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In this paper, we present a modular and flexible state estimation framework for legged
robots operating in real-world scenarios, where environmental conditions, such as
occlusions, low light, rough terrain, and dynamic obstacles can severely impair estimation
performance. At the core of the proposed estimation system, called Pronto, is an
Extended Kalman Filter (EKF) that fuses IMU and Leg Odometry sensing for pose and
velocity estimation. We also show how Pronto can integrate pose corrections from
visual and LIDAR and odometry to correct pose drift in a loosely coupled manner. This
allows it to have a real-time proprioceptive estimation thread running at high frequency
(250-1,000 Hz) for use in the control loop while taking advantage of occasional (and
often delayed) low frequency (1-15Hz) updates from exteroceptive sources, such as
cameras and LIDARs. To demonstrate the robustness and versatility of the approach,
we have tested it on a variety of legged platforms, including two humanoid robots (the
Boston Dynamics Atlas and NASA Valkyrie) and two dynamic quadruped robots (IT HyQ
and ANYbotics ANYmal) for more than 2h of total runtime and 1.37 km of distance
traveled. The tests were conducted in a number of different field scenarios under the
conditions described above. The algorithms presented in this paper are made available
to the research community as open-source ROS packages.

Keywords: legged robots, state estimation, sensor fusion, visual odometry, iterative closest point (ICP), extended
kalman filter (EKF)

1. INTRODUCTION

Legged robotics is rapidly transitioning from research laboratories into the real world, as
demonstrated by the recent introduction of several commercial quadruped platforms.

To be truly useful, legged robots must be able to reliably and rapidly navigate across rough
terrain and be stable in the presence of disturbances, such as slips or pushes. They must also be able
to perceive and manipulate the environment whilst avoiding collisions with obstacles and people.

None of these tasks can be accomplished without the ability to accurately and robustly estimate
the pose and velocity of the robot (i.e., its state) in real time using only onboard sensors and
computers. The robot’s state is used to plan and track body trajectories, to balance and recover
from external disturbances, and to map the environment and navigate through it.

To achieve a satisfactory level of accuracy, proprioceptive and exteroceptive sensor fusion is
necessary, giving rise to the problem of synchronization and latency between the different signals
coming from each sensor.
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FIGURE 1 | The Atlas (A) and Valkyrie (B) humanoid robots and the HyQ (C)
and ANYmal (D) dynamic quadruped robots. Sources: MIT, University of
Edinburgh, Istituto Italiano di Tecnologia (IIT), University of Oxford.

Migrating from the controlled environment of a laboratory
to the real operating conditions of industrial applications (e.g.,
oil rig platform inspection or mine exploration) makes the task
even more challenging, as it requires extra effort to robustify
the estimation algorithm against unknown situations and long
periods of continuous operation without human intervention.

In this paper, we demonstrate how inertial, kinematic, stereo
vision, and LIDAR sensing can be combined to produce a
low-latency and high-frequency state estimate that can be
directly used to control state-of-the-art humanoids and dynamic
quadrupeds. In turn, this estimate can be used to build accurate
maps of the robot’s immediate environment and to enable
navigational autonomy and manipulation.

This contribution is the first such research to provide an
open source implementation of a fully integrated state estimation
system performing sensor fusion of IMU, kinematics, stereo
vision, and LIDAR on four different legged platforms: the NASA
Valkyrie and Boston Dynamics Atlas humanoids, and the IIT
HyQ and ANYbotics ANYmal quadrupeds (Figure 1). Another
key achievement in comparison with the state of the art is
demonstrating that the algorithm can be used to close the loop
with the controller.

1.1. Contribution

This paper combines previous works focused on the individual
platforms including state estimation on Atlas in Fallon et al.
(2014), an extension to the HyQ quadruped and incorporation of
vision in Nobili et al. (2017a), and further evaluation of LIDAR
localization in Nobili et al. (2017b).

The paper provides a complete and coherent overview of
the method with (a) a comprehensive and updated survey
of state estimation methods for legged robots; (b) additional

experimental results on the ANYmal quadruped platform; (c)
a more detailed description of the overall estimation method
and architecture.

Furthermore, we release the Pronto state estimator, FOVIS
Visual Odometry, and AICP LIDAR odometry modules as open-
source ROS packages for the research community.

2. RELATED WORK

The literature on state estimation for legged robots can be
classified according to several criteria: the type of sensors used
(proprioceptive, exteroceptive, or both); the output frequency
(at control rate, e.g., 400 Hz or camera/LIDAR rate, e.g., 10 Hz);
state definition (pose, velocity, joint states, contact points, etc.);
the presence of loop closures (odometry vs. SLAM); the degree
of marginalization of past states (from filtering to full batch
optimization). Finally, if there is fusion of proprioceptive and
exteroceptive signals, this can be performed in a loosely or tightly
coupled manner.

In this section, we divide the related work into three
main categories: proprioceptive state estimation, which includes
filtering methods to fuse only the high-frequency signals, such
as IMU and kinematics; multi-sensor filtering, which covers
filtering methods with proprioceptive and exteroceptive sensor
fusion; multi-sensor smoothing, which typically involve fusion of
Visual Odometry (VO), IMU, and kinematics in a tightly coupled
manner within probabilistic graphical model frameworks, such
as factor graphs.

2.1. Proprioceptive State Estimation

Nearly all modern legged robots are equipped with IMUs,
encoders, and force/torque sensors. Since these devices provide
low-dimensional signals at high frequencies (250-1,000 Hz),
they are the first to be fused for a smooth (although drifting)
state estimate, useful for control purposes. Since real-time safety
is paramount for controllers, most methods are based on the
Kalman filter (section 2.1.1) or lightweight optimization (section
2.1.2).

2.1.1. Kalman Filtering

Bloesch et al. (2012) were the first to propose an EKF-based
state estimator method that did not depend on a specific type
of gait or number of legs. The filter used IMU signals (linear
acceleration and angular velocity) as inputs to be integrated for
the process model. The state included the pose and velocity of
the robot, as well as IMU biases and foot contact locations. In
this way, they could define leg odometry measurements from the
forward kinematics of the feet in stable contact with the ground.
Their work was implemented on the StarlETH robot and tested in
short indoor experiments. Shortly thereafter, Rotella et al. (2014)
adapted the same method to humanoid platforms by including
the ankle joint and the foot orientations in the state vector.

An important aspect of humanoid robot state estimation is
the distance between the Center of Mass (CoM) and the feet,
which is larger than for quadruped platforms. In humanoids, the
flexibility of the links is therefore not negligible and can lead
to falls when the CoM is incorrectly estimated to be inside the
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relatively small support polygon given by the robot’s footprints.
Xinjilefu et al. (2015) explicitly estimated the CoM offset using
an inverted pendulum model to infer modeling error and/or
unexpected external forces. In contrast, the approach of Koolen
et al. (2016) modeled the elasticity of their robot’s leg joints to
better distribute error.

The above methods integrated the kinematics as position
constraints. An alternative approach is to use differential
kinematics in addition to forward kinematics to create linear
velocity measurements, which are then integrated within the
filter to get consistent position estimates. Bloesch et al. (2013)
applied this approach again on the StarlETH quadruped robot.
Since angular velocity from the IMU appeared on both the
inertial process model and the measurement update, the authors
proposed the use of the Unscented Kalman Filter (UKF) instead
of an EKEF to better handle the correlation between the joint and
gyroscope noises.

Fallon et al. (2014) used the same elasticity model as
Koolen et al. (2016) and integrated leg odometry as velocity
measurements on the Atlas robot. Since the EKF models the
measurements as Gaussian, non-linearities, such as slippages or
impacts are not captured by the filter noise model. Therefore,
special care was taken to ignore invalid contacts by classifying
the outputs from the contact sensors in the feet.

When foot sensors are unavailable, the contact feet are
detected by thresholding the Ground Reaction Forces (GREF),
which are estimated from the joint torques. Camurri et al.
(2017) proposed a method that evaluates GRF discontinuities
to discard invalid leg odometry velocity measurements on the
HyQ quadruped robot. To better detect the feet in contact, they
also proposed a logistic regression method to learn the optimal
GREF threshold on different gaits. A different approach, based on
Hidden Markov Model (HMM), was adopted by Jenelten et al.
(2019) for slip recovery on the ANYmal robot. In this case, the
probability of contact for each leg was determined from dynamics
and differential kinematics.

