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Online social networks (OSN) are prime examples of socio-technical systems in which

individuals interact via a technical platform. OSN are very volatile because users enter and

exit and frequently change their interactions. This makes the robustness of such systems

difficult to measure and to control. To quantify robustness, we propose a coreness

value obtained from the directed interaction network. We study the emergence of large

drop-out cascades of users leaving the OSN by means of an agent-based model. For

agents, we define a utility function that depends on their relative reputation and their costs

for interactions. The decision of agents to leave the OSN depends on this utility. Our aim

is to prevent drop-out cascades by influencing specific agents with low utility. We identify

strategies to control agents in the core and the periphery of the OSN such that drop-out

cascades are significantly reduced, and the robustness of the OSN is increased.

Keywords: socio-technical system, adaptability, robustness, simulations, agent-based model

1. INTRODUCTION

Self-organization describes a collective dynamics resulting from the local interactions of a vast
number of system elements (Schweitzer, 1997), denoted in the following as agents. Themacroscopic
properties that emerge on the system level are often desired, for example, coherent motion in
swarms or functionality in gene regulatory networks. But as often these self-organized systemic
properties are not desired, for example, traffic jams or mass panics in social systems. Hence, while
self-organization can be a very useful dynamics, we need to find ways of controlling it such that
systemic malfunction can be excluded, or at least mitigated. This refers to the bigger picture of
systems design (Schweitzer, 2019): how can we influence systems in a way that optimal states can be
achieved and inefficient or undesired states can be avoided?

In general, self-organizing processes can be controlled, or designed, in different ways. On the
macroscopic or systemic level, global control parameters, like boundary conditions, can be adjusted
such that phase transitions or regime shifts become impossible. This can be done more easily for
physical or chemical systems, where temperature, pressure, chemical concentration, etc. can be
fixed. On themicroscopic or agent level, we have two ways of controlling systems: (i) by influencing
agents directly, (ii) by controlling their interactions.

Referring to socio-economic systems, we could, for example, incentivize agents to prefer certain
options, this way impacting their utility function. This requires to have access to agents, which is
not always guaranteed. For instance, it is difficult to access prominent agents or to influence large
multi-national companies. Controlling agents’ interactions, on the other hand, basically means to
restrict (or to enhance) their communication, i.e., their access to information and dissemination.
Restrictions can be implemented both globally and locally.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00057
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00057&domain=pdf&date_stamp=2020-04-28
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fschweitzer@ethz.ch
https://doi.org/10.3389/frobt.2020.00057
https://www.frontiersin.org/articles/10.3389/frobt.2020.00057/full
http://loop.frontiersin.org/people/922075/overview
http://loop.frontiersin.org/people/783006/overview


Casiraghi and Schweitzer Improving the Robustness of OSN

In this paper, we address one particular instance of social
systems, namely online social networks (OSN). Prominent
examples for such networks are facebook, reddit, or
Twitter. OSN are instances of a complex system comprising a
large number of interacting agents which represent users of such
networks. OSN are, in fact, socio-technical systems because they
combine elements of a social system, i.e., users communicating,
with elements of a technical system, i.e., platforms, protocols,
GUI (graphical user interfaces), etc. The technical component
is important because it allows to control the access to users, as
well as their communication. The term control refers to the fact
that access and interactions are monitored, but also influenced in
different ways.

In reality, it becomes very difficult to control OSN because
of their large volatility, which has two causes. The first one
is the entry and exit dynamics, which impacts the number of
agents: Users enter or leave the OSN at a high frequency. The
second one is the connectivity, which impacts the number of
interactions: Users easily connect to and disconnect from other
users or interact with lower or higher frequency. They have ample
ways of interacting; thus, it becomes very difficult to shield them
from certain information.

Because of this volatility, in an OSN interactions cannot
be fully controlled. But we can certainly influence users via
their utility function. Users join an OSN for a certain purpose,
namely to socialize and to exchange information. Hence, their
benefits are a function of the number of other users they
interact with. Their costs, on the other hand, result from the
effort of maintaining their profile, learning about the features of
the graphical user interface, etc. The utility, i.e., the difference
between benefits and costs, can then be increased by either
increasing the benefits, e.g., by increasing their number of friends,
or by decreasing their costs, e.g., by automatizing profile updates,
or by a combination of both.

OSN are a paradigm for the emergence of collective dynamics
and are much studied because of this. For example, the
emergence of trends, fashions, social norms, or opinions occurs
as a self-organized process that can sometimes be initiated
but hardly be controlled. A worrying trend emerges if users
decide to leave the social network. If their decision causes
other users to leave as well, because they lost their friends,
this can quickly result in large drop-out cascades and in
the total collapse of the OSN (Kairam et al., 2012). This
happened, for example, to friendster, an OSN with about 117
million users in 2011. As studied in detail (Garcia et al.,
2013), less integrated users left friendster, this way, making
it less attractive to the remaining users to further stay on
the platform.

To model such a self-organized dynamics by means of
an agent-based model requires us to solve a number of
methodological issues. On the agent level, we need to model
individual decisions of agents based on their perceived utility,
which is to be defined. On the system level, we need to quantify
how the drop-out of individual agents impact other agents and
the whole system, in the end (Jain and Krishna, 1998, 2002). In
a volatile system, agents come and go at a large rate, without
threatening the stability of the system every time. Hence, we need

to define a macroscopic measure that allows quantifying whether
the system is still robust.

