
ORIGINAL RESEARCH
published: 23 July 2020

doi: 10.3389/frobt.2020.00066

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2020 | Volume 7 | Article 66

Edited by:

Stephan Weiss,

NASA Jet Propulsion Laboratory

(JPL), United States

Reviewed by:

Ricardo Sanz,

Polytechnic University of Madrid,

Spain

Antonio Morales,

University of Jaume I, Spain

*Correspondence:

Petar Kormushev

p.kormushev@imperial.ac.uk

Specialty section:

This article was submitted to

Robotic Control Systems,

a section of the journal

Frontiers in Robotics and AI

Received: 18 April 2019

Accepted: 21 April 2020

Published: 23 July 2020

Citation:

Falck F, Doshi S, Tormento M,

Nersisyan G, Smuts N, Lingi J,

Rants K, Saputra RP, Wang K and

Kormushev P (2020) Robot DE NIRO:

A Human-Centered, Autonomous,

Mobile Research Platform for

Cognitively-Enhanced Manipulation.

Front. Robot. AI 7:66.

doi: 10.3389/frobt.2020.00066

Robot DE NIRO: A Human-Centered,
Autonomous, Mobile Research
Platform for Cognitively-Enhanced
Manipulation
Fabian Falck 1,2, Sagar Doshi 1,2, Marion Tormento 1,3, Gor Nersisyan 1,3, Nico Smuts 1,2,

John Lingi 1,2, Kim Rants 1,2, Roni Permana Saputra 1,4,5, Ke Wang 1,4 and

Petar Kormushev 1,4*

1 Robot Intelligence Lab, Imperial College London, London, United Kingdom, 2Department of Computing, Imperial College

London, London, United Kingdom, 3Department of Bioengineering, Imperial College London, London, United Kingdom,
4Dyson School of Design Engineering, Imperial College London, London, United Kingdom, 5 Research Center for Electrical

Power and Mechatronics, Indonesian Institute of Sciences - LIPI, Jakarta, Indonesia

We introduce Robot DE NIRO, an autonomous, collaborative, humanoid robot for

mobile manipulation. We built DE NIRO to perform a wide variety of manipulation

behaviors, with a focus on pick-and-place tasks. DE NIRO is designed to be used in

a domestic environment, especially in support of caregivers working with the elderly.

Given this design focus, DE NIRO can interact naturally, reliably, and safely with humans,

autonomously navigate through environments on command, intelligently retrieve or move

target objects, and avoid collisions efficiently. We describe DE NIRO’s hardware and

software, including an extensive vision sensor suite of 2D and 3D LIDARs, a depth

camera, and a 360-degree camera rig; two types of custom grippers; and a custom-built

exoskeleton called DE VITO. We demonstrate DE NIRO’s manipulation capabilities in

three illustrative challenges: First, we have DE NIRO perform a fetch-an-object challenge.

Next, we add more cognition to DE NIRO’s object recognition and grasping abilities,

confronting it with small objects of unknown shape. Finally, we extend DE NIRO’s

capabilities into dual-arm manipulation of larger objects. We put particular emphasis

on the features that enable DE NIRO to interact safely and naturally with humans.

Our contribution is in sharing how a humanoid robot with complex capabilities can

be designed and built quickly with off-the-shelf hardware and open-source software.

Supplementary Material including our code, a documentation, videos and the CAD

models of several hardware parts are openly available at https://www.imperial.ac.uk/

robot-intelligence/software/.

Keywords: mobile manipulation, perception for grasping and manipulation, manipulation planning, cognition-

enabled manipulation, motion planning and control, dual-arm manipulation, human-centered manipulation,

humanoid robotics

1. INTRODUCTION

Over the last decade, robots have increasingly appeared outside of factories and in homes (Bekey,
2012; Fortunati et al., 2015). Unique demands of the household environment have led to an
explosion in robot designs. Robots in the home often need to be autonomously mobile and able
to interact with dynamic environments and objects of unexpected shapes and sizes. Manufacturing

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00066
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00066&domain=pdf&date_stamp=2020-07-23
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:p.kormushev@imperial.ac.uk
https://doi.org/10.3389/frobt.2020.00066
https://www.frontiersin.org/articles/10.3389/frobt.2020.00066/full
http://loop.frontiersin.org/people/627932/overview
http://loop.frontiersin.org/people/826711/overview
http://loop.frontiersin.org/people/976634/overview
http://loop.frontiersin.org/people/977131/overview
http://loop.frontiersin.org/people/70869/overview
https://www.imperial.ac.uk/robot-intelligence/software/
https://www.imperial.ac.uk/robot-intelligence/software/

Falck et al. Robot DE NIRO

QUICKIE base with

feedback controller

Baxter robot arms

Microsoft Kinect depth camera

Stereovision cameras

Mount positions of

2D and 3D LIDARs

FIGURE 1 | Robot DE NIRO—a collaborative research platform for mobile

manipulation. The figure shows its design, main components, and sensors.

robots, by contrast, are often rooted to one place, repeatedly
performing a precise action. Domestic robots are frequently
single-purpose or physically small (Noonan et al., 1993; Forlizzi
and DiSalvo, 2006), though some do attempt to meet a broader
set of needs (Hans et al., 2002). We propose a robot system whose
design in both hardware and software goes in the latter direction:
Robot DE NIRO (Design Engineering’s Natural Interaction
RObot).

DE NIRO is a human-sized—and roughly human-shaped—
robot whose most prominent features are its two manufacturing-
grade arms. We depict DE NIRO in Figure 1. With its wide
array of sensors, the extra mobility that comes from using a
wheelchair base, and the software architecture that links all its
parts together, DE NIRO can perform many tasks in dynamic
environments, including object recognition, face recognition,
and collision avoidance. We intend for DE NIRO to be a fully
open-source and open-hardware research platform, and we have
shared our source code and documentation, and videos of the
robot in action at https://www.imperial.ac.uk/robot-intelligence/
software/ (Robot Intelligence Lab, 2019).

We believe DE NIRO could be of particular use as an assistant
to caregivers who are supporting the elderly. The abilities we have
developed in DE NIRO may also be valuable more broadly, but
we maintained caregiver assistance in a domestic environment as
our guiding purpose. The focus of our research was therefore on
building and designing DE NIRO in order to engage with human
partners naturally, safely, and productively.

The overall aim of this paper is to introduce DE NIRO and
its capabilities in detail, explaining how it was built, and what
abilities we have built into it over three demonstrative challenges.
However, our hope is also share this as a model for other

researchers who may be interested in swiftly constructing their
own robots with general capacities for natural interaction. We
devote most of our space to describing the logic of how we
approached certain problems, in order to allow other researchers
to compare and perhaps apply their own solutions.

Key phrases or descriptors in robotics can be overlapping or
ambiguous. For clarity’s sake, we will define how we use certain
terms in this paper.

Term 1.1. Automatic describes an action (usually physical) that
occurs or repeats independent of other stimuli.

Term1.2. Autonomous describes an action (usually physical) that
proceeds toward a goal, reacting to and working with external
stimuli without human intervention.

Term 1.3. Cognitive describes the process of acquiring knowledge
and making a choice or an action based on that knowledge.
Acquiring knowledge usually requires some ability to perceive
from the world, and a behavioral adjustment from that knowledge
usually requires some ability to act on the world.

Term 1.4. Intelligent describes the ability to take in information
from an environment, learn general principles, reason about their
application, and then use that new knowledge to solve problems in
new environments.

In section 2, below, we review related work across robotics,
with an emphasis on cognition-enabled manipulation and social
assistance robotics. Subsequently, we present Robot DE NIRO
in more detail, covering its sensors, actuators, and software
in section 3.

Our three implementation sections begin with section 4,
where we discuss how DE NIRO implements the classic pick-
and-place task—in which a robot collects an object from one
position and moves it to another. This task is a common
challenge for industrial robots, which often collect, position, and
assemble heavy parts (Engelberger, 2012). These applications
do not require intelligence: the robots are placed in a highly
controlled environment, where each motion is fully predefined
and repeated. Industrial robots usually only move from one point
to another without receiving or acting upon any information
about their environments (Brogårdh, 2007). Thus, even though
these solutions can be considered automatic, they cannot be
qualified as autonomous.

Unlike these robots, DE NIRO does take in and respond
to information from its environment in order to accomplish
its goal without human interference. In doing so, it operates
autonomously. This is particularly true when it attempts to
navigate, collision-free, through a space, and as it adjusts its
journey plan in response to new stimuli. In our later challenges,
we focus more on the challenge of intelligence, giving DENIRO a
general principle to be applied to novel situations. Section 5 adds
to DENIRO’s visual perception abilities, and section 6 adds to DE
NIRO’s grasping abilities. We conclude in section 7 by discussing
DE NIRO’s limitations and avenues for future work.

Frontiers in Robotics and AI | www.frontiersin.org 2 July 2020 | Volume 7 | Article 66

https://www.imperial.ac.uk/robot-intelligence/software/
https://www.imperial.ac.uk/robot-intelligence/software/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

2. RELATED WORK

In this section, we discuss previous work related to movement,
manipulation, learning, and social assistance robotics.

2.1. Work on Movement
Recent years have seen the rise of many high-performing sensors
that allow robots to perceive their environments far more
accurately. The 3D LIDAR or the Microsoft Kinect can return a
3D point cloud of their surroundings by measuring the duration
of time a ray of light takes to travel from the sensor to a surface
and back again. DE NIRO employs both during navigation.
Moving robots require collision maps to distinguish free and
occupied zones. Those maps need to dynamically update and
expand while the robot moves in order for it to avoid unexpected
obstacles. Hornung et al. (2013) developed a solution called
OctoMap to efficiently build and interpret 3D point clouds. Their
algorithm uses probabilistic methods and octrees to efficiently
map and to eliminate outliers in an evolving environment.

Zanchettin and Rocco (2013) discussed how to improve real-
time motion planning. They hoped to simplify motion planning
by applying the correct constraints. Their innovation was to have
the robot solve its optimization problem in two “horizons”:

• The control horizon, taking into account sensor feedback
to compose instantaneous values, like the configuration of a
room at a particular instant and

• The planning horizon, composed of all non-instantaneous
constraints (such as goal positions).

After several years of further work, Zanchettin and Rocco
(2017) presented a full possible solution to the problem of
simultaneous localization and mapping. Their dynamic motion
planning technique regenerates a new path at every step in time.
This algorithm is specifically relevant when a sudden external
force is applied to the robot, which may force it to adapt its
pathway immediately. In both papers, the authors evaluated the
efficiency of their motion planning algorithm using an image-
based grasping task.

2.2. Work on Manipulation
Grasping poses a large challenge to roboticists—specifically the
process of planning a smooth, efficient arm movement to a
target object and then enclosing that object securely. Rosell et al.
(2011) tackled the issue of motion planning for anthropomorphic
mechanical hands. They sought to map several human hand
postures by first using a soft glove equipped with sensors, and
then having a robotic hand reproduce those postures. In addition
to that work, they detailed a well-commented principal motions
directions algorithm for path-planning that is relevant to our
study. Bagnell et al. (2012) were more driven by having a robot
complete a variety of autonomous manipulation tasks. They
built their own platform to support tasks that include drilling,
unlocking doors, stapling papers, and more. Their RANdom
SAmple Consensus (RANSAC) algorithm to identify and localize
objects on a table is quite related to our work, especially to section
5, focused on object recognition and manipulation.

Feix et al. (2016) described a novel classification of 33 grasp
types, the most complete classification to this day. The grasp
types are separated by the need for power and precision during
the grasp, but also by the size, weight, rigidity, and force
requirements of the object being grasped. We can consider the
robotic hands being used to have one thumb and two virtual
fingers. Virtual fingers are opposing digits that can apply forces
simultaneously in inverted directions. This taxonomy offers a
vocabulary to build the testing set for possible grasp postures. It
also allows us to elect the most suitable hand, depending on the
dimensions of the object to be grasped. Vahrenkamp et al. (2010)
focused on multi-robot motion planning, and in particular on
dual-arm grasping. They present a motion planner for bimanual
manipulation using RRT, and also some valuable points about
inverse kinematics, which is relevant to our joint maneuvers.

To plan a grasping pose generically, the robot must have
a clear understanding of the pose of target objects. Visual
information is common for this, but under certain conditions
(e.g., weak lighting), it may be flawed or unavailable. Bimbo
et al. (2015) sought to fill this gap by having a robot identify
an object pose by touch. Similarly, Jamisola et al. (2014) have a
robot explore a discontinuous surface using only haptic feedback.
Focusing more precisely on a held object, Jamali et al. (2014) use
force and torque, an end-effector’s position, and object behavior
in response to rotations to determine how the robot is in contact
with an object. We make some use of these ideas in section
4, in the way in which DE NIRO understands whether it has
successfully grasped its target object or not, after its arm occludes
sight of the object in question.

Recent work on cognitive robotics significantly extends this
view. Beetz et al. (2018) introduced a framework that was
applied to solve complex manipulation tasks. They stored
logical statements in a knowledge base combined with the
required data structures for control programs, such as one
that makes use of motion planning or inverse kinematics
algorithms. In particular, the framework allows an agent to
learn generalized knowledge through logging and commonsense
knowledge databases. Parts of this framework were already
introduced in Tenorth and Beetz (2013).

2.3. Work on Learning and Dual-Arm
Coordination
Since so many humanoid robots have two arms and are expected
to engage withmore complex stimuli, task learning with complex,
multi-limb movement becomes critical.