2.1.2. Optimization

Kalman-based filtering has been preferred over more
sophisticated methods because of its simplicity and low
computational expense. However, recent technological progress
has made optimization-based methods feasible to use. These
methods can overcome some limitations, such as the need to
define a process model even when unfit for the application.
Indeed, the widely adopted EKF inertial process model
approximates the robot to a ballistic missile, while optimization
methods could incorporate the floating base dynamics equations
of motion instead.

Xinjilefu et al. (2014) formulated the state estimation of
the Atlas robot as a Quadratic Programming (QP) problem.
The cost function was defined as the weighted sum of two
quadratic terms: the modeling error and the measurement error,
where the former is derived from the floating base dynamics
equation of motion while the latter is derived from encoders,
force/torque sensors, and IMU measurements. The optimization
variable was composed of the generalized (i.e., joint and base link)
velocities, the generalized forces, and the modeling error itself.

Note that the base link pose was not part of the state and was
estimated separately with an EKF. Tests on the Atlas robot have
shown significant improvements in the behavior of the feedback
controller with this estimation method.

A more unified optimization-based solution was proposed
by Bloesch et al. (2018). In their approach, they eliminated the
process model and made each measurement dependent on both
the current and the previous state of the system. Intuitively,
this is similar to an incremental smoothing method with a
window of size two. The approach was able to integrate the
dynamic equations of motion to estimate the linear and angular
acceleration of the robot body in addition to what was sensed by
the IMU, providing extra redundancy. If a process model were
available, it could still be incorporated as a pseudo measurement,
allowing the form of an EKF to be retained if required.

2.2. Multi-Sensor Filtering

Chilian et al. (2011) were among the first to discuss stereo,
inertial, and kinematic fusion on a legged robot. They used
a six-legged crawling robot measuring just 35cm across, yet
combining all the required sensing on board.

Similarly, Ahn et al. (2012) addressed the 3D pose estimation
of the humanoid robot Roboray, using an EKF-based SLAM
technique. Their motion estimation pipeline contains a visual-
inertial-kinematic odometry module and a visual SLAM module.
The kinematic and visual odometry are used to update the IMU
measurements within an EKF filter. These constitute the input of
the visual SLAM algorithm, which performed loop closures and
decrease the drift.

Hornung et al. (2010) applied Monte Carlo localization
(MCL), a Bayes filtering approach that recursively estimates the
posterior, to estimate the 6 DoF pose of the Nao humanoid robot.
By fusing the measurements of a 2D LIDAR with a motion model,
they estimated the pose of the robot’s torso, including while
climbing a miniature staircase.

Ma et al. (2016) proposed an error-state Kalman filter fusing
a tactical grade inertial measurement unit with stereo visual
odometry to produce a pose estimate for navigation tasks, such
as path planning. The robot’s kinematic sensing was only used
when visual odometry failed. Their approach was focused on
pose estimation and was not used within the robot’s closed-loop
controller. Their extensive evaluation (over thousands of meters)
achieved 1% error per distance traveled.

In contrast to the above-mentioned methods, we aim to
estimate both the pose and the velocity of the robot with multi-
sensor fusion and use this estimate online inside the control loop.
This is motivated by the fact that, for highly dynamic motions,
the drift rate of proprioceptive estimators is unacceptable and
requires the integration of other exteroceptive signals.

The estimator used in this work is based on a loosely-coupled
EKF, an approach that has been previously applied to Micro
Aerial Vehicles (MAVs) (e.g., Lynen et al., 2013; Shen et al., 2014).

2.3. Multi-Sensor Smoothing

Smoothing methods are well-established in the MAV community
for tightly coupled visual-inertial navigation, partly due to the
relatively low complexity of these machines (e.g., fewer degrees
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of freedom). The main advantage of smoothing is the ability to
jointly use all (or part) of the past history of measurements to
reduce the uncertainty around the full robot’s trajectory.

In recent years, promising works have been released that
apply these techniques to legged machines. Hartley et al. (2018b)
proposed the first attempt to fuse leg odometry and IMU in
a factor graph on the Cassie bipedal robot. They extended the
state with the feet contact locations and defined two new factors
to incorporate forward kinematics and impose a zero velocity
constraint on the contact points of a foot. These were then
combined with the pre-integrated IMU factor from Forster et al.
(2017a). Hartley et al. (2018a) extended this work to include
additional pose measurements from the SVO Visual Odometry
system (Forster et al., 2017b). Both works were demonstrated
on Cassie in controlled environments for a short period of
time (<5 min).

Wisth et al. (2019) proposed a tightly coupled visual-inertial-
legged system based on the iSAM2 solver running on the
ANYmal robot. The method extracts Kanade-Lucas features from
the stereo camera on a RealSense D435 camera and optimizes
them as the landmarks in the graph. Leg odometry was integrated
as relative pose factors obtained from the internal state estimator
running on the robot (Bloesch et al., 2018). The method was
demonstrated in extensive outdoor experiments in urban and
industrial scenarios where dynamic occludants and textureless
areas were present in the scene.

All of the above works were based on the assumption of a
stationary point of contact. This assumption is violated every
time there are slippages or deformations of the leg and/or the
ground. Contact detection methods can help to reject sporadic
slippage or deformation events. However, when these occur
regularly, they need to be modeled.

Wisth et al. (2020) proposed a factor graph method that
models contact non-linearities a bias term of the linear
velocity measurements from leg odometry. This can reduce the
inconsistency between leg and visual odometry and provide a
more robust pose and velocity estimate.

3. PROBLEM STATEMENT

We wish to track the pose and velocity of an articulated floating
base robot with two or more legs and equipped with an onboard
IMU, joint sensing of position and torque, cameras, and LIDARs.
In this paper, we will focus on the Atlas and Valkyrie 28-DoF
humanoids and on the HyQ and ANYmal 12-DoF quadrupeds.
The robots of the same type share the same kinematic tree, with
differences only in the link lengths and sensor locations.

3.1. Frames and Definitions

In Figure 2, we illustrate the reference frames relevant to our
estimation problem. The inertial frame Wand the base frame B
are rigidly attached to the ground and the robot’s floating base,
respectively. The frames located at the sensor origins are also
rigidly attached to the floating base, namely: the camera optical
frame C, the IMU frame | , and the LIDAR frame L. The relative
locations of these frames are known by design or can be retrieved
with calibration procedures, such as the ones described in Furgale

FIGURE 2 | Reference frame conventions for typical quadruped and
humanoid robots (with a simplified upper torso structure). The world frame Wis
fixed to earth, while the base frame B, the camera’s optical frame C, and the
IMU frame | are rigidly attached to the robot’s chassis or head. When a foot
touches the ground (e.g., the Right Front, RF), a contact frame K
(perpendicular to the ground) is defined.

et al. (2013) and Reinke et al. (2019). One or more temporal
contact frames K are created when a foot comes into contact with
the ground.

3.1.1. Notation

In the remainder of the paper, we adopt the following
conventions: the robot position p = ypyg € R* and orientation
R = Ryg € SO(3) are from world to base and are expressed in
world coordinates; the robot velocities v = gvyg, ® = pwyg €
R? are from world to base, expressed in base coordinates; the
IMU biases | b%, | b® € R? are expressed in IMU coordinates.
A time-dependent vector quantity a computed at time #; is
shortened as a; = a(ty).

3.2. State Definition

The robot state is defined as the vector combining position,
orientation, linear velocity, and IMU biases. The angular velocity
does not appear, as it is assumed to be directly measured by the
IMU once properly bias compensated. The state at time # is:

% = [pr Re vi B¢ b2]" (1)

The orientation uncertainty is tracked by the exponential
coordinates of the perturbation rotation vector, as described in
Bry et al. (2012).

3.3. Requirements

To effectively track base and foot trajectories, the state estimate
should have negligible drift, at least over the course of one
planning cycle. Modern footstep planners typically replan every
1-5s. Low-latency velocity estimates (including transduction and
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data transmission) are also fundamental for the feedback loop of
a controller.

Low drift or drift-free state estimates are also required for
navigation tasks (such as mapping and global path planning) as
basic building blocks for many autonomous systems.