Once these methodological issues are solved, we can turn
to the more interesting question of systems design. This means
that, by using our agent-based model, we explore possibilities
to influence the system such that it becomes more robust. Our
focus will be on the microscopic level, i.e., influencing agents
rather than whole systems. This is sometimes referred to as
mechanism design. But, different from designing communication,
i.e., influencing interactions, here we influence agents via their
utility functions. This leads to another methodological problem,
namely how to identify those agents that are worth to be
influenced, i.e., are most promising for reaching a desired
system state.

This problem is for networks addressed in the so-called
controllability theory (Liu et al., 2011), which is very much related
to control theory in engineering. It allows to quantify how much
of a network is controlled by a given agent, which then can be
used to rank agents with respect to their control capacity (Zhang
et al., 2019). To apply this formal framework, however, requires
to have a static network, i.e., the interaction topology should
not change on the same time scale as the interaction. So, this
framework does not allow us to study drop-out cascades in which
the network topology changes at every time step. Because of this,
in our paper, we have to rely on a computational approach, i.e.,
we use our agent-based model to simulate the decision of agents
to leave the network and its impact on the remaining network,
while monitoring the overall robustness of the system by means
of a macroscopic measure.

With these considerations, we have already specified the
structure of this paper. In section 2, we model the decisions of
agents and quantify the robustness of the network. In section 3,
we introduce a reputation dynamics that runs on the network, to
determine the benefits of the agents. In section 4 we highlight the
dynamics of the OSN without any interventions, to demonstrate
its breakdown. In section 5, eventually, we use our model
to explore different agent-based strategies of improving the
robustness of the network.

2. ROBUSTNESS OF THE SOCIAL
NETWORK

2.1. Agents and Interaction Networks
2.1.1. Networks
For our agent-based model of the OSN we use the specific
representation of a complex network. The term complex refers
to the fact that we have a large number of interacting agents
such that new system properties can emerge as the result of
these collective interactions. The term networkmeans that agents
are represented by nodes, and their interactions by links of the
network. This implies that all interactions are decomposed into
dyadic interactions between any two agents.

Using a mathematical language, networks are denoted as
graphs, nodes as vertices and links as edges. We can then formally
define a graph object G as an ordered pair G = G(V ,E), where V
is the set of vertices of the graph, and E is the set of edges. Vertex
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i ∈ V and j ∈ V are connected if and only if ij ∈ E. The graph is
not static but changes on a time scale T, i.e., G(T). We call T the
network time because agents can enter or exit the OSN, this way
changing both the number of vertices and edges.

Agents are characterized by an binary state variable si(T) ∈

{0, 1}, where si(T) = 1 means that agent i at time T decides to
stay in the OSN, whereas si(T) = 0 means that it decides to leave
the OSN. This decision is governed by a utility function Ui(T):

si(T) := 2[Ui(T)] ; Ui(T) = Bi(T)− Ci(T) (1)

The Heaviside function 2(x) returns 1 if x ≥ 0 and 0 otherwise.
Bi(T) and Ci(T) are the benefits and the costs of agent i at time
T. Only if the benefits exceed the costs, agent i will stay in the
OSN, otherwise it leaves. The two functions need to be further
specified, which is done in section 3.

2.1.2. Interactions
We want to model an OSN; therefore, we consider directed
interactions between agents. Taking the example of Twitter,
a directed interaction i → j means that agent i is a follower of
agent j. Obviously, the reverse does not need to apply but can
be frequently observed. Each of these interactions is represented
as a directed link in the network G. A formal expression for the
topology of a network with N agents is the adjacency matrix
A ∈ N

N×N in which the elements aij are either 0 or 1. This

allows to define the in-degree d+i and the out-degree d−i of an
agent i ∈ V as the number of incoming or outgoing links of i.
We can also define the total degree of agent i as the sum of both
in- and out-degree, di = d+i + d−i .

Various works have proposed methods for identifying groups
of agents that are stable over time in OSNs. In particular, De
Meo et al. (2017) have focused on evaluating the compactness
of such groups, i.e., the homogeneity in terms of mutual agents’
similarity within groups. The concept of compactness, originally
introduced in Botafogo et al. (1992), is often used to describe
the cohesion of parts of the internet, collaboration networks,
and OSNs (Egghe and Rousseau, 2003). Differently from this
approach, in this article we aim at characterizing the robustness
of the whole network, irrespectively of the stability of specific
groups therein. For this reason, we begin our analysis from
macroscopic quantities that allow to readily investigate the
properties of a complex networks.

The degree distribution is an important macroscopic quantity
to characterize a complex network. It is known that OSN have
a rather broad degree distribution (Garcia et al., 2013), i.e.,
many agents are linked to only a few other agents, while a few
agents, called hubs, have very many incoming links from other
agents. Additionally, OSN often show a so-called core-periphery
structure (Borgatti and Everett, 2000), in which well-connected
agents form a core, whereas agents with only a few, or even
no, connections form the periphery. Identifying such structures
helps to analyze the robustness of the network. Precisely, we can
assume that the OSN is robust, despite an ongoing entry and
exit of agents, if the core changes, but continues to exist. This
implies that the volatile dynamics mostly affects the periphery.
If, however, the drop-out of a few agents is amplified into a large

FIGURE 1 | k-core decomposition of a network with 10 agents.

drop-out cascade that affects even the core of the OSN, then the
robustness of the system is very low. We need to come up with
a robustness measure that reflects such a situation appropriately.
This is developed in the next section.

