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It is hypothesized that the nonlinear muscle characteristic of biomechanical systems

simplify control in the sense that the information the nervous system has to process

is reduced through off-loading computation to the morphological structure. It has

been proposed to quantify the required information with an information-entropy based

approach, which evaluates the minimally required information to control a desired

movement, i.e., control effort. The key idea is to compare the same movement but

generated by different actuators, e.g., muscles and torque actuators, and determine

which of the twomorphologies requires less information to generate the samemovement.

In this work, for the first time, we apply this measure to numerical simulations of more

complex human movements: point-to-point arm movements and walking. These models

consider up to 24 control signals rendering the brute force approach of the previous

implementation to search for the minimally required information futile. We therefore

propose a novel algorithm based on the pattern search approach specifically designed to

solve this constraint optimization problem. We apply this algorithm to numerical models,

which include Hill-type muscle-tendon actuation as well as ideal torque sources acting

directly on the joints. The controller for the point-to-point movements was obtained by

deep reinforcement learning for muscle and torque actuators. Walking was controlled

by proprioceptive neural feedback in the muscular system and a PD controller in the

torque model. Results show that the neuromuscular models consistently require less

information to successfully generate the movement than the torque-driven counterparts.

These findings were consistent for all investigated controllers in our experiments, implying

that this is a system property, not a controller property. The proposed algorithm to

determine the control effort is more efficient than other standard optimization techniques

and provided as open source.

Keywords: muscle, control effort, morphological computation, reinforcement leaning, reflexes during walking,

information entropy, torque actuator
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1. INTRODUCTION

To generate dynamic movements, biological and technical
systems actively process information by sensing their state and
deriving control signals. The part of the system that performs
this active information processing is typically termed controller.
A controller has to deal with the dynamics characteristics of the
controlled system, e.g., the neuronal delays, and the muscular
elasticities and nonlinearities in biological systems or the ideally
linear torque characteristics in technical systems. While—from
a classical engineering point of view—muscular elasticities and
nonlinearities complicate the implementation of an adequate
controller, several studies show that they are beneficial for
the generation of movements in terms of robustness against
perturbations (van Soest and Bobbert, 1993; Gerritsen et al., 1998;
Wagner and Blickhan, 1999, 2003; Eriten and Dankowicz, 2009;
van der Krogt et al., 2009; Haeufle et al., 2010, 2012; John et al.,
2013). Examinations of the control of point-to-point movements
in the human arm (Pinter et al., 2012; Kambara et al., 2013; Bayer
et al., 2017; Stollenmaier et al., 2020; Wochner et al., 2020) as well
as in a frog’s leg (Giszter et al., 1993), suggest that the neuronal
system explicitly relies on the visco-elastic characteristics of the
muscles to stabilize a specific posture or to generate smooth
dynamic trajectories from jerky control signals.

When discussing the potential contribution of morphology
to control, researchers use conjectures like “reduce the control
effort” (Blickhan et al., 2007) or “simplify control” (Full and
Koditschek, 1999; Holmes et al., 2006) to suggest that less
information has to be processed by the biological controller, i.e.,
the nervous system, during the movement due to the specific
morphology. This part is then performed by the morphology, in
the sense of “morphological computation” (Paul, 2006; Zahedi
and Ay, 2013; Ghazi-Zahedi et al., 2016). A quantitative analysis
of the information processing benefit that is gained by these
characteristics of the biological system in direct comparison
to (technical) systems with different characteristics is possible.
For this purpose, we have proposed to measure the minimally
required information to generate a movement, i.e., the control
effort (Haeufle et al., 2014b). Applied to a simplified model of
human hopping—with only one actuator and one mechanical
degree of freedom—this approach showed that the muscle
properties allow reducing the control effort almost by a factor
of 20 in comparison to an ideal torque generator model-driven
by a PD controller (Haeufle et al., 2014b). This and the existing
evidence for muscular benefits in control suggests that relief
of effort for the nervous control system may be engraved into
muscle design, and may, in other words, have been one of
several basic design criteria during the evolution of biological
muscle. We, therefore, hypothesize that control effort is relevant
in different and more complex movements.

To study this, we here extend the quantification of control
effort to more complex movements as, e.g., human point-to-
point arm movements and human walking, which is the first
novelty of this paper. To determine control effort in complex
musculo-skeletal or robotic models with many control signals,
we propose a new algorithm (provided online), which is the
second novelty of this paper. We applied this algorithm to

two existing musculo-skeletal models: one for arm movements
(Driess et al., 2018; Stollenmaier et al., 2020), and one for planar
walking (Geyer and Herr, 2010). For each model, a “robotic”
version equipped with ideal torque generators was deployed (in
analogy to “MOM” in van Soest and Bobbert, 1993). To obtain
the controller for point-to-point arm movements, we considered
deep reinforcement learning methods. Walking was controlled
with proprioceptive neural feedback as well as a PD controller.

2. A SUMMARY OF THE APPROACH TO
QUANTIFY CONTROL EFFORT

The measure of control effort previously introduced (Haeufle
et al., 2014b) quantifies the minimal information required
to generate a specific movement. The basis for this is the
quantification of the information of the control signals—
i.e., sensor signals and actuator command signals—based on
SHANNON’s information entropy (Shannon and Weaver, 1949).
In a nutshell, the idea is to change the resolution of discretized
control signals to reduce their information content. If the
discretization is too coarse, the movement breaks down. The
coarsest resolution where the movement still works represents
the minimal information and is termed control effort. In the
following, we will briefly summarize the concept.

We start with defining parameters for the discretization
of the control signals: Each control signal ui(t) (with i ∈

{1, . . . ,Nu} and Nu the number of control signals) is discretized.
Discretization limits the number of possible sensor measurement
values to ni (amplitude resolution) and the number of repeated
measurements during the movement to mi (time resolution).
Both are positive natural numbers ni ∈ N1 and mi ∈ N1

(excluding 0). Each pair (ni,mi) represents the overall resolution
of a specific signal ui. The vector

r = (n1,m1, n2,m2, . . . , ni,mi, . . . , nNu ,mNu ) ∈ R (1)

is the vector containing all amplitude and time resolution
parameters. It has 2Nu elements. The set of possible parameter
vectors is R:=N

2Nu
1 , the set of all possible vectors of length 2Nu

with positive natural numbers.
The information of these control signals can then be calculated

by (see also Appendix A):

I(r) =
∑Nu

i=1mi log2 ni . (2)

with I :N
2Nu
1 → R. This is a simple monotonic function,

which depends on the resolution parameter vector. By reducing
the values in r, i.e., lowering the resolution, the information
is reduced.