Ahmadzadeh et al. (2013) were interested in how efficiently a
robot could learn by watching humans. Rather than identifying
and tracking objects in the scene independently, this work has a
robot recreate the visual relationship among those objects. These
researchers expanded their work in subsequent years. As in the
research of Rosell et al. (2011) and Ahmadzadeh et al. (2015) used
actual human poses as example data to teach a robot by imitation.
A human tutor led their robot through the process of learning
tasks like pushing, pulling, and categorizing.

Kormushev et al. (2010) show that robots must take advantage
of variable stiffness, a technique humans employ by using muscle

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

groups in opposition. They explored a way for robots to self-
learn this ability. Our applications rely on passive stiffness
and compliance actuators, especially in the form of the arms
themselves. Later, these authors explored learning further by
exploring which techniques were most effective at teaching
humanoid robots more complex tasks (Kormushev et al., 2013).
By experimenting with different learning models for many
tasks—including pancake flipping, bipedal walking, archery,
ironing, whiteboard cleaning, and door opening—they conclude
that Reinforcement Learning is most effective for tasks requiring
movement in more dimensions or greater flexibility. While our
tasks in this paper do not use learning to accomplish their goals,
that is a natural area of further exploration, especially given the
findings here.

Rakicevic and Kormushev (2019) actually worked on Robot
DE NIRO itself. They were interested in how a robot with as
many options for movement as DE NIRO might learn a dual-
arm task within a defined movement parameter space. They used
an active learning approach to teach DE NIRO to shoot an ice
hockey puck from a starting position to a goal position. They
offer a trial-and-error based task learning system that explores
a parameter space efficiently. They also demonstrated how DE
NIRO could transfer its learning model to new environments,
taking less time to learn a task in subsequent iterations. The dual-
arm work is particularly relevant to us, and the task learning
model suggests another area to extend our efforts in this paper.

A significant challenge for us in the dual-arm challenge
(discussed in section 6) is the points of contact between DE
NIRO’s arms and the target object. Kanajar et al. (2017), in trying
to solve the problem of a bipedal robot climbing over obstacles,
found multi-point contact to aid their efforts, rather than hinder
them. Jamisola et al. (2016) conducted a deep-dive into dual-
arm movement. Their interest was in simplifying the complexity
of the dynamics formulation by making dual-arm movement as
modular as possible. They treated both arms, in effect, as a single
end-effector.

2.4. Work on Social Assistance Robots
Social assistance robots for elderly care or general nursing have
been subject to extensive research in recent years. They may serve
to counterbalance the global nursing shortage caused by both
demand factors, such as demographic trends (Tapus et al., 2007),
and supply factors, such as unfavorable working environments or
egregious wage disparities (Super, 2002; Oulton, 2006). However,
most proposed robotic systems aim to directly assist the care
recipient—often an independently living elderly person—with
social companionship or simple household services (Schroeter
et al., 2013; Fischinger et al., 2016). Elderly care today is still
predominantly administered by human caregivers who may
themselves benefit from a robot assistant.

Robots in aid of the elderly often aim to bolster personal
independence with companionship, general household help, and
telepresence (Fischinger et al., 2016). These robots are also
used for care recipients who suffer from psychological diseases,
have disabilities, experience certain illnesses, or are otherwise
physically constrained. There has been such growth in these

robots that some researchers have surveyed the variety of
technologies (Rashidi and Mihailidis, 2013). Examples include:

• Care-O-Bot 3 to support those with limited mobility by Graf
et al. (2009),

• ARTOS for emergency support to the elderly by Berns and
Mehdi (2010)

• ASIMO by Sakagami et al. (2002),
• HRP-3 by Kaneko et al. (2008),
• DOMEO RobuMate for ambient assisted living by Centre for

Applied Assistive Technologies (2011), and
• CompanionAble for social assistance to those with mild

cognitive impairments by Schroeter et al. (2013).

Some have built multi-use platforms. These are similar to DE
NIRO, which can also perform varied tasks. Willow Garage,
for example, built the more general platform PR2, which has
been used by various universities to build human-centered
applications that include supporting the elderly (Cousins, 2010).
Care-O-Bot 3, listed above, also serves many purposes, including
cleaning, fetching, and communication (Hans et al., 2002). Berns
and Mehdi (2010) built ARTOS, also listed above, to support the
elderly during emergencies, and even to “relieve the caregivers
from extensive supervision all the time.” Advances for better
social interaction and improved navigation have broadened the
uses of such robots. Gesture recognition using the Kinect, for
example, allows Zhao et al. (2014) to build robots that can receive
orders from humans. Gestures are one way DE NIRO could take
input from users.

With these recent advances in social assistant robots, public
and academic debate has not yet settled on whether such systems
are an ethical and desirable outcome for our society (Sparrow and
Sparrow, 2006; Wallach and Allen, 2008). For instance, Sharkey
and Sharkey (2012) point out six main ethical concerns with
robot assistance for elderly care, including human isolation, loss
of control and personal liberty, and deception and infantilization.
Furthermore, Zsiga et al. (2013) note varying attitudes and
preferences regarding social assistance robots, especially across
age groups. While this discussion is not settled, we believe it
is appropriate in the interim to focus robot assistance on the
caregiver. This allows the caregiver to delegate simple, repetitive
tasks to a social robot assistant and gain time for more complex,
empathetic tasks.

Much less work has sought to support caregivers as they
shoulder typical nursing tasks to care for elderly persons. Among
those, Ding et al. (2017) propose a transfer assistant robot to
lift a patient from a bed to a wheelchair through a model-based
holding posture estimation and a model-free generation of the
lifting motion. ARTOS, as previously mentioned, frees caregivers
from supervision, but not from conducting manipulation tasks
(Berns and Mehdi, 2010). Srinivasa et al. (2010) demonstrate
complex manipulation skills for bottles and cans based on sparse
3D models for object recognition and pose estimation. They
integrate these skills with navigation and mapping capabilities,
both in a static and a dynamic environment.

Most of the work we have discussed in this section involves
the development of novel robotic platforms of different forms
and types. Our work is no different—DE NIRO is also a bespoke

Frontiers in Robotics and AI | www.frontiersin.org 4 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

platform of hardware and software. Because the robots being
developed across this research are not standardized, the research
community often has to develop parallel solutions to problems
that have already been solved on other hardware platforms. The
pick-and-place tasks we perform are not unique to DE NIRO.
Nevertheless, DE NIRO’s form and sensor suite are unique.
Moreover, our aim is to contribute by showing how a generically
capable robot can be designed and built rapidly. While social
assistance could be an ideal use case for our work, it is not the
only application. The ability for a robot to understand a request
from a user and retrieve an object of unknown shape and pose
from the environment can be applicable more widely.

3. DESIGN

In this section, we discuss the design and integration of DENIRO
across its custom grippers, custom exoskeleton, sensor suite, and
custom simulation environment.

3.1. Core Body
3.1.1. Baxter
The Baxter arms were originally built by manufacturer Rethink
Robotics whose IP is now owned by the HAHN Group (Rethink
Robotics, 2018). The arms can manipulate objects dexterously.
Baxter is designed for collaborative, natural interaction with
human users. Each arm has seven degrees of freedom, mainly
made of twist and bend joints, allowing pitching and rolling in
the shoulders, the elbows, and the upper wrist. The lower wrist,
near the hand, can also roll freely. All this affords DE NIRO
complex manipulation behavior that one can restrict down to
certain zones or axes or enhance by making use of both arms
simultaneously (Rethink Robotics, 2015a).

The arms end in mountings with exchangeable grippers, for
which we designed two custom grippers (details in section 3.2).
Embedded directly in the hand are RGB cameras, which are
especially useful when the arms occlude the vision of head-
mounted cameras or body-mounted LIDARs. The arms have
infrared sensors, accelerometers, and hidden user input buttons
in the cuffs. A particular safety feature of the arms is their
passive compliance through series elastic actuators (Pratt and
Williamson, 1995). This means humans can work in close
proximity to the robot safely: in case of contact, the actuators
absorb most of the physical impact.

The Baxter screen—positioned where a face might be—
is a 1,024 × 600 SVGA LCD that can display custom data
(Rethink Robotics, 2015b). Because our goal was to build
direct interactivity with humans, the screen was a useful place
to give immediate feedback to the user, either by displaying
logs (for engineers) or simple, stylized facial expressions (for
general users).

3.1.2. Quickie
The Baxter arms are mounted on a QUICKIE movable electric
wheelchair base, manufactured by Sunrise Medical (Sunrise
Medical, 2019). Its differential drive is operated with a custom
PID angular position and velocity controller, allowing primitive
motion commands of speed (discrete value between −100

and 100) and direction. The latter is achieved through a PID
controller linked to an Inertia Measurement Unit that provides
absolute spatial orientation. The navigation controller itself is
implemented through an integrated Mbed microcontroller (Arm
Limited, 2019). On the hardware side, multiple interleaved
safety layers protect users during emergencies. An automated
interrupt procedure stops the movement of QUICKIE during
timeouts (signal interrupts > 20ms). Furthermore, both on-
board and wireless e-stop buttons allow the user to brake the
robot immediately.

3.2. Custom Grippers
To conduct manipulation work with Robot DE NIRO, we
use three types of grippers: two custom-gripper designs and
the standard Baxter electric parallel gripper (Rethink Robotics,
2019), all three illustrated in Figure 2.

Performing heavy, dual-arm object manipulation requires
the robot to squeeze large rigid objects. That in turn requires
appropriate end-effectors. These are usually non-deformable
stumps instead of the commonly found actuated “fingers.” We
first tried the simplest design of a solid rectangular block, though
this required the arms to always be orthogonal to the object being
manipulated. Small errors in pose estimation of the target could
lead to it being pierced by the edge of the block. To avoid this,
we opted for a spherical end-effector, which adds an additional
degree of freedom around the contact point. This comes at the
cost ofmore robust disturbance adaptation, as the spherical shape
reduces the overall contact area.

The second custom-gripper is a bio-inspired design with soft
fingers that can bend. It is available in two different design
variants—soft joints made of rubber and a flexible skeleton
structure. In both variants, a dynamixel motor pulls a tendon to
close the fingers simultaneously in a claw-like behavior, allowing
it to grasp larger objects (in comparison to the standard Baxter
end-effector) that may require a wider span. Furthermore, the
bio-inspired gripper is equipped with force sensors that can
achieve haptic feedback. The bio-inspired gripper is accessible via
SSH protocol (Hentsch, 2017).

3.3. DE VITO—Custom Exoskeleton
DE NIRO is designed as a research platform for autonomous
operation. In spite of the fast progress of manipulation research,
DE NIRO might be faced with unfamiliar situations. In such
scenarios, semi-autonomous control through a remote human
user could be helpful. For this reason, we built a custom
passive upper-limb exoskeleton named DE VITO (Design
Engineering’s Virtual Interface for Tele-Operation), described
in more detail in Falck et al. (2019) and depicted in Figure 3.
DE VITO allows dual-arm control with seven degrees of
freedom. It is lightweight, inexpensive, and fully open source
(Falck et al., 2019).

3.4. Sensors and Hardware Augmentation
DE NIRO also has the following sensors and other hardware:

• AMicrosoft Kinect RGB-D camera (placed on top of DENIRO
with a rotating, controllable mount)

• Stereovision cameras with built-in microphones

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 2 | The two custom-gripper designs (left and middle) and the standard Baxter electric gripper (rightmost, Rethink Robotics, 2019).

FIGURE 3 | CAD model of the DE VITO, a dual-arm, upper-limb exoskeleton for semi-autonomous robot manipulation. Source: Falck et al. (2019).

• A 2D LIDAR scanner (Hokuyo UTM-20LX)
• A 3D LIDAR scanner (Hokuyo UTM-10LX mounted on a

servo motor (Dynamixel MX-28T) with slip ring)
• A custom 360-degree camera rig of six Logitech c920 HD

webcams (assorted equidistantly)
• One Linux-based laptop to run our primary software
• One Windows laptop to receive navigation data from the

Kinect SDK
• One local area network router to link the various computing

systems, including the Baxter core
• An Amazon Echo Dot device for audio input
• Logitech speakers for audio output.

Note that both the 3D LIDAR scanner and the Kinect are capable
of producing 3D point clouds. All of these actuators and sensors
together make up Robot DE NIRO. When we refer to DE
NIRO, we are generally referring to all these features and their
resultant capabilities.

3.5. ROS Usage
We used the open source Robot Operating System (ROS)
as middleware. ROS offers design transparency and an active
community of robotics developers. Its core value to us is
in allowing us to link together all the sensors and actuators
described in section 3.4. The central challenge of a robot

built from independent component parts, like DE NIRO, is
communication across the components. If the Kinect identifies
a target object position, that information needs to be passed to
the Baxter arms, and the arms have to know where they exist
in precise relation to the Kinect. That connective information
is what creates a robot out of these disparate parts attached to
one another.

All these components were linked programmatically by ROS
and literally by the local area network router. In addition, to test,
debug, and integrate log outputs, we built an RQT-based GUI
illustrated in Figure 4 (right), mainly of use to the technical user
(Thomas et al., 2016).

While ROS is prevalent in the industry, there are many ways
to use it, and two ROS-enabled projects may have very different
characteristics. ROS is a very thin software framework by design
(Open Source Robotics Foundation, 2019), and it works best by
allowing communication across small, independent collections
of code. The roscore command forms the basis of ROS’s
decentralized architecture and knits together all of ROS’s nodes
(Quigley et al., 2015). It initiates a name service so each new
node can register itself, look up other nodes’ addresses (the ROS
master), and access a globally available data store (the parameter
server). All other logic lives in independent code modules and on
ROS’s federated node graph.

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 4 | The 2D fiducial markers attached to test objects (left) and the RQT-based technical GUI for testing purposes (right).

