared methods is in bold. P-Stone, Polished Stone.

Frontiers in Robotics and AI | www.frontiersin.org 9 May 2020 | Volume 7 | Article 52

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zhao et al. Material Segmentation and 3D Reconstruction

The running-time of FCN-based segmentation costs 0.13–0.15
s, and that of FCN with CRF-RNN costs 0.4s–0.6 s with 10
iterations or 0.2–0.3 s with five iterations. The running-time
performance can be improved greatly if a smaller RGB image is
used, which can enable real-time or near-real-time application of
material segmentation.

4.4. Material Reconstruction
As well as the evaluation on the MINC dataset, we further
evaluate the proposed system in an industrial scenario, i.e., a
real industrial room containing many different materials such as
wood, brick, paper, metal, carpet, painted surfaces, and others.
The system deploys a real-time 3D mapping of the room while
simultaneously recognizing and labeling each point according to
its material in the built 3D map. The network used in the system
is only trained using the MINC dataset without fine-tuning on
the real industrial data.

4.4.1. Qualitative Analysis
We give the qualitative results of each step generated by the
proposed system, i.e., original RGB image, material segmentation
image, 3D point clouds, and 3D semantic point clouds in
Figure 6. We also provide the local/global 3D map and
local/global 3D semantic map of the industrial room in Figures 7,
8, respectively.

We can see that most of the materials are correctly classified
and segmented in the dense 3D semantic map. However, some
small objects are not labeled correctly due to there not being
enough pixels provided in the original RGB image. The pixels
at the border between two different materials are more easily
assigned to the wrong labels. The domain variances, e.g., varying
field of view, varying illumination, different imaging devices
between the training and test data, also result in some wrong
label predictions.

4.4.2. Quantitative Analysis
We provide the quantitative results evaluated via pixel accuracy,
mean accuracy, mean IoU, and frequency weighed IoU
in Table 6. First, 40 key frames of 3D reconstruction in
the industrial room were captured from RGB-D SLAM.
Next, all the key frames were densely annotated according
to the kind of material via JS Segment Annotator4.
Finally, pixel-wise false or true numbers were counted
between the corresponding pixels from predicted and
ground-truth images.

As Table 6 shows, we achieve 80.10, 58.75, 39.45, and
68.76% for the pixel accuracy, mean accuracy, mean IoU, and
frequency weighed IoU, respectively, tested in the industrial
room. The pixel accuracy (80.10%) achieves a satisfying level,
but the mean accuracy (58.75%) is much lower than the
reported result for MINC evaluation (76.87%). Because we
only tested 40 samples, there is a large variance in material
detection rates. The pixel-wise recognition and segmentation
accuracy of some materials, e.g., Paper (6.78%) and Mirror
(0%) is very low. However, a mirror appears in only one

4http://kyamagu.github.io/js-segment-annotator/

TABLE 6 | The overall performance of material semantic reconstruction in an

industrial scenario.

Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

3D semantic

reconstruction

80.10 58.75 39.45 68.76

TABLE 7 | The running-time performance of the proposed system.

Running-time (Hz) CRF iterations Image size

FCN with

CRF-RNN

∼ 2 10 500 × 500

FCN with

CRF-RNN

∼ 4 5 500 × 500

FCN with

CRF-RNN

∼ 10 5 224 × 224

instance, so failure to recognize just one instance of Mirror
generates an accuracy of 0% for that category, whichmisleadingly
skews the overall mean accuracy score toward a low value.
In addition, the domain variances, e.g., varying field of view,
varying illumination, and different imaging devices between
the training and test data, also decrease the performance
tested in the industrial room because the network is only
trained using the MINC dataset without fine-tuning using the
industrial data.

4.4.3. Running-Time Analysis
The whole system is deployed on a computer with an i7-
6800k(3.4 Hz) 8-core CPU and NVIDIA TITAN X GPU (12
G). The IAI Kinect2 package5 is adopted to interface with
ROS and calibrate the RGB and depth cameras of Kinect2.
The network is implemented based on the Caffe6 toolbox and
accelerated by CUDA and CUDNN. The overall system is
implemented through C++ and GPU programming within the
ROS7 framework.

We provide the running-time performance of the whole
system in Table 7. The system running-time performance is
about 2 Hz (10 iterations) or 4 Hz (5 iterations) using the QHD
RGB and depth images from Kinect2. The 540 × 960 RGB
images are first reduced to 500 × 500 RGB images for material
segmentation and are then recovered to 540 × 960 RGB images
for semantic reconstruction. The running-time performance can
be boosted to around 10 Hz when the QHD RGB images are
decreased to 224 × 224 RGB images, using five CRF-RNN
iterations for material segmentation.

As mentioned (Hermans et al., 2014), there is no necessity to
segment all the frames for the RGB-D SLAM because most of the
frames are abandoned and only a few key frames (about 20%) are
used for dense 3Dmapping. In this case, a 5–10 Hz running-time

5https://github.com/code-iai/iai_kinect2/
6http://caffe.berkeleyvision.org/
7https://www.ros.org
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FIGURE 6 | The qualitative results of each step generated by the material segmentation and reconstruction system. The first column are RGB images from Kinect2,

the second column are material segmentation images, the third column are 3D point clouds, and the fourth column are 3D semantic point clouds.

FIGURE 7 | Material segmentation and reconstruction in an industrial scenario. (Left) Local 3D map. (Right) Local 3D semantic map.

FIGURE 8 | Material segmentation and reconstruction in an industrial scenario. (Left) Global 3D map. (Right) Global 3D semantic map.

performance can basically meet the requirement of a real-time
material semantic reconstruction.

5. CONCLUSIONS

In this paper, we propose a novel transfer learning method
to determine material categories from RGB images. Our
approach is data-efficient, with maximization of the utility of
a fundamental computer vision dataset and coarse annotated
data. Consequently, our approach shows strong effectiveness in

solving real-world problems, where large-scale training datasets
are not available.

Moreover, the material understanding proposed by the
neural network is integrated with 3D dense reconstruction, and
incremental dense material labeling of a 3D scene is performed.
The running-time performance of the whole system can be
boosted to approximately 10 Hz to satisfy the requirement of
real-time applications. We report qualitative, quantitative, and
running-time evaluation analysis of the proposed approach using
both the public material dataset and real-world industrial data
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to verify the resultant segmentation accuracy and running-
time performance.

The newly generated high-quality dataset, including RGB
image patches and fully pixel-wise annotated RGB images,
is released as an important supplement for the MINC
dataset. Our approach has a good alignment with industrial
applications, especially nuclear robotics. As an essential part
of the EU H2020 RoMaNs project, the proposed system has
the potential to demonstrate its capability of guiding robots
to navigate in industrial scenes and manipulate objects in a
self-occluded heap.
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