2.2. Quantifying Robustness
2.2.1. Coreness
We decided to use the coreness ki of agents as our starting
point because it reflects from a topological perspective how well
an agent is integrated into the network (Seidman, 1983). A
coreness value ki allows quantifying the impact on the network
when removing agent i. Individual coreness values are obtained
by means of a pruning procedure, which is known as k-core
decomposition. It assigns agents to different concentric shells that
reflect the integration of these agents in the network. Specifically,
the k-core is identified by subsequently pruning all agents with
a degree di < k. Pruning starts with k = 1 and stops when
all the agents left have a degree greater or equal to kmax. The
corresponding k-shell then consists of all agents that are in a k-
core but not in the (k + 1)-core, i.e., agents assigned to a k-shell
have coreness value ki = k.

Figure 1 provides an illustration of the k-core decomposition
applied to a network of 10 agents. Agents with a coreness ki = 1
are located in the periphery (dark blue), i.e., they are loosely
connected with the core. Note that some of these agents have
a relatively high degree, in spite of their low coreness. Agents
with a coreness ki = 2 are closely connected to, but not
yet fully integrated into the core, belong to an intermediate
shell (blue). The 5 agents with coreness ki = kmax = 3
are the most densely connected ones in this sample network
and belong to the innermost core (light blue). This illustrates
that the higher the coreness ki of an agent i, the stronger the
impact on the network when removing i because this potentially
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disconnects a large number of agents with lower coreness from
the network. Conversely, removing agents with low coreness will
have a weaker impact on the network because they belong to
outer shells, and removing them disconnects a smaller number
of agents.

In this article, we want to quantify how much the drop-out of
agents will impact the robustness of the network. As motivated
above, robustness shall be characterized by the average coreness
of the agents:

〈

k
〉

=
1

N

kmax
∑

k=1

k nk ;

kmax
∑

k=1

nk = N (2)

where N = |V| is the total number of (connected and
disconnected) agents in the network and nk is the number of
agents with a coreness value ki = k.

〈

k
〉

will be high if either most
agents have a relatively high coreness, or few agents have a very
high coreness. In both cases, the core of the network is less likely
to be affected by cascades that started in the periphery. So,

〈

k
〉

summarizes the information we are interested in. In this paper,
we do not focus on the heterogeneity of coreness values, which
could be described by the variance of the coreness distribution,
or by coreness centralization (Wasserman and Faust, 1994).

2.2.2. In-Degree and Out-Degree Coreness
The above definition of coreness is based on the total degree di
of agents, i.e., it is appropriate for undirected networks. For the
case of a directed network discussed in this paper, this may give
wrong conclusions about the embeddedness of agents. Therefore,
we now introduce two separate measures, in-degree coreness,
k+i , and out-degree coreness, k−i , which reflect the existence of
directed links via the in- and out-degrees d+i , d

−
i .

The results for the different metrics and the differences
between them are illustrated in the sample network of 10 agents
in Figure 1. This network is characterized by 3 k-shells, but it
is important to note that the three different coreness metrics
possibly assign the same agents to very different k-shells. Take
the example of the pair of purple agents that, according to total-
degree coreness, are assigned to the shell k = 2. If we account
for directionality of the links, they are now assigned to k = 1,
i.e., to the periphery. Moreover, the red agent that, according to
the total degree coreness, belongs to the core, kmax = 3, is now
assigned to the shell k = 2 if in-degree coreness is taken into
account, and to k = 1, i.e., to the periphery, if out-degree coreness
is instead considered.

This example makes clear that it very much depends on
the application whether coreness should be calculated based on
directed or undirected links, and whether in- or out-degrees
should be considered. In the following we will use in-degree
coreness, k+i , to compute the average coreness

〈

k
〉

, Equation (2),

i.e., nk is the number of agents with in-degree coreness k+i = k.
The reason for this choice comes from the benefits of agents
defined in 1 and is discussed in the following section.

3. DYNAMICS ON THE SOCIAL NETWORK

3.1. User Benefits and Costs
To enable a network dynamics on the time scale T, where
agents can leave the network according to Equation (1), we
need to further specify their benefits, Bi(T), and costs, Ci(T).
This leads to the question of why, in the real world, users
join or leave an OSN. There are certainly different reasons,
such as information exchange, maintaining friendship links, or
receiving attention. From this, we can deduce that benefits should
increase with the in-degree d+i of an agent in a monotonous, but
likely non-linear manner. For instance, on Twitter attention
increases with the number of followers. More important,
however, is not just the number, but also the importance of
the followers. The attention for a user i can considerably
increase if it has a number of important users j following.
This amplifies the attention because, in an OSN, other users
following the important user j this way also receive information
from i.