As Quigley et al. (2015) notes, ROS provides various methods
of communication, each with pros and cons. Our challenge is
in selecting the correct methods for the correct tasks. In our
case, starting up the Baxter base runs roscore, so we could at
least register all independent subcomponents to that same ROS
master. The simplest communicationmethod are ROS publishers
and subscribers that regularly post to or read from ROS nodes.
This was most useful for continuous, low-level data transfer.
Our navigation module, for example, published odometry data
continuously. ROS services are also available, which can send
off parameters to a function elsewhere which executes and can
send back a return value. These are best during specific call-and-
response moments. This is in fact how we passed the target object
location from the object recognition module to the grasping
module. There are also ROS actions, to communicate data across
a duration of time, particularly useful for extended processes,
such as movement. Accordingly, we used this to track the robot’s
position when moving to the object warehouse. Finally, there is
the parameter server, which holds a globally accessible dictionary
and can be used when performance is not a concern. We used
this for DE NIRO to identify and save the active requesting user
at the beginning of the fetch routine. We discuss these all further
in section 4.

We broke the tasks of this fetch routine into various
independent subsystems, such as navigation, grasping, audio
input, and so on. Each subsystem takes input, processes it,
and produces output differently. Within the object recognition
subsystem, for example, DE NIRO receives an instruction from
the speech recognition subsystem and uses that indicator to seek
out a match in real-time.

3.6. Gazebo Simulation
To safely test manipulation tasks before deploying them on
the physical robot, we built a simulation of DE NIRO using

Gazebo, which runs the Open Dynamics Engine (ODE) physics
engine (Koenig and Howard, 2004). Gazebo is used specifically
for robot simulations with an emphasis on accurate friction and
torque models, especially as compared to other popular engines
like Mujoco. The virtual representation of DE NIRO’s model
is described in the Unified Robot Description Format (URDF).
URDF specifies the position of joints and linkages and requires
highly-accurate intrinsic parameters, like mass, inertia, collision
topology, and surface friction. Some (like mass) must be exact,
while others (like friction coefficients), can be greatly exaggerated
to improve contact with the simulated objects.

In addition to simulating DE NIRO’s Baxter upper-body,
Gazebo also provides a useful plugin system to recreate the
sensor architecture, including the two LIDAR scanners, the
Kinect, and the QUICKIE wheelchair differential drive. This
complete simulation model of DE NIRO is stored in a YAML file
description and is particularly important for collision avoidance
in the implementation sections discussed below. We show the
complete simulation model of DE NIRO in various manipulation
scenarios in Figure 5.

4. IMPLEMENTATION: FETCH ROUTINE

In this and the following two sections, we present three generic
skill challenges and describe how we implemented solutions
to them:

1. Fetch Routine
2. Automatic Object Detection
3. Dual-Armed Grasping.

4.1. Overview
In many domestic support roles, an assistant robot may be
required to fetch specific objects from certain locations in the

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 5 | Simulation model of DE NIRO in Gazebo. Top: The simulation model of DE NIRO with visible link transformations, rendered in RViz (left) and Gazebo

(right). Middle: Two manipulation scenarios with the default Baxter description (left) and the complete simulation model of DE NIRO (right). Bottom: Example of the

robot being aware of a human obstacle using the simulated sensors yielding 3D point clouds.

home. Our first goal was to have DE NIRO interact with non-
specialists to fetch objects autonomously.

Our fetch routine consists of a series of modular components
that are each called by a finite-state machine in a particular
order. A successful flow of the robot through a fetch task involves
these activities:

• Speech Input: DE NIRO receives a verbal command from an
approved human user

• Audio Output: It regularly confirms its actions
through vocalizations

• Navigation, Mapping, and Trajectory Planning: It moves to
an object warehouse

• Object Recognition: It identifies the right object with the help
of 2D fiducial markers

• Grasping: It grasps that object
• Returning: It returns to the point of origin

Frontiers in Robotics and AI | www.frontiersin.org 8 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 6 | Flow chart of the main software modules introduced in section 4 which are integrated and connected through ROS, also illustrating data inputs and

outputs.

• Face Recognition: It only releases the object to the approved
human user.

4.2. State Machine
The statemachine determines the right points at which to activate
DE NIRO’s actuators, sensors, and computers. The state machine
architecture supports significant complexity, though ours is
relatively linear, with DENIRO returning to idle after completing
(or erroring out of) the above process. The state machine greatly
simplified our design—with it, we only needed to consider the
components and programs required for a given action.

To build the state machine, we used the SMACH package
(Bohren, 2018). This allows each state to be built with the same
general structure, linked closely to the rest of the ROS framework.
From within a SMACH state, we could make calls to the ROS
parameter server, we could activate a particular ROS module,
and we could send data from one component to another upon
entry to or exit from a state. An overview of the modular
software architecture in section 4 is illustrated as a flow chart
in Figure 6.

4.3. Speech Input
There are many ways for DE NIRO to identify the target
object. Raw typed input into the terminal works and could
be generated by a simple mobile application with pregenerated
commands. Visual input also works by showing the robot a
marker it could match to a target. We used both of these
methods during development. However, for non-specialists,
voice commands seemed simplest and most natural. We needed
a way to accurately detect and classify relevant voice commands,
despite variation across human voices, ambient environments,
and network strengths.

We tested a variety of audio recognition methods:

• The Amazon Web Services (AWS) Alexa speech-to-text
service (Amazon Webservices, 2019)

• The Google Cloud speech-to-text conversion technology
(Google Cloud, 2019a)

• The CMUSphinx Open Source Speech Recognition Toolkit
(Carnegie Mellon University, 2018b)

We tested AWS using Amazon’s Echo dot hardware to listen for
particular command structures. The Echo sends an audio file to
be converted, stringified, and returned by AWS. Unfortunately,
the network connection to AWS proved problematic. We
experienced frequent connection failures to AWS. Practically,
AWS’s requirement of a specially configured web socket, to be
approved by an IT administrator, slowed down our process as
well. AWS needs all this because it purports to translate almost
any audio into almost any text, including custom words (Hunt,
2018). Google’s solution interfaced more seamlessly with our
software. It too offered to interpret almost any words spoken by
users. Over multiple tests, it did so well. However, it was also very
sensitive to ambient noise. Audio input had to be spoken directly
into a microphone, or else audio would have to be preprocessed
before sending the file to Google.

Both AWS and Google relied on neural networks to make
their speech to text conversions broadly applicable. However, we
did not need such wide usage, especially when considering the
specific support role the robot would be in. Our design challenge
was to retrieve requested objects in a dynamic environment,
perhaps in aid of a human caregiver. More importantly, requiring
an active connection to the internet could be a challenge. If
it were possible to do speech transcription locally, that would
be preferable.

Frontiers in Robotics and AI | www.frontiersin.org 9 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

The third solution, CMUSphinx, was an open source package
that did not make use of a neural network, but rather relied on
more conventional methods, trading off breadth for simplicity.
It is explicitly designed to support “low-resource platforms”
(Carnegie Mellon University, 2018a). While CMUSphinx was
also vulnerable to background noise, it had a library to improve
accuracy by masking ambient sounds. Best of all, it worked
without an internet connection. To simplify and speed up
CMUSphinx, we applied the JSpeech Grammar Format (JSGF) to
CMUSphinx. This format allows CMUSphinx to reduce the space
of possible audio input by providing an expected grammar, in
which certain keywords are anticipated in a particular order. For
example, we set our grammar like this: “[DENIRO, please] [fetch,
give, get] [me] a[n] [object].” JSGF allowed this combination of
an explicit format that could be taught to users with specific
verb and object selections and optional elements (like the word
“please”). With the speed gains from JSGF, we could offer users a
selection of commands that, while not exhaustive, would cover
the range of likely sentence formats, and to which DE NIRO
could respond with dispatch.

4.4. Audio Output
Audio output helps DE NIRO communicate to its human
interlocutors. It was a surprisingly useful technique to give key
status updates asynchronously to the user while DE NIRO was
engaged in other tasks. In addition, we observed anecdotally that
users appeared much more interested in engaging with DE NIRO
when the robot seemed to talk directly to them.

We made use of the eSpeak text-to-speech synthesizer
(eSpeak, 2018). eSpeak can be sent any string in English and
then produce appropriate vocalizations through a computer’s
speakers. eSpeak does not rely on actual human voice recordings,
but instead produces a formulated mechanized voice. For DE
NIRO, a robotic voice actually seemed to be an engaging feature
rather than a problem. Like CMUSphinx, eSpeak was open source
and worked without an internet connection. Here again, we
explored usage of equivalent text-to-speech sources linked to
Amazon’s (Amazon Webservices, 2018) and Google’s (Google
Cloud, 2019b) cloud services, but the requirement for a direct
internet connection was the deciding difference.

Because eSpeak is quite small and does not need to sort
through a library of audio waveforms, it exhibited little lag
between an instruction being sent and the vocalization being
heard. Each individual text to speech instruction is sequenced
and outputted in a row before the next one began, avoiding
problems with overlapping audio output. Unlike with other
components of this fetch routine with more specific focuses, like
grasping, DE NIRO used audio output in each and every state.

4.5. Face Recognition
Recognizing an individual human face is a necessity in a domestic
environment. Manipulation intelligence requires more than just
an adjustment to actuators. It requires physical movement and
change in response to meaningfully relevant information. In the
domestic environment, it might be amatter of significant medical
importance that the robot gives the right payloads to the right
people. The robot must not give dangerous medicine to a child,

for example. We anticipated a busy home environment, with
perhaps multiple moving faces present in the camera frame. We
needed to reliably distinguish the foregrounded face and compare
it against all the approved users.

For facial recognition, we used a straightforward, but robust,
machine learning model. We uploaded facial photos of approved
users into a facial recognition ROS module. After DE NIRO
receives its verbal command, the module then takes live image
frames from the Kinect camera (Geitgey, 2018). It runs these
frames through a pre-trained model built from a Residual
Network (ResNet) (He et al., 2016). This model has reached
a 99.38% accuracy on a standard benchmark (King, 2018). It
compares vector encodings of known reference faces with those
extracted from the processed frames by computing a distance
metric. It predicts positively (i.e., a matching face) if this distance
is below a threshold. We tuned the model to predict with a
very low false-positive rate at the cost of a slightly increased
false-negative rate, in order to be less vulnerable to unintended
interactions, but potentially requiring several frames as input
(at 30 Hz) before a positive interaction would be predicted
(Microsoft, 2014).

In practice, we never experienced any problems in recognition
accuracy. Even when lighting was relatively poor, like in our
laboratory, or when conditions were visually crowded, like when
we demonstrated DE NIRO to a public forum full of jostling
families, DENIROwas always able to accurately separate one face
from another.

4.6. Navigation, Mapping, and Trajectory
Planning
Moving to and from the object warehouse is perhaps the most
vulnerable part of the fetch routine. The robot needs to know
where it is located in a 2D space, react to unexpected dynamic
obstacles that move into its way, send a message to power the
wheels sufficiently, recalibrate and redirect if the physics of the
space fail to result in the movement anticipated (if the robot is
on a high friction surface like a carpet, for example), and iterate
this process regularly until arriving at a destination. Our goal
here was to identify and incorporate a reliable, robust navigation
stack. We did not attempt to contribute a novel technique for
robotic movement—just one that worked for DE NIRO. Because
we used these features when DE NIRO went to and from the
object warehouse, our goal was to solve a straightforward there-
and-back scenario.

4.6.1. Navigation
To power navigation, we used Simultaneous Localization And
Mapping (SLAM). SLAM seeks to help a robot map a particular
space and identify its pose in that space at the same time. Our
use case, like most that utilize SLAM, involves a robot in motion,
making self-positioning a particular challenge. SLAM’s central
challenge is that the robot must first determine its pose and
each possible landmark, and then update that understanding
upon each new observation. That leads to an exponentially rising
problem space (Durrant-Whyte and Bailey, 2006).

The complexity here comes from the dynamism and
uncertainty of the environment. However, our expected

Frontiers in Robotics and AI | www.frontiersin.org 10 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

environment was not highly dynamic in terms of its fixed
features—walls and tables were not likely to move quickly
or frequently. People might move or walk around, and
so collision detection would be important. Nevertheless,
fixed features could simplify this challenge by giving
DE NIRO more spatial information before it needed to
operate freely.

To do this, we moved DE NIRO through its environment
ahead of time with the scanner active. It generated a bitmap
which it updated and saved locally with each new traversal. We
did this using the full robot, but there is nothing that would
prevent a local, handheld scanner from accomplishing the same
task. As long as it built a map that was accurate to the pose of
the robot, it could be sent separately and used by DE NIRO for
navigation. All this provides DENIRO the advantage of operating
in a situation with a known ground truth.

4.6.2. Localization
We simplified our problem space further by adding another
constraint to our use case: DE NIRO would only use a 2D
map with no major level changes. DE NIRO therefore navigates
within a 2D bitmap and only needs to calculate pose estimates in
a 2D space.

To further improve navigation and localization accuracy, we
made use of the very high update rate of the 2D LIDAR scanner,
which DE NIRO used to generate its map and to move within
that map. ROS has a variety of possible SLAM packages to use,
but given our 2D constraint, we selected the hector_slam
package, built by Kohlbrecher et al. (2011). This package does
not need to rely on odometry to determine pose. Hector mapping
can derive odometry on the basis of wheel velocity, but it is not
required. Our robot uses a QUICKIE wheelchair base linked to
a customized Mbed microcontroller. Even if we could deduce
odometry on the basis of wheel velocity, the accuracy would likely
be low. The higher quality Hokuyo LIDAR scanner was a more
reliable way to estimate the robot’s pose.

