',\' frontiers

1In Robotics and Al

ORIGINAL RESEARCH
published: 09 June 2020
doi: 10.3389/frobt.2020.00063

OPEN ACCESS

Edited by:
Amy Loutfi,
Orebro University, Sweden

Reviewed by:

Elena Bellodi,

University of Ferrara, Italy

Hector Zenil,

Karolinska Institutet (Kl), Sweden

*Correspondence:
Peter Sutor
psutor@umd.edu

*These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Computational Intelligence in
Robotics,

a section of the journal
Frontiers in Robotics and Al

Received: 15 February 2020
Accepted: 15 April 2020
Published: 09 June 2020

Citation:

Mitrokhin A, Sutor R
Summers-Stay D, Fermdiller C and
Aloimonos Y (2020) Symbolic
Representation and Learning With
Hyperdimensional Computing.
Front. Robot. Al 7:63.

doi: 10.3389/frobt.2020.00063

Check for
updates

Symbolic Representation and
Learning With Hyperdimensional
Computing

Anton Mitrokhin', Peter Sutor ™, Douglas Summers-Stay?, Cornelia Fermdiller' and
Yiannis Aloimonos’

" Computer Vision Laboratory, Department of Computer Science, University of Maryland Institute for Advanced Computer
Studies, University of Maryland, College Park, MD, United States, ? Computational and Information Sciences Directorate,
Army Research Laboratory, Adelphi, MD, United States

It has been proposed that machine learning techniques can benefit from symbolic
representations and reasoning systems. We describe a method in which the two can
be combined in a natural and direct way by use of hyperdimensional vectors and
hyperdimensional computing. By using hashing neural networks to produce binary
vector representations of images, we show how hyperdimensional vectors can be
constructed such that vector-symbolic inference arises naturally out of their output.
We design the Hyperdimensional Inference Layer (HIL) to facilitate this process and
evaluate its performance compared to baseline hashing networks. In addition to
this, we show that separate network outputs can directly be fused at the vector
symbolic level within HILs to improve performance and robustness of the overall
model. Furthermore, to the best of our knowledge, this is the first instance in which
meaningful hyperdimensional representations of images are created on real data, while
still maintaining hyperdimensionality.

Keywords: hyperdimensional computing, semantic vectors, hashing, machine learning, image processing

1. INTRODUCTION

Over the past decade, Machine Learning (ML) has made great strides in its capabilities to the point
that many today cannot imagine solving complex, data-hungry tasks without its use. Indeed, as
learning by example is a very necessary skill for an artificial general intelligence, it seems that MLs
success bodes its necessity - in some form or other - in future Al systems. At the same time, end-
to-end ML solutions suffer from several disadvantages; results are generally not interpretable or
explainable from a human perspective, new data is difficult to absorb without significant retraining,
and the amount of data/internalized knowledge required to train can be untenable for tasks that are
easy for humans to solve. Symbolic reasoning solutions, on the other hand, can offer a solution to
these problems.

One issue with symbolic reasoning is that symbols preferred by humans may not be easy to
teach an Al to understand in human-like terms. Problems like these have led to the interesting
solution of representing symbolic information as vectors embedded into high dimensional spaces,
such as systems like wor d2vec (Mikolov et al., 2013) or G o0Ve (Pennington et al., 2014). These
are often used to inform other symbolic or ML systems to give semantic context to information
represented textually. In some systems, symbolic concepts themselves are represented entirely as
high dimensional vectors that coexist in a common space-these are often referred to as Vector

Frontiers in Robotics and Al | www.frontiersin.org 1

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00063
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00063&domain=pdf&date_stamp=2020-06-09
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:psutor@umd.edu
https://doi.org/10.3389/frobt.2020.00063
https://www.frontiersin.org/articles/10.3389/frobt.2020.00063/full
http://loop.frontiersin.org/people/935865/overview
http://loop.frontiersin.org/people/850316/overview
http://loop.frontiersin.org/people/299990/overview
http://loop.frontiersin.org/people/134547/overview

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

Symbolic Architectures (VSA). This notion is of particular
interest, as many ML techniques produce such high
dimensional vectors as a byproduct of their learning process or
their operation.

In this article, we have focused on the notion of combining
ML systems and VSA using high dimensional vectors directly.
Specifically, we focused on the use of hyperdimensional vectors
and Hyperdimensional Computing to achieve this (Kanerva,
2009). The properties of hyperdimensionality give rise to
interesting ways to manipulate symbolic information so long as
that information can be represented with long binary vectors.
Moreover, this combination is achieved naturally, and is highly
modifiable. Hyperdimensional computing can even improve
the results of ML methods. Since hyperdimensional computing
requires a method to convert data into long binary vectors,
we focused mostly on hashing techniques for images, though
the results are applicable for any ML approach that produces
long binary vectors, either by directly producing them or
by a special encoding. This allows a convenient method for
converting images into hyperdimensional representations that
naturally work with symbolic reasoning systems, such as fuzzy
logic systems.