To capture such effects in our agent-based model, we assign
to each agent a second state variable, reputation Ri, which is
continuous and positive. In real-world OSN, user reputation
plays an important role and can be proxied by different measures,
such as number of likes in Facebook positive votes in
Amazon and Dooyoo, or retweets on Twitter. Other proxies
take the activity of users into account, for example, the RG score
from Researchgate, or the Karma points from Reddit. All
of these measures have the drawback that they are (i) specific
to the OSN, (ii) depend on the subjective judgment of other
users (see e.g., Golbeck and Hendler, 2004, 2006). In the existing
literature, the concept of reputation often relates to that of the
trust agents pose on each others (Golbeck and Hendler, 2004;
Guha et al., 2004; De Meo et al., 2015). Such reputation depends
on the activity in the OSN of the agents, e.g., when they evaluate
content posted by other agents by “liking” or “disliking” it (Liu
et al., 2008; DuBois et al., 2011). In particular, DeMeo et al. (2015)
have shown that OSN characterized by groups of agents that have
higher reputation of each other have higher compactness, and are
possibly more stable over time.

Differently from these works, to express agents’ reputation
we resort to so-called feedback centrality measures. These are
prominently known from the early versions of the PageRank
algorithm, in which the importance (centrality) of a node in
a network entirely depends on the importance of the nodes
linked to it. This choice effectively allows us to estimate agents’
reputation directly from the observed topology of the network.
This leads to a set of equations for the importance of all nodes
that has to be solved in a self-consistent way. While this is a
crucial element to define our reputationmeasure, it is not enough
to explain reputation. We also need to consider that reputation
fades out over time if it is not continuously maintained. Usually,
the reputation of an agent can be maintained in different
ways, (i) by the own effort of the agent and (ii) by means
of direct interactions with others. Such considerations have
been formalized in other reputation models (Schweitzer et al.,
in review). Here, we only consider the increase of reputation
coming from other agents, to simplify the formalization.
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In the following section, we will specify our dynamics for the
reputation of an agent, which leads to a stationary value of Ri(T).
Given that we have calculated this value, we posit that the benefit
of an agent from being in the OSN comes from its reputation
as a good proxy of the attention that this agent receives from
others. The absolute value of Ri will also depend on the network
size and the density of links. What matters in an OSN is not
the absolute value, but the reputation of users relative to that of
others. Therefore, we define the benefit Bi for each agent i ∈ V(G)
as the absolute reputation rescaled by the largest reputation value
Rmax(T) at the given time T.

Bi(T) := b
Ri(T)

Rmax(T)
= b

Ri(T)

maxj∈V(G) Rj(T)
(3)

The constant b allows to weight the benefits from the reputation
against the costs.

To specify the costs Ci(T), in our model, we consider two
contributions. First, there are fixed costs per time unit, c0, that
do not depend on the activity of the agents. They capture, in a
real OSN, the minimal effort made by users to be present in the
OSN, i.e., to learn about the GUI and to maintain the profile.
The second contribution comes from the costly interaction with
other agents. Because, for instance on Twitter, agent i can only
control whom to follow, these costs should be proportional to the
out-degree d−i of the agent, ci d

−
i . In a real OSN, the costs per

interaction, ci, are not the same for all users. More prominent
users have, for example, much more time constraints because of
other activities that compete for their attention. Therefore, it is
reasonable to assume that ci is a non-linear function of the user’s
reputation, ci(Ri) = c1R

2
i . The non-linearity induces a stronger

saturation effect for more prominent users in interacting with
many other users.

As with the benefits, also the costs should not depend on the
absolute reputation of the agent, but on the relative one. This

leads to

Ci(T) := c0 + c1d
−
i

[

Ri(T)

Rmax(T)

]2

. (4)

Denoting the relative reputation at a given time T as ri(T) =

Ri(T)/Rmax(T), we can eventually write down the utility function
of agent i, Equation (1), as:

Ui(T) = b ri(T)−c0−c1d
−
i r2i (T) = −c0+

[

b− c1d
−
i ri(T)

]

ri(T).
(5)

3.2. Reputation Dynamics
After linking the utility function of agents to their reputation, we
have to specify how to calculate the latter. In accordance with the
above discussion, we use the following reputation dynamics:

dRi(t)

dt
= −γRi(t)+

∑

j∈V[G(T)]

ajiRj(t) (6)

Here, t denotes a time scalemuch shorter than the time scale T at
which agents decide whether to stay or to leave the OSN. Hence,
compared to the change of the network, the change of reputation
is fast enough such that a stationary value Ri(T) is obtained at
time T.

The first term in Equation (6) expresses a continuous decay of
reputation with a rate γ , to reflect the fact that reputation fades
out over time if it is notmaintained. The second term captures the
increase of reputation coming from other agents linked to agent
i, i.e., aji = 1. The summation is over all agents part of the OSN
at time T.

Whether or not the reputation values Ri(T) converge to
positive stationary values very much depends on the topology of
the network expressed by the adjacency matrix A, as illustrated
in Figure 2. Specifically, if an agent has no incoming links that
boost its reputation, Ri(t) will go to zero. Therefore, even if this
agent has an outgoing link to other agents j, it cannot boost

FIGURE 2 | Impact of the adjacency matrix on the reputation Ri (t) of three agents. Only if cycles exist and agents are connected to these cycles, a non-trivial

stationary reputation can be obtained. (A) The presence of one cycle guarantees a non-trivial stationary reputation, identical for all agents. (B) The absence of cycles

results in a trivial stationary reputation for all agents. (C) The presence of a cycle guarantees non-trivial stationary reputations. Furthermore, two different stationary

values appear when agent 3 has 2 incoming links to boost its reputation.
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their reputation. Non-trivial solutions depend on the existence
of cycles, which are formally defined as subgraphs with a closed
path from every node in the subgraph back to itself. The shortest
possible cycle involves two agents, 1 → 2 → 1. This maps to
direct reciprocity: agent 1 boosts the reputation of agent 2 and vice
versa. Cycles of length 3 map to indirect reciprocity, for example
1 → 2 → 3 → 1. In this case, there is no direct reciprocity
between any two agents, but all of them benefit regarding their
reputation because they are part of the cycle. In order to obtain a
non-trivial reputation, an agent not necessarily has to be part of a
cycle, but it has to be connected to a cycle.