Using hector_slam, the robot localizes itself by applying a
dynamic map as an additional layer over the static 2D bitmap
(Kohlbrecher, 2018). This dynamic map adjusts as the robot
moves through the space it already knows. To add an extra safety
barrier around any static and dynamic obstacles in the way, we
applied a costmap around all artifacts. Because DENIRO is wider
at the top than at the bottom, and because the wheelchair base is
handling movement and navigation, we needed extra buffer to
be sure that DE NIRO gave any obstacles a wide enough berth.
We padded objects by 10 cm. As an additional safety cushion,
we added a synthetic hexagonal barrier around the QUICKIE
base. We chose a hexagon instead of a direct vertical projection
of the robot for simplicity. DE NIRO has multiple computers
and sensors strapped to itself that are frequently being removed
and reattached. For DE NIRO to know its exact proportions at
all times, it would need further sensors just to monitor its own
shape and any new protrusions. The conservative constraint of a
hexagon allowed DE NIRO to robustly plan trajectories, get out
of tight spaces, and efficiently avoid collisions. The static map
together with its costmap is illustrated in Figure 7.

4.6.3. Trajectory Planning
DE NIRO crafts the trajectories themselves with a “timed
elastic band” approach (Rosmann et al., 2013). Each trajectory
from initial pose to end goal, is an optimization problem with
various stages. The goal is to reduce total travel time to a
destination and proximity to any obstructive barriers along the
way (Rosmann, 2018). With this work, DE NIRO can update
its existing map, quickly identify new obstacles, and plan paths
around such items. The planned velocities manifest as spurts of
power to the wheels. This works through the use of our custom
Mbed microcontroller, which scales the velocities appropriately
and reduces their variance, such that each one can be linked
continuously. From there, theMbed converts those velocities into
an electric signal that it sends to the motor, which finally drives
rotational movement in the wheels (Aveiga, 2017; Arm Limited,
2019). The minuteness of those velocities allows the robot to
navigate around new obstacles, given enough time and space. If a
human stands in the way of the robot’s most efficient path, and if
the robot sees it ahead of time, it can plan an alternate trajectory
around it. The dynamic trajectory planning in a scenario where
an obstacle (human) blocks the way is illustrated in Figure 8.
If DE NIRO lacks enough time to plan an alternate trajectory
or if an encroaching object is within its collision zone, it will
stop moving until the object is cleared and it can plan a clear
path again.

4.7. Object Recognition
By this stage, DE NIRO has finally arrived at the object
warehouse. In a domestic environment, this could be a medicine
shelf or a pantry closet. We used a desk or shelving unit at
different heights and locations around the navigable space. We
placed a collection of objects on this shelf. After experiencing
occasional failures in grasping, we typically arranged three
possible objects (usually various shapes of bottles) in a horizontal
line, with some space between them all. The challenge for the
robot was to identify the correct object and its coordinates
in 3D space.

We found an excellent solution in 2D fiducial markers,
derived from the chilitags library (Lemaignan, 2018). The
2D fiducial marker, like a barcode, could be printed directly
on bottle labels or printed onto stickers that could then be
attached to individual objects. Once the fiducial markers were
in the camera frame, DE NIRO could quickly, effectively, and
precisely recognize them and their coordinates, even with poor
lighting conditions, unusual angles, or lengthy distances. Very
rarely, the coordinates identified for an individual image frame
of the fiducial markers might be volatile. Reflections or matte
surfaces might lead to highly inaccurate coordinates on a very
infrequent basis. To solve for this, we recorded an array of 20
frames (inputted in less than a second by the Kinect camera), and
selected the median of the poses estimated from each frame.

We did explore other more generic and scalable solutions.
However, for this manipulation challenge, none of our methods
matched the reliability of the fiducial markers. For example, we
explored a machine learning algorithm to allow DE NIRO to
identify any translucent bottle before it. But this requires the
robot to learn about the objects it might be expected to grasp

Frontiers in Robotics and AI | www.frontiersin.org 11 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 7 | Left: A static map of a corridor. The red arrow points at a synthetic barrier manually added to the map. Right: A costmap of 10 cm in blue surrounds all

static barriers. The green hexagonal shape is a synthetic barrier around the QUICKIE base used for collision avoidance.

FIGURE 8 | The original optimal path (left), encountering a dynamic obstacle (middle), and adjusting in response (right) during trajectory planning.

ahead of time. Domestic users actually have greater flexibility in
object types with a simple solution like stickers. Nevertheless,
identifying the pose of an object is such a core requirement for
manipulation intelligence that we do devote more time to this
challenge, and we detail this later in section 5.

4.8. Grasping
4.8.1. Arm Movement
After the Kinect identifies the relevant fiducial marker, it locates it
in its 3D viewspace. To actually grasp those objects, the posemust
be converted to a coordinate frame that the arms can interpret.
DE NIRO’s Kinect sits above its central screen, horizontally
alignedwith the base of the Baxter arms. As a result, it is necessary
to know the precise position of the Kinect relative to the Baxter
base frame in order to apply the appropriate transform. This
is particularly difficult because of the rotatable camera angle of
the Kinect camera. We discuss the calibration process more in
section 5.2.1.

To control all seven joints in the arm, we made use of an
inverse kinematics solver that could, based on a target end-
position, calculate the necessary sequential joint angles, and
therefore the arm trajectories (Rethink Robotics, 2015c). When
taking this action, DE NIRO was acting blind to other objects in
the environment, such as the other Baxter arm. DE NIRO could
accidentally collide with an overhanging shelf or even another
part of its own hardware. To try prevent collisions near the point
of grasping, we sent DE NIRO an intermediate target position
about 10 cm between the fiducial marker and itself.

DE NIRO would first reach there with its two-finger pincers
separated widely enough for any bottle. After pausing briefly in
that intermediate position, DE NIRO moves forward that final
10 centimeters to the true object position. DE NIRO only knows
the location of the marker; not the width or depth of the object
the marker is attached to. So it moves the hand forward until
the base of its “palm” is at the original marker coordinates.
Then, it pinches together its two fingers until encountering
slight pressure. This indicates that it has grasped the object.
This procedure worked in practice surprisingly well as a initial
solution, and we illustrate it in Figure 9. However, in later
challenges, we presented other methods for DE NIRO to more
inherently understand object geometry and apply more complex
manipulation behavior.

4.8.2. Adaptation
In the Grasping state, we added extra logic to have DE NIRO
react more naturally when obstacles arise during the grasping
process. At least at this stage, the adaptation wasmore about error
handling than true autonomy. For example, if DENIRO is unable
to reach the object (perhaps the object is behind a transparent
barrier), it would pause and revert its hand to where it was before.
Then, it would try again, just in case its arm movement decision
had been ineffective. DE NIRO’s grasping component reports
each failure up to the state machine, which directs DE NIRO
to give up after the fifth failed attempt and proceed to the next
state, Returning.

In addition, based on what DE NIRO perceives, it will select
which arm to use autonomously. If the target object in the object

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 9 | The three grasping stages of moving to an intermediate position (left), grasping the object (middle), and executing handover-mode (right). Written

consent for using this figure by the person depicted has been obtained.

warehouse is to the left of DE NIRO’s central axis, it will begin
the grasping attempt with the left arm, and if to the right, then the
right arm.Moreover, if the target objectmoves (say, from one side
to another) after DE NIRO begins its arm movement, DE NIRO
will pause and try again with the opposite hand. If the stationary
arm is in the way of the moving arm, DE NIRO will dynamically
move the blocking arm out of the way to avoid collisions.

4.9. Returning
After obtaining the object, DE NIRO, which stands nearly two
meters tall, holds its payload with its arm raised, out of reach
of any children or other disturbances it may encounter on its
way back to its origin. It returns back to the point of origin and
begins seeking out the original requester, using the same method
for facial recognition it applied before. If it sees someone other
than the original user, DE NIRO will simply say so with audio
output, indicating that it requires the original user to release its
object. Only when the correct user is before it will DENIRO lower
its arm and release the final payload. To do this, the user needs
apply a small force on the hand along the z-axis. By pulling on
the payload upward or downward, the robot will release its grip,
providing the user with the object.

4.10. Discussion
Our work in response to this challenge was a measured success.
By the end, DENIRO could receive a command, navigate through
a room, fetch an object, and return it to the requesting user.
However, there are some significant areas of future research to
explore before DE NIRO could be converted into any sort of
commonplace household robot.

There is also more nuance that can be applied to this
process. DENIRO does adapt fluidly during the grasping process,
switching arms or trying multiple times when a grasp fails.
However, DE NIRO is generally focused on one task at a time—
it does not take in data from all its sensors at all times. An
alternate solution might have DE NIRO even more aware of
its environment while moving or while grasping, so that it can
adapt to a number of potential other objects. A more complex
state machine might also be a simple way of implementing far
more complex looping and failure behavior. At the moment,
DE NIRO selects between two locations—a point of origin and

an object warehouse. It would not require much more work to
offer a variety of object warehouses and indicate them by audio
command, such that one could ask DENIRO to fetch a book from
an office room, but a bottle of water from the kitchen.

This challenge was our first step into exploring how Robot
DE NIRO would work in a real environment, in which its
ability to manipulate objects was central to its success. Next, we
concentrate on the challenge of manipulation and grasping to see
where and how we can widen DE NIRO’s set of actions.

5. IMPLEMENTATION: MOTION PLANNING
FOR SINGLE-ARM OBJECT
MANIPULATION

5.1. Overview
After our work on the fetch routine, there were a number of
promising areas of future research. What stood out to us was
how DE NIRO could behave more intelligently once at the object
warehouse, when identifying its target and moving to grasp it.
Our next research goal hoped to have the robot better understand
and act upon its grasping environment. There were three sub-
challenges in accomplishing this goal:

1. Vision: DE NIRO needed to better understand the surface
upon which the objects stood, the ways in which those
objects were arranged, and the primitive shape of the
objects themselves.

2. Motion Planning: During our fetch routine, the arm motion
planning sometimes encountered errors, and we needed a
more robust process to plan arm and hand movement.

3. Grasping: DE NIRO needed to identify and execute the hand
pose necessary to successfully take hold of an object.

Our fetch routine required a very particular placement of objects,
in a very precise order. For this challenge, we aimed to have DE
NIRO conduct its behavior in an unknown object warehouse,
where the robot is not expecting one singular type of object
or position. We felt that in a true domestic environment,
cognitively-capable robots would distinguish themselves by
adaptation to their environment.

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

5.2. Vision
Our first aim was to estimate an object’s primitive shape,
to segment one object from another, and detect an object’s
pose. We restricted DE NIRO’s search to a fixed set of object
geometries directly on the planar surface. It provides a constraint
to the human user by limiting the zone of interaction to
a clearly defined workspace. That also simplifies point cloud
processing during the vision pipeline. We use a custom C++
script that draws inspiration from the source code of the ROS
tabletop_object_detector package (Willow Garage,
2018) and makes use of the Point Cloud Library discussed in
detail below (Rusu and Cousins, 2011). While both the Kinect
and the 3D LIDAR can produce 3D point clouds, we used the
Kinect for this purpose. As in our fetch routine, the fact that the
Kinect was mounted at the top of DE NIRO and could be angled
up and down provided the highest granularity for objects in front
of DE NIRO.

Since we wished for DE NIRO to be able to perceive its
objects in an unknown environment, we had to design perception
software that could account for unpredictability. As a design
principle, we had to plan for unstable perception: objects might
be arranged in any way, and might be overlapped from the
perspective of the Kinect camera. Our software needed to account
for this.

5.2.1. Preprocessing and Calibration
To preprocess the raw 3D point cloud, we downsample it into a
voxel grid that only returns the points located at less than 1.5m
in the positive z direction of the Kinect—this method eliminates
potential background points from the floor, which also represents
a planar surface. Then, we apply a Gaussian filter to eliminate
outliers or aberrations.

As in our fetch routine, this requires calibrating the position
of the Kinect. To do so, we first stick a fiducial marker to both
manipulation grippers of DE NIRO. Then, while the Kinect
camera is turned on, we manually place the grippers at several
random positions in DE NIRO’s operating area (confirmed by
a user input). For each position, we store the position of the
marker in the depth camera frame (returned by the Kinect
node) and in the base frame (returned by the Baxter arms’
core API). Finally, we apply a least squares method to optimize
the transformation between the Kinect frame and the base
frame. For each camera position, we conduct ten repetitions and
validate our results quantitatively. Figure 10 further illustrates
the calibration protocol.

5.2.2. Segmentation and Detection
Our next task is the meat of this project: to simultaneously
detect and segment a fixed set of objects. In our arrangement,
these objects included a flat surface, a cuboid, and a cylinder,
although any 3D geometric shape could be used. Note, however,
that the list of possible object geometries must be known before
segmenting the point cloud. We use the RANSAC algorithm,
which chooses a random subset of the data and iteratively fits
the parameters of a geometric model (e.g., the radius and height
of the cylinder) to the given data distribution (Fischler and
Bolles, 1981). By looping over a database of candidate models,

one can detect which objects match by selecting whichever
minimizes the error between the parameterized object model
and the empirically observed datapoints. In this challenge, the
RANSAC algorithm performed very robustly. After RANSAC
terminated, those points lying within the model were classified
as belonging to the object. Figure 11 illustrates the RANSAC
algorithm applied to a cylindrical object.

5.2.3. Pose Estimation
In the second step, we used the subset of points belonging
to the object model in order to determine its pose. That
pose is necessary to fully reconstruct the planning scene. We
used Principal Component Analysis (PCA), which identifies
the directions of largest variability (the principal components)
in each model (Wold et al., 1987). For example, in a plane
subset, the largest variability is likely to be observed along the
length, width, and height of the object. The principal components
are subsequently used to compute the rotation of the object.
The translational disposition of the center of the object is
directly obtained from the position of the geometric model,
yielding its full pose. Figure 11 (right) illustrates the first three
principal components of both the planar surface and the cylinder
model. The parameters and pose of each detected object are
communicated across the robot using custom ROS messages.