Consider Figure 1, which demonstrates how
hyperdimensional vectors could be used to convert data
driven systems of different modalities to a shared space of
long binary vectors. Once mapped to such a space, where
distance between mappings is meaningful, it is clear that the

binary space is a purely symbolic representation of both the
input to each data-driven system and their respective output.
Once symbolically represented, operations performed in the
hyperdimensional space can further map vectors to more
complicated representations: in this particular instance, the
symbolic concept of a dog. In a more complicated system, the
entire hyperdimensional space can be overlayed by a knowledge
graph, fuzzy logic system, VSA, or any other symbolic reasoning
system. We largely focused on how to achieve this mapping from
an external learning system to a binary space and, consequently,
how to symbolically “fuse” different modalities together to
get a better symbolic representation of a real-world, data-
driven concept. Our experimental results indicate impressive
improvement in terms of performance, when fusing the outputs
of multiple data-driven models, at little to no computational cost.
The structure of this fusing allows for more models to be added
or removed as desired without requiring expensive computation
or retraining.

The remainder of this article is structured as follows. First, in
section 2, we have provided necessary background information
on hyperdimensional computation. Next, in section 3, we have
discussed related work and results that are pertinent to this
article. Then, in section 4, we have presented the architecture
of a system that could achieve the desired functionality shown
in Figurel and shown how it can be trained and used at
testing time. Of particular importance is the notion of the
Hyperdimensional Inference Layer, which can effectively fuse

Dogs like to bark
Dogs have four legs

AUDITORY
LEARNING
SYSTEM

((BARK)) —>

H_.

VISUAL
LEARNING
SYSTEM

Dogs love to wag their tails 10k Dimensional
Binary Space

X

m N
Q&
>

] b

\\‘//'

DOG

FIGURE 1 | Mapping different modalities of information to the same space of long binary vectors allows knowledge of the world to coexist and combine together
symbolically as well. A dog may be seen and heard, recognized by two separate data-driven learning systems. The output of each, representing the presence of a
dog, is mapped to a binary vector representing the current data. The closer this mapping is to a learned representation of all dogs, the more likely it is to be a dog. In
the same space, linguistic knowledge of dogs can also be mapped to symbolic representations. Combining all three modalities by purely hyperdimensional
computations gives a single symbolic representation of everything pertaining to the concept of dogs.

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

symbolic representations in the hyperdimensional space. In
section 5, we have outlined an experiment to test how well
such an architecture would work in practice. Notably, we have
constrained ourselves to using image hashing networks and have
shown that not only can our architecture effectively fuse the
outputs of different networks together in the hyperdimensional
space but also that the mere usage of hyperdimensional vectors
as a memory mechanism can improve performance as well.
Naturally, in section 6, we have shown the results of these
experiments. Finally, in section 7, we have discussed our results
and outlined the pros/cons of using hyperdimensional vectors to
fuse learning systems together at a symbolic level as well as what
future work is necessary.

2. BACKGROUND INFORMATION

We first covered some of the relevant properties of
hyperdimensional vectors for comprehension, as discussed
in Kanerva (2009). Hyperdimensionality arises in binary vectors
of sufficiently long length, usually on the order of 10,000 bits.
Given two random vectors a and b from B" = {0, 1}" for large
n, their overlap in bits has a high probability of being close to
the expected value of n/2 with a standard deviation of /n/4.
Therefore, two randomly selected vectors will overwhelmingly
have a Hamming Distance of n/2; in this case, we can say the
vectors are uncorrelated.

Two vectors a and b can be bound together by using the
exclusive-or (XOR) operation, which we will represent with
* symbol:

c=axb (1)

Trivially, given one of the vectors, say a, we can unbind c to get b:
axc=ax(axb)=(axa)xb="> (2)

Suppose that a and b represent symbolic concepts; binding them
with Equation (1) and unbinding with Equation (2) produces
a new symbolic concept ¢ that is deconstructed to its atomic
symbols. Additionally, it is trivial that the Hamming Distance
between two vectors is preserved when both are mapped by either
another XOR with m or by a common permutation IT of bits:

|am * bp| = |(a % m) % (b m)| = |ax*b| (3)
|Tla * I1b| = |T1(a * b)| = |a * b| (4)
For our purposes, permutation and XOR are used

interchangeably as “multiplication” operations. In order to
create a more sophisticated and structured vector, we required
an “addition” operation. We primarily concerned ourselves with
the “consensus sum,” where each bit of the resultant vector is set
to be the bit value that appears more often in that component
across the terms:

+c (a1, a2, ..o aqp}) = ay +ca.. +ca = a, (5)

where for a count z of 0’s across the [terms:

0 z>1/2
ad =11 z<1/2 (6)
random z =1

However, if permutation is used for multiplication, it is valid
to use XOR for addition. For either * or +, as the + operator,
a sequence of symbolic information A = A;A;..A; can be
represented as

a = (...(010(TTay + a3) + a3) + ...) + a;

=T"ta + 120, + . 4+ Maj_y + a4)
where a; are vector representations of corresponding A; and
IT is a permutation that represents the sequence. When using
XOR, subsquences can be removed, replaced, or extended by
constructing them and XOR-ing with a.

Finally, a record r of fields f = [f1, f2, = ..., fi], and their values
v = [v1,V2,..,] can be constructed symbolically by binding
each f; with its corresponding v; using Equation (1) and summing
the result with Equation (5):

r=v-f=vi*fi4+c..tcVvixfitcvixf (8)

Given a value vy, a record r can be probed by performing an
XOR and finding the f; with the smallest Hamming Distance, thus
checking the existence of a field:

min |(vy * 7) * fil 9)
J

A similar approach can be done to approximately recover the
value of a field:

min |(f * 7) * vj] (10)
i

When the bits of a probe do not correlate with a term in r, the

term collapses into a noise vector, whereas the term that does

correlate will produce a signal that approximately undoes the
XOR binding.