4. DYNAMICS OF THE SOCIAL NETWORK

4.1. Entry and Exit Dynamics
We now have all elements in place to model the entry and exit
dynamics of agents in the OSN. At each time step T, agents
evaluate their benefits and costs according to Equations (3) and
(4). This is based on their relative reputation ri(T) which has
reached a stationary value at time T, according to Equation (6).
They then make a (deterministic) decision to either stay or leave
the OSN, according to Equation (1).

Hence, at every time T, a number Nex(T) < N of agents will
leave the network. To compensate for this, we assume that the
same number of new agents will enter the network at the same
time, i.e., N =const. all the time. One may argue that this is at
odds with our research question, namely to model how cascades
of users leaving impact the robustness of the OSN. But as the
empirical case study of the collapse of the OSN Friendster
has demonstrated (Garcia et al., 2013), this collapse was not due
to the fact that no new users entered. Instead, they became less
integrated into the social network. Signs for this trend became
already visible when Friendster had about 80 million users.
After that, it still grew up to 113 million users, until it collapsed.
So, the problem of the robustness of an OSN cannot be trivially
reduced to the (wrong) assumption that there is a lack of new
users entering.

Therefore we have to address the question of how,
despite entering of new users, large drop-out cascades become
increasingly likely. To measure the size of the drop-out cascades,
we will monitor Nex(T) over time. If this number is consistently
large, it becomes evident that even with a large entry rate,
new agents cannot substantially stabilize the OSN, hence its
robustness is lost. We further need to study how new agents will
be integrated in the OSN. If at any time T a varying number of
Nex(T) agents enter, we have to model how they are linked to
the network, to become members of the OSN. We assume that
new agents do not have complete knowledge of the network;
therefore, to start with, they form random connections to a
(varying) number of members. Precisely, as in random graphs,
new agents create directed links to established agents with a small
probability p. Thus, their expected number of links is roughly Np.

Because agents leaving delete all their links and agents
randomly entering create links, the topology of the network
continuously changes at the time scale T. To ensure that the
evolution also continues if no agent has decided to leave, in this
case, we randomly pick one of the agents with the lowest relative

reputation, to replace it with one new agent. To measure how
well new agents become integrated into the OSN, we monitor the
mean coreness

〈

k
〉

(T), Equation (2), over time T. Large values
indicate that most agents belong to the core, small values instead
that most agents belong to the periphery.

4.2. Results of Computer Simulations
In the following, we discuss the simulation results for a network
of fixed size, N = 20. Further we use fixed parameters γ = 0.1,
b = 1, c0 = 0.45, c1 = 0.05, p = 0.05. For a discussion of
parameter dependencies and optimal values, see section 5.2.

To initialize our simulations of the network dynamics, we
assume that at time T = 0, 5 out of 20 agents initially form
a fully connected cluster, as shown in Figure 3A. This ensures
that these five agents have a non-zero reputation at T = 1
and thus will not leave the OSN. The remaining 15 agents with
reputation zero, however, will be replaced by new agents that
randomly create links to the agents in the network. This way,
at T = 50 already a realistic network structure with a core, a
periphery, different k-shells and a few isolated agents emerges, as
shown in Figure 3B. Figure 3 displays further snapshots of the
network evolution, while the corresponding systemic variables to
monitor the dynamics, namely the mean coreness,

〈

k
〉

(T), and
the number of agents leaving, Nex(T), are shown in Figure 4.
From the latter, we can clearly identify three different phases of
network evolution.

4.2.1. (I) Build Up Phase
In this initial phase, as already mentioned, the network
establishes its characteristic topology.Most agents become tightly
integrated into the network, as also visible from Figures 3B,C.
Because of this, the mean coreness quickly increases, while the
number of agents leaving decreases, but both variables show
considerable fluctuations.

4.2.2. (II) Metastable Phase
After agents have become well-connected to the core, they tend to
have higher benefits than costs. If no agent would leave the OSN,
we choose one of the agents with the lowest reputation to leave,
to keep the network dynamics going. Hence, Nex(T) = 1 or very
low, for most of the time, while

〈

k
〉

only slightly fluctuates.
Still, the status of the OSN is not stable but only metastable,

because of the slow dynamics that is illustrated by means of
Figures 3E,F. Agents that were earlier part of the periphery have
now become part of the core, this way decreasing the size of the
periphery. In fact, the smaller the periphery, the more likely the
formation of new links to the core. The probability that a new
agent i becomes part of the core Q with size |Q| is given as:

P(i ∈ Q) ≥

(

|Q|

k−max

)

pk
−
max ·

(

|Q|

k+max

)

pk
+
max (7)

where k−max, k
+
max are the values for the in-degree and the out-

degree coreness of the agents in the core. The two r.h.s terms
stand for the probability of creating and of receiving links from
the core, where p is the probability for an incoming agent to
create a new link. P(i ∈ Q) is indeed increasing with the size of
the core, |Q| (Łuczak, 1991).
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FIGURE 3 | Some instances from the graph evolution of a 20-nodes network. (A) T = 0, 〈k〉 = 1. (B) T = 50, 〈k〉 = 1.65. (C) T = 501, 〈k〉 = 3.15. (D) T = 3001,

〈k〉 = 3.35. (E) T = 5350, 〈k〉 = 2.95. (F) T = 5353, 〈k〉 = 1.3. (G) T = 5360, 〈k〉 = 0.85. (H) T = 7000, 〈k〉 = 0.75.

FIGURE 4 | Evolution of mean coreness and number of rewired nodes for each time step in a 20-nodes network. Three regions can be identified: (I) Build up, (II)

Metastable state, (III) Breakdown.

4.2.3. (III) Breakdown Phase
The slow dynamics during phase (II) leads to a point where
agents from the outer shells of the in-degree core receive
a higher reputation than agents in the core. If no agent
decides to leave the OSN, in this situation, an agent from
the core is chosen to be removed, because of the lower
reputation. This then triggers whole cascades of agents leaving,
because the drop-out of a core agent abruptly decreases the
reputation of other agents in the core and the outer shells. The
transition from phase (II) to phase (III) can be seen by the

increasing number of agents leaving, while the mean coreness
steadily decreases.

Once the core has been destroyed, the OSN has no ability
to recover because most agents are replaced at each time step.
Nearly all links from the newly entering agents will be to agents
from the periphery; thus, the probability of forming a new core
is extremely low. The breakdown phase (III) can be characterized
not only by the rather low mean coreness and the large number
of entries and exits, but also by the much larger fluctuations of
both values.
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FIGURE 5 | Results of network interventions. (Left) control of many peripheral agents, (Right) control of one agent close to the core. (A,B) show the mean coreness

〈k〉 and the number of agents leaving, Nex over time T, to be compared to Figure 4. (C,D) Snapshots of the network at a particular time T, when the cost c0 of the

agents circled in red is adjusted.

5. IMPROVING ROBUSTNESS

5.1. Network Interventions
The simulation results shown in Figure 4 make it very clear
what we mean by improving robustness: to prevent the complete
breakdown of the OSN. This does not imply to prevent cascades,
which can always happen in response to agents leaving the OSN.
But we argue that a social network is robust if the decision of
agents to leave the OSN will not trigger large cascades of leaving
agents that destroy the whole core.

This requires us to influence agents in the OSN such that they
decide not to leave the network. The trivial solution would be to
reduce the costs of all agents to a level that always guarantees a
positive utility or to increase the benefits in the same manner.
A much smarter solution, however, would focus only on a few
agents, namely those with the ability to prevent large cascades.
The problem to identify those agents is addressed in research
about network controllability (Liu et al., 2011; Zhang et al., 2016),
which is related to control theory. The method assigns a control
signal, i.e., an incentive to stay or to leave, to the identified agents
with the most influence on the network dynamics (Zhang et al.,
2019), which are called driver nodes. Precisely, this signal is added
to the reputation dynamics, Equation (6), of the driver nodes.

We will not follow this formal procedure in our paper for
several reasons. The most important one is the continuous
evolution of the network topology, which is not considered in the
network controllability approach. It would require us to redo the

identification of the driver nodes and the assignment of control
signals at every time step T. Further, in our context of users
leaving an OSN, these control signals are difficult to interpret
because they change the reputation dynamics. Our intention
instead is to influence the decisions of the agents, Equation (1),
i.e., to apply control signals to the costs of staying in the OSN.
Specifically, we apply two different scenarios to incentivize agents
(i) from the periphery, or (ii) from the core.

The first scenario is motivated by our insight that large
cascades are caused by the disappearing periphery. Therefore,
a straightforward intervention is to choose agents with a low
reputation from the periphery as drivers. These are incentivized
to stay in the OSN, i.e., their costs are reduced such that their
utility is increased and they decide not to leave. The second
scenario is to choose agents close to the core, i.e., from its first
outer shells, as drivers. These are incentivized to leave the OSN,
i.e., their costs are increased such that they decide to not stay. This
more subtle scenario is motivated by the insight that agents that
are only close to the core will not trigger large cascades if they
leave. But if they leave, they considerably reduce the reputation
of their closest neighbors, this way increasing the size of the
periphery. The results of these two scenarios are illustrated in
Figure 5.

Specifically, in scenario (i), we identify at each time step T
all agents from the periphery, i.e., with a coreness value ki =

1. Their cost c0 is then reduced by 10%, i.e., to ĉ0 = 0.9c0.
As Figure 5A demonstrates, this scenario can only delay the
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complete breakdown (in comparison to Figure 4 without any
interventions). But it cannot completely prevent large drop-out
cascade, because the build-up of a large core that eventually gets
destroyed is only delayed.