5.3. Motion Planning
Given the understanding of the objects and their poses in the
scene, at this point, DE NIRO must determine an optimal
trajectory from its initial arm pose to the position of the target
object. We used MoveIt! with the moveit_python library
as a high-level binding to configure and plan a trajectory
across numerous pathplanning algorithms (Sucan and Chitta,
2019). After several initial trials, we decided to use the RRT∗

algorithm with a constraint on the maximum computation time
of 2 seconds in order to ensure real-time feasible responses
(Karaman and Frazzoli, 2010). RRT∗ is a well-established,
Rapidly exploring Random Tree (RRT) method supporting
dynamic environments and both holonomic and non-holonomic
constraints. Furthermore, it guarantees asymptotically optimal
properties by introducing tree rewiring and best neighbor search
(Noreen et al., 2016). The RRT∗ algorithm yielded faster, more
reliable convergence and better planned paths in comparison
to various benchmark algorithms (RRT, RRT Connect, KPIECE,
and PRM).

5.4. Planning Scene
The planning scene is constructed by first inserting the
recognized objects with their given pose and geometric
dimensions. Each object is flagged as a potential obstacle, in order
to avoid collisions with the planned trajectory. In addition, we
specify three target poses during the pick-and-place procedure
and compute a path between pairs of them separately: First, a
grasping pose, corresponding to the pose of the end-effector when
grasping an object. The grasping pose is further discussed in
section 5.6. Second, an approach pose, corresponding to a pose
close to, but with a non-colliding offset from the grasping pose
and in the same rotation. Splitting the motion into these two

Frontiers in Robotics and AI | www.frontiersin.org 14 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 10 | Protocol for calibrating the Kinect depth camera relative to the Baxter base frame. Left: DE NIRO’s pose during one random position of the calibration

protocol. Right: The point cloud as seen from the Kinect depth camera.

FIGURE 11 | Application of the RANSAC algorithm to segment a cylindrical shaped object after several iterations (left) and after convergence (right). Points marked

in blue belong to the object being modeled (here: a bottle), and points in purple are recognized by the RANSAC algorithm as belonging to the cylindrical model.

Furthermore, the right figure illustrates the first three principal components of the two objects at hand.

target poses allows, as already seen in the fetch routine, a chance
to encapsulate the movement and the actual grasping procedure
more explicitly and avoids a potential collision detection with the
object grasped. Third, a basked pose, the goal where the object is
placed as soon as it has been picked successfully.

5.5. Path Planning Optimization
To obtain a planned trajectory, we formulate the path planning
problem as an optimization that jointly minimizes the cost
of two terms:

1. The Median Derivation Joint (MDJ) cost cMDJ measures the
Euclidean distance between the joint angles θp of each point
p ∈ P and the average joint angles θ0 (θ0, θp ∈ R

7,∀p ∈ P)
as follows:

cMDF =
∑

p∈P

(θp − θ0)
2

θ0 corresponds to the most frequently visited joint angles
of the Baxter arm. Intuitively, the cMDJ cost component
penalizes trajectories which approach the joint limits and
therefore encourages a simpler motion, also protecting the
actuator hardware.

2. As the second cost term, the End Effector Position (EEP)
cost cEEP which measures the Euclidean distance between the
trajectory points xp, p ∈ P , where P is a set of indices of
points along a trajectory, and the target point xT (translation
component of target pose) of the end-effector, xp, xT ∈ R

3,
as follows:

cEEP =
∑

p∈P

(xp − xT)
2

Intuitively, the cEEP cost component penalizes complex, curvy
trajectories, favoringmore direct movement toward the target.

Frontiers in Robotics and AI | www.frontiersin.org 15 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

The path planning optimization problem is formulated as a
convex combination of the two cost terms as follows:

min
θ1 ,θ2 ,...,θP;
x1 ,x2 ,...,xP

α · cMDJ + (1− α) · cEEP

α is a weighting factor that allows us to prioritize the effect of
one of the two cost terms. After empiric fine-tuning, we set it
to α = 0.005.

5.6. Discussion
In this section, we qualitatively and quantitatively assess our
second challenge of manipulation attempts with DE NIRO.

5.6.1. Grasping Pose
Figure 12 illustrates the grasping poses of the custom-made
bio-inspired grippers for the cylindrical object (top) and the
box-shaped object (bottom). The grasping pose for each object
depends on three factors:

1. The gripper used for manipulation,
2. The type of object grasped, and
3. The pose of the object.

The rotational orientation of the grasping pose is manually
defined by identifying an effective stance to grasp an object of
a certain shape. If colliding objects are identified within a specific
grasping pose, we allow DE NIRO to choose a different grasping
procedure during the operation. Note that a grasping pose will
only be considered valid if the model is considered feasible within
the physical constraints of the gripper (e.g., if box dimensions are
smaller than maximum gripper span).

5.6.2. Tests to Understand the Planning Scene
We made two attempts to validate our vision pipeline.
First, we tested robustness with respect to the identification
of shape parameters. We validated the consistency of the
measurements with regards to the object parameters by placing
several example objects in five different poses each and
estimating their parameters with RANSAC. We empirically
found standard deviations below 5% of the average prediction
for each dimension, indicating a rather consistent model
dimension estimate.

Next, we tested the robustness of the pipeline by repeatedly
estimating the model parameters as returned by the RANSAC
algorithm for ten example objects (five boxes with three
parameters each and five cylinders with two parameters each),
all in five different poses. Then, we compared these to the ground
truth object parameters, as physically measured (repeated for 5
trials each time). We observed an average absolute errors for the
box parameters as 11.0%, 15.0%, and 17.1% and for the cylinder
parameters of 7.4% and 12.8%.

Our results imply an estimation error accurate enough for the
cylinders to be grasped successfully at their centers. For the box-
shaped objects, the estimation error was too large to produce
reliable grasps, as the center location depends significantly on
the object parameters, leading to a high probability of failed
grasps. Given this limitation, we extended our work with a second

pipeline specifically geared toward grasping boxes. We discuss
this extensively in section 6.

5.6.3. Tests for Motion Planning and Grasping
We also conducted tests to validate the precision of the motion
planning and grasping procedures.We defined the task as placing
an example object in varying target zones on a table while using
object-dependent grasping poses. We repeated this process and
found, given a physically reachable pose, an approximate success
rate of 90%, with 10% of the trajectories either as too complex
(very erratic movement) or resulting in collisions. In addition, we
found that the custom claw-like grippers performed significantly
better than the original Baxter pincers. In particular, the custom
grippers were more compliant to errors in the estimated pose of
the objects.

This overall implementation challenge extended our
understanding on how DE NIRO might be able to more
intelligently seek out, grasp, and manipulate objects of variable
shapes, without knowing their characteristics ahead of time.
This was a step beyond our earlier implementation, in which DE
NIRO would use automatic processes to try to grasp an object
that was in a position it expected. With this extension, DE NIRO
was operating more autonomously and more generally. In the
next section, we extend our exploration of whether DE NIRO, as
a humanoid robot, can show more facility with grasping larger
box-shaped objects.

6. IMPLEMENTATION: MOTION PLANNING
FOR DUAL-ARM OBJECT MANIPULATION

6.1. Overview
The previous two sections demonstrated DE NIRO’s ability
to operate pick-and-place tasks with just one arm. However,
some procedures might benefit from having two arms. Our
goal here is to grasp and lift box-shaped objects of potentially
varying weights. Like fetching and complex object detection,
manipulating larger objects falls into a basket of tasks that are
likely to be common in a domestic environment. Expanding DE
NIRO’s abilities to confront a variety of external environments
and act on them appropriately is the aim of this research, and
making use of one of DE NIRO’s most evident features—its two
arms—is a natural next area of research.

For one thing, using two arms offers greater maneuverability.
Objects might be very big or unevenly shaped (say, a box without
handles), and two touch points might offer more control or
balance than one. Similarly, objects might be unstable, requiring
repositioning and dynamic rebalancing during the procedure,
like a typical peg-in-hole task with one arm positioning the
peg and one harm holding the hole (Edsinger and Kemp,
2008). In addition to maneuverability, a closed kinematic
chain consisting of two arms can control the stiffness and
strength of manipulation in a controlled way. This means
they can apply squeezing or twisting forces, or even reshape
deformable materials. Tasks like pulling a piece of fabric are
not feasible without this additional complexity. Third, dual-
arm manipulation more naturally resembles the capabilities of a
human. When performing manipulation through teleoperation

Frontiers in Robotics and AI | www.frontiersin.org 16 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 12 | Grasping poses of cylindrical (top) and box-shaped (middle) objects with the custom-made bio-inspired grippers. From left to right, the grasping poses

are front, top and side. Bottom: All cylindrical and box-shaped objects used for this challenge. Written consent for using this figure by the person depicted has been

obtained.

with an exoskeleton, as discussed in section 3.3, the bimanual
capabilities of a user can be more intuitively transferred to
the recipient robot (Falck et al., 2019). When applying robots

to environments originally intended for humans, such as
social assistance robotics, having a human form factor in its
manipulation capabilities may be beneficial (Wimböck and Ott,

Frontiers in Robotics and AI | www.frontiersin.org 17 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 13 | Top left: Two boxes with attached AprilTags and their recognized transformation. Top right: Transformation chain from the recognized object

transformation to the world frame. Bottom left: Point cloud as recorded by the Kinect, including RGB information. Bottom right: Voxel representation of DE NIRO’s

surrounding environment, as computed by OctoMap. Occupied voxels have been filled in with orange.

2012). This is what has motivated recent humanoid flagship
robots, such as Boston Dynamics’s ATLAS and HANDLE robots
(Boston Dynamics, 2019a,b).

As in sections 4 and 5, we subdivide our implementation into
component parts:

1. Vision: DE NIRO must estimate the target object’s pose.
2. Kinematics: DE NIRO needs to position its arms

appropriately for the target object.
3. Motion Planning: DE NIRO must move its arms in such a

way as to avoid collisions with itself or any external objects
4. Arm Trajectory: DE NIRO needs to actually move its arms

and respond to unexpected obstacles along the way.
5. Grasping: DE NIRO finally controls and manipulates the

target object, accounting for various possible errors.

6.2. Vision
Before grasping a box, DE NIRO must estimate its pose in
3D space. As in section 4, we used fiducial markers, which we
knew to yield highly accurate and robust results. The primary
disadvantage of fiducial markers is as before: each object that
might have to be lifted needs to be labeled ahead of time.
Nonetheless, the fiducial markers do allow the robot to accurately

estimate the distance to an object, given a proper calibration
of the Kinect camera (as discussed in section 5.2.1). For this
challenge, we used the AprilTag algorithm together with the
AprilTag variety of fiducial markers (Wang and Olson, 2016).
We attached these fiducial markers to two box objects, with
the recognized poses shown in Figure 13 (top left). Once the
pose of the object is estimated, we can calculate its position
and orientation relative to other points that are kinematically
relevant to DE NIRO, following the transformation chain shown
in Figure 13 (top right).

In order to perceive the environment, we used the OctoMap
algorithm, a probabilistic mapping framework based on octrees
that creates an occupancy map (Hornung et al., 2013).
The mapping procedure and resulting voxel representation is
illustrated in Figure 13 (bottom). Given the occupancy map,
a planner, explained in the subsequent section, can generate
an arm trajectory that avoids collisions by circumventing
occupied voxels.

6.3. Manipulation Kinematics
Following the taxonomy of dual-arm manipulation by Kruse
(2016), we focus mostly on coordinated, bimanual, symmetric
behavior that uses both arms to regulate the internal force and

Frontiers in Robotics and AI | www.frontiersin.org 18 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 14 | Left: The default position of DE NIRO’s hands normal to a target object and facing one another. Right: The calculation of the center coordinate system

in response to a clockwise movement of the object (looking down upon it).

position in order to grasp a box. To do so, we aim at defining a
symmetric kinematic pose of the arms, illustrated in Figure 14

(left), with an coordinate system (named “FOCUS”) between two
equidistant end-effectors.

By default, both arms face the side of the target object, along
its surface normal. This allows for a very intuitive procedure
for dual-arm manipulation: if DE NIRO’s hands shift an object’s
position, DE NIRO can simply change the position or rotation of
the FOCUS coordinate system to compensate. We demonstrate
this motion in Figure 14 (right). Similarly, to grasp or release
an object, the distance between the origins of FOCUS and the
two end-effector coordinate systems (named “Al” and “Ar”) is
reduced or increased accordingly.

6.4. Motion Planning
To plan DE NIRO’s arm movements, we use MoveIt!, which
already has an implemented library of global planners. Most of
these planners use a probabilistic roadmap method to iteratively
sample from the configuration space, considering any obstacles
or occupied space detected during themapping process in section
6.2 (LaValle, 2006). In order to avoid collisions of the robot arms,
we used the Flexible Collision Library (FCL), which uses the Axis-
Aligned Bounding Boxes (AABB) method (Pan et al., 2012). We
planned a trail of a collision-free motion around occupied voxels
with RRTConnect (Kuffner and LaValle, 2000), as illustrated in
Figure 15 (left).

In order to do collision checking in real-time, DE NIRO’s
arm poses must be synchronized with the dynamic OctoMap. To
ensure that our clocks were highly synchronized, we connected
DE NIRO’s Baxter core and the two controlling computers
mounted on its back with a UK-wide NTP server pool. By
comparing that time in the Baxter core with the incoming
Octomap time, we could determine if one was ahead of the
other, and if so, by how much. Lastly, we controlled the robot
with trajectory waypoint commands through the Joint Trajectory
Action Server (JTAS).