With these considerations in mind, we define the following
requirements for a state estimator designed to run on legged
robots in field operations:

e low pose drift in short range (e.g., 10 m);

e reliability in real semi-structured environments (i.e., does
not diverge);

e signal smoothness for safe use in a control loop.

4. METHOD DESCRIPTION

Our approach adapts the core EKF filter described in Bry et al.
(2012), with velocity corrections added by Fallon et al. (2014)
for humanoid kinematics and then extended to quadruped
kinematics in Camurri et al. (2017) (see section 4.2). Additional
pose corrections from visual odometry and LIDAR registration
are described in sections 4.4 and 4.5.

The goal of the EKF is to estimate the mean g and covariance
¥ of the Gaussian distribution over the state, xy, given the
previous state xj_1, the current control input uy, and the current
measurement zi. The state is first predicted using the non-
linear discrete transition function f(-) and then corrected by the
observation function h(-). Both functions are corrupted by zero-
mean Gaussian process noise wy ~ M0, Qx) and measurement
noise 1 ~ N(0, Py):

X = f (w1, ug, wi) (2)
2 = h(xi, ny) (3)

The mean and covariance are

standard manner:

propagated in the

wy = f(o i, 0) @)
Ek_ = Ak_lEk_lAz_l + Wk—lQW;Ic-—l )

where the minus superscript indicates that the quantity is
evaluated before the measurement update takes place. For details
on the derivation of the partial derivatives of the transition
function, A and W, please refer to Bry et al. (2012).

The measurements are also integrated in a standard EKF
manner. For instance, a velocity measurement v, € R3 with
covariance matrix P} € R3>*3 would be integrated as follows:

2z = Vg (6)
Ky =S H'(HZ, H' +P))~! 7)
mp = py + Kp(zpe —Hp, ) (8)
= 1- KHE, )

where K; € R!>*3 is the Kalman gain and H € R3*15 is the
Jacobian of the observation function, which in the specific case
above acts as a selector matrix for the linear velocity substate.

4.1. Inertial Process Model

The acceleration (in the presence of gravity) and angular velocity
are sensed by the IMU at high frequencies in the range 0.4-1 kHz.
These are affected by bias and zero-mean Gaussian noise:

(10)
(11)

= oy +b”+1,
| Ay +ba+ﬂa

z
|

These quantities are transformed into the base frame and used as
inputs to the process model:

"= |:(0:| _ |:RI B(| ‘:’W — by, — ﬂw)]

a Ry B(|5w _ba_”a)
where R g is the rotational part of the rigid transform between
the IMU and base frames. Note that we ignore the effects of
angular acceleration and centripetal force (see Diebel, 2006) and
assume that the IMU is close enough to the robot’s base to make

them negligible.
The process equations are:

(12)

p=Rv (13)
R = Rw”" (14)
v=—-0"v+R'g+a (15)
b, =} (16)
b, = ¢ (17)

where 5, 77 are bias random walk noises.
Given Equations (13)-(17), we can predict the mean of the
state x; by simple integration over the period At = t; — t;_;:

wy R (@, — by )
u. = = ~ 18
. [ak] [R| B(@x —by_,) (18)
Pi—1
Vi—1
re =f(pg_pu,00=| 0 |+
ba
5}—1
bk—l
Vk,lAt
(=@, Vi1 + (Re_1)Tg +ap) At
Rj_1 exp(w At) (19)
0
0

Note that the attitude is integrated separately using the
exponential map between the Lie group of rotations and its Lie
algebra at the identity (see Forster et al., 2017a).

The prior covariance ¥, is also computed by Euler
integration of the partial derivatives of the process equation, as
detailed in Bry et al. (2015).

Having propagated the filter, measurements from other
sensors can be used to correct the state vector. In the following
sections, we derive measurements and their covariance matrix
from leg, visual, and LIDAR odometry.
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4.2. Leg Odometry
Leg odometry estimates the incremental motion of the floating
base of a legged robot from the forward kinematics of the legs
in stable contact with the ground. This measurement can be
formulated as either a relative pose or a velocity measurement.
In our system, we formulate linear velocity measurements.

In the following sections, we derive this measurement
specifically for humanoids and quadrupeds.

4.2.1. Humanoids
We adopt the contact classification and velocity measurement
strategies from Fallon et al. (2014).

4.2.1.1. Contact Classification

Humanoid robots are typically equipped with force/torque
sensors at the feet, from which the contact state can be inferred
by thresholding the measured normal force. Torsional friction is
assumed to be high enough for there to be no foot rotation.

We use a Schmitt trigger to classify contact forces sensed by
the robot’s three-axis foot force-torque sensors and to detect how
likely a foot is to be in contact. For simplicity, only one foot is
detected as in contact during a double support phase and a simple
state machine is used to decide which foot is more reliable.

We also classify other events in the gait cycle, such as striking
contact (as a 20-30N positive and increasing discontinuity
lasting more than 5ms) and breaking contact (negative force
discontinuity below a threshold). Because these events create
unrealistic measurements, the EKF integrates them with higher
measurement covariance.

Finally, we found that, in some cases, it is necessary to use the
state of the controller to decide which contact points are in stable
contact. For example, when climbing stairs, the toe of the trailing
foot pushes the robot upward but is not in stationary contact
(a “toe off” event). In that case, we use information from the
controller to assign the leading foot to be the primary fixed foot.

4.2.1.2. Measurements

Once the primary fixed foot is established, a velocity
measurement is created by differentiation of the base position
across the interval At = t; — t;_;. The foot contact locations
at times f;_; and f; are defined as the composition of the
base position in world coordinates and the foot position in
base coordinates:

wWvk (tk—1) = pr—1 + Re—1fk(qr—1) (20)
wPvik (tk) = P + Refk(qy) (21)
Wk (k) = Pk (fk—1) (22)

where fk(-) is the forward kinematic function that returns the foot
location in base coordinates and q are the joint positions.

Since the contact location in world coordinates does not
change over the interval (see Equation 22), the difference
in position px — pix—1 can be inferred from the forward
kinematics only, by subtracting and rearranging Equations (20)-
(21). Finally, the discrete differentiation is then simply computed

by dividing py — px—1 by the time interval (Equation 23).

~ _ Pk = Pk-1 v_
Yk = TAL tn=
Ry _1tk(qr_1) — Ritk(q
_ R (qr—1) — Ry (Qk)+nv (23)
At
2z = Vi (24)

where q are the measured joint positions and the covariance
matrix P} = P is defined from fixed values (empirically found)
that are increased when special events (striking contact, breaking

contact) occur.

4.2.2. Quadrupeds

Quadruped robots are typically equipped with high-precision
joint encoders from which low-noise joint velocity measurements
can be derived. However, achieving accurate contact estimation is
a major challenge since field-ready quadrupeds are not typically
equipped with direct contact sensors, as they easily break
during operation.

4.2.2.1. Contact Classification

Quadruped robot feet are usually approximated to be point-like
and then assumed to exert only pure forces onto the ground.
These forces can be estimated for each individual leg £ €
{LE, RE, LH, RH} using the base acceleration @, v and torques t:

¢ = (1) <r —hy— FT [‘;’D

where J(-) is the foot Jacobian, h; are the Coriolis effects, and F is
the matrix of spatial forces required at the floating base to support
unit accelerations about each joint variable (see Featherstone,
2008).

Let f,f € R be the vertical component of f* € R? at time #.
Thus, we model the probability for a particular foot being in firm,
static, and stable contact with the following Sigmoid function:

(25)

1

Plst = 11f) =
k(s = 118 1+ exp (—Bif{ — o)

(26)

where sﬁ € B is a binary value that indicates contact/no-contact
for foot £ at time t;.. We learn the Sigmoid parameters By and f;
using a logistic classifier, as described in Camurri et al. (2017).

For each leg, we determine a (binary) contact state si = 1if
Pi > 0.5,and si = 0 otherwise.

4.2.2.2. Measurements
Having determined the set of legs in contact, for a given leg ¢ the
robot’s linear velocity can be computed as follows:
BV = —8YBK — BPvE X BPBK (27)
From the sensed joint positions and velocities q,q and their
additive noises 57,99, we can rewrite Equation (27) as a
linear velocity measurement of the robot’s base, computed
using the leg ¢:

Ve=—J@-n1-@-nM-exk@-n) (28
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where fk(-) and J(-) are the forward kinematics function and its
Jacobian, respectively.