3. RELATED WORK

Our work is primarily an extension of HAP (Mitrokhin et al.,
2019) in which drones are trained to predict their egomotion in
3-D space. A neuromorphic camera’s events are converted into a
time image slice of motion, represented as a sparse RGB image,
whose pixel data is symbolically represented with a structured
hyperdimensional vector. Raw RGB values are semantically
embedded into the hyperdimensional space such that each
color component is closer to its nearest values than further
values. Possible velocity values are finely binned and likewise
semantically embedded. A structured record m is constructed to
associate the egomotion in one component velocity to another
record containing all time image slices that fall into the same
velocity bin, with Equation (8), at training time. Egomotion
prediction is achieved purely by these memory units m via

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al. Symbolic Representation With Hyperdimensional Vectors

wh MATCHING
RESULL w VELOCITY

o+ +

+ [+ |+ B

INPUT

LEARNED FROM
EXAMPLES

FIGURE 2 | Hyperdimensional memory mechanism in HAP (Mitrokhin et al., 2019). A memory unit m consists of velocity bins as fields that are bound to another
record of summed vector representations of time image slices from training. An input image is converted to its hyperdimensional vector representation and XOR’d with
m. If it matches approximately with one of the image slice sums, the result contains the matching velocity representation with some noise.

XORing a novel time slice image with m and probing the possible
velocities to find the closest match. Figure2 demonstrates
this process.

This method works because of the sparseness of pixel data in
time image slices. The collection of time slices that are associated
to a velocity bin average out to be representative of the motion
changes the neuromorphic camera experienced. Surprisingly, this
is sufficient to achieve neural-network-like performance, with a
tiny fraction of memory, training samples, computation power,
and training time of a neural approach. However, it is completely
interpretable, can be trained online. and is effectively a symbolic
reasoning system. Unfortunately, regular image data is too dense
in information for this approach to work as implemented in HAP
(Mitrokhin et al., 2019).

There exist other methods that have used hyperdimensional
techniques to perform recognition (Imani et al, 2017) and
classification (Moon et al., 2013; Rahimi et al., 2016; Imani
et al., 2018; Kleyko et al., 2018). As with HAP (Mitrokhin et al.,
2019), there have been other attempts to perform feature and
decision fusion (Jimenez et al., 1999) or paradigms that can
operate with minuscule amounts of resources (Rahimi et al.,
2017). We differ from these approaches in that we try to
assume as little about the model as possible except that it would
be used in some form of classification for information that
can be represented symbolically and modified with additional
classifiers. Our results are a benchmark to see how much a
hyperdimensional approach could facilitate a direct connection
between ML systems and symbolic reasoning. On the solely
symbolic representation and reasoning side, there exists relevant
work on using cellular automata based hyperdimensional

computing (Yilmaz, 2015). Some formulations based on real-
valued vectors can also exhibit similar properties to long binary
vectors so far as compositionality and decompositionality is
concerned (Summers-Stay et al., 2018).

4. ARCHITECTURE

Extending the model from HAP (Mitrokhin et al.,, 2019), the
input vector is treated as any output from an ML system and
the output velocity bins are now a symbolic representation of
the output classes of the network. These would then feed in to a
larger VSA system, that could feasibly be composed of other ML
systems. Suppose that we have a pre-trained ML system, such as
a Hashing Network, which can produce binary vectors as output
to represent images.

4.1. Training the Hyperdimensional

Inference Layer

For a classification task, during training time, training images are
hashed into binary vector representations. These are aggregated
with the consensus sum operation in Equation (5) across their
corresponding gold-standard classes, and a random basis vector
meant to symbolically represent the correct class is bound to the
aggregate with Equation (1). The resultant vector now represents
a memory containing all training instances observed but that
are represented symbolically with appropriated hashed binary
vectors that are projected into a hyperdimensional binary space
by randomly permuting and assembling the hash vector. Figure 3
shows this process when training to classify a “dog” in an
image. This dog class is aggregated into a larger vector, once

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

Pretrained
Hash Network

=

Training Images

Aggregation of Hash Values

+ || +

. .

Binding with correct
symbolic representation

FIGURE 3 | The training pipeline for a particular class of “dog.” First, training images are hashed into binary vectors using a pre-trained network. The vectors for each
image are then projected to a hyperdimensional length by randomly repeating the bits consistently. Each vector is aggregated by the consensus sum operation into a
single vector containing all training instances for that class. A symbolic representation of the class, called “Dog” in this example, as another hyperdimensional vector, is
bound to the aggregated vector. This forms the association between representative images and the class itself. Once these inference vectors are computed for each
class, they are aggregated by consensus sum into the Hyperdimensional Inference Layer, which then performs classification at testing time.

Hyperdimensional
Inference Layer

+
Deer
+ (-
+
3
Dog
Dog // T
/l
Vi Frog
+
Horse
+

again with the consensus sum operation in Equation (5), to
produce a hyperdimensional vector containing similar memory
vectors across the other classes. This is referred to as the
Hyperdimensional Inference Layer (HIL), which then infers the
correct class at testing time for a novel image.

4.2. Testing the Hyperdimensional

Inference Layer

Once training is complete, classification of a novel image is
relatively straightforward. An image is converted to a binary
vector by the pre-trained hashing network. This vector is then
projected into a hyperdimensional vector in the same manner
as during training. Finally, the XOR between this vector and the
HIL is computed. The Hamming Distance between the resultant
vector and each of the class representations is measured. The
class vector with the smallest Hamming Distance is selected as
the correct classification. Figure 4 shows this process in action.