6.5. Arm Trajectory
Despite determining the kinematics of box manipulation and
uninterrupted motion planning, it is still not clear what
movement the robot should execute. Our original scenario was
a pick-and-place task. Imagined in a context where DE NIRO
may need to stack larger objects or move them inside shelves,
we define a simple, yet flexible solution to this task inspired by
Ackermann steering, in which a car follows a two-dimensional
arc (Mitchell et al., 2006). Figure 15 (right) illustrates the
desired trajectory intuitively; below, we derive it geometrically in
compact form.

Given the definition of angles, distances, and a coordinate
system in Figure 15, our objective is to move the box from
the starting position (START) with coordinates (xS, yS) to the
goal position (FINISH) with coordinates (xF , yF) and describe
its trajectory with respect to time (x(t), y(t)). Considering this
motion, we can see that an isosceles triangle between the
CENTER position (xC,yC), START and FINISH is formed. From
the trigonometric equations, it holds that

sin(θ) = 2sin(
θ

2
)cos(

θ

2
) (1)

By considering the two right-angled triangles within the isosceles
triangle, we get

2sin(
θ

2
) =

2rG

2rC
(2)

and

cos(
θ

2
) =

√

rC2 − (rG2)
2

rC
= sin(R) (3)

Substituting in Equation (1) with Equations (2) and (3), we get

sin(θ)

rG
=

sin(R)

rC
(4)

Frontiers in Robotics and AI | www.frontiersin.org 19 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 15 | Left: Trail of a collision-free motion around occupied voxels (orange) planned with RRTConnect. Right: Pick-and-place trajectory inspired by

Ackermann steering (top) and its geometric description (bottom).

Furthermore, let φ be the angle between the connecting line of
START and FINISH and the tangent of the arc motion in START.
Knowing that φ and R are complementary angles, we get

φ + R =
π

2
(5)

and

θ + 2R = π (6)

therefore

θ + 2(
π

2
− φ) = π H⇒ θ = 2φ (7)

and by substituting θ and R in Equation (4) with these results, we
get

rC = rG
sin(π

2 − φ)

sin(2φ)
(8)

Using the cofunction and double angle identities

sin(
π

2
− φ) = cos(φ) (9)

sin(2φ) = 2 sin(φ) cos(φ) (10)

and substituting these into Equation (7) yields

rC = rG
cos(φ)

2 sin(φ) cos(φ)
=

rG

2 sin(φ)
(11)

We can now find the total distance L travelled in the arc trajectory
from START to FINISH as follows (note that θ is measured in
radians)

L = rCθ (12)

L = rC(2φ) , since θ = 2φ (13)

L =
rGφ

sin(φ)
, since rC =

rG

2 sin(φ)
(14)

Let us now consider the time delta (tF − tS) it takes to traverse L
from START to FINISH

tF − tS =
L

v
, where v is velocity. (15)

θ(t), the angle between the horizontal and the connecting line
between CENTER and the current position x(t), y(t), changes
with constant factor ω

ω =
θ

(tF − tS)
(16)

We can therefore define θ(t) as

θ(t) = ω · (t − tS) (17)

In our case, αS, the original orientation of the box itself, stays
unchanged throughout the trajectory and can only be set at the
start or the end of the movement.

Frontiers in Robotics and AI | www.frontiersin.org 20 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

Finally, we return to our initial goal of describing the arc
trajectory coordinates x(t), y(t) with respect to time. We have the
the CENTER coordinates xC and yC as

xC = xS + rC (18)

yC = yS (19)

Thus, for a clockwise turn based on a given radius, we can
substitute Equation (16) as follows to find the arc trajectory
coordinates as

x(t) = xC − rC cos(θ(t)) (20)

y(t) = yC + rC sin(θ(t)) (21)

In practice, we compute x(t), y(t) with regular time shift from
Equations (23) and (24) and iteratively change the position of
the FOCUS coordinate system origin, as discussed in section
6.3. While this type of arc trajectory worked reliably during this
challenge, a more sophisticated solution could take into account
speed and acceleration constraints by, for example, calculating
the trajectory based on smooth, higher-dimensional polynomials
along defined waypoints.

6.6. Grasping
The symmetric, coordinated dual-arm procedure allows DE
NIRO to control andmanipulate target objects with a higher-level
control scheme. This control scheme needs to be robust to errors
and undesirable behavior and act upon errors with exception
loops. Examples of such exceptional behaviors covered in our
implementation are:

1. Failure to retrieve a feasible kinematic solution from the
Baxter inverse kinematics solver,

2. Unsynchronized transformation lookups that incorrectly
extrapolate into the future or review the past,

3. A non-existent object transform, because the object is
obstructed or outside of the camera frame, and

4. Lost network packets due to network connection issues.

For each of these and other cases, we define exception handling
procedures to elegantly overcome error scenarios with automatic
response mechanisms during manipulation.

Because arm trajectories can be particularly complex, we
added extra validation procedures into the inverse kinematics
solver solutions. These check for whether the obtained joint
angle solutions are reachable and not too distant from the
current position. Given the current Baxter pose and the retrieved
kinematic solution, the procedure calculates the Euclidean
distance between the current angles of the left and right arm
and the proposed angles of the inverse kinematics solver. It
requires those distances to be below a user-defined and tuned
threshold for the solution to be accepted and executed. This
validation procedure avoids motions that might be too large
between two sequential steps of the control loop; that could
potentially be harmful to the robot hardware or unexpected for
the interacting user.

6.7. Discussion
We validated the dual-arm manipulation procedure discussed
and implemented above with both qualitative and quantitative
test scenarios that demonstrate its general applicability. We
focused particularly on evaluating global motion planners with
respect to their robustness. We measured robustness with
a motion success rate, defined as whether the target point
B was reached from the initial point A under reasonable
time constraints.

Figure 16 (top) illustrates DE NIRO’s box grasping
capabilities and the kinematics of rotating the box in action.
While the kinematic solution turned out to work quickly and
reliably, motion planning is intrinsically slower as further
restrictions imposed by a dynamic environment must be
taken into account. This real-world scenario in a domestic
environment requires significantly more effort compared
to a fixed, static manufacturing environment with clearly
defined barriers and contact points, as the robot needs to
iteratively plan the motion. This is a distinct feature in
our setting.

For this reason, we analyze different types of motion planners
for our dual-arm box manipulation task in Figure 16 (bottom).
In particular, we are interested in evaluating global motion
planners with soft constraints—which can be violated if the
solution is far off—against a maximum processing time of 0.5
seconds and 0.05 seconds, in order to achieve natural reactions to
a user. The boxplots illustrate the distribution of the processing
time required to come up with a valid solution. The color
(traffic-light scale) of the boxplots indicates the success rate
of the executed trajectory while holding a box across 10 runs
per planner.

In Figure 16 (bottom left), red indicates frequently
unsuccessful; orange, moderately successful; and green, always
successful trajectories. We conclude that given a reasonable, yet
short processing time of 0.5 seconds, most of the planners (except
KPIECE and RRT) find a successful solution. Furthermore, some
algorithms, such as RRT, vary strongly in their processing
time, while others, such as RRT∗, show a low variation. If the
processing time is further reduced by a factor of ten (bottom
right), many algorithms become unreliable. KPIECE, however,
performed most stably under these tighter soft constraints.
Regardless of the constraints, RRTConnect performs reliably
with a small, low-variant processing time. This is therefore the
algorithm we used as a solution to this challenge.

7. CONCLUSION

In this paper1, we presented the design and implementation of
Robot DE NIRO to support adaptive, complex manipulation
behaviors that may be common in a domestic environment.
Such work may make DE NIRO particularly useful in support of
geriatric nurses who interact with care recipients.

1We have made our code base open source, provided extensive documentation,

and published a video illustrating some of DE NIRO’s current capabilities here:

https://www.imperial.ac.uk/robot-intelligence/software/

Frontiers in Robotics and AI | www.frontiersin.org 21 July 2020 | Volume 7 | Article 66

https://www.imperial.ac.uk/robot-intelligence/software/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

FIGURE 16 | Top: Qualitative attempt to manipulate a box with two arms. Bottom: Quantitative results with various motion planners and a maximum processing time

(soft constraint) of 0.5 seconds (left) and 0.05 seconds (right), respectively.

Currently, DE NIRO is limited in various ways and we list a
few of these in the following. First, its design is non-holonomic,
limited only to forward, backward, translational, and rotational
movement. DE NIRO cannot move sideways without turning
first. Second, with a maximum payload of 2.2 kg per arm, DE
NIRO is limited to relatively lightweight tasks. It is, for example,
incapable of lifting a human body. Third, due to limited sensor
capabilities in the current design, we have constrained DE NIRO
to trajectories using forward motion. This can result in the robot
getting stuck in corners.

Despite this, DE NIRO can go much further. DE NIRO
would benefit from concurrency across its components. Rather
than primarily one sensor active at a time, its abilities would
increase by being able to move and grasp together, for example.
It would also help to have more robust localization that does
not require predefined mapping (Bloesch et al., 2018) and
semantically richer spatial information for a more complex
decision making (Landgraf et al., 2020). We noted earlier that
during navigation, DE NIRO freezes if it believes it is colliding
with something and that it has no way to plan a trajectory that
does not entail further collisions. DE NIRO could be made more
autonomous and more intelligent by more accurately classifying
collision types, having a better sense of its own shape (not just
its pose), and avoiding deadlock situations (Kormushev and

Ahmadzadeh, 2016). Dynamic objects in these environments
are usually humans. DE NIRO currently detects humans by
matching incoming images of faces to saved images, but it does
not have a more general understanding of the human pose
and form. Were it to do so, it would be a more complete
assistant, perhaps even being able to learn skills after human
demonstration (Ahmadzadeh et al., 2013). Our work on object
recognition and grasping made clear that further improvements
here were possible, too. Point cloud-based object detection, for
example, may provide more elegant grasping techniques (Rusu
et al., 2008; Gajewski et al., 2018). In addition, we have not
yet combined the extensions we researched in object detection
and dual-arm object manipulation with the original fetch task.
Another fruitful next area of research would be to integrate all
these capabilities and then have a wide population of humans
actually interact with DE NIRO in a live setting.

All this being said, the work we have accomplished here shows
that DE NIRO can be used to provide reliable, efficient support to
tasks requiring frequent, natural interaction with humans. Our
goal was to build these capabilities into DE NIRO itself, but also
to share this model openly to other researchers. Should any others
wish to quickly build a robot with increasingly abstract abilities,
we hope they might be able to use some or all of our solutions in
their efforts.

Frontiers in Robotics and AI | www.frontiersin.org 22 July 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary materials, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

FF and SD were the main editors of the paper. SD, FF, JL, KR,
and NS contributed to section 4. MT contributed to section
5. GN contributed to section 6. All other sections are joint
efforts by the authors, with RS, KW, and PK contributing
particularly to the hardware and software design of DE NIRO in
section 3.

FUNDING

This work was supported through resources at the Robot
Intelligence Lab at Imperial College London. Full financial
support for PhD programs was also provided for two of our

authors: RS received support through the Indonesia Endowment
Fund for Education - LPDP, and KW received support
from the China Scholarship Council-Imperial College London
Joint Scholarship.

ACKNOWLEDGMENTS

We explicitly acknowledge that this work is partly based on
research projects that most of our co-authors have been involved
in: Project Fezzik: Playing Fetch with Robot DE NIRO (SD,
FF, JL, KR, NS), Motion Planning for Robotic Manipulation
(MT), and Motion Planning for Dual-Arm Object Manipulation
(GN). All of these were conducted at Imperial College London.
A summarized version of the first of these projects has been
published on arXiv (Falck et al., 2018) and subsequently
presented at the IROS 2018 workshop Toward Robots that
Exhibit Manipulation Intelligence. Where we have drawn from
this report and its summary, we have adhered to the Frontiers
author guidelines on Preprint Policy. The latter two research
projects have not been published before. We acknowledge
the work of various students in the Robot Intelligence Lab
working on the hardware design of DE NIRO and extending
its functionalities, particularly Clara Pouletty, Emilk Sempertegui
Aveiga, Cédric Hentsch, Thomas Hartley, Nikolay Nikolov,
Aaron Low, Affan Qureshi, Sida Niu, Surya Kocherlakota, Jin
Lian, Jiarui Zhou, Fabio Pardo, and Nemanja Rakicevic.

REFERENCES

Ahmadzadeh, S. R., Kormushev, P., and Caldwell, D. G. (2013). “Visuospatial

skill learning for object reconfiguration tasks,” in Proc. IEEE/RSJ

Intl Conf. on Intelligent Robots and Systems (IROS 2013) (Tokyo).

doi: 10.1109/IROS.2013.6696425

Ahmadzadeh, S. R., Paikan, A., Mastrogiovanni, F., Natale, L., Kormushev, P., and

Caldwell, D. G. (2015). “Learning symbolic representations of actions from

human demonstrations,” in Proc. IEEE Intl Conf. on Robotics and Automation

(ICRA 2015) (Seattle, WA). doi: 10.1109/ICRA.2015.7139728

Amazon Webservices (2018). Alexa sdk. Available online at: https://www.npmjs.

com/package/alexa-sdk

Amazon Webservices (2019). Amazon Transcribe - Automatic Speech Recognition.

Available online at: https://aws.amazon.com/transcribe/

Arm Limited (2019). Arm mbed. Available online at: https://www.mbed.com/en/

Aveiga, E. S. (2017). State Estimation and Feedback Controller Design for

Autonomous Navigation of a High-Performance Mobile Robot. London:

Imperial College London.