As in Bloesch et al. (2013), we collect all the effects of noise
into one additive term n":

Vi = —J@) 4 — @ x k(@) + 0" (29)

Since multiple legs can be in contact simultaneously, we define
the velocity measurement as a weighted average using the set of
legs in contact, where weights are determined using the contact
probabilities Pi from Equation (26):

P&t
vk:ZZ;/<+nv Ve st £0 (30)
k
zZ ="V (31)

The adaptive covariance P} is associated with the velocity
measurement and accounts for harsh impact forces (up to 600 N
for a 90-kg robot trotting). These forces can severely undermine
the estimation performance, because compression of the legs
or the ground causes incorrect kinematic measurements, which
translate into velocity and position errors.

The covariance is computed as the combination of a fixed
term (from the encoder noise datasheet), the inter-leg velocity
covariance Dy, and a term that is proportional to force
discontinuities (that are caused by impacts). For convenience, let
¢k be the total number of detected contact legs at time t. The
inter-leg covariance is defined as the covariance matrix of the
velocity contributions from the contact legs:

1 I N
m=32m—@m—@T
o2 0 0
~ OUyZ 0 _A(O' o, 02) (32)
0 0 of

The force discontinuity is defined as the mean absolute difference
of the normal force for each leg:

1
=— D I —fil (33)
k Ve

From Equations (32)-(33), the final covariance for the velocity
measurement is:

2
PZ = Pg + [% <A(Ux> Uy>Uz) + 13%]()} (34)

where o is a constant normalization factor,

empirically determined.

4.3. Zero Velocity Bias Estimation

The yaw drift due to bias evolution can be significant over long
periods of time. Yaw error is also the dominant source of drift in
any state estimator or SLAM system. For this reason, in Ma et al.
(2016), zero velocity updates were used to measure rotation rate
bias estimates.
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FIGURE 3 | Visual odometry performance during a trotting sequence on HyQ:
the robot first trots forward at 0.3 m/s and then turns in place sharply over a
5s period. During the initial trotting phase, VO performance is satisfactory.
However, image blur causes the number of inliers to fall and mean
re-projection error to spike. During this part of the experiment, no VO
measurements are incorporated into the main motion estimate.

In our system, we continually check for periods where the
robot is stationary using the joint velocities and GRF.

When the robot is stationary for at least 400 ms, the gyro bias
is updated to the average angular velocity recorded during the
stationary period:

k
=t =
k zj

zZp = bj;’ (36)
where t, — t; > 400 ms.

Since the bias is generally a very small quantity (i.e., @ > b®),
the covariance associated with the measurement can typically be
set to very small values without affecting the control system of
the robot.

4.4. Visual Odometry

Visual Odometry estimates the pose of the robot by tracking
features on camera images. The VO estimate frequency is
typically in the range of 10-30 Hz, which corresponds to the
camera frame rate.

When used in combination with LIDAR odometry, the
benefits of VO are two-fold. First, it makes the overall estimated
trajectory smoother when compared with a inertial-kinematic-
LIDAR-only system, as it reduces the drift rate between two
LIDAR updates. Second, the reduced drift rate also helps
the LIDAR registration itself, as the sparsity of the LIDAR
scans requires the accumulation of scans over time before
performing the registration. Therefore, a lower drift rate during
the accumulation produces higher-quality point clouds to be
registered.
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Our visual odometry pipeline is based on the FOVIS algorithm
by Huang et al. (2011). The measurements are loosely integrated
into the filter as relative pose measurements between frames.
This would allow the use of other VO algorithms, such as ORB-
SLAM (Mur-Artal et al., 2015), SVO (Forster et al., 2017b), or
VINS-Mono (Qin et al., 2018), to name a few. FOVIS was chosen
because of its computational efficiency.

The only input to FOVIS is a sequence of stereo image pairs.
It tracks FAST features in a key frame approach to estimate
incremental camera motion. Given two keyframes at times t;, t;,
we denote the estimated relative motion of the camera between
these two times as C,TC,Q = qu- Using the known camera-to-
base frame transformation, gTgc, this can be expressed in the
corresponding estimate of the motion of the base frame as:

Tg; = gTac Tc; (gTee) ™ (37)

We integrate the VO estimate for a time window ¢; — t;, which
is typically 2-3s. When used in combination with the LIDAR
module, we then form a position measurement in the world
frame as follows:

wive(t) = wIyg(i) Te, (38)
pj = trans (\,\;F\AB(tj)) (39)
zj = pj (40)

where the pose of the robot at time ¢; is taken from the filter’s
history of states. Note that we choose to use only the translational
part of Equation (38) for the EKF filter update, as yaw corrections
from the LIDAR are more accurate and sufficiently frequent.

Without the LIDAR module, the VO update can also include
rotational components (typically only yaw, since roll and pitch
are observable from the IMU).

Note that the update could be delayed in time (i.e., tj < ), so
the filter will re-apply the chain of measurements from time ¢; to
tk, as explained in section 5.1.

The covariance matrix for the measurement was manually
set to fixed values. However, when the FOVIS algorithm reports
failure, the measurement is discarded. The algorithm reports
failure in three cases: (1) when the number of inlier features
being tracked is below a threshold (10 in our case); (2)
when the solution of the optimization is degenerate; (3) when
the reprojection error is higher than a threshold (1.5 pixels
in our case).

An example of failure is provided by Figure 3, where at
time 12 s the number of inliers drops below the threshold (top
plot) and the reprojection error increases significantly (medium
plot) due to an abrupt robot rotation that caused motion blur
(bottom plot).

4.5. LIDAR Odometry

Our LIDAR odometry is based on the Auto-tuned Iterative
Closest Point (AICP) algorithm by Nobili et al. (2017b), which
improves the ICP implementation from Pomerleau et al. (2013)
by making it more robust against significant changes in overlap
between the clouds to be registered.

The rotating Hokuyo LIDAR sensor inside the Multisense SL
(mounted on Atlas, Valkyrie, and HyQ), as well as the Velodyne
VLP-16 (mounted on ANYmal), produces very sparse point
clouds that cannot be used directly for scan to scan registration.

Therefore, we accumulate consecutive measurements from
the sensor as a reference point cloud. The filter’s state is used as
the source of robot poses during the accumulation. We assume
that the pose drift during the accumulation is small enough
not to create significantly distorted reference point clouds. In
this context, the VO module is important, as it keeps the drift
bounded during the accumulation period.

Once a sufficiently dense reference cloud is obtained, a
sequence of reading point clouds are accumulated and registered
against the reference for motion estimation. The result of the
registration constitutes an additional relative pose measurement
for the EKF.

4.5.1. Reference Update

Using the first accumulated point cloud as the reference and
registering the forthcoming clouds as reading is effective only in
confined scenes. When the robot travels far away from its initial
location, this method is intractable due to the decreasing overlap
between the source and the reading clouds, eventually resulting
in ICP failure.

To guarantee sufficient overlap between the reference and the
reading clouds, we update the reference clouds whenever the
overlap drops below a safety threshold. In long-range missions,
such as the one described in section 7.5, we conveniently forced a
reference update after the robot had traveled 5m from its initial
location. This way, the drift is effectively bounded while having
sufficient overlap for data association.

4.5.2. Pre-filtering

According to Segal et al. (2009), point-to-plane registration
has proven to have superior performance to point-to-point.
Therefore, we extract planar macro-features (e.g., walls, doors,
ceilings) and implicitly discard all other entities (including
dynamic obstacles). We also apply a voxel filter with a leaf size of
8 cm to uniformly downsample the clouds. This step is necessary
to equalize the contribution from all of the points during the
optimization process, as point clouds are denser in the proximity
of the sensor.

For planar surface extraction, we adopt a region growing
strategy: a patch that is larger than a specific area (e.g., 30 x
30 c¢m) is accepted for further process. An example of output
pre-filtering is shown in Figures 4A,B.

