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Producing feasible motions for highly redundant robots, such as humanoids, is a

complicated and high-dimensional problem. Model-based whole-body control of such

robots can generate complex dynamic behaviors through the simultaneous execution of

multiple tasks. Unfortunately, tasks are generally planned without close consideration for

the underlying controller being used, or the other tasks being executed, and are often

infeasible when executed on the robot. Consequently, there is no guarantee that the

motion will be accomplished. In this work, we develop a proof-of-concept optimization

loop which automatically improves task feasibility using model-free policy search in

conjunction with model-based whole-body control. This combination allows problems

to be solved, which would be otherwise intractable using simply one or the other.

Through experiments on both the simulated and real iCub humanoid robot, we show

that by optimizing task feasibility, initially infeasible complex dynamic motions can be

realized—specifically, a sit-to-stand transition. These experiments can be viewed in the

accompanying Video S1.

Keywords: humanoids, reinforcement learning, policy Search, whole-body control, iCub humanoid robot

1. INTRODUCTION

Highly redundant robots, such as humanoids, have enormous potential industrial and commercial
utility. Unfortunately producing feasible and useful behaviors on real robots is a challenging
undertaking, particularly when the robot must interact with the environment. This is caused, in
large part, by the fact that there are always errors between what is planned, or simulated, and what
is executed on a real robot due to modeling errors and perturbations. Consequently, an automatic
method of resolving these errors on real platforms is necessary for robots to attain true autonomy.
Model-based control alone cannot resolve these issues because the many possible causes could not
be practically modeled for a general case (Mansard et al., 2018). Similarly, even the most sample
efficient end-to-end learningmethods (e.g., Gu et al., 2016) would also fail because training a model
on a real robot would require an unrealistic number of evaluations, or rollouts. In this study, we
show that by combining control and learning techniques, we can create low-dimensional high-
level abstractions of whole-body behaviors and efficiently correct initially infeasible motions on
real robots.

Modern control architectures employ multiple control levels in order to decouple complex
behaviors into manageable control problems (Ibanez et al., 2017). At the lowest level is reactive
whole-body control, where joints torques are calculated at high frequency (∼ 1 kHz) given one
or more tasks (Khatib et al., 2004). The control problem can be written as a constrained convex
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optimization, where the objective function is a combination of
task errors, and the constraints are the equations of motion,
articulation and actuation limits, and contacts (Bouyarmane and
Kheddar, 2011; Salini et al., 2011; Saab et al., 2013). Task errors
are dictated by desired task values which come from the next level
of task servoing. At this level, closed loop controllers are used to
servo task trajectories using state feedback (PID) and/or Model
Predictive Control (MPC) schemes at frequencies between 100
and 10 Hz (Ibanez et al., 2014; Koenemann et al., 2015). These
task trajectories generate the reference values, which are used by
task servoing, and come from the higher-level open-loop planning
which takes seconds tominutes, and generally combines operator
expertise and automated planning algorithms (Bouyarmane and
Kheddar, 2012; Pham, 2014). This control hierarchy of planning,
servoing, and whole-body control is presented in Figure 1.

Because the control problem is abstracted in the task
servoing and planning levels, there is no guarantee that the
task trajectories will be executed properly by the lower control
layers. Furthermore, tasks may conflict with one another
and/or the system constraints (Bouyarmane and Kheddar, 2015;
Wieber et al., 2017). The end result is typically unstable or
undesirable whole-body behaviors, and we qualify these tasks
as infeasible. Prioritization techniques are used to manage

FIGURE 1 | A modern control hierarchy for highly redundant robotic systems,

e.g., humanoid robots. At the lowest level is whole-body control, which

determines the torques needed to accomplish a set of tasks. At the

intermediate level, these tasks are controlled by the servoing/MPC level where

task trajectory errors are compensated using feedback. Finally the task

trajectories are provided by high-level planning, which is usually a combination

of operator expertise and automated planning. The task feasibility optimization

loop proposed in this paper is designed to correct infeasible tasks produced

by this architecture.

perturbations engendered by infeasible tasks at the whole-body
control level, but are difficult to tune and only circumvent the
problem. Moreover, tasks infeasibilities change over the course
of the movement so applying static priorities may be overly
restrictive (Lober et al., 2015; Modugno et al., 2016). Likewise,
tuning/scheduling the task servoing gains not only modifies the
task trajectories, but also changes the controller’s impedance,
which may be undesirable for the application. Hence, decoupling
the impedance problem from the trajectory shaping problem is
not only prudent, but simplifies each because well-designed task
trajectories should alleviate the need for priority and gain tuning.