4.3. Consensus With Multiple Models

One advantage of the hyperdimensional architecture for
inference is how it can be easily manipulated. Of particular
interest is when there are multiple models that can produce
features in the form of hyperdimensional vectors for an
input. Suppose we had several models, each with their own
advantages. We can fuse their output together to form a
consensus system that will consider each network’s feature
output before classification. We simply repeat the same method
as we did for our classes but with symbolic identifiers for

which model aggregated which data. Prediction is done as
before, probing each model’s output with XOR and finding the
closest matching network vector. Figure 5 demonstrates how this
pipeline would work.

5. MATERIALS AND METHODS

The methodology, external systems, and datasets used for testing
were as follows.

5.1. Methodology

To test how well hyperdimensional vectors can facilitate the
mapping from the input/output of an ML system to a symbolic
system, we required a model problem where it was possible
to convert an ML result into hyperdimensional vectors. We
studied the typical image classification problem but with hashing
networks, as they directly convert raw images into binary
vectors of variable length, which are used for classification and
ranking based on Hamming Distance. This is simply done for
convenience, as most neural methods do not product binary
vectors of such large length that are also rankable, and we did
not want other methods for embedding real numbered vectors
into binary spaces to affect the results. We utilized the DeepHash!
library, which incorporates recent deep hashing techniques for
image classification and ranking (Cao et al.,, 2016, 2017, 2018;
Zhu et al,, 2016; Liu et al., 2018). Our goal wsa to show that

!Code repository available on GitHub at https://github.com/thulab/DeepHash.

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://github.com/thulab/DeepHash
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al. Symbolic Representation With Hyperdimensional Vectors

+
Hyperdimensional Inference Layer

Dog
+
—

U Best

: Hyperdimensional + Matching

Input Images to hash Hashing Network H Hiashed Vector = Pt

+

FIGURE 4 | The pipeline for testing the Hyperdimensional Inference Layer. Images are presented to the hashing network H, which are then hashed into binary vectors.
As during training, these are projected into hyperdimensional vectors. The result is then XOR'd with the HIL. The XOR distributes across the terms in the HIL and
creates noise for terms corresponding to incorrect classes. Only the correct class will deviate from the noise and will be detected as the best matching class by
computing the Hamming Distance between the result of the XOR and every vector representation of the classes; the class with the smallest Hamming Distance is
selected as the correct classification.

Symbolic Identifiers for each
Hashing Network

(1I/l\
;1

FIGURE 5 | Given multiple ML models, the HIL of each can be fused together by repeating the same training procedure. Thus, given an image, each hashing network
converts it to a different binary vector, which is projected into hyperdimensional lengths. These are bound with symbolic vectors identifying each individual hashing
network and aggregated via consensus sum. The result allows us to perform inference across multiple models at testing time.

DTQ

an added layer of inference to the outputs of these methods
with hyperdimensional computing allows us to convert their
results into common length, hyperdimensional vectors, without
losing performance. In fact, as we have seen, performance can
even increase.

We trained individual Hash Networks to perform image
classification and then compared their performance with and
without a HIL. Performance is tracked by comparing the F1
score for classification to the number of training iterations
for the Hash network or epochs. We were also interested in

Two separate experiments were performed to evaluate how how the HIL affects the F1 score as the Hamming Distance
well a structure like the one shown in Figure 1 would work in threshold for similarity increases.

practice. Again, we limited ourselves to visual learning systems Additionally, we studied whether the HIL could improve the
for s1mPhc1ty, though there is no reason for such a limitation overall performance of our Hash Networks if we fused them
In practice. at the symbolic level of their outputs, using a HIL, as shown

1. We first tested how well a hyperdimensional representation in Figure 5. We designed an experiment where all networks

of a given hashing networks output can work with a
HIL. That is, does the inclusion of a HIL (and by
extension, hyperdimensional representations) obfuscate the
classification, thereby worsening performance, or does it
perhaps improve the performance? In theory, the system
should not do worse. However, the nature of HILs structure
may enable a better memorization of training examples.

used in our first experiment are combined together by fusing
their individual HIL into a new HIL. The idea asiws that,
individually, these Hash Networks have different strengths
and weaknesses based on their formulation. When fused
into a HIL, each contributes toward the overall classification
result, allowing the best matching classification across all
models simultaneously.

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

5.2. External Systems

We used three of the image hashing networks from DeepHash
in our experiments. In the following sections, we have described
and outlined each one individually. In general, these networks
use features provided by another system and compute hashes
based on features extracted from the images into compact codes
for image retrieval and classification. Additionally, we built
our hyperdimensional inference layer by using the open source
framework pyhdc? library, as used in HAP (Mitrokhin et al.,
2019), which contains basic, but very efficiently implemented,
operations for hyperdimensional computing and representing
hyperdimensional vectors. Finally, Al exNet (Krizhevsky et al.,
2012) features pre-trained on | mageNet (Deng et al., 2009) are
used in the DeepHash pipeline and are available for download
from the GitHub repository.

5.2.1. Deep Quantization Network (DQN)

The Deep Quantization Network (DQN) is a hashing-by-
quantization network used for efficient image retrieval (Cao
et al, 2016). The system supervises its hashing and allows
statistical minimization of quantization errors from hand-crafted
or machine learned features in a step separate from what
traditional quantized hashing networks did prior. DQN formally
controls this quantization error. The system is composed of four
main subsystems:

1. Multiple convolution-pooling layers that capture deep image
representations.

2. A fully connected layer that bottlenecks deep representations
and projects them into an optimal lower dimensional
representation for hashing.