Bagnell, J. A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., et al.

(2012). “An integrated system for autonomous robotics manipulation,” in 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE),

2955–2962.

Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A. K., and Bartels,

G. (2018). Know rob 2.0–a 2nd generation knowledge processing framework

for cognition-enabled robotic agents,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 512–519.

doi: 10.1109/ICRA.2018.8460964

Bekey, G. A. (2012). “Current trends in robotics: technology and ethics,” in Robot

Ethics: The Ethical and Social Implications of Robotics (Cambridge, MA: MIT

Press), 17–34.

Berns, K., andMehdi, S. A. (2010). “Use of an autonomous mobile robot for elderly

care,” inAdvanced Technologies for Enhancing Quality of Life (AT-EQUAL) (Iasi:

IEEE), 121–126. doi: 10.1109/ATEQUAL.2010.30

Bimbo, J., Kormushev, P., Althoefer, K., and Liu, H. (2015). Global estimation

of an object’s pose using tactile sensing. Adv. Robot. 29, 363–374.

doi: 10.1080/01691864.2014.1002531

Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., and Davison, A. J.

(2018). Codeslam-learning a compact, optimisable representation for dense

visual slam. arXiv [Preprint]. arXiv:1804.00874. doi: 10.1109/CVPR.2018.

00271

Bohren, J. (2018). Smach ROS Package. Available online at: http://wiki.ros.org/

smach

Boston Dynamics (2019a). Atlas-The World’s Most Dynamic Humanoid. Available

online at: https://www.bostondynamics.com/atlas

Boston Dynamics (2019b). Handle-Mobile Box Handling Robots for Logistics.

Available online at: https://www.bostondynamics.com/handle

Brogårdh, T. (2007). Present and future robot control development–an industrial

perspective. Annu. Rev. Control 31, 69–79. doi: 10.1016/j.arcontrol.2007.01.002

Carnegie Mellon University (2018a). CMU Sphinx—About. Available online at:

https://cmusphinx.github.io/wiki/about/

Carnegie Mellon University (2018b). CMU Sphinx—Documentation. Available

online at: https://cmusphinx.github.io/wiki/

Centre for Applied Assistive Technologies (2011). Domeo RobuMate. Available

online at: http://www.aat.tuwien.ac.at/domeo/index_en.html

Cousins, S. (2010). Ros on the pr2 [ros topics]. IEEE Robot. Autom.Mag. 17, 23–25.

doi: 10.1109/MRA.2010.938502

Ding, M., Matsubara, T., Funaki, Y., Ikeura, R., Mukai, T., and Ogasawara, T.

(2017). Generation of comfortable lifting motion for a human transfer assistant

robot. Int. J. Intell. Robot. Appl. 1, 74–85. doi: 10.1007/s41315-016-0009-z

Durrant-Whyte, H., and Bailey, T. (2006). Simultaneous localization andmapping:

Part I. IEEE Robot. Autom. Mag. 13, 99–110. doi: 10.1109/MRA.2006.16

38022

Edsinger, A., and Kemp, C. C. (2008). “Two arms are better than one: a behavior

based control system for assistive bimanual manipulation, in Recent Progress in

Robotics: Viable Robotic Service to Human, eds S. Lee, I. H. Suh, and M. S. Kim

(Berlin; Heidelberg: Springer), 345–355. doi: 10.1007/978-3-540-76729-9_27

Frontiers in Robotics and AI | www.frontiersin.org 23 July 2020 | Volume 7 | Article 66

https://doi.org/10.1109/IROS.2013.6696425
https://doi.org/10.1109/ICRA.2015.7139728
https://www.npmjs.com/package/alexa-sdk
https://www.npmjs.com/package/alexa-sdk
https://aws.amazon.com/transcribe/
https://www.mbed.com/en/
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ATEQUAL.2010.30
https://doi.org/10.1080/01691864.2014.1002531
https://doi.org/10.1109/CVPR.2018.00271
http://wiki.ros.org/smach
http://wiki.ros.org/smach
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/handle
https://doi.org/10.1016/j.arcontrol.2007.01.002
https://cmusphinx.github.io/wiki/about/
https://cmusphinx.github.io/wiki/
http://www.aat.tuwien.ac.at/domeo/index_en.html
https://doi.org/10.1109/MRA.2010.938502
https://doi.org/10.1007/s41315-016-0009-z
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1007/978-3-540-76729-9_27
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

Engelberger, J. F. (2012). Robotics in Practice: Management and Applications of

Industrial Robots. Boston, MA: Springer Science & Business Media.

eSpeak (2018). eSpeak Text to Speech. Available online at: http://espeak.

sourceforge.net/index.html

Falck, F., Doshi, S., Smuts, N., Lingi, J., Rants, K., and Kormushev, P. (2018).

Human-centered manipulation and navigation with Robot DE NIRO. arXiv

[Preprint]. arXiv:1810.09786.

Falck, F., Larppichet, K., and Kormushev, P. (2019). “DE VITO: a dual-

arm, high degree-of-freedom, lightweight, inexpensive, passive upper-limb

exoskeleton for robot teleoperation,” in 20th Toward Autonomous Robotic

Systems Conference (TAROS) (Cham). doi: 10.1007/978-3-030-23807-0_7

Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., and Kragic, D. (2016).

The GRASP taxonomy of human grasp types. IEEE Trans. Hum. Mach. Syst.

46, 66–77. doi: 10.1109/THMS.2015.2470657

Fischinger, D., Einramhof, P., Papoutsakis, K., Wohlkinger, W., Mayer, P., Panek,

P., et al. (2016). Hobbit, a care robot supporting independent living at

home: first prototype and lessons learned. Robot. Auton. Syst. 75, 60–78.

doi: 10.1016/j.robot.2014.09.029

Fischler, M. A., and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Commun. ACM 24, 381–395. doi: 10.1145/358669.358692

Forlizzi, J., and DiSalvo, C. (2006). “Service robots in the domestic environment:

a study of the roomba vacuum in the home,” in Proceedings of the 1st ACM

SIGCHI/SIGART Conference on Human-Robot Interaction (Salt Lake City, UT:

ACM), 258–265. doi: 10.1145/1121241.1121286

Fortunati, L., and Esposito, A., and Lugano G. (2015). Introduction to the Special

Issue “Beyond Industrial Robotics: Social Robots Entering Public and Domestic

Spheres.” Inform. Soc 31, 229–236. doi: 10.1080/01972243.2015.1020195

Gajewski, P., Ferreira, P., Bartels, G., Wang, C., Guerin, F., Indurkhya, B.,

et al. (2018). Adapting everyday manipulation skills to varied scenarios. arXiv

[Preprint]. arXiv:1803.02743. doi: 10.1109/ICRA.2019.8793590

Geitgey, A. (2018). Face Recognition DLib Python Interface. Available online at:

https://github.com/ageitgey/face_recognition/blob/master/README.md

Google Cloud (2019a). Google Cloud Speech-to-Text Service. Available online at:

https://cloud.google.com/speech-to-text/

Google Cloud (2019b). Google Cloud Text-to-Speech. Available online at: https://

cloud.google.com/text-to-speech/

Graf, B., Parlitz, C., and Hägele, M. (2009). “Robotic home assistant care-

o-bot R© 3 - product vision and innovation platform,” in International

Conference on Human-Computer Interaction (Berlin: Springer), 312–320.

doi: 10.1007/978-3-642-02577-8_34

Hans, M., Graf, B., and Schraft, R. (2002). “Robotic home assistant care-o-

bot: past-present-future,” in Proceedings. 11th IEEE International Workshop

on Robot and Human Interactive Communication (Berlin: IEEE), 380–385.

doi: 10.1109/ROMAN.2002.1045652

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Hentsch, C. (2017). Realisation of a Dexterous End-Effector, Through a “Soft” and

Bio-Inspired Approach. London: Imperial College London.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees.

Autonomous Robots. Available online at: http://octomap.github.com

Hunt, R. (2018).Aws News Blog on Amazon Transcribe. Available online at: https://

aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/

Jamali, N., Kormushev, P., and Caldwell, D. G. (2014). “Robot-object contact

perception using symbolic temporal pattern learning,” In Proc. IEEE

Intl Conf. on Robotics and Automation (ICRA 2014) (Hong Kong).

doi: 10.1109/ICRA.2014.6907824

Jamisola, R. S., Kormushev, P., Bicchi, A., and Caldwell, D. G. (2014). “Haptic

exploration of unknown surfaces with discontinuities,” in Proc. IEEE/RSJ

Intl Conf. on Intelligent Robots and Systems (IROS 2014) (Chicago, IL).

doi: 10.1109/IROS.2014.6942718

Jamisola, R. S., Kormushev, P. S., Roberts, R. G., and Caldwell, D. G.

(2016). Task-space modular dynamics for dual-arms expressed through a

relative Jacobian. J. Intell. Robot. Syst. 83, 205–218. doi: 10.1007/s10846-016-

0361-0

Kanajar, P., Caldwell, D. G., and Kormushev, P. (2017). “Climbing over large

obstacles with a humanoid robot via multi-contact motion planning,” in Proc.

IEEE Intl Conf. on Robot and Human Interactive Communication (RO-MAN

2017) (Lisbon). doi: 10.1109/ROMAN.2017.8172457

Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., and Akachi, K. (2008).

“Humanoid robot HRP-3,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2008, IROS 2008 (Nice: IEEE), 2471–2478.

doi: 10.1109/IROS.2008.4650604

Karaman, S., and Frazzoli, E. (2010). Incremental sampling-based

algorithms for optimal motion planning. Robot. Sci. Syst. VI 104.

doi: 10.15607/RSS.2010.VI.034

King, D. E. (2018). dlib Face Recognition Documentation. Available online

at: https://web.archive.org/web/20170302162536/http://dlib.net/dnn_face_

recognition_ex.cpp.html

Koenig, N., and Howard, A. (2004). “Design and use paradigms for

gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

Vol. 3 (Sendai: IEEE), 2149–2154. doi: 10.1109/IROS.2004.13

89727

Kohlbrecher, S. (2018). Hector Mapping ROS Package. Available online at:http://

wiki.ros.org/hector_mapping

Kohlbrecher, S., Von Stryk, O., Meyer, J., and Klingauf, U. (2011). “A flexible

and scalable slam system with full 3D motion estimation,” in 2011 IEEE

International Symposium on Safety, Security, and Rescue Robotics (Kyoto:

IEEE), 155–160. doi: 10.1109/SSRR.2011.6106777

Kormushev, P., and Ahmadzadeh, S. R. (2016). “Robot learning for persistent

autonomy,” inHandling Uncertainty and Networked Structure in Robot Control,

eds L. Busoniu and L. Tam’as (Cham: Springer International Publishing), 3–28.

doi: 10.1007/978-3-319-26327-4_1

Kormushev, P., Calinon, S., and Caldwell, D. G. (2010). “Approaches for learning

human-like motor skills which require variable stiffness during execution,” in

IEEE Intl Conf. on Humanoid Robots (Humanoids), Workshop on Humanoid

Robots Learning from Human Interaction (Nashville, TN).

Kormushev, P., Calinon, S., and Caldwell, D. G. (2013). Reinforcement learning

in robotics: applications and real-world challenges. Robotics 2, 122–148.

doi: 10.3390/robotics2030122

Kruse, D. (2016). Dual-arm robot control for human-robot collaborative

manipulation (Ph.D. thesis). Troy, NY, United States.

Kuffner, J. J., and LaValle, S. M. (2000). “RRT-connect: An efficient approach to

single-query path planning,” in Proceedings 2000 ICRA.MillenniumConference.

IEEE International Conference on Robotics and Automation. Symposia, Vol. 2

(San Francisco, CA: IEEE), 995–1001.

Landgraf, Z., Falck, F., Bloesch, M., Leutenegger, S., and Davison, A. (2020).

“Comparing view-based andmap-based semantic labelling in real-time SLAM,”

in 2020 International Conference on Robotics and Automation (ICRA) (IEEE).

LaValle, S. M. (2006). Planning Algorithms. New York, NY: Cambridge University

Press. doi: 10.1017/CBO9780511546877

Lemaignan, S. (2018). ROS Markers Chili Tags. Available online at: https://github.

com/chili-epfl/ros_markers

Microsoft (2014). Kinect Sdk-Features. Available online at: https://docs.microsoft.

com/en-us/previous-versions/windows/kinect/dn782025%28v%3dieb.10%29

Mitchell, W. C., Staniforth, A., and Scott, I. (2006). Analysis of Ackermann

Steering Geometry. Technical report, SAE Technical Paper. SAE international.

doi: 10.4271/2006-01-3638

Noonan, T. H., Fisher, J., and Bryant, B. (1993). Autonomous Lawn Mower. US

Patent 5,204,814.

Noreen, I., Khan, A., and Habib, Z. (2016). A comparison of rrt, rrt* and rrt*-smart

path planning algorithms. Int. J. Comput. Sci. Netw. Sec. 16:20.

Open Source Robotics Foundation (2019). About ROS. Available online at: http://

www.ros.org/about-ros/

Oulton, J. A. (2006). The global nursing shortage: an overview of issues and actions.