Given that it is the task reference values which generate
the infeasible control solutions, the task trajectories must be
altered. To do so, the errors induced by infeasibilities can be
measured and the task trajectories may be modified to reduce
them. Additionally, the servoing and whole-body control levels
with all of their parameters, as well as the robot’s dynamics
and environment, need to be taken into account. Given the
complexity of these requirements, it is impractical to analytically
model the relationship between task trajectories and feasibility.
One solution is therefore to use model-free policy search (PS)
techniques (Stulp and Sigaud, 2013) to modify the trajectories
through trial and error by minimizing a cost function.

The objective of this study is to establish the task feasibility
optimization loop, shown on the left in Figure 1, by iteratively
improving task trajectories using PS and exploiting the model-
based control layers. While task-level model-based whole-body
control is the state of the art in terms of real-world humanoid
robot control, hand-tuning trajectories is not realistic. Stochastic
trajectory optimization is a great candidate for automating this
process, but it suffers from the curse of dimensionality when
applied to joint-space trajectory optimization. Our approach
attempts to reconcile these techniques in a simple and pragmatic
task-level learning framework. Building on the work in Lober
et al. (2016), we first formalize the relationship between task
trajectories and parameterized policies in the whole-body control
architecture. We then develop a task feasibility cost, the penalty
function, from simple principles which measure the infeasibility
of a task. This feasibility cost is then minimized. In robotics, it
is advantageous, from both a time and monetary standpoint, to
perform PS with the fewest possible rollouts. To this end, we use
Bayesian Optimization (BO) for its sample efficiency. BO solvers
usually require fewer trials to obtain an optimal solution and
have become a popular choice in robotics because of this efficacy
(Calandra et al., 2014; Cully et al., 2015; Antonova et al., 2016;
Englert and Toussaint, 2016).

To study task feasibility optimization, we explore the
dynamically challenging activity of moving from sitting to
standing for the humanoid robot iCub, both in simulation and
on the real robot. This motion requires contact switching and
potentially unstable dynamic equilibrium to succeed. In addition
to a postural impedance task, a Center of Mass (CoM) task
is used to manage the sit-to-stand transition. The trajectory of
the CoM task is optimized to minimize the task feasibility cost.
Through these experiments, we demonstrate that by combining
analytical model-based controllers with data-driven model-free
PS techniques, we are able to solve problems which would
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be otherwise intractable using simply one or the other—e.g.,
producing feasible dynamically complex motions on real robots,
like the example shown in Figure 2.

In this paper, we demonstrate for the first time that a feasibility
maximization technique can be applied to a real humanoid robot
and result in significantly improved whole body trajectories.
More precisely, our contributions are the following:

• We define a task feasibility cost function which, when
optimized over a set of concurrent tasks, results in improved
trajectory from the robot.

• We show that this task feasibility cost function can be
optimized in very few iterations using a BayesianOptimization
technique where the minimization of the acquisition function
is performed using the CMA-ES algorithm.

• We evaluate this method in simulation and on the real iCub
humanoid robot and show through a simple proof-of-concept
experiment that it can result in significant improvement of
the generated trajectories in a way that is practical for real
world learning.

2. METHODS

In this section, we describe the methods and tools used to
develop task feasibility optimization. We begin with an overview
of the underlying whole-body control architecture and conclude
with a description of PS. Here the policy to be optimized is
parameterized by the CoM task trajectory.