By reducing the information in the control signal, the
movement performance will deteriorate and eventually break
down. As an example: if the sensor resolution on the elbow joint
position is reduced, the deviation from the target position will
eventually increase. To quantify this, we define a performance

function P :N
2Nu
1 → R. This performance function is movement

specific and will be specified later (see sections 4.1.2, 4.2.2).
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Finding the minimally required information, i.e., the control
effort, is, thus, a constrained optimization problem of the form

min
r∈R

I(r)

subject to P(r) ≤ 0 (3)

The cost function I(r) is cheap to evaluate and straight-forward
to optimize. Evaluating the constraint P(r), however, requires the
simulation of a movement which is computationally expensive.

3. NEW ALGORITHM TO QUANTIFY
CONTROL EFFORT

In the publication, where we proposed the approach to quantify
control effort, we searched for the minimal information by
brute force (Haeufle et al., 2014b). This was possible due to the
small number of control signals (Nu ≤ 3). For more complex
movements with many signals (as investigated here) such an
approach needs to be replaced by a systematic optimization.
As stated above, it is a constrained optimization problem with
a very simple cost function, but a computationally expensive
Boolean constraint (movement succeeded or failed), which is
additionally stochastic in the presence of motor noise in the
investigated arm movements. This prohibits the calculation of a
derivative, even by numerical methods. Therefore, all constrained
optimization techniques that rely on a gradient of the constraint
are not applicable. As the cost function is computationally cheap,
it should always be evaluated first and it should be avoided to
calculate the constraint function for parameter sets for which
it is already clear that the cost is larger than for the currently
best parameter set. This makes it difficult to apply algorithms
that rely on surrogate functions (e.g., SGHO), as the objective
would become very unsteady, also due to the Boolean constraint
(a failed movement would be interpreted as a very high cost).
Direct search methods seem therefore appropriate (e.g., dual
annealing, differential evolution, pattern search). Furthermore,
we know two important aspects of our optimization problem: our
cost function is monotonically decreasing and if the resolution
becomes to coarse, the movement will break down. Thus, we
expect a clear border above which the constraint is fulfilled and
below it is not. With this knowledge, we can specifically tailor the
optimization to minimize the costly calculation of the constraint
function. We, therefore, developed a direct search approach that
is specifically designed for our optimization problem (Equation
3). The algorithm is based on the pattern search concept, a
class of derivative-free direct search algorithms (Todorov and
Jordan, 2003; Lewis et al., 2000; Rios and Sahinidis, 2013). In
the following, we will describe the concept of the algorithm.
Its algorithmic details are given in the Appendix B and the
algorithm can be found online at https://github.com/daniel-
haeufle/Control_Effort_Optim_Algorithm.

3.1. Outline of the Algorithm
In every iteration of the algorithm, a new set of parameters r ∈ R

is selected (polled), evaluated, and the results are compared to the
previous best solution (Algorithm 1, Appendix B.1). The key step

of the optimization algorithm is the selection (polling) of new
parameter sets r.

The initial guess of the parameter set rinit has to be with
high values for time and amplitude resolution ni and mi,
almost resembling numerically continuous signals. With the high
resolution parameters, rinit fulfills the constraint function P(r).
Therefore, it becomes the currently best parameter set in the first
iteration: r = rinit.

Starting from this initial guess, the pattern search algorithm
searches for a better solution by exploratory moves (polling) in
the parameter space by sampling the function in the vicinity
of the currently best parameter set r. Polling is performed by
iteratively adding a specified setD of vectors dl ∈ D (the pattern),
multiplied by a current mesh size vector m ∈ R

2Nu to the
currently best solution as

rtest = r−m⊙ dl (4)

(where ⊙ represents the element wise multiplication of the two
vectors). The mesh size vector basically contains one “scaling
factor” for each resolution parameter (entry in r). In general, the
mesh size vector is reduced (scaled by 0.5) if no better solution
is found in the evaluated parameter space and increased (scaled
by 2) if a better solution is found. This represents an adaptive
search step width (mesh size). For a very helpful overview of
the approach of pattern search algorithms, we refer the reader to
Torczon (1997).

Our algorithm employs three different pollingmethods, which
differ by the pattern vectors D.

3.1.1. Phase 1: Rapid Parallel Reduction of

Resolution in All Signals
The first phase is an initial rough sweep where all signals are
treated equally. Polling is done by a bisection search method
working uniformly on all entries of r, i.e., the pattern of this first
phase D1 contains only one vector

d̄ =(1, 1, . . . , 1). (5)

By adapting the mesh size as described above, this results in
a global bisection algorithm acting in parallel on all entries
of r. The bisection search algorithm is shown in Algorithm 2,
Appendix B.2. The benefit of phase 1 is that the performance
function needs to be evaluated only a few times to identify a first
rough performance limit, even for models with a high number of
control signals.

3.1.2. Phase 2: Pattern Search
The more thorough sweep of the second phase is more closely
inspired by pattern search algorithms. The pattern D2 consists
of the vectors dl:=el, where el = (0, . . . , 0, 1, 0, . . . , 0) is the l-
th unit vector. It is motivated by the fact that the cost function
is monotonically decreasing for each entry. Thus, with this set,
the algorithm only polls in the direction of reduced cost I(r)
saving a lot of computational time to less specific search patterns.
The vectors dl represent a linearly independent basis and only
modify each variable individually. This is fine for most cases,
but may cause the optimization to converge to an undesired

Frontiers in Robotics and AI | www.frontiersin.org 3 June 2020 | Volume 7 | Article 77

https://github.com/daniel-haeufle/Control_Effort_Optim_Algorithm
https://github.com/daniel-haeufle/Control_Effort_Optim_Algorithm
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Haeufle et al. Muscles Reduce Control Effort

local minimum. To reduce this risk, we added a set of vectors
{d̄l} in case the previous poll did not reveal any new and better
solution. These vectors were constructed such that they had a
positive value of 0.5 added to the entry of the previous successful
polling direction: d̄l = dl + (0, . . . , 0.5, . . . , 0). Let us say the
previous successful poll modified the second entry of r. Then, the
additional polling vectors would look like this:

d̄1 = (1,−0.5, 0, . . . , 0)

d̄2 = (0, 0.5, 0, . . . , 0)

d̄l = (0,−0.5, . . . , 1, . . . , 0)

d̄2Nu = (0,−0.5, 0, . . . , 1) .

These additional vectors represent linear combinations and allow
the optimization algorithm to go “back” in one parameter to get
out of a local minimum.

Please note: the mesh size vector m is also adapted as in
phase 1. The algorithm for phase 2 is shown in Algorithm 3
Appendix B.3.

3.1.3. Phase 3: Check Local Neighborhood and

Calculate Error
The third and final phase is used to scan the local neighborhood
of rbest for better solutions and, at the same time, to calculate the
error 1Iopt. We allow for three simultaneously changed entries
in r as linear combinations of the vectors in the pattern D2 to
find potentially better solutions. For this systematic sweep, the
mesh size vector is not adapted anymore. It is simply a vector of
ones. This is shown in Algorithm 4, Appendix B.4. In principle,
allowing more than three non-zero entries in d may further
improve the found vector r. However, this would come with a
high computational cost.