In scenario (ii), on the other hand, we are able to achieve
the goal of preventing a complete breakdown. This scenario has
remarkable differences to scenario (i): We only incentivize one
agent, instead of many, and we choose this agent from the vicinity
of the core instead from the periphery. Precisely, we choose the
agent from the first outer shell identified by means of the directed
k-core decomposition, i.e., ki = kmax − 1. This agent is enforced
to leave by increasing its cost by 10 percent, i.e., to ĉ0 = 1.1c0.

As shown in Figure 5B, this scenario considerably improves
the robustness of the network, as witnessed by the average
coreness. At the same time, because one agent is chosen for
control from the beginning, we also observe that the build-up
phase (I) is extended in comparison to the case of no control (see
Figure 4). But phase (II), which was called metastable before, is
now considerably extended. We still notice small cascades, but
no complete breakdown, i.e., the metastable phase has become a
quasistable one.

5.2. Life-Time Before Breakdown
The above simulations are both interesting and counter-intuitive
because controlling one agent close to the core leads to much
better results than controlling many agents from the periphery.
We, therefore, continue with a more refined discussion of the
peripheral control. As shown, this kind of network intervention
increases the time before the breakdown, but cannot completely
prevent it. To further quantify this dynamics, we use the life-time
�Q of the core Q (measured in network time T) as an additional
systemic variable (Schweitzer et al., in review). As Figure 5A

illustrates, for scenario (i) the value of�Q can be clearly obtained
from the simulations because of the sharp transition toward the
breakdown of the OSN. For scenario (ii), obviously �Q → ∞ as
Figure 5B shows.

We are interested in comparing the life-times of the core for
peripheral control and without control (also shown in Figure 4).
Because �Q changes considerably for different simulations, we
use the average life-time

〈

�Q

〉

taken from 100 independent runs
with the same setup. We further have to consider that

〈

�Q

〉

depends on other system parameters, notably the system size N.
We, therefore, vary N for simulations with peripheral control
and without control, keeping all other parameters the same. The
results are shown in Figure 6, from which we can deduce some
interesting insights.

First, we note that for small networks (N < 30), our
peripheral control strategy works very well. The life-times
increased considerably in comparison to the no-control reference
case. Secondly, we observe that this advantage becomes smaller if
the network size increases. For networks larger than N = 30,
there is almost no difference in life-times between the peripheral
control and the no-control case. Further, for N > 30 in both
cases, the life-time decreases almost linearly with the increasing
network size.

The latter observation can be explained from the fact that, with
increasing network size N, the network becomes much denser.

FIGURE 6 | Comparison of different periphery control approaches with fixed

control signal. The effectiveness of the control method without adapting the

signal to the size of the network decreases with size. In the figure are plotted

bootstrap samples for 〈�Q〉 obtained from 100 simulations for each network

size and each strategy. The control signal used is u = −0.05.

We recall that links between agents are formed such that new
agents entering the OSN create links to established agents with
a fixed probability, p. The average number of links per agent is
thusNp, i.e., it increases linearly with N. The denser the network,
the larger the core and the smaller the periphery. In line with our
above discussion, this means less robustness of the network, i.e.,
the breakdown occurs earlier in time.

The non-monotonous dependence of
〈

�Q

〉

on the network
size, for the no-control case, results from the fact that the model
parameters are not completely independent. This fact is also
obvious from Equation (5). Instead, it was already pointed out
(Schweitzer et al., under review) that there is an optimal cost level
to maximize the life-time of the network. This is understandable
from our above discussions. If costs are very low, only very
few agents will leave the OSN. Because of the slow dynamics
described in phase (II), these agents will, at some point, reach a
reputation large enough to compare to the core, and hence the
core agents will leave. An intermediate cost level, on the other
hand, makes sure that this evolution does not take place, or is at
least considerably delayed. The optimal cost level that maximizes
the life-time, however, also depends on the other parameters, b,
N, γ , p.

From Figure 6, we can deduce that, for the fixed cost
parameters chosen in our simulation, the optimal network size is
N = 30, simply because, for this size, the life-time is maximized
(kept all other parameters the same). Hence, for small networks,
N < 30, the optimal cost level should be lower than what was
used in the simulation. Given the suboptimal values, the life-time
was also lower for the no-control case. Remarkably, the life-time
in case of peripheral control is not affected by this. So, we can
conclude that, at least for small networks, peripheral control also
compensates for not optimal parameter choices.
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For larger networks, N > 30, Figure 6 suggests that there
is no difference between peripheral control and no control. But
this observation is mainly due to the fact that we have not used
the optimal parameters for a given network size N. To further
investigate this, we have performed an extensive optimization to
determine the optimal values for c0 and ĉ0 for a given N. It then
turns out that, with the optimal parameters, the life-times for the
peripheral control and no-control cases are no longer the same,
but differ significantly.

Specifically, we performed two-samples t-tests for the means
and Wilcoxons-tests for the medians of bootstrap samples of
the average life-times

〈

�Q

〉

obtained from the simulations with
and without control. As the H0 hypothesis, we assume that the
means of the life-times in both cases are equal and as alternative
hypothesis that the life-times are higher in case of peripheral
control. Using always the optimal parameters for both cases,
we obtained p-values in the order of 10−12 for the alternative
hypothesis, independent of the network size. This provides strong
evidence for the conclusion that the peripheral control always
improves the robustness of the network, as measured by the life-
time before breakdown. For small networks, this holds already
for arbitrary parameter choices, for large networks only if the
optimal parameters are chosen.