2.1. Control Architecture
Model-based whole-body controllers determine at each control
instant, k, the joint torques, τ (k), necessary to accomplish some
set of nT tasks, for all of the degrees of freedom of the given
robot, while respecting physical constraints such as the equations

of motion, articulation and actuation limits, and contacts.
These controllers can be formulated using analytical null-space
projection methods (Dietrich et al., 2015), or multicriterion
convex optimization problems using weighted (Salini et al.,
2011; Saab et al., 2013) and/or hierarchical objective scalarization
(Escande et al., 2014). Regardless of the formalism, any of these
controllers can be abstracted to the following generic function,

τ (k) = controller
(

s(k), C(k),Ti(k)
)

∀i ∈ {1, 2, . . . , nT} , (1)

which takes the robot’s state, s(k), its constraints, C(k), and
some tasks Ti(k), as inputs and outputs the joint torques. The
robot state, contains q(k), the generalized coordinates, and ν(k),
the generalized velocities. The variable C(k) contains any active
constraints, e.g., joint and actuator limits, contacts, etc. Tasksmay
be described in any number of ways in either operational-space or
joint-space, but all are governed by desired task values provided
by task servoing.

In an earlier version of this method, presented in Lober et al.
(2016), the whole-body controller described in Salini et al. (2011)
is used. In this work, the whole-body control algorithm used is
the momentum-based hierarchical controller developed in Nava
et al. (2016) and Pucci et al. (2016), which has momentum
tracking, Tm, and joint impedance tasks, Tj—the most important
of which is the former. Equation (1) can then be written,

τ (k) = controller
(

s(k), C(k),Tm,Tj

)

. (2)

For the momentum task, the desired value is entirely determined
by the desired CoM acceleration, ẍdesCoM, and is provided by a
proportional-integral servoing controller,

ẍdesCoM = ẍrefCoM − Kp(ẋCoM − ẋrefCoM)− Ki(xCoM − xrefCoM) , (3)

FIGURE 2 | In (A,B,C), we show a time-lapse of a feasibility-optimized standing motion executed on an iCub robot.
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where Kp and Ki are the proportional and integral gain matrices,

respectively. The CoM reference values, xrefCoM, ẋrefCoM, and ẍrefCoM
are provided by a CoM trajectory. The choice of this reference is
crucial for a successful whole-body motion.

In the context of the sit-to-stand example explored here, a
finite-state-machine (FSM) composed of two states, coordinates
the standing motion in the controller. In the “Sit” state, the robot
is seated on the bench, and the two contacts at the left and
right upper legs are controlled to keep the equilibrium. When a
resultant ground reaction force greater than 150 N is detected,
the FSM switches to the “Stand” state, moving the bench contacts
to the left and right heels in the whole-body controller.

2.2. Proposed Approach for Policy Search
Policy search methods are black-box optimization techniques
for iteratively learning control policies rather than programming
them by hand (Deisenroth et al., 2013). Model-free
parameterized PS lends itself to robotics as it precludes the
need for an analytical transition dynamics model and allows
high-dimensional problems to be handled with few parameters.
In keeping with reinforcement learning nomenclature, we define
the agent of this system, the humanoid robot (iCub), and its
discrete-time states are s(k). The actions of the agent, a(k), are
then the actuator torques, developed at each control instant,
a(k) = τ (k). The control policies, π

(

a(k)|s(k)
)

, determine the
action at time k given the current state. The policies are mappings
from task reference inputs, xrefi , ẋrefi , and ẍrefi ∀i ∈ {1, 2, . . . , nT},
to τ , using the whole-body reactive controller described in
section 2.1. It should be noted that this mapping is not bijective
and cannot be described by a differentiable function. In order
to modify and improve π(k), three levers can be used. The first
one is related to the modification of the parameters defining the
tasks achievement dynamics, i.e., the PID gains. The second one
is related to the relative weight of each task in the QP controller.
While both approaches can yield modifications of the robot’s
resulting motion (Buchli et al., 2011; Modugno et al., 2016), they
do not lead to an explicit improvement of the definition of the
trajectory to be tracked. In a long-term learning perspective it
may actually be more beneficial to improve trajectories directly
in order to render them feasible with respect to the physical
constraints of the robot and compatible one with another. So,
assuming fixed whole-body controller parameters (PID gains,
task weights), the mapping depends only on s(k) and the task
control objectives at each time step. Therefore, in order to
modify π(k) we must modify the task reference values, i.e., the
task trajectories.