3.2. Optimal Result: Control Effort Imin
At the end of the third phase, ropt = r represents the best
parameter vector found by the algorithm. With this, we calculate
the control effort, which is the actual information content
(Equation 15, Appendix A) of all signals

Imin = ISh(ropt) (6)

=

Nu
∑

i=1

ni
∑

j=1

p
opt
ji log2 p

opt
ji . (7)

This is the minimally required information content of all control
signals to generate the desired movement, i.e., still fulfilling the
performance constraint P(r) = 0. We identify this minimal
information as control effort and symbolize it with Imin.

Please note that during the optimization, we assumed equal
distribution of the signal values uji in the range umin

i ≤ uji ≤ umax
i

with j = 1, . . . , ni. Therefore, the probabilities were assumed to
be pji = 1/ni. The cost function of the optimization is based
on this assumption and therefore requires no computationally
expensive simulation to evaluate the cost function. However, the
actual probability pji = p(ui(t) = uji) that a signal ui(t) has the
value uji at time t differs from the original assumption. Therefore,

the actual information at the optimal solution differs too. The real
probabilities were estimated from the recorded control signals of

the optimal walking simulation (p
opt
ji ) using (Equation 7).

3.3. Error Estimation
We want to quantify the amount of error that we make by
confining the components r to integer values. To this end,
our search algorithm calculates an error 1Iopt specifying the
maximum information reduction that can be achieved by
reducing a single entry of ropt by one. Specifically, we define

1Iopt:= max
l∈{1,...,2Nu}

I(ropt)− I(ropt − el). (8)

For small1Iopt, we thus expect the discretization of r to only have
little effect on the continuous information Imin ∈ [0,∞).

4. CONTROL EFFORT IN TYPICAL HUMAN
MOVEMENT TASKS

This study hypothesized that reduced control effort for muscle
models over torque actuators found in a simplified hopping
model (Haeufle et al., 2014b) is also present in more realistic
models of human movements. To test this, we applied the
measure described above to biologically plausible models of
human point-to-point arm movements and human walking. The
models we employed for this study (or very similar ones) have
been previously used to study motor control phenomena, where
muscle characteristics play a role. Such arm models were used
to investigate hypotheses on the control of fast arm movements
(Kistemaker et al., 2006), motor learning to compensate for loads
during armmovements (Gribble andOstry, 2000), or the reaction
to external forces (Stollenmaier et al., 2020). The walking model
was originally used to demonstrate that level walking could be
generated by simple reflex control schemes in the spinal cord
and does not necessarily require central planning or pattern
generators (Geyer and Herr, 2010). It reproduces human muscle
activity patterns, joint torques, and kinematics quite well.

In both cases, muscle-driven models were the starting point.
For comparison, we derived torque-driven models by stripping
these models of all muscular dynamics and considering direct
torque actuators in the joints. This resulted in a total of
six different cases for which we quantified control effort:
two different movements with three different scenarios to
quantify control effort each. The two movements were goal-
directed (pointing) arm movements and level walking. The three
different scenarios to quantify control effort were the following
(Figure 1)

• STIM: discretization of the motor signals stimulating the
muscles (controller output) in the neuromuscular model.

• SENS: discretization of the sensor signals fed back to the
controller (its input) in the neuromuscular model.

• TORQUE: discretization of the motor signals (controller
output) fed to ideal torque generators.

STIM and SENS represent the biological, neuromuscular system.
TORQUE represents the robotic, technical system. In the
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FIGURE 1 | Schematics of the study design: the two movements investigated in this study are goal-directed pointing movements (POINTING) and periodic level

walking (WALKING). The pointing movements were simulated with a model consisting of two rigid bodies (upper and lower arm) connected by two hinge joints (based

on Stollenmaier et al., 2020). The walking model has seven rigid bodies (two legs with foot, shank, thigh and a single head-arms-trunk segment), all connected by six

hinge joints (based on Geyer and Herr, 2010). The muscle-driven models considered nonlinear visco-elastic muscle characteristics and muscular activation dynamics,

six muscles in the pointing, 14 in the walking model. The torque-driven models use ideal torque actuators in each hinge joint. The control policy in the pointing models

(RL policy) is derived by reinforcement learning. Walking in the muscle-driven model is generated by a reflex-based neural control scheme (Geyer and Herr, 2010) and

by a PID controller in the torque-actuator model. To determine control effort, the control signals are discretized in amplitude (1ui ) and time (1ti ). In the STIM and

TORQUE scenario, this discretization is applied to the output of the controller, i.e., the muscular control signals or the torque signals, respectively. In the SENS

scenario, the input to the controller is discretized, i.e., the proprioceptive sensor signals.

following, we compare control effort for biological and technical
systems in the same movement task.

4.1. Movement 1: Pointing
4.1.1. Models
The first movement investigated was a point-to-point arm
motion simulated with a 2D arm model (Driess et al., 2018;
Stollenmaier et al., 2020). The task is to reach a certain goal
position, which also defines the performance criterion P and
is described in section 4.1.2 below. The arm model consists of
two segments representing the upper and lower arm, which are
connected by the elbow and shoulder joint to the fixed shoulder
(Driess et al., 2018).

We considered two different ways to generate the actuation
torques at the joints: First, a muscle-driven arm model using

six Hill-type muscle-tendon units—four monoarticular and two
biarticular muscles—that produce torques through nonlinear
moment arms. The model of the muscle-tendon units considers
the nonlinear force-length-velocity characteristics of the muscle
fibers, the nonlinear elasticity of the tendon (Haeufle et al.,
2014a), and the biochemical processes leading from neuronal
stimulation to muscle force (Hatze, 1977). With this, it considers
the visco-elastic and low-pass filter properties of muscles, which
are considered to be important for stabilizing movements
(Gerritsen et al., 1998; Haeufle et al., 2010; Pinter et al., 2012; John
et al., 2013). The details and the parameters of the model can be
found in Supplementary Material (Data set 1).

As a second model to generate the actuation torques, we
simply considered two ideal torque actuators that act directly on
the joints of the arm.
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FIGURE 2 | Overlay of 100 sampled trajectories of the end-effector position in

the best trained models for the muscle-driven arm (green) and the

torque-driven arm (blue). The end-effector moves from its initial position (lower

left) to its goal (0.5, 0). Noise in the trajectories arises from noise in the

controller (policy) π (at|st ). The data shown here was generated without delay in

the control loop for both models.

In both cases, we used a deep reinforcement learning (RL)
algorithm to obtain a controller for reaching a certain goal
position. Details about the RL algorithms can be found in
Appendix C. We use Deep RL since it bears parallels to biological
learning (Neftci and Averbeck, 2019), and the task is simple
enough so that we can find good controllers using such a very
general learning scheme. The goal of the RL algorithm is to find
a policy π which maps an observation (related to the state of the
arm model) to an action (the control input), hence a closed loop

controller, such that the expected sum of rewards E
(

∑T
t=1 rt

)

is

maximized. A high reward here corresponds to a low deviation
from the target position and low applied muscle activations resp.
torques. See Appendix C for a proper mathematical definition of
these terms.