In Figure 6, we also plot the bootstrapped 95% confidence
intervals for the average life-time

〈

�Q

〉

. We note that the size
of the confidence interval decreases with N. Hence, for small
networks, even optimal parameter values cannot guarantee a
minimal variance of �Q, and in single simulations, a breakdown
of the network can happen much earlier or later.

Eventually, we also tested whether reputation differences in
the peripheral agents matter for the network intervention. While
the above simulations assumed that all peripheral agents are
controlled, we also considered that only peripheral agents with
high, or with low reputation are influenced in their costs. These
cases, however, did not generate any remarkable difference with
respect to the average life-time.

6. CONCLUSIONS

After more than 35 years of understanding complex systems,
there should be foundations enough for managing them in
a better and more quantitative manner. Sadly, to know how
systems work does not already imply also to know how to
influence them such that more desired system states are obtained.
This holds particularly for socio-economic systems, which are
adaptive, which means they respond to proposed changes in
both intended and unintended ways. Systems design (Schweitzer,
2019) therefore has to master a difficult balance: on the one
hand, systems should be carefully steered toward a wanted
development, on the other hand, systems should not be over-
regulated, to not lose their ability to innovate and to find solutions
outside the box. This balance cannot be obtained by brute force,
in a top-down approach to system dynamics, it has to be found in
a bottom-up approach that focuses on the system elements and
their interactions.

Our paper contributes to this discussion in several ways. We
study a problem of practical relevance that can hardly be solved
in a top-down approach: the collapse of an online social network

(OSN) because the decision of some users to leave causes the
drop-out of others at large scale. A real-world example is the
collapse of the OSN Friendster (Garcia et al., 2013). As long as
users are free to stay or to leave, the emergence, of such large
failure cascades cannot be prevented by administrative ruling.
Applying global incentives for users to stay, on the other hand,
usually implies high costs and questionable efficiency.

Therefore, in this paper, we propose a bottom-up approach
to influence the OSN on the level of users, i.e., agents in our
model. They can be targeted in two ways: by influencing their
interactions or by influencing their utility. We have argued
for the latter, because of the large volatility in the dynamics
of the OSN. Specifically, we propose to change the costs of
particular agents such that the overall robustness of the OSN
is increased. As already mentioned in the Introduction, OSN
should be seen as socio-technical systems, and it is in fact the
technical component that in principle allows us to influence
the costs of users much easier than it would be possible in the
offline world.

Improving robustness first requires us to define an appropriate
measure of robustness suitable for real-world OSN. Here we
propose the average in-degree coreness, which does not just reflect
the degree of agents but quantifies how well they are integrated in
the OSN. Next, we have to understand why robustness decreases
in the absence of network interventions. Based on computer
simulations and detailed discussions of agent benefits and costs,
we show that it is the changing relation between the core
and the periphery of the OSN, which eventually destabilizes
the network. Our approach deviates from the one taken in
De Meo et al. (2015, 2017) in the fact that we are interested
in the robustness of the whole network, and not so much of
separate groups. In fact, we learn that is heterogeneity within
the network topology, in terms of core-periphery structure, what
guarantees robustness. This is in contrast with what expected by
generalizing those results obtained for separate groups, where
agents’ homogeneity increases stability. Moreover, our approach
allows to estimate the reputation of agents in the absence
of explicit data collecting active declarations of trust between
agents in the OSN. To do so, we exploit so-called feedback
centralities, that exploit the OSN topology. This is in contrast
with common approaches that rely on the presence of likes,
dislikes, or agents’ ratings to provide a measure for the reputation
of agents.

Based on the insights obtained from our analysis, we have
proposed two different scenarios for network interventions to
improve robustness. The first one targets peripheral agents and
reduces their cost, to incentivize them to stay in the OSN. The
second one targets only one agent from a k-shell next to the core
and increases its cost, to incentivize it to leave the OSN. Both
scenarios have in common to increase the size of the periphery,
but they reach this goal in different ways. As we demonstrate
by means of computer simulations, the first scenario is able to
considerably delay the breakdown of the OSN, while the second
one is able to prevent this breakdown. Dependent on the optimal
choice of parameters, we could show that even the peripheral
control improves the robustness of the OSN in a statistically
significantmanner. Still, we argue that the second scenario should
be the preferred one because it requires (i) to only control a single
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agent instead of many, and (ii) less investment because, instead of
decreasing the costs of many agents via compensations, here the
cost is increased.

Our findings are interesting and, at first sight, also counter-
intuitive because they challenge our understanding of how to
improve the robustness of systems. One could simply argue
that the best way to increase robustness is to keep all parts
of the system tightly together, to not lose anything. This may
apply to mechanical or technical systems. But for socio-technical
and socio-economic systems, we have to take into account
their adaptivity and their ability to respond to changes in an
unintended manner. Therefore, the first step for interventions
is to understand the eigendynamics of these systems, i.e.,
their behavior in the absence of regulations or control. To
achieve this understanding in the case of complex systems,
agent-based modeling is the most appropriate way. Different
from a complex network approach that focuses mainly on the

link topology, agent-based modeling allows also capturing the
internal dynamics of the system elements, i.e., the nodes or
agents, in response to interactions. Only this advanced level of
modeling enables us to propose interventions targeted at specific
agents and to investigate how the system as a whole responds to
these network interventions.
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