3. A pairwise cosine layer for learning similarity preservation.

4. The quantization loss product that controls the quality of the
hash and quantizes the bottleneck representations.

5.2.2. Deep Cauchy Hashing Network (DCH)

The Deep Cauchy Hashing Network (DCH) seeks to improve
hash quality by penalizing similar image pairs having a Hamming
Distance bigger than the radius specified by the hashing network
(Cao et al,, 2018). The authors argue that hashing networks tend
to concentrate related images within a specified Hamming ball
due to mis-specified loss function. By penalizing the network for
when this happens with a pairwise cross-entropy loss based on a
Cauchy distribution, the rankings become stronger.

5.2.3. Deep Triplet Quantization Network (DTQ)

The Deep Triplet Quantization Network (DTQ) further improves
hashing quality by incorporating similarity triplets into the
learning pipeline. By a new triplet selection approach, Group
Hard, triplets are selected randomly from each image group that
are deemed to be “hard.” Binary codes are further compacted
by use of triplet quantization with weak orthogonality at
training time.

2Code repository available on GitHub at https://github.com/ncos/pyhdc.

5.3. Datasets

Evaluations of the hashing networks by themselves and
with the hyperdimensional inference layer are performed on
the Cl FAR-10 standard dataset (Krizhevsky and Hinton,
2009) and the NUSW DE_81 dataset (Chua et al., 2009),
which contains tagged Flickr images with 81 concepts
for classification.

6. RESULTS

In the following sections, we present the results of our evaluation
of the hyperdimensional inference layers in both experiments.

6.1. Hyperdimensional Inference Layer

Results

To test the capabilities of the hyperdimensional inference
layers in preserving the output of ML models when
transformed into hyperdimensional vectors, we compared
the performance of each hashing network individually vs.
the performance when the hyperdimensional inference
layer is added to the hashing network, as shown in
Figures 3, 4.

6.1.1. Results for Cl FAR- 10

Figure 6 compares the F1 scores of each hashing network with
and without the HIL on Cl FAR- 10. The left column shows
performance across iterations of network training (DTQ shows
epochs instead). The threshold for Hamming Distance to search
in is set to 2 (out of 128 bit vectors) for the baseline networks. For
HIL results, as the vectors are hyperdimensional, the threshold
is set to be proportionally that many bits out of 8,000. In
all cases, the HIL improves performance greatly and with less
iterations/epochs. In the right column, the F1 score is shown
for successively more lax Hamming Distances in both methods,
taking the best matching vector in a Hamming ball of that size. In
the case of hyperdimensional vectors for the HIL, the size is once
again proportional to 8,000 bit long vectors. For each baseline
hashing network, there is clearly an optimal Hamming Distance
to use. This is not the case for HIL, where it plateaus in each
case for any distance smaller than the peak. As the number of
bits increase, the performance quickly degrades to be more in line
with the hashing network.

6.1.2. Results for NUSW DE- 81

Figure 7 compares the F1 scores of each hashing network with
and without the HIL on NUSW DE- 81. As with Cl FAR- 10,
the left column shows the performance of each hashing
network across iterations of network training. The threshold for
Hamming Distance is once again set to 2 bits out of 128 for
the baseline networks. For HIL, the distance is proportionally
scaled to hyperdimensional lengths in 8,000. Once again, in
all cases the HIL greatly improves the F1 score. In the
right column, the F1 score is shown for successively more
lax Hamming Distances in both methods, retrieving the best
match in the Hamming ball of that size. In the case of
hyperdimensional vectors, the distances are scaled up to the
appropriate values. For each baseline hashing network, there is

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://github.com/ncos/pyhdc
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

A B
— f1, dch — f1, dch
0.6 — f1,dch +hil 1 —— f1, dch + hil
0.6
0.5
05+
0.4 1
0.3 0.4
0.2 4
0.3+
0.1
0.2
0.0
0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100 120
(o] D
— f1, dtq
0:7 071 —— 1, dtq + hil
0.6
0.6
0.51
0.5 1
0.41
0.3 /v\/_/v 0.4
0.2 N
/ 03
0.1
— f1, dtq 0
0.0 —— f1, dtq + hil :
0 10 20 30 40 50 0 20 40 60 80 100 120
E F
i 1, dgn I ey — f1,dan .
0.6 4 —— f1, dgn + hil 0.6 —— f1, dgn + hil
0.5 1 0.5
/ \Y
0.4
0.3 1
0.3 1
0.2
~ 2]
0.1 —/\/
0.1
0.0
0 2.';0 5(‘)0 75‘)0 1000 12‘50 1500 17‘50 0 20 40 60 80 100 120

FIGURE 6 | (A) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the DCH
network. (B) F1 score for classification on the CIFAR-10 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification. The
networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a
function of the number of iterations of training of the DTQ network. (D) F1 score for classification on the CIFAR-10 dataset with DTQ with and without the HIL, as a
function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). (E) F1 score for classification on the
CIFAR-10 dataset with DQN with and without the HIL, as a function of the number of iterations of training of the DQN network. (F) F1 score for classification on the
CIFAR-10 dataset with DQN with and without the HIL, as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in
subplot (E). Baseline networks are shown in blue, while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots,
the Hamming Distance for classification is set to 2 for inlier/outlier count. The left column of results show that the HIL boosts the speed at which the network trains,
(Continued)