In our case, the simulation is interrupted every 10ms in order
to get a new control input. We do this for a fixed number T ∈ N

of iterations. In each of the T iterations, the simulation yields a
state st . From the state, we compute an observation ot = f (st). A
given policy π then yields a probability distribution π(at|ot) from
which an action at is sampled. This action either corresponds
to (normalized) muscle stimulations or to torques. Due to the
sampling of the probability distribution, this action has small
stochasticity included, similar to motor noise. A fixed reward
function R is used to compute a reward rt = R(st , at). Using
the action at as a control input, another 10ms of movement is
simulated and the next state st+1 = S(st , at) is obtained.

Note that the same RL algorithm was used to learn policies
for both models (muscle- and torque-driven arm), but the

dimensions of the action and observation spaces differ among
these models (cf. Appendix C). By construction of this RL
algorithm, the distributions π(at|ot) are Gaussian, i.e., the output
of the policy always contains additive Gaussian noise with non-
zero variance. More specifically,

π(at|ot) = N
(

at|NN(ot), diag(e
2s1 , . . . , e2sda )

)

,

i.e., at follows a Gaussian distribution with mean given by a
learnable neural network applied to ot and a diagonal covariance
matrix with learnable parameters s1, . . . , sda , where da is the
dimension of at . While the RL algorithm can adapt the variance
of the noise during training, Faisal et al. (2008) suggest that
humans can also manage to reduce noise in the nervous
system by various complicated mechanisms that cannot easily
be modeled or are not yet fully understood. Figure 2 shows that
the generated trajectories still contain remaining noise, especially
toward the end of the muscle-arm trajectory.

Another difference between the muscle- and torque-driven
arm is that we trained and tested the control policy for
the muscle-driven model with a delay for sensor signals of
30ms similar to the electromechanical delay (Mörl et al., 2012;
Rockenfeller and Günther, 2016) in human muscles (De Vlugt
et al., 2006), i.e., using ot = f (st−3). We did not consider any
control signal delays in our torque-drivenmodel(s) as such delays
can be neglected in real-world technical systems that employ
torque drives.

4.1.2. Nonlinear Constraint: Movement Performance

for Pointing
For pointing movements, we selected as performance criterion
P the accuracy of pointing to a specific point in space. For
each poll, five simulation runs were performed to ensure that
the stochasticity of the controller does not affect the result.
Accordingly, it was checked as a first part of the criterion P
whether the arm model’s “finger” trajectory ended up in a circle
around the desired end goal xgoal with radius 2.5 cm:

(xgoal − x(tend))
2 + (ygoal − y(tend))

2 < (2.5 cm)2. (9)

Note, that the mean over the five simulation runs was taken for
the end position of the trajectories x(tend) and y(tend) to account
for the effect of movement variability. The second part of P is
necessary to ensure that the “finger” not only passes through the
target but actually holds this position. Therefore, it was checked
whether both angle velocities q̇i (again averaged) were smaller
than a certain threshold:

q̇i < 0.15 rad/s, with i = 1, 2. (10)

Only if both criteria were fulfilled, the poll was considered
successful, which gives a conditional expression for the
performance criterion as follows:

P(r) =

{

0, if Equation (9) and Equation (10) are true

1, otherwise.
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4.2. Movement 2: Walking
4.2.1. Models
The second movement investigated in this study was human
walking as “defined” by the performance criterion P described
in section 4.2.2 below. For this, we resorted to an existing
neuromuscular model (Geyer and Herr, 2010). It is a multi-
body model with seven segments and hinge-joints in the
ankle, knee, and hip. It is actuated by 14 Hill-type muscle-
tendon complex models. The muscular control is based on
neuronal reflex pathways processing in total 24 proprioceptive
signals with biologically realistic neuronal delays. Such a control
concept is inspired by the presence of mono-synaptic reflex
pathways in the spinal cord, which could explain the low-level
implementation of the rhythmic pattern generation of level
walking (see Geyer and Herr, 2010, for more details). In forward-
dynamic simulations, this model predicts robust walking patterns
with strikingly realistic kinematics, ground reaction forces, and
muscular activities.

Like for the arm model, we derived a technical model,
which, in our case, is a torque-driven model without muscle-
tendon characteristics and without neuronal control. This model
had the same anthropometrics as the neuromuscular walking
model. However, the joint torques for each of the six joints
were generated based on PD controllers enforcing the joint
kinematics ϕref

i recorded from a reference simulation using the
neuromuscular model (Geyer and Herr, 2010):

u
TORQUE
i = kP(ϕi − ϕref

i )+ kD(ϕ̇i − ϕ̇ref
i ),

with i = 1 . . . 6 for the six joints (2x ankle, 2x knee, 2x hip). This
represents a typical low-level control implementation in classical
robotics. We here ignore all potential higher-level planning
contributions and replace them with the recorded kinematics as
the desired trajectory. This is, therefore, equivalent to the level of
investigation in the reflex-driven neuromuscular model.

The joint torque was limited to 1.5 times the maximum
active values generated by the muscles in the neuromuscular
reference simulation. Two sets of feedback gain parameters kP
and kD, one for stance and one for swing phase were determined
in simulations with very fine discretization (n = 1015 and
m = 1015) by a pattern search algorithm (Matlab (R) global
optimization toolbox, with random initial conditions). We will
show the results for the two best control parameter sets (CP2
and CP10).

The multi-body dynamics of both models are implemented
in SimMechanics 1st generation within Matlab(R), SimulinkTM
version 2016a. The differential equations are solved with a
variable step solver (ode23s stiff/Mod. Rosenbrock) with relative
and absolute tolerance of 10−3 and 10−4, respectively. After an
initial phase of approximately 5 s, the model’s walking pattern
is fairly repetitive. Therefore, all evaluations were done on the
interval t ∈ [5 s, 10 s].

4.2.2. Nonlinear Constraint: Movement Performance

for Walking
The nonlinear constraint for the walking model was a
combination of a criterion for a desired walking speed and

a second one for “not falling”: From the continuous walking
simulation, we can estimate the typical walking speed of the head-
arms-trunk (HAT) segment with linear regression to ẋHAT,cont. =
1.33ms−1. The first criterion for the performance limit is for the
x-coordinate of the HAT segment xHAT to stay within 6% to this
walking speed:

∣

∣ẋHAT,cont. − ẋHAT(t)
∣

∣

ẋHAT,cont.(t)
< 0.06 (11)

The second criterion—not falling—is simply described by the
vertical position of the HAT segment yHAT. Simulation tests
showed that if the condition

yHAT(t) > 1.24m (12)

is violated, the model is falling and not walking anymore.
If at least one of these criteria is violated, the simulation stops

(at tstop) and the performance is the time difference to the desired
simulation time

P(r) = T − tstop. (13)

The optimization constraint

P(r) = 0 (14)

thus only allows for parameter sets which generate walking
patterns not violating the above two conditions during the entire
simulation time T = 10 s.