2.3. Policy Parameterization: Task
Trajectories
Given the high dimensionality of the system’s states and actions
(iCub possesses 32 main articulation yielding dim(s(k)) = (32 +
6) × 2 and dim(a(k)) = 32), we opt for a parameterized policy
representation. As presented in section 2.2, task trajectories
uniquely determine the evolution of the system, and therefore
provide a condensed representation of π for a given motion.
The task trajectories, and hence π , are parameterized by a series
of keyframes/waypoints, which represent task coordinates of

particular importance. A single position waypoint is given by θ i,
while a set of nθ waypoints is denoted 2 =

[

θ1 θ2 . . . θnθ

]

.
From 2, a policy must be formed using a parameterized
function, π θ = ρ(2), where the ρ(2) function can be
chosen from a variety of parameterized trajectory generators:
e.g., splines, polynomials, optimal control methods, etc. Here,
we use the formulation proposed by Kunz and Stilman (2012),
which produces a time-optimal trajectory through 2, with a
duration, tπ , dependent on the velocity and acceleration limits
imposed on the movement. For this study, we focus on the
CoM task trajectory, which will guide the robot from a seated
state to a standing state and therefore write the policy as, π =

ρ(2CoM), where 2CoM are the CoM waypoints. Note that any
task trajectories can be used in the parameterization of π .

Because of the nature of the standing motion studied here,
we may further restrict the parameterization. Since the robot
starts in a seated posture and finishes in a standing posture, the
initial, θ start, and final, θ end = θnθ

, waypoints of the movement
remain constant. As such, only the intermediate waypoints are
used tomodifyπθ . Here, we consider only one intermediate CoM
waypoint, θmid, simplifying the policy parameterization to,

πθ = ρ(θmid) . (4)

2.4. Policy Rollouts: Task-Set Execution
Given a parameterized policy, πθ , we wish to determine the
evolution of the robot’s states and actions. The policy is
therefore rolled-out, meaning that the task-set is executed on the
robot, either in simulation or reality, and the state and action
data are recorded,

{S ,A} = rollout(πθ ) , (5)

where S and A are the concatenations of the states and
actions over the entire rollout. This implies that the full control
architecture, as described in section 2.1, is employed until the
task execution is complete, meaning that the execution must
occur in a finite amount of time and should be finished in the
duration dictated by the CoM policy ρ(2CoM), tCoMπ . However,
if the robot falls, then πCoM will not be completed in tCoMπ . The
policy rollouts are therefore assigned amaximum execution time,
tmax > tCoMπ , to allow for possible delays in the task execution but
to avoid recording failed rollouts indefinitely. Here, we arbitrarily
select tmax = 1.5× tCoMπ .

2.5. Penalty Function: Task Feasibility Cost
In order to evaluate the policy rollouts, we use a penalty function
based on three component cost functions, which evaluate the
performance of the policy and are based on generic optimal
control principles. These costs are calculated a posteriori on the
rollout data determined in (5).

Using the state information S , we can determine how the CoM
evolved over the course of a single rollout. We first examine how
well the CoM position, xCoM(k), tracked the references, xrefCoM(k),
provided by π θ , during the rollout and develop the tracking cost,

jt =

N
∑

k= 0

‖xCoM(k)− xrefCoM(k)‖22 , (6)
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where N is the total number of time steps. We define the actual
total duration of the rollout, tend = N1t, where 1t is the
control sampling period, and tCoMπ ≤ tend ≤ tmax. If a task
error is perfectly minimized by the controller, then it goes to
zero, meaning that the robot perfectly executes πθ . Any error
in the position tracking then reflects imperfect optimization
and consequently a task infeasibility associated with the current
policy. We assume that the ultimate objective of the standing
motion, and any point-to-point trajectory for that matter, is
to reach its final waypoint. With this in mind a goal cost
is developed,