Frontiers in Robotics and Al | www.frontiersin.org 8 June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

FIGURE 6 | achieving a higher performance in far fewer iterations of expensive network training. As the HIL adds negligible overhead in memory/computation time,
there is no downside to using a HIL. The right column of results show that the HIL prevents the need for searching for an optimal Hamming Distance threshold to
classify with, as it supercedes peak performance of the network right away for the lowest possible distance thresholds. After peak performance of the baseline
network, larger Hamming Distance thresholds eventually decay to the performance of the baseline.
A B
L 0.625 —— 11 aen
0.5 0660 —— f1, dch + hil
6.4 0.575
0.550
0.3
0.525 1
0.2 0.500
0.3 0.475
—— f1,dch 0.450
0.0 —— f1, dch + hil
0 200 400 600 800 0 20 40 60 80 100 120
Cc D
040 T== 1, dgn — fl,dan
—— f1, dgn + hil 0.6 1 —— f1, dgn + hil
0.35 A
0.30 4 0.5
0.25
0.4 1
0.20 4
0.34
0.15 4
0.10 4 0.2
0.05 1
0.1
0.00 {— ‘
0 200 400 600 800 1000 0 20 40 60 80 100 120
FIGURE 7 | (A) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the number of iterations of training of the
DCH network. (B) F1 score for classification on the NUSWIDE-81 dataset with DCH with and without the HIL, as a function of the Hamming Distance for classification.
The networks are fully trained to the end point shown in subplot (A). (C) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL, as
a function of the number of iterations of training of the DQN network. (D) F1 score for classification on the NUSWIDE-81 dataset with DQN with and without the HIL,
as a function of the Hamming Distance for classification. The networks are fully trained to the end point shown in subplot (C). Baseline networks are shown in blue,
while the same network with a HIL appended to the end is shown in yellow. Note that in the left column of subplots, the Hamming Distance for classification is set to 2
for inlier/outlier count. Results for DTQ are omitted for incompatibility with NUWSIDE-81. We largely get the same results in the left column as with CIFAR-10, showing
an improvement in performance versus training iterations when an HIL is appended to the end of the baseline network, which adds negligible memory/computation
costs. In the right column of results, the HIL differs from CIFAR-10’s results in that there is a peak to the performance of the HIL enhanced network. This is likely due to
NUSWIDE-81 being designed for the task of web image annotation and retrieval.

clearly an optimal Hamming Distance to use, though it is much
less pronounced with HIL. In all cases, it is safer to use a smaller
Hamming Distance rather than a larger one, except near the
optimal values.

6.2. Results for the Consensus Architecture
We tested the capability of hyperdimensional computing to
fuse the results of different models at the vector-symbolic
level. This setup allows to compensate for the shortcomings

of the individual models and give a more robust result -
a desirable property of hyperdimensional representations. We
tested the consensus pipeline on all three hashing networks
and on Cl FAR- 10’ full dataset, with fully trained hashing
networks and HILs for each. The FI1 scored increased to
0.79, ~10% more than the scores any of the models achieved
individually with HIL, as seen in Figure 6. This confirms our
suspicion that direct fusion at the symbolic level gives far more
robust results.

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

6.3. Summary of Experimental Results

Our experiments indicate no performance downside to adding
an HIL to an existing, Deep Hash Network. Indeed, it seems
that the HIL enables better results with fewer epochs and
even improves the F1 score. Furthermore, fusion of multiple
networks into a single HIL increased the F1 score greatly
above any of the individual networks, even with an HIL. Since
each Hash Network formulation differs significantly from each
other, one network might be better suited at hashing particular
information. We surmise the improvement of performance is
because the robustness of the HIL allows each network to
naturally contribute its classification to the overall classification
decision in a consensus-like fashion.

It should be noted that hyperdimensional computations are
very fast. The pyhdc package is designed to perform these
computations very efficiently. As a result, the addition of the HIL,
in either experiment, is negligible in terms of extra computations
and execution time. This is in line with previous results shown in
HAP (Mitrokhin et al., 2019), where in a matter of milliseconds
the HIL can be trained, retrained from scratch, and even perform
classification, on a standard CPU processor. In our results,
the HIL also incurred milliseconds of additional runtime. This
further indicates that there is virtually no downside to adopting
the hyperdimensional approach presented in our architecture.

7. DISCUSSION

Hyperdimensional computing has many attractive properties.
Our results confirm the notion that hyperdimensional
representations can be useful in VSA and symbolic reasoning
systems. It is also important to note that hyperdimensional
vectors have not yet been effectively used to represent dense
RGB images in prior work. This potentially opens up new
avenues for combining symbolic reasoning and ML methods.
Hyperdimensional representations produced by converting
the output of deep hashing networks into symbolic inference
structures allows the use of fuzzy logic systems, of which the use
of HILs in our experiments are a simple example of. Since HIL
structures can be fused across different modalities, this increases
the robustness and interpretability of the inference process.
We have shown the potential advantages of multi-modal fusion
in the HIL by combining three separately trained, differently
constructed deep hashing networks without the need of any
additional training or oversight, improving the overall result.
This is despite the fact that each model is successively more
state-of-the-art, meaning that there is no catastrophic loss in
integrating newer models into the inference system as more
are developed.