Policy Polit. Nurs. Pract. 7(3 Suppl), 34S–39S. doi: 10.1177/15271544062

93968

Pan, J., Chitta, S., and Manocha, D. (2012). “Fcl: A general purpose

library for collision and proximity queries,” in 2012 IEEE International

Conference on Robotics and Automation (Saint Paul, MN: IEEE), 3859–3866.

doi: 10.1109/ICRA.2012.6225337

Frontiers in Robotics and AI | www.frontiersin.org 24 July 2020 | Volume 7 | Article 66

http://espeak.sourceforge.net/index.html
http://espeak.sourceforge.net/index.html
https://doi.org/10.1007/978-3-030-23807-0_7
https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1016/j.robot.2014.09.029
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/1121241.1121286
https://doi.org/10.1080/01972243.2015.1020195
https://doi.org/10.1109/ICRA.2019.8793590
https://github.com/ageitgey/face_recognition/blob/master/README.md
https://cloud.google.com/speech-to-text/
https://cloud.google.com/text-to-speech/
https://cloud.google.com/text-to-speech/
https://doi.org/10.1007/978-3-642-02577-8_34
https://doi.org/10.1109/ROMAN.2002.1045652
https://doi.org/10.1109/CVPR.2016.90
http://octomap.github.com
https://aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/
https://aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/
https://doi.org/10.1109/ICRA.2014.6907824
https://doi.org/10.1109/IROS.2014.6942718
https://doi.org/10.1007/s10846-016-0361-0
https://doi.org/10.1109/ROMAN.2017.8172457
https://doi.org/10.1109/IROS.2008.4650604
https://doi.org/10.15607/RSS.2010.VI.034
https://web.archive.org/web/20170302162536/http://dlib.net/dnn_face_recognition_ex.cpp.html
https://web.archive.org/web/20170302162536/http://dlib.net/dnn_face_recognition_ex.cpp.html
https://doi.org/10.1109/IROS.2004.1389727
http://wiki.ros.org/hector_mapping
http://wiki.ros.org/hector_mapping
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1007/978-3-319-26327-4_1
https://doi.org/10.3390/robotics2030122
https://doi.org/10.1017/CBO9780511546877
https://github.com/chili-epfl/ros_markers
https://github.com/chili-epfl/ros_markers
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782025%28v%3dieb.10%29
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782025%28v%3dieb.10%29
https://doi.org/10.4271/2006-01-3638
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
https://doi.org/10.1177/1527154406293968
https://doi.org/10.1109/ICRA.2012.6225337
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Falck et al. Robot DE NIRO

Pratt, G. A., andWilliamson,M.M. (1995). “Series elastic actuators,” in Proceedings

1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Human Robot Interaction and Cooperative Robots, Vol. 1 (Pittsburgh, PA:

IEEE), 399–406. doi: 10.1109/IROS.1995.525827

Quigley, M., Gerkey, B., and Smart, W. D. (2015). Programming Robots with ROS:

A Practical Introduction to the Robot Operating System. Sebastopol, CA: O’Reilly

Media, Inc.

Rakicevic, N., and Kormushev, P. (2019). Active learning via informed search in

movement parameter space for efficient robot task learning and transfer.Auton.

Robots. 43:1917–1935

Rashidi, P., and Mihailidis, A. (2013). A survey on ambient-assisted living

tools for older adults. IEEE J. Biomed. Health Inform. 17, 579–590.

doi: 10.1109/JBHI.2012.2234129

Rethink Robotics (2015a). Baxter Sdk-Arms. Available online at: http://sdk.

rethinkrobotics.com/wiki/Arms

Rethink Robotics (2015b). Baxter Sdk-Screen. Available online at: http://sdk.

rethinkrobotics.com/wiki/Screen

Rethink Robotics (2015c). Inverse Kinematics Solver Service. Available online at:

http://sdk.rethinkrobotics.com/wiki/IK_Service_-_Code_Walkthrough

Rethink Robotics (2018). Baxter Industrial Robot. Available online at: https://web.

archive.org/web/20180514010257/https://www.rethinkrobotics.com/baxter/

Rethink Robotics (2019). Basic Electric Parallel Gripper. Available online at:

http://mfg.rethinkrobotics.com/intera/a/images/5/5a/Basic_Electric_Parallel_

Gripper.jpg

Robot Intelligence Lab (2019). Robot Intelligence Lab Software. Available online at:

https://www.imperial.ac.uk/robot-intelligence/software/

Rosell, J., Suárez, R., Rosales, C., and Pérez, A. (2011). Autonomous motion

planning of a hand-arm robotic system based on captured human-like hand

postures. Auton. Robots 31, 87–102. doi: 10.1007/s10514-011-9232-5

Rosmann, C. (2018). Timed Elastic Band Algorithm Implementation. Available

online at: http://wiki.ros.org/teb_local_planner

Rosmann, C., Feiten, W., Wosch, T., Hoffmann, F., and Bertram, T. (2013).

“Efficient trajectory optimization using a sparsemodel,” in European Conference

on Mobile Robots (Barcelona), 138–143. doi: 10.1109/ECMR.2013.66

98833

Rusu, R. B., and Cousins, S. (2011). “3D is here: Point Cloud Library (PCL),” in

IEEE International Conference on Robotics and Automation (ICRA) (Shanghai).

doi: 10.1109/ICRA.2011.5980567

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M. (2008). Toward

3d point cloud based object maps for household environments. Robot. Auton.

Syst. 56, 927–941. doi: 10.1016/j.robot.2008.08.005

Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., and Fujimura,

K. (2002). “The intelligent ASIMO: system overview and integration,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3

(Lausanne: IEEE), 2478–2483. doi: 10.1109/IRDS.2002.1041641

Schroeter, C., Mueller, S., Volkhardt, M., Einhorn, E., Huijnen, C., van

den Heuvel, H., et al. (2013). “Realization and user evaluation of a

companion robot for people with mild cognitive impairments,” in 2013

IEEE International Conference on Robotics and Automation (ICRA) (IEEE),

1153–1159. doi: 10.1109/ICRA.2013.6630717

Sharkey, A., and Sharkey, N. (2012). Granny and the robots: ethical

issues in robot care for the elderly. Ethics Inform. Technol. 14, 27–40.

doi: 10.1007/s10676-010-9234-6

Sparrow, R., and Sparrow, L. (2006). In the hands of machines? The future of aged

care.Minds Mach. 16, 141–161. doi: 10.1007/s11023-006-9030-6

Srinivasa, S. S., Ferguson, D., Helfrich, C. J., Berenson, D., Collet, A., Diankov,

R., et al. (2010). Herb: a home exploring robotic butler. Auton. Robots 28:5.

doi: 10.1007/s10514-009-9160-9

Sucan, I. A., and Chitta, S. (2019).Moveit! Available online at: http://moveit.ros.org

Sunrise Medical (2019). Powered Wheelchairs by Quickie | Sunrise Medical.

Available online at: https://www.sunrisemedical.co.uk/powered-wheelchairs/

quickie/power-wheelchairs

Super, N. (2002). “Who will be there to care? The growing gap between caregiver

supply and demand,” inNational Health Policy Forum (The GeorgeWashington

University).

Tapus, A., Mataric, M. J., and Scassellati, B. (2007). Socially assistive robotics

[grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 35–42.

doi: 10.1109/MRA.2007.339605

Tenorth, M., and Beetz, M. (2013). Knowrob: a knowledge processing

infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32, 566–590.

doi: 10.1177/0278364913481635

Thomas, D., Scholz, D., and Blasdel, A. (2016). RQT Documentation. Available

online at: http://wiki.ros.org/rqt

Vahrenkamp, N., Kuhn, E., Asfour, T., and Dillmann, R. (2010). “Planning

multi-robot grasping motions,” in 2010 10th IEEE-RAS International

Conference on Humanoid Robots, Humanoids 2010 (Nashville, TN), 593–600.

doi: 10.1109/ICHR.2010.5686844

Wallach, W., and Allen, C. (2008). Moral Machines: Teaching Robots Right From

Wrong. Oxford: Oxford University Press.

Wang, J., and Olson, E. (2016). “AprilTag 2: efficient and robust fiducial detection,”

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (Daejeon). doi: 10.1109/IROS.2016.7759617

Willow Garage (2018). Object Recognition Using Tabletop. Available online at:

https://wg-perception.github.io/ork_tutorials/tutorial02/tutorial.html

Wimböck, T., and Ott, C. (2012). Dual-Arm Manipulation. Berlin; Heidelberg:

Springer. doi: 10.1007/978-3-642-25116-0_23

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis.

Chemometr. Intell. Lab. Syst. 2, 37–52. doi: 10.1016/0169-7439(87)

80084-9

Zanchettin, A. M., and Rocco, P. (2013). “Near time-optimal and sensor-

based motion planning for robotic manipulators,” in Proceedings of

the IEEE Conference on Decision and Control (Amsterdam), 965–970.

doi: 10.1109/CDC.2013.6760007

Zanchettin, A. M., and Rocco, P. (2017). Motion planning for robotic

manipulators using robust constrained control.Control Eng. Pract. 59, 127–136.

doi: 10.1016/j.conengprac.2016.11.010

Zhao, X., Naguib, A. M., and Lee, S. (2014). “Kinect based calling

gesture recognition for taking order service of elderly care robot,” in

2014 RO-MAN: The 23rd IEEE International Symposium on Robot

and Human Interactive Communication (Edinburgh: IEEE), 525–530.

doi: 10.1109/ROMAN.2014.6926306

Zsiga, K., Edelmayer, G., Rumeau, P., Péter, O., Tóth, A., and Fazekas,

G. (2013). Home care robot for socially supporting the elderly: focus

group studies in three European countries to screen user attitudes and

requirements. Int. J. Rehabil. Res. 36, 375–378. doi: 10.1097/MRR.0b013e32836

43d26

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Falck, Doshi, Tormento, Nersisyan, Smuts, Lingi, Rants, Saputra,

Wang and Kormushev. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 25 July 2020 | Volume 7 | Article 66

https://doi.org/10.1109/IROS.1995.525827
https://doi.org/10.1109/JBHI.2012.2234129
http://sdk.rethinkrobotics.com/wiki/Arms
http://sdk.rethinkrobotics.com/wiki/Arms
http://sdk.rethinkrobotics.com/wiki/Screen
http://sdk.rethinkrobotics.com/wiki/Screen
http://sdk.rethinkrobotics.com/wiki/IK_Service_-_Code_Walkthrough
https://web.archive.org/web/20180514010257/https://www.rethinkrobotics.com/baxter/
https://web.archive.org/web/20180514010257/https://www.rethinkrobotics.com/baxter/
http://mfg.rethinkrobotics.com/intera/a/images/5/5a/Basic_Electric_Parallel_Gripper.jpg
http://mfg.rethinkrobotics.com/intera/a/images/5/5a/Basic_Electric_Parallel_Gripper.jpg
https://www.imperial.ac.uk/robot-intelligence/software/
https://doi.org/10.1007/s10514-011-9232-5
http://wiki.ros.org/teb_local_planner
https://doi.org/10.1109/ECMR.2013.6698833
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1016/j.robot.2008.08.005
https://doi.org/10.1109/IRDS.2002.1041641
https://doi.org/10.1109/ICRA.2013.6630717
https://doi.org/10.1007/s10676-010-9234-6
https://doi.org/10.1007/s11023-006-9030-6
https://doi.org/10.1007/s10514-009-9160-9
http://moveit.ros.org
https://www.sunrisemedical.co.uk/powered-wheelchairs/quickie/power-wheelchairs
https://www.sunrisemedical.co.uk/powered-wheelchairs/quickie/power-wheelchairs
https://doi.org/10.1109/MRA.2007.339605
https://doi.org/10.1177/0278364913481635
http://wiki.ros.org/rqt
https://doi.org/10.1109/ICHR.2010.5686844
https://doi.org/10.1109/IROS.2016.7759617
https://wg-perception.github.io/ork_tutorials/tutorial02/tutorial.html
https://doi.org/10.1007/978-3-642-25116-0_23
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1109/CDC.2013.6760007
https://doi.org/10.1016/j.conengprac.2016.11.010
https://doi.org/10.1109/ROMAN.2014.6926306
https://doi.org/10.1097/MRR.0b013e3283643d26
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Robot DE NIRO: A Human-Centered, Autonomous, Mobile Research Platform for Cognitively-Enhanced Manipulation
	1. Introduction
	2. Related Work
	2.1. Work on Movement
	2.2. Work on Manipulation
	2.3. Work on Learning and Dual-Arm Coordination
	2.4. Work on Social Assistance Robots

	3. Design
	3.1. Core Body
	3.1.1. Baxter
	3.1.2. Quickie

	3.2. Custom Grippers
	3.3. DE VITO—Custom Exoskeleton
	3.4. Sensors and Hardware Augmentation
	3.5. ROS Usage
	3.6. Gazebo Simulation

	4. Implementation: Fetch Routine
	4.1. Overview
	4.2. State Machine
	4.3. Speech Input
	4.4. Audio Output
	4.5. Face Recognition
	4.6. Navigation, Mapping, and Trajectory Planning
	4.6.1. Navigation
	4.6.2. Localization
	4.6.3. Trajectory Planning

	4.7. Object Recognition
	4.8. Grasping
	4.8.1. Arm Movement
	4.8.2. Adaptation

	4.9. Returning
	4.10. Discussion

	5. Implementation: Motion Planning for Single-arm Object Manipulation
	5.1. Overview
	5.2. Vision
	5.2.1. Preprocessing and Calibration
	5.2.2. Segmentation and Detection
	5.2.3. Pose Estimation

	5.3. Motion Planning
	5.4. Planning Scene
	5.5. Path Planning Optimization
	5.6. Discussion
	5.6.1. Grasping Pose
	5.6.2. Tests to Understand the Planning Scene
	5.6.3. Tests for Motion Planning and Grasping

	6. Implementation: Motion Planning for Dual-Arm Object Manipulation
	6.1. Overview
	6.2. Vision
	6.3. Manipulation Kinematics
	6.4. Motion Planning
	6.5. Arm Trajectory
	6.6. Grasping
	6.7. Discussion

	7. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