4.5.3. Auto-Tuned ICP
Most ICP solutions assume a constant overlap between reference
and reading clouds. However, when partial occlusion occurs
(e.g., during passage through a narrow door), this assumption
is violated and the massive concentration of points on
the occludant (e.g., the walls beside the door) can cause
incorrect correspondences.

In contrast, we continuously estimate the amount of overlap
between the point clouds and automatically tune the ICP
inlier ratio for robust registration. The overlap parameter is

Frontiers in Robotics and Al | www.frontiersin.org

June 2020 | Volume 7 | Article 68


https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Camurri et al.

Pronto: Multi-Sensor Legged Robots Estimator

NN
aa\

‘ v

Cloud A

FIGURE 4 | Pre-filtering and Outlier filtering. (A) Raw point cloud from
Valkyrie's dataset; people are outlined in red. (B) After pre-filtering; people and
small irrelevant features have been filtered out. (C) Region of overlap as the
result of the analysis of the volumes of the two point clouds.

proportional to the true positive correspondences (i.e., the higher
Q is, the larger the number of true positive matches and vice
versa). In the following subsection, we briefly describe how €2 is
computed. More details can be found in Nobili et al. (2017b).

4.5.4. Overlap Filter
The overlap parameter 2 is computed in a point-wise fashion
(Figure 4C). Let yA, B be the reference and reading point clouds
acquired at times ¢, tj whose points have been expressed in world
coordinates by using a prior from the EKF. Each cloud is confined
into the volumes V;, V; by the sensor Field of View (FoV). The
intersection of the two volumes defines an overlap region (red in
the figure). If S; and S; are the points of A; and B; belonging to the
overlap region, we can define the overlap parameter 2 as:
Q= IS 51 (41)
|Al B

where | - | indicates the number of points in the cloud.

We use the overlap parameter from (41) to dynamically set
the inlier ratio of the ICP algorithm. If 0.2 < @ < 0.7, we

set the inlier ratio to Q. If Q is below 0.2, the inlier ratio is
set to 0.2, as this is the minimum required for ICP registration.
Finally, if © exceeds 0.7, the inlier ratio is bounded to 0.7 to
avoid overestimation.

We follow three heuristics to determine whether an alignment
is successful. First, the mean residual point-wise error should be
smaller than the threshold «:

1 n
MSE = er,- <a (42)
n
i=1

where 11, ..., 7, are the residual distances between the accepted
matching points in the input clouds. Second, the median of
the residual distribution, Q(50), should be smaller than the
threshold «a:

Q(50) < (43)

Third, the quantile corresponding to the overlap measure should
also be smaller than a:

Q) <« (44)

The first two conditions are commonly used metrics of
robustness, while the third automatically adapts to the degree of
point cloud overlap. The parameter o was set to 0.01 m during
our experiments.

4.5.5. Measurements

Once the two clouds A, B have been successfully registered, the
relative pose estimate TBU of the robot’s base between times t; and
tj is available, similarly to Equation (37). Thus, the measurement
is incorporated in the same way but including rotation:

wive(t) = whve(i) Te; (45)
B = trans (ye(4) ) (46)
R; = £ (wive(®)) (47)
7 = [ Ry] (48)

where again the absolute pose of the robot at time ¢; is taken
from the filter and the covariance matrix is set to fixed values.
Note that the time index is j as, typically, the measure is
delayed (i.e., tj < tx).

5. IMPLEMENTATION

A block diagram of our system is presented in Figure 5. Even
though the Pronto modules can all be run on a single machine,
it is common practice in legged robot design to distribute
the computation across two separate computers: a Control PC
connected to actuators and proprioceptive sensors running a
real-time operating system and a Vision PC for exteroceptive
sensor processing. This design architecture has been adopted for
all the robots evaluated in this paper. Its main advantage is that
the more critical operations are unaffected by potential delays,
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failure, or overloads caused by the resource-intensive processing
of data from camera and LIDAR.

Therefore, the IMU prediction and leg odometry updates
are performed within the same UNIX process running on
the Control PC. After every IMU process step, the estimator
immediately shares the filter state with the control system via a
real-time interface based on shared memory. The same estimate
is also available on the network for other modules to use (e.g., as
a prior for ICP).

The FOVIS and AICP processes are run on the Vision PC.
Both modules are decoupled from the core estimator, which
receives the updates as timestamped messages via a TCP or UDP
channel (e.g., ROS messages). This allows Pronto to perform
the core IMU/leg odometry, which is more critical, and to
incorporate measurements if and when they are available.

On all platforms, the computation is carried out on consumer-
grade processors (e.g., equivalent to Intel i7 for a laptop), with no
need for GPU processing.

Real-time

_ IMU
-~ @ @ (0.4-1 kHz)

Non Real-time

Joint States

(0.4-1 kHz) ] p .
= _d LLeg Odometry; | IMU Process |
Ctrl
> Loop
Stereo Images ;
State Estimate
SO Hz) (0.4-1 kHz)
LIDAR Scans_> m—— Memory
(10-40 Hz) == TCP/UDP

FIGURE 5 | Block diagram of our system: the IMU process model and leg
odometry are run on the control computer in a real-time process (in pink), while
the other modules run on separate computers in the user space (light blue).
These modules output filter measurements as ROS messages, which are
exchanged with the real-time domain through native shared memory
mechanisms.

5.1. Measurement History

The implementation of the filter maintains a history of
measurements (with their covariance), filter prior/posterior
states, and filter covariances, covering a time window of typically
10s. This allows the incorporation of asynchronous corrections
from VO and LIDAR, which have significant latency.

In Figure 6, we explain the concept with a toy example.
In black is the best estimate of the current state and history
at that moment in time. In red are discontinuities caused
by EKF updates (exaggerated for clarity). In dashed gray are
portions of the filter history that are overwritten due to a
received measurement.

Event 1: At time t,, the head of the filter points to T,. This
state is the result of predictions and measurement integrations
available up to time #,. At this same time, the filter receives a
delayed LIDAR measurement with timestamp ¢, (with ¢, < t,).
In particular, the measurement involves the relative pose between
Ty, and T, (with t, < t.). The history consists of a window
of measurements, filter states, and filter covariances, ordered by
timestamp. Since the window is longer than the time interval
t,—tp, the filter head can be moved back to T, which corresponds
to the state recorded at time ¢,.

Event 2: The LIDAR measurement is incorporated as an EKF
correction, resulting in the posterior estimate T,. At this point, all
the measurements in the history with timestamps after ¢, are re-
applied to the filter as if they had been received after the LIDAR
measurement. As a result, the filter head at time ¢, becomes 'i“u.
The past trajectory (dashed gray line) is therefore overwritten.
The new current state "i"a is the same as it would have been if the
LIDAR measurement had been received at time ¢, instead of £,.

Event 3: Over the next period of time, the filter continues
to propagate the head of the estimator using the IMU process
model and leg odometry. At time f;, a new visual odometry
measurement is created that measures the relative transformation
of the body frame between time #, and time 7. This measurement
is typically received with a 150-300 ms delay.

Event 4: We wish to use this information to correct the pose
of the robot toward 'i‘f, as described in section 4.4. The key step

T,

time

Lo

Ty

1) before LIDAR update

2) after LIDAR update

3) before VO update

FIGURE 6 | Example illustrating how VO and LIDAR measurements can be incorporated into the filter despite having much higher latency than the IMU process
model. In black is the best estimate of the trajectory at that instant, in red are updates introduced by incorporated measurements, and dashed gray lines are parts of
the trajectory that are recomputed. For clarity, the magnitude of the corrections is exaggerated. Elapsed time is indicated in the upward direction.

4) after VO update online filter head state
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is that this correction to the filter is carried out using the re-
filtered trajectory (mentioned in Event 2). After the correction
is applied, the head of the filter becomes T, and the estimator
continues as normal.

The final sub-figure (on the right) shows the state of the head
of the filter over the course of the example. This is the running
estimate that would have been available to the controller online.

Note that the proposed framework qualifies as an odometry
system, as no loop closures are performed. Therefore, typical
corrections from the exteroceptive modules are in the order of
a few centimeters (cf. Figure 9C top right). These discontinuities
are small enough to be dealt with by the position controller acting
on the robot base with appropriate gains. Bigger discontinuities,
such as the ones from a SLAM system, are typically addressed by
using two different reference frames for control and for global
path planning [e.g., Meeussen (2010)].