4.3. Discretization of Signals to Determine
Control Effort
In principle, it is not clear which signals need to be discretized
to determine control effort. At first sight, all output signals of
the controller which directly control the actuators—the muscle
stimulation or the joint torque signals—seem the obvious choice.
However, also the sensor signals provide important information
to the system, so it could also be argued that all input signals to
the controller need to be discretized (Haeufle et al., 2014b). Here,
we tested three scenarios (Figure 1).

4.3.1. Discretize Muscle Stimulations (STIM)
In the first scenario, we discretized the muscle stimulations both
in time and amplitude for all muscles with the algorithm given
above. These discretized muscle stimulations uSTIMi are then
used as an input signal to each muscle. Because the muscles

can be activated between 0 and 100%, we set uSTIM,min
i = 0

and uSTIM,max
i = 1 respectively, as well as the duration of the

movement TPOINTING = 1 s for the pointing movements and
TWALKING = 5 s. The time and amplitude resolution parameters
mi and ni of each of the stimulation signals uSTIMi were then
varied with the algorithm described above.

4.3.2. Discretize Proprioceptive Sensor Signals

(SENS)
In the second scenario, all proprioceptive sensor signals uSENSi (t)
are discretized in the neuromuscular models (Figure 1). Here
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the minimum umin
i and maximum umax

i signal values were
determined from a not discretized reference simulation. As
above, the duration was TPOINTING = 1 s and TWALKING = 5 s
and the signal resolution parameters were optimized for minimal
information with the algorithm above.

4.3.3. Discretize Torque Actuations (TORQUE)
In the third scenario, we discretized the control signals

for the torque-driven system u
TORQUE
i (t) (Figure 1). For the

POINTING movement, we set umin
i = −20Nm and umax

i =

20Nm to approximately match the capacities of the muscles in
the arm model. For the WALKING movement, the minimum
umin
i and maximum umax

i signal values were determined from a
not discretized reference simulation and the durations were again
TPOINTING = 1 s and TWALKING = 5 s. The signal resolution
parameters were optimized for minimal information with the
algorithm above.

5. RESULTS

The control effort, i.e., the minimally required information Imin

to generate pointing and walking movements, is lower in the
neuromuscular models STIM and SENS as compared to the
TORQUE model (Figures 3A,B).

In the pointing movements, the control effort is lowest for
the STIM scenario (ISTIMmin = 67.5 bit/s), where the information
is reduced in the output of the controller. The control policy
derived by reinforcement learning (RL), however, does not allow
to reduce the information as much on the input side (SENS) as
on the output side (STIM), resulting in almost three-fold higher
control effort (ISENSmin = 222.5 bit/s). The torque model requires
the most information, resulting in an almost four-fold higher

control effort (ITORQUEmin = 310.3 bit/s).

In the walking model, the control effort for the STIM and
SENS scenarios are quite similar and both about half of the
best TORQUE model (Figure 3B and Table 1). The second best
(CP2) PID controller parameters require double the amount of
information than the best parameters (CP10).

The discretization—introduced to reduce the information
content of the control signals—modifies the walking pattern. In
the STIM and SENS scenarios, the parameters ropt (minimal
information solution) result in slower walking patterns than
in the reference solution (Figure 4). In the TORQUE scenario,
the parameters ropt result in strong oscillations in the joint
torques (Figure 5).

To demonstrate the reduction in information by changing the
resolution parameters ni and mi to lower values (more coarse),
we give the results for the different stages of the optimization
algorithm (Table 1). The algorithm started with an initial guess
of ni = 1015 and mi = 1015, resulting in high initial information
content I0 of the control signals which is about two orders of
magnitude larger than the optimal result. This initial guess is
highest for the SENS model as this model discretizes all 24 sensor
signals—the highest number of signals investigated in this study.
Therefore, I0 is naturally high. Also, the number of required
iterations is high, especially in the third stage, due to the high
number of possible linear combinations checked in this stage.
However, at the end of the third stage, the control effort Imin of
the SENS model is the lowest.

In this study (Figure 3A), the model scenarios STIM and
SENS were trained and tested with a sensor delay (δt = 30ms
in pointing and δt = 5 . . . 20ms in walking), representing
the unavoidable neuronal delay (More et al., 2010) in biology,
while the torque model had zero delay representing a modern
technical solution. To investigate the influence of sensor delays
on control effort in some more depth, we additionally trained

FIGURE 3 | Control effort of (A) POINTING movements and (B) WALKING. In general, the control effort of walking is higher than the control effort of pointing

movements. For both movements, the two neuromuscular models STIM and SENS require less information to generate the motion than the torque-driven model.
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TABLE 1 | Control effort of walking as determined with the adapted pattern search algorithm at the different stages of the optimization.

Model Number of control signals

Nu

Initial I

I0 [kbit/s]

I stage 1

I1 [kbit/s]

I stage 2

I2 [kbit/s]

Control effort

Imin [kbit/s]

Optim. error

1Iopt [kbit/s]

STIM 14 688 3.48

#16

2.68

#611

1.49

#21,715

0.0016

SENS 24 1, 229 7.74

#16

1.88

#3,275

1.29

#67,953

0.0063

TORQUE (CP10) 6 295 295

#16

3.54

#527

3.28

#209

0.0002

TORQUE (CP2) 6 295 220

#16

7.84

#590

6.46

#434

0.0060

Also given are the number of iterations # for each stage of the optimization. [kbit/s] means [103 bit/s].

FIGURE 4 | Comparison between walking patterns of the minimal information (SENS model, black) and reference (red) solutions. In the beginning, both solutions

overlap until the discretization begins at approximately 6 m walking distance (5 s). Then, the coarse discretization of the minimal information solution affects the

walking pattern: the model walks slightly slower than in the reference simulation but still remains within the required performance limit (Equation 11).

FIGURE 5 | Ankle joint torques of the minimal information solutions. In the STIM (A) and SENS (B) model, the minimal information solutions (black) involve ankle

torques with magnitudes similar to the reference case (red dashed). In the SENS model, the discretization causes over-extensions in the flight phase, which results in

short negative torque spikes due to the passive mechanical joint limits of the model. In the TORQUE model (C), the minimal information solution is dominated by a

bang-bang pattern between the joint torque limits (±210Nm). This is a direct result of the coarse discretization of the motor commands uTORQUEi (see Figure 1).

and tested control policies for the neuromuscular POINTING
movements without delay (unphysiological) in the muscle-
driven and with delay (bad engineering) in the torque-driven
model. The resulting optimized control effort is shown in
Figure 6 in relation to the “correct” models. In the muscle-
driven models, the control effort increases in the unphysiological
zero-delay scenario, while the torque-driven model benefits
from zero-delay.