Although the results so far are quite interesting and point to a
potential future of hyperdimensional computing in the marriage
of ML and symbolic reasoning systems, there are still many
drawbacks to the approach we have presented. First of all, it
would be preferable to use non-hashing (or perhaps even non-
supervised) networks to bootstrap our system, as these tend
to perform much better than hashing methods. However, this
would require the ability to convert embeddings in a more

sophisticated neural system into corresponding binary vectors.
Special quantization methods may need to be developed to
facilitate this in future work in order to fully take advantage of
hyperdimensional representations.

It is clear that more work is required to fully integrate
hyperdimensional representations into ML systems. Specifically,
these need to be more compliant to deep representations of
features. There are many avenues of future research that can
improve upon these limitations, especially in regard to special
conversion between deep features in different modalities, such
as text, and images. On the symbolic reasoning side, our results
do not produce a full-scale, fully realized symbolic system. For
example, Figure 1 would indicate that, given the high likelihood
of detection of a dog, the system could reason that there is a
high likelihood that what is currently observed likes to bark,
has four legs, and loves to wag its tail. However, it is not clear
how this linguistic knowledge would be incorporated into the
associated hyperdimensional space. One can imagine knowledge
graph like structures overlaying the hyperdimensional space, or
perhaps more sophisticated structures, but it is not readily clear
what the best formulation is.

Furthermore, we must point out some of the drawbacks
of using hyperdimensional representations to facilitate
a connection between data-driven systems and symbolic
reasoning systems:

e We have the necessary requirement that data-driven systems
can be readily converted into long binary vectors. This is a
severe restriction, as most state-of-the-art methods naturally
use real-valued computations. Most neural methods produce
samples on complex manifolds that may be difficult to
effectively map to hyperdimensional vectors. Thus, there is a
need for a general technique to project real-valued embeddings
from data-driven systems to binary spaces. As a result, real-
value hyperdimensional vectors may be better suited to certain
tasks (Summers-Stay et al., 2018; Sutor et al., 2019).

Along the same lines, many modern-day symbolic
reasoning systems also rely on real-value computations
or representations, especially when data driven. New
methods would have to be developed to work with more
sophisticated systems.

While hyperdimensional vector representations of different
modalities can be embedded effectively into a common space,
they may also require a nearest neighbor lookup when looking
for similar, known concepts. This may become expensive when
the hyperdimensional space contain many concepts. In order
to maintain that data of a particular modality is closer to other
examples of that modality, it may be necessary to adopt an
approach that facilitates this, such as in Sutor et al. (2018).

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found on the
DeepHash project page (https://github.com/thulab/DeepHash).
The pyhdc library code used in this work can be found in https://
github.com/ncos/pyhdc.

Frontiers in Robotics and Al | www.frontiersin.org

10

June 2020 | Volume 7 | Article 63

https://github.com/thulab/DeepHash
https://github.com/ncos/pyhdc
https://github.com/ncos/pyhdc
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mitrokhin et al.

Symbolic Representation With Hyperdimensional Vectors

AUTHOR CONTRIBUTIONS

AM contributed to the experiments, evaluations, plots, and text
of the manuscript. PS contributed to experiments, the text of
the manuscript, and illustrations. DS-S, CE and YA contributed
to the text of the manuscript. All authors contributed to the
conceptual ideas at the heart of this research.

REFERENCES

Cao, Y., Long, M, Liu, B., and Wang, J. (2018). “Deep cauchy hashing for hamming
space retrieval,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (Salt Lake City, UT), 1229-1237. doi: 10.1109/CVPR.2018.
00134

Cao, Y., Long, M., Wang, J., and Liu, S. (2017). “Deep visual-semantic
quantization for efficient image retrieval,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (Honolulu, HI), 1328-1337.
doi: 10.1109/CVPR.2017.104

Cao, Y., Long, M., Wang, J., Zhu, H., and Wen, Q. (2016). “Deep quantization
network for efficient image retrieval,” in Thirtieth AAAI Conference on Artificial
Intelligence (Phoenix, AZ).

Chua, T.-S,, Tang, J., Hong, R,, Li, H.,, Luo, Z., and Zheng, Y. (2009). “NUS-wide:
a real-world web image database from National University of Singapore,” in
Proceedings of the ACM International Conference on Image and Video Retrieval
(Santorini), 1-9. doi: 10.1145/1646396.1646452

Deng, J., Dong, W., Socher, R.,, Li, L-J, Li, K, and Fei-Fei, L. (2009).
“Imagenet: a large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition (Miami, FL: IEEE), 248-255.
doi: 10.1109/CVPR.2009.5206848

Imani, M., Huang, C. Kong, D., and Rosing, T. (2018). “Hierarchical
hyperdimensional computing for energy efficient classification,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC) (San Francisco, CA:
IEEE), 1-6. doi: 10.1109/DAC.2018.8465708

Imani, M., Kong, D., Rahimi, A. and Rosing, T. (2017). “Voicehd:
hyperdimensional computing for efficient speech recognition,” in 2017
IEEE International Conference on Rebooting Computing (ICRC) (McLean, VA:
IEEE), 1-8. doi: 10.1109/ICRC.2017.8123650

Jimenez, L. O., Morales-Morell, A., and Creus, A. (1999). Classification of
hyperdimensional data based on feature and decision fusion approaches using
projection pursuit, majority voting, and neural networks. IEEE Trans. Geosci.
Rem. Sens. 37, 1360-1366. doi: 10.1109/36.763300

Kanerva, P. (2009). Hyperdimensional computing: an
to computing in distributed representation with high-dimensional
random vectors. Cogn. Comput. 1, 139-159. doi: 10.1007/s12559-009-
9009-8

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., and Rabaey, J. M.
(2018). Classification and recall with binary hyperdimensional computing:
tradeoffs in choice of density and mapping characteristics. IEEE Trans.