5.2. Software Structure
The framework presented in this paper is available to the research
community at three open-source repositories:

e pront o':library implementations of the EKF inertial process
model and the Leg Odometry modules described in sections
4.1 and 4.2, respectively

e fovis_ros? ROS wrapper for the FOVIS algorithm
(previously open-source but not ROS-compatible)

e ai cp_mappi ng>: implementation of the AICP algorithm
described in section 4.5.

The first repository is independent from the others and contains
all the code necessary to implement a proprioceptive state
estimator on a legged robot. To deploy the algorithm on a legged
robot of choice, either with or without ROS, the implementation
of the forward kinematics API and the creation of a dedicated
executable is required. A complete example of a deployment on
the ANYmal robot is also provided.

6. EXPERIMENTAL PLATFORMS

In the following sections, we describe the relevant characteristics
of the experimental platforms used: the Atlas and Valkyrie
humanoid robots and the HyQ and ANYmal dynamic quadruped
robots. A summary of the main sensors mounted on the robots is
provided in Table 1.

6.1. Atlas

Atlas (version 5, Figure 1A) is a 195cm high, 95kg, 28-DoF
hydraulic robot manufactured by Boston Dynamics for the
DARPA Robotics Challenge. Each leg has six joints (three hip,
one knee, and two ankle joints), the position of which are
estimated from the measured travel of their hydraulic actuators
using a Linear Variable Differential Transformer (LVDT). Since
the accuracy of these devices is limited, the joint velocities are
very noisy and are therefore not used directly for leg odometry

Uhttps://github.com/ori-drs/pronto
Zhttps://github.com/ori- drs/fovis_ros
3https://github.com/ori-drs/aicp_mapping

TABLE 1 | Sensor specifications divided by robot.

Sensor Model Hz Specs
Atlas

Init Bias: 0.5°/h | 0.5mg
IMU KVH 1750 333 )

Bias Stab: 0.05°/h | 0.05mg

Res: 1024 x 1024 px
SIere0 1 tisense SL 10 FoV: 80 x 80°
Camera

Imager: CMV4000 4MP
LIDAR Hokuyo UTM-30LX-EW 40 FoV (full rot.): 220 x 180°
Encoder  N/A 333 Res: <0.0045°
Torque N/A 333 Res: N/A

Valkyrie

Init Bias: 0.05°/s | 2mg
IMU 3DM-GX4-25 500 )

Bias Stab: 10°/h | 0.04 mg
Stereo  \1uttisense SL 10 FoV/(tullrot.): 180 x 120°
Camera
Encoder  N/A 500 Res: 0.0043°

Res: 0.07-0.1N
F/T ATI Omega85 500

0.02-0.03Nm
HyQ

Init Bias: 0.5°/h | 0.5mg
IMU KVH 1775 1,000 )

Bias Stab: 0.05°/h | 0.05 mg
Stereo Multisense SL 10 See above
Camera
Encoder  AEDA3300-BE1 1,000  Res: <0.0045°
Force Burster 8417 1,000 Res: <25N
Torque N/A 1,000  Res: N/A

ANYmal
. Init Bias: 0.2°/s | 5mg

IMU Xsens MTi-100 400 .

Bias Stab: 10°/h | 15mg

Res: 848 x 480 px
Stereo o aiSense D435 380 FoVi91.2 x 65.5°
Camera

Imager: IR global shutter
Encoder  ANYdrive 400 Res: <0.025°
Torque ANYdrive 400 Res: <0.1Nm

(cf. section 4.2.1). Other measurement non-linearities, such as
backlash have been addressed the same way as Koolen et al.
(2016).

Located at the pelvis is a tactical KVH 1750 IMU
equipped with a Fiber Optic Gyro (FOG) for accurate angular
velocity measurements.

The main source of exteroceptive signals is the Carnegie
Robotics Multisense SL, a tri-modal ruggedized sensor that
includes a rotating Hokuyo UTM-30LX-EW, a high-quality
rolling shutter RGB stereo camera with a 7cm baseline, and
an FPGA implementation of the stereo Semi-Global Matching
algorithm by Hirschmiiller (2008) to provide dense 3D point
clouds at nominal camera frequency. All these signals are
synchronized in hardware through the FPGA. The laser produces
40 line scans per second with a 30 m maximum range while
spinning about the forward-facing axis. Every few seconds, it
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spins half a revolution and a full 3D point cloud is accumulated
with a Field of View (FoV) of 220 x 180°.

6.2. Valkyrie

Valkyrie (Figure 1B) is a 1.87m tall, 129 kg, 44-DoF (28-DoF
without hands) electrically actuated robot developed by NASA
for the DARPA Robotics Challenge and space operations Radford
etal. (2015). As for Atlas, each leg has 6 DoF, with 3-DoF hips, 1-
DoF knee, and 2-DoF ankles. The hip and knee motors are rotary
actuators whose rotation is measured by magnetic encoders and
whose torque is quantified by measuring the spring deflection.
The ankle joints are linear, with encoders located along the axis
of rotation for joint position measurement, and load cells located
on the shaft for torque measurement, respectively.

FIGURE 7 | AICP performance on the DRC Finals dataset with Atlas. (Top) A
top view of the alignment of 206 point clouds during the run—left: raw clouds
with people, right: filtered clouds. Bottom left: state estimation without applying
correction, valve perceived in different locations by successive clouds. Bottom
right: with successful localization, consistent estimate of the affordance.

Even though the robot is equipped with several cameras for
visual servoing, the main exteroceptive sensor considered in this
paper is again the Multisense SL. The FoV of the LIDAR is
reduced to 180 x 120° by a plastic cover over the head.

6.3. HyQ
HyQ (Figure 1C) is a torque-controlled Hydraulic Quadruped

robot developed by Semini et al. (2011) at the Istituto Italiano
di Tecnologia (IIT). The system is 1 m long and weighs ~85kg.
Its 12 revolute joints have a rotational range of 120° and a
maximum torque of 160 N m. The 1kHz sensors are read by a
control computer (using a real-time operating system). All other
sensors are connected to a perception computer and are passively
synchronized with the real-time sensors as described in Olson
(2010).

As for Atlas and Valkyrie, the robot’s main exteroceptive
sensor is the Carnegie Robotics Multisense SL. The stereo camera
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FIGURE 8 | Translational and rotational error for Experiment 2 (Valkyrig). The
blue line shows the kinematic-inertial typical estimation drift, while in red is the
estimate with the AICP corrections.

FIGURE 9 | (A) Indoor repeatability tests. (B) Outdoor exploration tests in challenging scenarios. (C) Comparison between estimated trajectories of HyQ from
Experiment 6d: IMU and Leg Odometry (cyan); IMU, Leg Odometry, VO (magenta); IMU, Leg Odometry (LO), AICP (yellow); IMU, LO, VO, AICP (green). Note that the
IMU-LO-VO-AICP trajectory is smoother than the combination without VO (inset).

[C—Jmu-Lo-vo
[C__Jmu-Lo-aicP
= [__1mu-Lo-vo-AicP
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FIGURE 10 | Example of left camera image and depth image produced by
HyQ’s stereo camera. This reflects the difficult lighting conditions and
challenging structure of the test arena. The scene is illuminated with the
sensor’s on-board lights.

was configured to capture 1,024 x 1,024 images at 10 Hz.
Figure 10 shows an example of a left camera image and a depth
image taken during an experiment, indicating the challenging
scenarios we target.

6.4. ANYmal

ANYmal (version B, Figure 1D) is a 12-DoF electrically actuated
quadruped robot initially designed by Hutter et al. (2016) at ETH
Zurich and now manufactured by ANYbotics. It is 80 cm long
and weighs 33 kg. Its series elastic actuators can deliver up to
40 N m of torque and provide accurate measurements of the joint
position, velocity (internally computed by differentiation), and
torque (by spring deflection measurement).

The robot is equipped with an XSens MTi-100 industrial-
grade IMU, a RealSense D435 camera at the front (for visual
stereo odometry and local mapping), and a Velodyne VLP-16
LIDAR on the top (for localization and global mapping).