The estimated error of the control effort in walking 1Iopt
is small with respect to the difference between the models.
The certainty range is an order of magnitude higher than the
optimization error. This means that in the last stage of the
pattern search, the local neighborhood of the optimal solutions
was checked intensively.

Finally, our algorithm is very efficient in finding the control
effort. For comparison, we repeated the optimization of the
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FIGURE 6 | Control effort of the different investigated models, each trained

and tested with and without delay for the POINTING movement. The

muscle-driven models trained with delay (STIM and SENS) require less

information than the corresponding models that were trained and tested

without delay (STIMno_del and SENSno_del). The TORQUEdel model, however,

requires more information than the TORQUE model without delay.

torque model for the pointing movement with other standard
optimization algorithms available in Python and found the
following: Our algorithm converged in 42 iterations and found a
value of 310 bit. In comparison, dual annealing stopped at 385 bit
after 1000 iterations (the set limit) with 4,067 total function
evaluations. Differential evolution stopped at 472 bit after 1,000
iterations (the set limit) with 30,033 total function evaluations.
SHGO did not converge.

6. DISCUSSION

Control effort is reduced in muscle-driven systems compared to
torque-driven systems for pointing andwalkingmovements. This
supports the general notion that muscle contraction (van Soest
and Bobbert, 1993; Haeufle et al., 2010) and activation dynamics
(Kistemaker et al., 2005; Rockenfeller and Günther, 2018, app. A)
can serve as a low-level zero-delay feedback system (preflexes;
Brown et al., 1995) supporting the generation and control of
dynamic movements (Ekeberg et al., 2004; Proctor and Holmes,
2010). Here, we provide quantitative evidence for its contribution
and the potential reduction in information load. From our point
of view, this is interesting, because the two typical movements
chosen differ greatly in their characteristics and by the number of
muscles needed for their generation. Thus, control effort seems
to be a general measure for the contribution of morphology to
perform a specific task in biological and robotic motion.

Minimization of information processing may be a design
principle for shaping bodies and structures during biological
evolution (Niven and Laughlin, 2008) as it certainly comes
along with the minimization in metabolic energy consumption

of the information processing structures themselves (Niven et al.,
2007). However, it is competing with other movement criteria. A
prominent example would be the performance, as demonstrated
here, but probably other optimization criteria as well, such
as maneuverability, jerk, stability, robustness, accuracy, or
reproducibility. Pushing this surely incomplete list of potentially
relevant movement criteria to extremes, minimization of control
effort is definitely competing with the soundness of body tissue:
damage and failure are even more costly than corrections and
compensations in movement execution. However, we see that
the minimization of information processing may be crucial in
the evolution of morphology, and our approach allows us to
quantify it.

Having this said, we would like to emphasize that we do
not expect the actual system to process only this minimal
amount of information. Especially in biology, there is an
abundance of structures (Latash, 2012)—many muscles, sensors,
and neurons—which are not considered here. Also, in robotics,
one would never control a robot at this limit, as it is just
on the verge of instability. However, by applying this minimal
information approach systematically to the same movement but
different morphologies, the contribution of the latter can be
uncovered and quantified.

6.1. Influence of Delay on Control Effort
Delay in information processing seems per definition
unavoidable (Nishikawa et al., 2007; Shadmehr et al., 2010).
In robotic systems with their electric cables, the delay can be
very small—usually smaller than the typical time resolution 1t.
However, it is a universal characteristic of neuronal information
processing in biological systems that the delay is, in general,
much larger than the time resolution, and scales with the size of
the animal (More et al., 2010). Despite these large delays, animals
can perform quite well in uncertain environments. In fact, our
approach shows that neglecting this delay in the neuromuscular
model increases control effort (Figure 6). On the other hand,
engineers who employ widespread electric motors do good in
trying to minimize delay (Figure 6).

Neuronal systems have additional possibilities that allow them
to compensate drawbacks of delays, which are not considered
in our models. They may use open-loop control signals—
potentially from an inverse model or a model template (Full and
Koditschek, 1999; Holmes et al., 2006)—to drive a movement
and only use feedback if a perturbation occurs (Todorov
and Jordan, 2003). Furthermore, by predicting sensor states
with a forward model (e.g., a template), they may deal with
possible instabilities arising from delays (Shadmehr, 2010), at
least as long as no external perturbation occurs (Kalveram
and Seyfarth, 2009). Despite these neuronal capabilities, the
control approach can still rely on the stabilizing response
of the visco-elastic muscles to external perturbations (van
Soest and Bobbert, 1993; Wagner and Blickhan, 2003; Haeufle
et al., 2012; Stollenmaier et al., 2020). Brown et al. (1995)
termed these responses “preflexes,” due to their zero time-delay
response. There are strong indications that such strain-rate-
dependent actuator properties, even more in combination with
positive muscle force feedback (Geyer et al., 2003), as well as
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position-plus-rate characteristics of proprioceptors (McMahon,
1984, p. 154–155) can also provide predictive information
that is valuable for movement stabilization. Thus, a delay
well-tuned to the controller/control-system interaction may even
improve performance (Hedrick and Daniel, 2006; Shadmehr,
2010), and potentially allow to reduce the control effort, as our
results indicate.

6.2. Information Processing in Walking
Machines
The processed information in a digitally controlled walking
machine can be estimated with Appendix A, Equation 17.
Although the necessary parameters would be easy to determine
for the construction engineer, they are usually not published. As
one example, we estimated the parameters for a walking pattern
reported for the robot MABEL from information given in Park
et al. (2011) and Sreenath et al. (2011). MABEL seems to be
interesting for comparison, as it is a 2D walking machine that
considers elasticities in the drive. Based on the data provided
by the papers, we estimate the total information processed in
MABEL per second to be I = 6.4 · 104 bit/s. The derivation of
this is described in more detail in Appendix D.

This value is large in comparison to the minimal information
Imin predicted by our models but low in comparison to our
initial guess I0. Obviously, the choice of encoder resolution is not
made to generate walking with the least amount of information.
This is very well not recommended in a technical system, as low
resolutions entail the risk of significant oscillations, as seen in our
optimized TORQUE results. However, with this comparison, we
speculate that our results are in a reasonable range. To evaluate
the contribution of morphology to the control and to verify our
model calculations, it would yet be quite interesting to apply our
algorithm to MABEL while further modifying the characteristics
of this machine’s actuators.

6.3. A Hypothetical Scenario Where an
Ideal Torque Generator Would Be
Advantageous
Above, we exclusively cited papers indicating and demonstrating
the benefit of muscles, and our results fit in this picture.
Therefore, it is important to point out that control effort cannot
be expected to always be lower in muscle-driven systems. For
this, we would like to perform a short though experiment.
Imagine a hypothetical task: an arm with a single joint has to
generate exactly the same tangential endeffector force at any
given joint angle (at rest). An ideal torque generator, would
require a single constant input signal. Such a signal, per definition
of Equation (2), contains the minimally possible control effort as
the resolution parameters could be reduced tom = 1 and n = 1,
and, consequently, Imin = 0. Amuscle-actuated arm, on the other
hand, would have to adapt the stimulation to each and every angle
as the muscle force depends on its length and therefore also on
the joint angle. This is only to highlight that muscles are very well
suited for particulary dynamic tasks, but not in general the best
actuator for everything.