jg =

N
∑

k= 0

k1t

tπ
‖xCoM(k)− θ end‖

2 , (7)

where xCoM(k) − θ end is the difference between the CoM task
position at time step k and the final waypoint in its trajectory.
The weight of this difference increases linearly from zero with
time. This means that the distance to the goal waypoint becomes
more important as time elapses. Finally, we wish to determine the
most energetically optimal motion, by minimizing the actions, a
(i.e., the control inputs, τ ) using an energy cost,

je = β

N
∑

k= 0

‖τ (k)‖2 . (8)

Energy cannot be directly compared with Cartesian distances, so
the β parameter must be introduced to scale je for meaningful
comparison with jt and jg . Here, we use β = 1.0e−4. The penalty
function, or feasibility cost can be calculated by summing the
component costs, and averaging over tend to account for rollouts
with different timescales,

jf = penalty ({S ,A}) =
je + jt + jg

tend
. (9)

With (9) we can estimate the feasibility of πθ . However, this
estimate has no absolute significance on its own. There is no
threshold value for determining analytically if πθ was successful
in a high-level sense (i.e., the robot stood up). Given this
ambiguity, we take the j0

f
of the initial π0

θ as the reference

with which all other π i
θ are compared using, ĵi

f
=

ji
f

j0
f

, where i

indicates the rollout number. Thismeans that the initial,π0
θ , has a

feasibility cost equal to 1.0 and any π i
θ which produces a ĵi

f
< 1.0

represents an improvement in task feasibility, and vice versa for
ĵi
f
> 1.0.

While defined with respect to the CoM task, these costs
are applicable to any other form of control task and provide
general feasibility indicators: a task which cannot be achieved
either in terms of tracking or in terms of target reaching
or which achievement requires very high energy is hardly or
not feasible. Model-based metrics can be used to define the
general notion of feasability (Lober, 2017, chap. 3,6; Lober,
2017, chap. 7) actually shows that their is a strong positive
correlation between these model-basedmetrics and the ones used
in this work. This correlation is not further explored in this
proof-of-concept article.

2.6. Optimizing the Policies: Bayesian
Optimization
Since the transition dynamics,P(s(k+1)|s(k), a(k)), are governed
by the equations of motion with changing contacts, P is a
discontinuous and time-varying non-linear function. Therefore,
in order to optimize the policy parameters given a scalar reward
or penalty, non-convex black-box solvers must be used. The
downside to these solvers is that they typically require many
rollouts (parameter, θ imid, and cost, ĵi

f
, samples) to converge

on a local optimum. In humanoid robotics, rollouts are time
consuming and dangerous. As a consequence, sample efficiency
is of the highest importance in PS. This, in addition to the low
dimensionality of the parameter space, permits the use of BO to
optimize, θmid. BO derives its sample efficiency from explicitly
modeling the latent parameter to cost mapping using Gaussian
Processes (GP), and then using this model, or surrogate function,
to explore the parameter space. The actual minimization is
performed on an acquisition function which combines the cost
means and variances provided by the GP to balance exploitation
with exploration (Brochu et al., 2010). In this study, the Lower
Confidence Bound (LCB) acquisition function is used (see Cox
and John, 1992) and minimized with a Covariance Matrix
Adaptation Evolutionary Strategy solver (see Hansen, 2006). The
parameter search space is bounded using box constraints around
a 3-dimensional cube of possible θ imid, positions as shown in
Figure 4A. The incumbent solution is taken as the best parameter
and cost observation from the rollouts, θ∗mid and j∗

f
; therefore,

the optimization does not depend on the sequence in which
the rollouts are performed. One drawback to BO is that it does
not guarantee convergence in most cases (a comparison with
other optimization approaches can be found in Lober, 2017,
chap. 9,10). Here, convergence is assumed when BO proposes a
new θ imid which satisfies,

∥

∥θ imid − θ∗mid

∥

∥ ≤ γ , (10)

where γ is a distance threshold, or the number of iterations has
exceeded some maximum value.