Syst. 29, 5880-5898. doi: 10.1109/TNNLS.2018.

introduction

Neural Netw. Learn.
2814400

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From
Tiny Images. The University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Information
Processing Systems (Lake Tahoe), 1097-1105.

Liu, B, Cao, Y. Long, M. Wang, J, and Wang, J. (2018). “Deep
triplet quantization,” in Proceedings of the 26th ACM International
Conference (Seoul), 755-763. doi: 10.1145/3240508.
3240516

on Multimedia

ACKNOWLEDGMENTS

The support of Northrop Grumman Mission Systems University
Research Program, of ONR under grant award N00014-17-1-
2622, of the Brin Family Foundation and the support of the
National Science Foundation under grants BCS 1824198 and
CNS 1544787 were gratefully acknowledged.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. Scottsdale, AZ: International Conference
on Learning Representations (ICLR).

Mitrokhin, A., Sutor, P., Fermiiller, C., and Aloimonos, Y. (2019). Learning
sensorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception. Sci. Robot. 4:eaaw6736. doi: 10.1126/scirobotics.aaw6736

Moon, S., Berster, B.-T., Xu, H., and Cohen, T. (2013). “Word sense
disambiguation of clinical abbreviations with hyperdimensional computing,” in
AMIA Annual Symposium Proceedings, Vol. 2013 (Washington, DC: American
Medical Informatics Association), 1007.

Pennington, J., Socher, R., and Manning, C. D. (2014). “Glove: global vectors
for word representation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (Doha), 1532-1543.
doi: 10.3115/v1/D14-1162

Rahimi, A., Datta, S., Kleyko, D., Frady, E. P., Olshausen, B., Kanerva, P.,
et al. (2017). High-dimensional computing as a nanoscalable paradigm. IEEE
Trans. Circuits Syst. I Reg. Pap. 64, 2508-2521. doi: 10.1109/TCSL.2017.2
705051

Rahimi, A., Kanerva, P., and Rabaey, J. M. (2016). “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proceedings of
the 2016 International Symposium on Low Power Electronics and Design (San
Francisco, CA), 64-69. doi: 10.1145/2934583.2934624

Summers-Stay, D., Sutor, P, and Li, D. (2018). Representing sets as
summed semantic vectors. Biol. Inspired Cogn. Archit. 25, 113-118.
doi: 10.1016/j.bica.2018.07.002

Sutor, P., Aloimonos, Y., Fermuller, C., and Summers-Stay, D. (2019).
“Metaconcepts: isolating context in word embeddings,” in 2019 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR) (San
Jose, CA: IEEE), 544-549. doi: 10.1109/MIPR.2019.00110

Sutor, P., Summers-Stay, D., and Aloimonos, Y. (2018). “A computational
theory for life-long learning of semantics, in International Conference

on Artificial General Intelligence (Prague: Springer), 217-226.
doi: 10.1007/978-3-319-97676-1_21
Yilmaz, O. (2015). Symbolic computation using cellular automata-

based hyperdimensional computing. Neural Comput. 27, 2661-2692.
doi: 10.1162/NECO_a_00787

Zhu, H., Long, M., Wang, J., and Cao, Y. (2016). “Deep hashing network
for efficient similarity retrieval,” in Thirtieth AAAI Conference on Artificial

Intelligence (Phoenix, AZ).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Mitrokhin, Sutor, Summers-Stay, Fermiiller and Aloimonos. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 63

https://doi.org/10.1109/CVPR.2018.00134
https://doi.org/10.1109/CVPR.2017.104
https://doi.org/10.1145/1646396.1646452
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/DAC.2018.8465708
https://doi.org/10.1109/ICRC.2017.8123650
https://doi.org/10.1109/36.763300
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1109/TNNLS.2018.2814400
https://doi.org/10.1145/3240508.3240516
https://doi.org/10.1126/scirobotics.aaw6736
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1109/TCSI.2017.2705051
https://doi.org/10.1145/2934583.2934624
https://doi.org/10.1016/j.bica.2018.07.002
https://doi.org/10.1109/MIPR.2019.00110
https://doi.org/10.1007/978-3-319-97676-1_21
https://doi.org/10.1162/NECO_a_00787
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Symbolic Representation and Learning With Hyperdimensional Computing
	1. Introduction
	2. Background Information
	3. Related Work
	4. Architecture
	4.1. Training the Hyperdimensional Inference Layer
	4.2. Testing the Hyperdimensional Inference Layer
	4.3. Consensus With Multiple Models

	5. Materials and Methods
	5.1. Methodology
	5.2. External Systems
	5.2.1. Deep Quantization Network (DQN)
	5.2.2. Deep Cauchy Hashing Network (DCH)
	5.2.3. Deep Triplet Quantization Network (DTQ)

	5.3. Datasets

	6. Results
	6.1. Hyperdimensional Inference Layer Results
	6.1.1. Results for CIFAR-10
	6.1.2. Results for NUSWIDE-81

	6.2. Results for the Consensus Architecture
	6.3. Summary of Experimental Results

	7. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