6.4. Other Optimal Control Approaches for
Measuring Simplicity
In the present work, we utilize control effort, which has recently
been proposed by us (Haeufle et al., 2014b), to quantify the
minimal information required to generate a specific movement.
This measure is based on the quantification of the information
of the control signals, i.e., sensor signals and actuator command
signals, based on SHANNON’s information entropy (Shannon
and Weaver, 1949, see section 2). By comparing control effort
for different morphologies, it quantifies, to some extent, how
“simple” it is to generate a specific movement depending on the
morphology of the system.

Brockett (1997) argue to consider simplicity as a way to
synthesize controllers, which they call Minimum Attention
Control (MAC). In order to measure simplicity, they introduce
the concept of attention, which quantifies the required rate
of change of the control to achieve desired changes in
the system state. This can be interpreted as the difficulty
to implement a respective controller (Brockett, 1997). For
example, a control system which can be controlled by just
a constant input would require minimal (no) attention.
Thus, the basic idea is to find controllers through an
optimal control framework where the objective function trades-
off system performance with attention, i.e., simplicity of
the controller.

In Della Santina et al. (2017), MAC was found as a beneficial
solution for controller design in soft robots. Biomechanical
systems such as the arm model used in the present work have
properties which enable to reach a desired system state with a
constant control input. This has been exploited in Driess et al.
(2018), Wochner et al. (2020) and Driess et al. (2019) to learn a
controller for such systems efficiently. The controllers of Driess
et al. (2018) and Driess et al. (2019), Wochner et al. (2020) are,
by design, optimal with respect to attention with zero attention,
since the controller produces constant controls for each desired
system state.

The measure of attention from Brockett (1997) is, in a
way, similar to control effort of the present work, as it is also
driven by the idea that a specific design of a control system
could be beneficial to achieve a certain system behavior without
an overly complex controller. Thus, the process of evolving
structures and functioning—simultaneous and codependent
control system and controller design—can also be supported
by MAC.

However, there is also an important difference between
MAC and control effort as considered in the present work.
MAC is a paradigm to synthesize controllers by integrating
it directly into the cost function of an optimal control
framework. In contrast, we use control effort here as a measure
to analyze the contribution of the systems dynamics to the
control of the movement. Therefore, it measures a system
property. Indeed, the controllers that are either learned or
hand-tuned in this work at no point have the objective to
minimize control effort. Solving the optimal control problem
with MAC as an objective is non-trivial, especially for nonlinear
systems. In the future it could be investigated whether MAC
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can be extended to nonlinear biomechanical models and
to test whether it allows to find controllers that show a
difference in attention between musculoskeletal and torque-
driven actuators.

6.5. The Optimization Algorithm
Quantifying control effort requires to solve an optimization
problem (Equation 3). The algorithm proposed here is novel and
specifically designed to efficiently optimize the given problem.
The three stages of the algorithm differ in their computational
expense, with the first stage being computationally cheap (16
iterations for the walking model), while the other two require
more iterations (Table 1). For the few control signals discretized
in the TORQUE model, the final search in stage 3 is also
computationally cheap. For more control signals, the linear
combinations tested in the third stage are computationally
expensive. It may be considered to exclude the final stage, as
we did for the POINTING movements, since the difference
in the results between stage two (I2) and final result (Imin)
in the walking model are not very large, and the general
trend can already be seen. In general, this algorithm can
easily be applied to any other simulation of movements,
and also to robotic systems (which would, however, require
safety measures to avoid damage in the low-resolution trials).
By providing it as open source, we hope to foster the
quantitative evaluation of control effort and a more systematic
study of the contribution of morphology to control in
biological systems.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

DFBH, MG, and SS: project idea. DFBH, SS, and MG: control
effort algorithm. DFBH, IW, DH, andDD:model. DFBH and IW:
data. All authors: paper.

FUNDING

The research was supported by the Ministry of Science, Research
and the Arts Baden-Württemberg (Az: 33-7533.-30-20/7/2). This
work was funded by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germanys’ Excellence
Strategy—EXC 2075-390740016. We further acknowledge
support by the International Max-Planck Research School for
Intelligent Systems and by the Open Access Publishing Fund of
the University of Tübingen.

ACKNOWLEDGMENTS

Wewould like to thank Daniel Ossig, who spent many hours with
a tedious search for specifics of the control frequency and sensor
resolution of a humanoid walking robot. We would also like to
thank Hartmut Geyer, who provided the walking model, and Dan
Suissa, who developed the first version of the arm model. We
would like to thankMarc Toussaint for his support in the project.
Furthermore, DFBHwould like to thank Keyan Ghazi-Zahedi for
the fantastic discussions on everything, but also on control effort
and morphological computation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2020.00077/full#supplementary-material

REFERENCES

Bayer, A., Schmitt, S., Günther, M., and Haeufle, D. F. B. (2017). The
influence of biophysical muscle properties on simulating fast human
arm movements. Comput. Methods Biomech. Biomed. Eng. 20, 803–821.
doi: 10.1080/10255842.2017.1293663

Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., and Günther,
M. (2007). Intelligence by mechanics. Philos. Trans. R. Soc. A 365, 199–220.
doi: 10.1098/rsta.2006.1911

Brockett, W. (1997). “Minimum attention control,” in Proceedings of the 36th IEEE

Conference on Decision and Control, Vol. 3 (San Francisco, CA), 2628–2632.
doi: 10.1109/CDC.1997.657776

Brown, I. E., Scott, S. H., and Loeb, G. E. (1995). Preflexes–programmable high-
gain zero-delay intrinsic responses of perturbed musculoskeletal systems. Soc.
Neurosci. 21:562.