Algorithm 1: Task Feasibility Optimization

1: Given initial policy parameters: θ imid = θ0mid.
2: do
3: π i

θ = ρ(θ imid) ⊲ generate policy from parameters

4: {S ,A}i = rollout(π i
θ
) ⊲ rollout the policy

5: ji
f
= penalty

(

{S ,A}i
)

⊲ calculate the feasibility cost

6: ĵi
f
=

ji
f

j0
f

⊲ scale the cost

7: GP.Train
({

θ i
mid

, ĵi
f

})

⊲ train the BO surrogate function

8: θ∗
mid

= argmin
{

ĵ1
f
, ĵ2
f
, . . . ĵi

f

}

⊲ get incumbent solution

9: θ i
mid

= argmin LCB ⊲minimize acquisition function

10: while (10) 6= True and i < Max Iter. ⊲ convergence criteria

11: return θ∗
mid

⊲ return incumbent solution
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2.7. Task Feasibility Optimization
Finally, the task feasibility optimization loop can be written as
shown in Algorithm 1. Starting from policy parameters θ imid =

θ0mid, π i
θ is generated using (4), and rolled out on either the

simulated or real robot. The resulting states and actions are used
to calculate a feasibility cost with (9), which is subsequently
scaled. The GP of the BO surrogate function is then trained

with the new parameter and cost data,
{

θ imid, ĵ
i
f

}

, and the next

θ imid is determined by minimizing the LCB acquisition function.

The new θ imid is then compared to the incumbent solution θ∗mid
to determine if convergence has been achieved. If so then the
incumbent is returned.

3. EXPERIMENTS

The task feasibility optimization is tested using a dynamically
complex scenario in which the iCub robot (Metta et al., 2008)
starts from a seated position on a stationary bench and must
transition to standing. The bench contacts are 22cm from the
ground and on the back of the iCub’s upper thigh links. The
toes are in contact with the ground. The initial posture is
chosen to ensure that the ground-plan (x-y) projection of starting
CoM position is within the Polygon of Support (PoS) defined
by the bench and ground contact locations. The contacts are

managed by the FSM described in section 2.1. The initial policy
parameters, θ0mid, are chosen between θ start and θ end, resulting
in a straight line CoM trajectory. A full execution of the whole-
body controller constitutes a single policy rollout. The rollout
is completed when the robot reaches θ end to within 3.0 cm of
accuracy, or if tend > tmax.

The rollouts are first carried out in simulation using Gazebo
as the simulation environment with the ODE physics engine.
Figure 3 exemplifies through snapshots typical results of CoM
trajectory optimization with roll-outs in simulation only and
using the whole-body controller described in Salini et al. (2011).

PS is iterated until one of the convergence criteria detailed in
section 2.6 is met. In this study γ = 1.0 cm, and the maximum
number of iterations is 30 in simulation and 10 on the real robot.
The optimal policy parameters, θ∗mid are then used to generate
π∗

θ which is rolled out on the real iCub. This rollout is used
to demonstrate that task feasibility can be initially optimized in
simulation and produce feasible motions on the real robot. With
the π∗

θ from simulation as a starting point, the PS is continued by
performing rollouts on the real iCub. For these rollouts we look
at two cases. In the first, the BO surrogate function training is
bootstrapped with training data from the simulated rollouts and
further trained on data from the real rollouts. In the second non-
bootstrapped case, the surrogate function is trained only using
the real rollout data. For both cases, the π∗

θ from the simulation

FIGURE 3 | Example of original and optimized CoM reference trajectories and their resultant whole-body motions. The original policy (A) produces an unstable

standing motion causing the robot to lose balance. The optimized policy, however, produces a successful sit-to-stand transition. The right hip is translucent in (B) to

make the reference trajectory visible. (C) Shows the evolution of the CoM for the original and optimized policies. The original CoM curves are cut off after 2.7 s when

the robot loses balance. The red dashed line indicates the moment when the bench contacts are deactivated in the whole-body controller.
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rollouts is used as the initial policy for the real rollouts, warm
starting the PS. To limit the number of falls, the BO search space
bounds are restricted to a 10cm cube around the initial θ∗mid, for
the real rollouts. Ten rollouts are performed for both cases. All
code and data for these experiments is open-source and can be
found here: https://github.com/rlober/task-optim. Please see the
accompanying Video S1 for a detailed look at the rollouts.