7. EXPERIMENTAL RESULTS

We carried out a series of experiments with the Atlas, Valkyrie,
HyQ, and ANYmal robots over the course of 4 years. We present
summary results, which have a combined time of 2h and 13 min
and 1.37 km of distance traveled, respectively. A summary of the
experimental results divided by dataset and robot is available in
Table 2.

7.1. Evaluation Protocol

We aim to evaluate the estimation performance both
quantitatively and qualitatively, with a focus on real-world
scenarios and online/real-time execution.

7.1.1. Ground Truth
The experimental results presented in this section have been
collected over the span of several years in a variety of different
conditions and platforms. For this reason, it was not always
possible to generate the ground truth poses from the same source
(e.g., motion capture). The last column of Table 2 indicates the
experiments where ground truth was available.

For all indoor experiments on HyQ and Valkyrie (lines 2-
4, Table 2), we used a Vicon motion capture system to achieve
millimeter-accurate ground truth poses at 100 Hz.

TABLE 2 | Summary of the experiments.

Exp.N Robot RPE VO AICP OL CL T DT A GT
[m] [s] [m] [m?]
1 Atlas <003 - v v v 1236 16 154 -
2 Vakyrie 0016 - v v v 841 12 78 v
3 Vakyrie 0016 - v v v 50 25 78 v
4 HyQ 0027 v v v v 1740 400 75 v
5 HyQ  <0.03* v v v v 1740 400 9 -
6 HyQ 0038 v v v v 2640 800 100
7 ANYmal 2':;1 YO T T 4906 240 1381 v

Exp. N, Experiment number; RPE, Relative Pose Error (translational part, evaluated over
10m distance); ATE, Absolute Translation Error; VO, Visual Odometry; OL, Online; CL,
Control Loop; T, Time; DT, Distance Traveled; A, Area; GT, Ground Truth. *By evaluation
of the ground truth point cloud. **By evaluation of the accuracy in returning to the
initial position.

For the HyQ outdoor experiments (line 6 in the table), we
exploited situations where the robot was completely stationary
to accumulate six full sweeps of LIDAR scans from different
locations to reconstruct the scene in post-processing via ICP
registration. Since the LIDAR was perfectly stationary, the
accumulation was performed for at least two full turns (65k
points per scan), and the overlap was more than 70 %, we ascribe
the accuracy of the reconstruction to one of the sensors, which is
3 cm for the experimental area evaluated. Then, we generated a
ground truth trajectory by aligning the point cloud data from the
onboard LIDAR with the prior map in post-processing. Note that
this trajectory is different than the one obtained during online
estimation, as there was no prior map involved in this process.

The experiment with ANYmal (line 7, Table 2) have been
paired with ground truth from a Leica TS16 laser tracking system,
which tracked the robot’s position with millimeter accuracy using
a reflective prism on the robot. The data from the laser tracker
was then spatio-temporally aligned with the IMU to get ground
truth poses via an offline batch optimization, as described in Burri
et al. (2016).

Finally, when ground truth was not available, we designed
the experiments such that the estimation performance could be
measured by analyzing the robot’s accuracy in returning to its
initial position after several forward/backward motions.

7.1.2. Pose Estimation Performance

Since our proposed algorithm is an odometry system (i.e., no
loop closures are preformed), we base our quantitative analysis
on the mean translational component of the Relative Pose Error
(RPE), defined by Sturm et al. (2012), over a distance of 10 m. The
performance for each experiment is indicated in Table 2.

7.1.3. Control Loop Performance

We evaluated the stability of the algorithm in real conditions
by running the estimator in real-time on Valkyrie (to feed the
footstep planner). On Atlas and HyQ, we also closed the control
loop with the estimator. The control loop test implicitly evaluates
the quality of the velocity estimates, which are directly used by the
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locomotion controllers. For ANYmal, the execution was tested
offline but at nominal speed and on a consumer-grade laptop
with comparable performance to the hardware mounted on the
robot. In this case, the suitability for the control loop was assessed
by looking at the signal smoothness.

7.2. Atlas Experiments

The Atlas dataset (Table 2, Experiment 1) was collected during a
run by the MIT team at the DARPA Robotics Challenge Finals
(Pomona, CA 2015). It consists of 20min 36s of continuous
operation in a semi-structured environment measuring 14 x
11 m, with walls on the right side of the robot and an open-
space populated by a crowd on the left. The robot walks through
the test scenario along a 16 m path while passing over uneven
terrain and manipulating objects (Figure 1A). Accurate maps of
the environment were obtained in post-processing.

During the whole competition, Pronto (without AICP)
was used to close the control loop. Its low-drift estimation
performance (evaluated to be ~1.67% traveled distance in
preliminary indoor tests) allowed it to successfully traverse
uneven and rough terrain, although pauses for re-localization
were necessary.

Later on, further offline tests were carried out after the
integration of the AICP module. This time, the system
performance was qualitatively evaluated from careful observation
of the map after the run (Figure7), where the estimated
trajectory is close to error-free (~3 cm error for the full run).
People have been filtered out and do not contribute to the
alignment (top right). The algorithm is stable and robust enough
to compute successful alignments during the entire run (with
more than 14m displacement and overlap decreasing to just
10 %), satisfying requirement 2. Under the same conditions,
standard ICP algorithms fail after 400s, as they are not
accounting for dynamically changing point cloud overlap across
the run.

7.3. Valkyrie Experiments

The state estimation framework was tested online on two
different tasks: repeated walking on flat ground (Table 2,
Experiment 2) and stair climbing (Table 2, Experiment 3).

7.3.1. Repeated Walk to a Target

Valkyrie walked repeatedly forward toward a fixed target
identified at the beginning of the run before reversing direction.
Over the course of the experiment, the error in translation
never exceeded 7.5cm and was 1.6 cm on average, whereas the
estimator without LIDAR had an unbounded drift (Figure 8),
mostly dominated by yaw bias (see bottom plot). This satisfies
the requirements about expected localization accuracy. Thanks
to this localization performance, the robot could reach the goal
target and maintain a precise pose estimate during the entire run.
In contrast, using the proprioceptive state estimator, the robot
failed to reach the target due to odometry drift.

7.3.2. Stair Ascend
Valkyrie was placed at 1 m from a staircase. The task was to walk
toward it and climb up the steps. Planning was performed only

once, at the start. Over the course of this 50 s experiment, the
median errors in translation and rotation were comparable to
those in Experiment 2. This level of accuracy allowed the robot to
safely perform the task without needing to re-plan. In contrast,
during the DRC, robots typically took a few steps at a time to
climb stairs or traverse uneven terrain, pausing periodically to
manually re-localize and re-plan. In this context, our system was
demonstrated to enable greater autonomy in task execution.

7.4. HyQ Experiments

On HyQ, we performed experiments in two different scenarios.
First, for Experiment 4, a repetitive trotting motion was carried
out in a laboratory environment with a Vicon motion capture
system for ground truth. Second, for Experiments 5 and 6,
extensive testing was carried out in a poorly lit industrial area
with a featureless concrete floor, as well as test ramps and rock
beds (Figure 9B). The environment, the different locomotion
gaits (trotting and crawling), and the uneven terrains presented a
large number of challenges to our algorithms and demonstrated
the importance of using redundant and heterogeneous sensing.
The robot’s peak velocity when trotting was about 0.5 m/s, which
is approximately half of typical human walking speed.

7.4.1. Indoor Repeated Trot to a Target

The robot was commanded to continuously trot forward and
backward to reach a fixed target (a particular line in Figure 9A).
Robot position and velocity estimates were used by the controller
to stabilize the robot motion while tracking the desired position,
as described in Barasuol et al. (2013).

Periodically, the operator updated the target so as to
command the robot to trot a further 10cm forward. The
experiment continued for a total duration of 29 min. At the end
of the run, the robot had covered a total distance of about 400 m
and trotted forward and backward 174 times.

In Table2, we show that the drift is below 3cm when
combining IMU, Legged, Visual, and LIDAR odometry. By
comparison, without any exteroceptive signals, the drift was
more than three times higher. When testing the addition of
VO or LO independently, we noticed that incorporating VO
reduces the drift rate relative to the baseline system, while adding
AICP achieves drift-free localization, since the AICP re-localizes
against the same fixed map (the room).

To test the performance with uneven terrain and where
the reference point cloud has to be updated due to longer
paths, a second series of experiments was carried out in a
larger environment.