4. RESULTS

In Figure 5, we see the evolution of the CoM for the original
policy, B 0, and the policies optimized in simulation, B 25, the
bootstrapped case, B 33, and the non-bootstrapped case, NB 2.
The initial straight line CoM trajectory produces an unstable
whole-body motion, which causes the robot to lose balance. The
failing (i.e., falling) rollouts are indicated by the hatched red
backgrounds in Figures 4B,G. Because the initial policy fails, the
measured CoM position values for B 0 are not shown after 2.5 s
due to noise, and the Fz values are omitted completely for clarity.
After 24 rollouts in simulation (see Figure 4B), the task feasibility
optimization converges to a policy which produces a successful
sit-to-stand transition in both simulation and on the real robot.
The rollouts can be watched in the accompanyingVideo S1. This

policy comes from the rollout 21 in simulation, and is used as
the policy for the initial real rollouts in both the bootstrapped
and non-bootstrapped cases, B 25 and NB 0, respectively. This is
confirmed by the real and reference CoM trajectories for B 25 in
Figure 5. Had the motion failed, the real values would not have
tracked the reference values as is the case for B 0.

Looking at the z-axis and Fz plots in Figure 5, we see that the
optimal strategy, found in B 21, is to move the CoM downwards
initially to increase the ground reaction force, and shift the robot’s
weight to the feet. This shift must come early in the execution
of the CoM trajectory in order to achieve a contact switch in
the FSM, and thus allow the CoM to continue tracking the
trajectory references. When this policy is executed on the real
robot in B 25 and NB 0, the results are successful, but higher
jf , than predicted by simulation, are observed for both cases.
These discrepancies come as no surprise, but indicate that some
unpredicted factors come into play on the real robot and must
therefore be accounted for.

Looking at NB 2 and NB 3, we have an example of an
optimal policy and a costly policy which produces a fall.
In these two rollouts, the policy parameters being tested

are θ∗mid = θ2mid =
[

0.12 −0.124 0.115
]⊤

and

θ3mid =
[

0.12 −0.02 0.115
]⊤

, respectively. These parameters

FIGURE 4 | (A) Shows the bounds initially used for the BO in simulation. For the real rollouts, these bounds are then further restricted to a 10 cm cube around the initial

θmid. (B) Shows the feasibility cost percentages (bootstrapped case) from the rollouts in both simulation and on the real robot. (C) Shows the evolution of the torso

pitch joint torques for the rollouts 25 and 33 in the bootstrapped case. The rollouts which produced a failure (falling) are indicated by the red hatched backgrounds.

The optimal (best observed costs) policy parameters, θ∗
mid, are indicated for both real rollout cases. (G) Shows the costs for the non-bootstrapped case. (D) Shows

the initial posture of the iCub robot. (E,F) Show the final standing posture of the optimized motions for the bootstrapped and non-bootstrapped cases, respectively.
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FIGURE 5 | The evolution of the CoM trajectories generated by the original and optimized policies. “B” indicates the bootstrapped case, and “NB” the

non-bootstrapped case. B 0 is the original policy executed in simulation. The optimal policy found in the simulated rollouts comes from B 21, or the 21st rollout of the

bootstrapped case. B 25 and NB 0, i.e., the first real rollouts for the bootstapped and non-bootstrapped cases, use the B 21 policy. This policy is indicated by the

yellow stars in the cost curves in Figures 4B,G. B 33 is the optimal policy found during the real bootstrapped rollouts. NB 2 is the optimal policy found during the real

non-bootstrapped rollouts. The solid lines are the reference values generated by π θ and the lighter dashed lines are the real measured values. The original, B 0, real

lines are cut off after 2.5s when the robot falls. The noisy B 0 force profile is omitted from the force plot, to not obfuscate the other force profiles.

differ by only 10cm in the y-axis, which in theory, should
not affect a sagittal plane motion. However, this subtle change
in the trajectory makes the difference between optimality and
catastrophic failure. We can see in the y-axis plot of Figure 5 that
the optimal policies found both with and without bootstrapping
possess this y-axis motion, contrary to the policy optimized in
simulation, and clearly attempt to compensate for un-modeled
infeasibilities in the real system. Given the sensitive nature of
the sit-to-stand motion, hand-tuning the trajectory parameters
would be a difficult chore even for an expert.

Figures 4B,G show the component costs for each rollout
with and without bootstrapping. The percentage improvement,
ĵi
f
× 100, of each cost shows how PS improves the motion with

respect to the initial policy. The overall evolution of the total
feasibility costs shows the almost binary nature of the sit-to-
stand scenario—either the robot stands or it falls. Given this,
and the nature of the BO used here, we do not observe smooth
convergence. Furthermore, in both the bootstrapped and non-
bootstrapped cases the convergence criterion from (10) is not
attained. Nevertheless, the initial policies are improved using
task feasibility optimization. The majority of this improvement
arises thanks to a decrease in energy consumption. The energy
savings come primarily from the large sagittally actuated pitch
joints, and most notably that of the torso pitch. In Figure 4C,
we see the torques from B 25 and B 33. Both policies produce
a successful sit-to-stand motion, but the optimized policy solicits

this actuator less than the initial policy and reaps large gains in
the energy cost. As expected, the rollouts without bootstrapping
show more aggressive exploration, with two policy failures at
NB 3 and NB 8, than the rollouts with bootstrapping. This comes
from the higher variance associated with the un-explored regions
of the policy parameter search space. The exploration however,
leads to an optimized motion which moves more quickly from
the starting seated posture (see Figure 4D) to a standing posture,
as shown by the trajectory in Figure 5, allowing it to spend
less time in configurations which require large torques, than the
solution found using bootstrapping. The decreased goal costs
come from the fact that the robot is already standing after only
6.0 s (see Figure 4F) rather than 8.0s as is the case with the less
aggressive movement found by the bootstrapped optimization
(see Figure 4E). Around the solution space of feasible sit-to-stand
CoM trajectories, the tracking cost has little impact on the total
cost, but becomes more prominent when the policy fails.

5. CONCLUSION

The main takeaway from this work is that by exploiting an
underlying model-based control architecture, we are able to
abstract the problem of producing feasible motions to only
a few task-space variables, which can affect drastic changes
in the overall behavior. Given the low-dimensionality of the
variables, PS can be applied in a sample efficient manner,
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making it viable for real robots which must learn quickly
and efficiently with minimal failures (e.g., humanoids). This
result should not be understated because motions planned in
simulation, or using approximate models, are never executed
perfectly on the real robot, and the infeasibilities must be
corrected or tuned in most cases. Making this correction
automatic, is a crucial step toward truly autonomous robots,
and cannot practically be achieved on a real system with
model-based control (Koenemann et al., 2015) or learning (Gu
et al., 2016) alone. Our generic model-free approach allows any
underlying whole-body controller to be used, as shown here
and in Lober et al. (2016), and requires only the existence
of task trajectories with which to optimize policies. Through
the example sit-to-stand scenario, we show that task feasibility
optimization provides an efficient interface between control
and learning, which can resolve task infeasibilities and produce
viable whole-body motions in both simulation and reality. In
future work, it would be interesting to find automated ways of
determining the policy parameters which need to be optimized,
rather than having to specify them by hand. An advancement
such as this would render task feasibility optimization entirely
self-sufficient.
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Video S1 | This video summarizes the proposed method for task feasibility

maximization and provides a view of some of the rollouts performed in simulation

and on the real robot. It also provides a visual comparison of the optimized

trajectories on the real robot in the cases of policy “optimized in simulation,”

“optimized with bootstrapping” and “optimized without bootstrapping.”
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