7.4.2. Outdoor Repeated Trot to a Target
An equivalent experiment was performed within a section of
a 20m x 5m industrial area surrounded by pallets, walls, and
air treatment machines. The robot repeated a forward-backward
motion covering a 6m X 1.5m area toward a target placed at
5m distance from its starting position (Figure 1C). The robot
traveled about 400 m at a 0.5 m/s trotting gait, reaching the target
40 times without any user input at run time.

The results presented in this section show that the fully
integrated state estimation system, leveraging IMU, leg odometry,
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TABLE 3 | Detailed summary of the dataset used for Experiment 6, including log
duration, size of arena, type of motion (F/B = forward/backward trajectory), laser
spin rate, and terrain features.

N Gait Duration (s) Area (m?) Laser (RPM) Ramp
6a Crawl 869 20 x 5, F/B 5 v
6b Crawl 675 20 x 5, F 5 v
6c Trot 313 20 x 5, F/B 15 X
6d Trot 330 20 x 5, F/B 10 X
6e Trot 469 7 x5, F/B 10 v

VO, and AICP data, produced a very low-drift estimate of the
robot state. However, no LIDAR reference cloud updates were
triggered, as the robot did not travel far from its initial location.

In the case of larger explorations, every reference update
generates an accumulated error. The magnitude of this error
depends on the residual error from the alignment of the new
reference to the previous. In the case of HyQ, a reference update
happens once every 10-13m distance covered, depending on
occlusions. In the following section, we present statistics from
experiments where multiple LIDAR reference cloud updates
were made.

7.4.3. Outdoor Industrial Area Exploration

The robot explored the same industrial area described in the
previous section. To test the system in different conditions, in
some experiments, we have added rough terrain and ramps
(Figure 9B), with both crawling and trotting gaits at up to
0.5m/s. Turning in place (as seen in Figure 3) represented
an extra challenge for the state estimation system. Lighting
conditions varied dramatically during data recording, from
bright light to strong shadows and from day to night-time. In
some experiments, on-board lighting was used. The dataset is
summarized in Table 3 and consists of five runs, for a total
duration of 44 min and 300 m traveled.

No motion capture system was available in this space: to
quantitatively evaluate the state estimation performance on
the dataset, we built a prior map made up of a collection
of four carefully aligned point clouds, and we estimated drift
relative to that.

7.4.3.1. Crawling gait

In the previous section, we showed (while trotting) that
integrating VO reduces the pose drift rate between the lower-
frequency AICP corrections. Here, we focus on the importance
of using VO in addition to AICP.

Figure 11 shows the estimated error over the course of
Experiment 6a, recorded in the arena of Figure9. The robot
started from pose A, reached B, and returned to A. The robot
crawled for 40 m and paused to make three sharp turns. The
experiment was at night and used the on-board LED lights.

During this run, the reference point cloud was updated four
times. After 860s, the state estimation performance had not
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FIGURE 11 | Estimated error of the state estimator used in Experiment 6a.
The experiment involved the robot crawling for a total of 40 m.

significantly degraded, despite no specific global loop closure
being computed.

7.4.3.2. Trotting gait

As mentioned previously, trotting is a more dynamic gait with a
higher proprioceptive drift rate, which means that the VO could
better contribute when combined with AICP. Empirically, this
can be seen in the inset plot in Figure 9. In this case, the algorithm
with VO produces a smoother trajectory (in green) than without
(in yellow). This is important because the robot’s base controller
uses these estimates to close position and velocity control loops.
Discontinuities in the velocity estimate could lead to undesired
destabilizing foot forces and controller reactions.

In brief, for Experiments 6c-6e, the integration of AICP
allowed state estimation with an average 3D median translation
error of ~4.9cm. The integration of VO further reduced the
median translation error to 3.2cm (Figure 11). The RPE over
10 m is in line with the indoor experiments.

7.5. ANYmal Experiments

The ANYmal dataset was collected at the Fire Service College, a
32.5 x 42.5 m industrial oil rig facility used for firefighter training
(Figure 12). The ground truth was collected with a laser tracking
system, a Leica TS16, which tracked the robot’s position with mm
accuracy using a reflective prism on the robot.

The robot started from an open area and was commanded
to trot at 0.3 m/s inside the facility, between metal containers
and stairs, performing three loops before returning to the initial
position, for a total of 240 m distance covered in 33 min. The
dataset includes several extra challenges in addition to the ones
in the previous section: (1) the area covered is much wider, so
we had to trigger forced AICP reference updates on a regular
basis (i.e., once every 0.5m traveled); (2) the scene includes
open areas where the robot looks at the horizon, where a very
limited number of stereo features are available; (3) the scene
contains reflections due to water puddles, which confuse the
visual feature tracking.

The different level of performance compared to previous
tests is due to several factors related to the scenario used.
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FIGURE 12 | (A) Experiment 7 with the ANYmal robot at the Fire Service College. (B) Onboard camera feed during the experiment. Note the challenging conditions
for visual odometry due to reflections in the water. (C) Estimated trajectory from Pronto with FOVIS and AICP active (blue) against ground truth (red). The ground truth
was not available in the bottom area. Start and end locations for both algorithms are highlighted with a circle and a cross, respectively.

In contrast with the previous experiments, the open space  two different odometry sources (Visual and LIDAR) despite their
and the size of the area covered force triggering of frequent  significant delay and different frequencies.
reference updates (more than 40 updates vs. four updates in A limitation of the current approach is the lack of
Experiment 6 on HyQ). As no loop closures are performed, measurement update triaging in case of disagreement between
in this situation, the LIDAR cannot completely eliminate the  different exteroceptive sources. Currently, when an exteroceptive
drift accumulated when new reference updates are triggered. In  module does not report failure, confidence in the measurement
addition, the Velodyne scans are much sparser due to the wider  is only encoded by a fixed covariance matrix. A possible
scenario (only a few LIDAR rings are projected onto the ground),  alternative approach is to implement a mechanism that maps
making it hard to constrain the robot position on the z-axis.  the error metrics specific to a module (e.g., VO reprojection
We have partially compensated for this problem by augmenting  error, ICP registration error) into a dynamically changing
the LIDAR data with a filtered output of a downward-facing  covariance matrix.
RealSense D435. Alternatively, transitioning from loosely to tightly coupled
Despite these challenges, the system is able to effectively  approaches would allow joint optimization over all of the
fuse all the sensors modalities, achieving an RPE of 34cm  measurements, making the estimation more robust against
over 10m, which corresponds to 3.4 % error. The contribution  outlier updates. This is ongoing work.
of the LIDAR localization is particularly evident on the
z-axis, where it significantly reduces the characteristic
vertical drift caused by leg/ground compression while
trotting. This allowed the RPE to be reduced by 60% from
the baseline algorithm with IMU and Leg Odometry only.
After traveling 240m, the pose estimate is <30cm away
from the ground truth (¢f. the estimate on the xy-plane in
Figure 12C).

9. CONCLUSION

We have presented a state estimation framework to perform
sensor fusion of inertial, kinematic, visual sensing, and LIDAR
on legged robots, built upon a modular Extended Kalman Filter.
In particular, we showed how our approach supports dynamic
maneuvers and operation in sensor-impoverished situations. The
reliability of our approach was demonstrated with dynamic gaits
and speeds of up to 0.5m/s. A particular technical achievement

8. DISCUSSION has been reliably closing the loop with this state estimator in
dynamic gaits.
In the previous section, we demonstrated the ability of our system During experiments lasting over 2 h, our system was

to overcome a variety of perception challenges, including low  demonstrated to be robust and continuously accurate, with an

light conditions, motion blur, reflections, dynamic motions, and ~ RPE of <35cm over 10m traveled for the most challenging

rough terrain. We also showed its versatility by demonstrating  scenario and 2-3 cm in smaller areas.

its support of a variety of sensor modalities and four different Our current filter marginalizes out previous state variables.

legged robots. In future work, we will explore using windowed smoothing to
The simple but effective integration of delayed signals into  incorporate measurements relative to previous filter states. We

the time history described in section 5.1 allowed us to integrate  are also interested in extending the state with dynamic quantities,
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such as CoM and linear/angular momenta similarly to Xinjilefu
et al. (2014).
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