De Vlugt, E., Schouten, A. C., and Van Der Helm, F. C. (2006). Quantification
of intrinsic and reflexive properties during multijoint arm posture. J. Neurosci.
Methods 155, 328–349. doi: 10.1016/j.jneumeth.2006.01.022

Della Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M., Garabini,
M., et al. (2017). Controlling soft robots: balancing feedback and feedforward
elements. IEEE Robot. Autom. Mag. 24, 75–83. doi: 10.1109/MRA.2016.
2636360

Driess, D., Schmitt, S., and Toussaint, M. (2019). “Active inverse model learning
with error and reachable set estimates,” in Proc. of the Int. Conf. on

Intelligent Robots and Systems (IROS) (Macau). doi: 10.1109/IROS40897.2019.
8967858

Driess, D., Zimmermann, H., Wolfen, S., Suissa, D., Haeufle, D., Hennes,
D., et al. (2018). “Learning to control redundant musculoskeletal systems
with neural networks and SQP: exploiting muscle properties,” in Proc.

of the Int. Conf. on Robotics and Automation (ICRA) (Brisbane, QLD).
doi: 10.1109/ICRA.2018.8463160

Ekeberg, Ö., Blümel, M., and Büschges, A. (2004). Dynamic simulation of
insect walking. Arthrop. Struct. Dev. 33, 287–300. doi: 10.1016/j.asd.2004.
05.002

Eriten, M., and Dankowicz, H. (2009). A rigorous dynamical-systems-based
analysis of the self-stabilizing influence of muscle. J. Biomech. Eng. 131, 011011-
1-9. doi: 10.1115/1.3002758

Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the
nervous system. Nat. Rev. Neurosci. 9, 292–303. doi: 10.1038/
nrn2258

Full, R., and Koditschek, D. (1999). Templates and anchors: neuromechanical
hypotheses of legged locomotion on land. J. Exp. Biol. 202(Pt 23),
3325–3332.

Gerritsen, K. G., van den Bogert, A. J., Hulliger, M., and Zernicke, R. F. (1998).
Intrinsic muscle properties facilitate locomotor control–a computer simulation
study.Motor Control 2, 206–220. doi: 10.1123/mcj.2.3.206

Geyer, H., and Herr, H. (2010). A muscle-reflex model that encodes
principles of legged mechanics produces human walking dynamics and

Frontiers in Robotics and AI | www.frontiersin.org 12 June 2020 | Volume 7 | Article 77

https://www.frontiersin.org/articles/10.3389/frobt.2020.00077/full#supplementary-material
https://doi.org/10.1080/10255842.2017.1293663
https://doi.org/10.1098/rsta.2006.1911
https://doi.org/10.1109/CDC.1997.657776
https://doi.org/10.1016/j.jneumeth.2006.01.022
https://doi.org/10.1109/MRA.2016.2636360
https://doi.org/10.1109/IROS40897.2019.8967858
https://doi.org/10.1109/ICRA.2018.8463160
https://doi.org/10.1016/j.asd.2004.05.002
https://doi.org/10.1115/1.3002758
https://doi.org/10.1038/nrn2258
https://doi.org/10.1123/mcj.2.3.206
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Haeufle et al. Muscles Reduce Control Effort

muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–73.
doi: 10.1109/TNSRE.2010.2047592

Geyer, H., Seyfarth, A., and Blickhan, R. (2003). Positive force
feedback in bouncing gaits? Proc. R. Soc. Lond. B 270, 2173–2183.
doi: 10.1098/rspb.2003.2454

Ghazi-Zahedi, K., Haeufle, D. F. B., Montúfar, G., Schmitt, S., and Ay, N.
(2016). Evaluating morphological computation in muscle and dc-motor driven
models of human hopping. Front. Robot. AI 3:42. doi: 10.3389/frobt.2016.
00042

Giszter, S., Mussa-Ivaldi, F., and Bizzi, E. (1993). Convergent force
fields organized in the frog’s spinal cord. J. Neurosci. 13, 467–491.
doi: 10.1523/JNEUROSCI.13-02-00467.1993

Gribble, P. L., and Ostry, D. J. (2000). Compensation for loads during arm
movements using equilibrium-point control. Exp. Brain Res. 135, 474–482.
doi: 10.1007/s002210000547

Haeufle, D. F., Grimmer, S., and Seyfarth, A. (2010). The role of intrinsic
muscle properties for stable hopping - stability is achieved by the force-
velocity relation. Bioinspir. Biomimet. 5:016004. doi: 10.1088/1748-3182/5/1/
016004

Haeufle, D. F. B., Grimmer, S., Kalveram, K.-T., and Seyfarth, A. (2012).
Integration of intrinsic muscle properties, feed-forward and feedback signals
for generating and stabilizing hopping. J. R. Soc. Interface 9, 1458–1469.
doi: 10.1098/rsif.2011.0694

Haeufle, D. F. B., Günther, M., Bayer, A., and Schmitt, S. (2014a). Hill-type muscle
model with serial damping and eccentric force-velocity relation. J. Biomech. 47,
1531–1536. doi: 10.1016/j.jbiomech.2014.02.009

Haeufle, D. F. B., Günther, M., Wunner, G., and Schmitt, S. (2014b). Quantifying
control effort of biological and technical movements: an information-
entropy-based approach. Phys. Rev. E 89:012716. doi: 10.1103/PhysRevE.89.
012716

Hatze, H. (1977). A myocybernetic control model of skeletal muscle. Biol. Cybern.
25, 103–119. doi: 10.1007/BF00337268

Hedrick, T. L., and Daniel, T. (2006). Flight control in the hawkmoth manduca
sexta: the inverse problem of hovering. J. Exp. Biol. 209, 3114–3130.
doi: 10.1242/jeb.02363

Holmes, P., Full, R., Koditschek, D., and Guckenheimer, J. (2006). The dynamics
of legged locomotion: models, analyses, and challenges. SIAMRev. 48, 207–304.
doi: 10.1137/S0036144504445133

John, C. T., Anderson, F. C., Higginson, J. S., and Delp, S. L. (2013). Stabilisation of
walking by intrinsic muscle properties revealed in a three-dimensional muscle-
driven simulation. Comput. Methods Biomech. Biomed. Eng. 16, 451–462.
doi: 10.1080/10255842.2011.627560

Kalveram, K. T., and Seyfarth, A. (2009). Inverse biomimetics: how robots
can help to verify concepts concerning sensorimotor control of human arm
and leg movements. J. Physiol. 103, 232–243. doi: 10.1016/j.jphysparis.2009.
08.006

Kambara, H., Shin, D., and Koike, Y. (2013). A computational model for optimal
muscle activity considering muscle viscoelasticity in wrist movements. J.

Neurophysiol. 109, 2145–2160. doi: 10.1152/jn.00542.2011
Kistemaker, D., van Soest, A., and Bobbert, M. (2005). Length-dependent

[Ca2+] sensitivity adds stiffness to muscle. J. Biomech. 38, 1816–1821.
doi: 10.1016/j.jbiomech.2004.08.025

Kistemaker, D. a., Van Soest, A. J., and Bobbert, M. F. (2006). Is equilibrium point
control feasible for fast goal-directed single-joint movements? J. Neurophysiol.
95, 2898–2912. doi: 10.1152/jn.00983.2005

Latash, M. L. (2012). The bliss (not the problem) of motor abundance
(not redundancy). Exp. Brain Res. 217, 1–5. doi: 10.1007/s00221-012-
3000-4

Lewis, R. M., Torczon, V., and Trosset, M. W. (2000). Direct search
methods: then and now. J. Comput. Appl. Mathematics 124, 191–207.
doi: 10.1016/S0377-0427(00)00423-4

McMahon, T. (1984).Muscles, Reflexes, and Locomotion. Princeton, NJ: Princeton
University Press.

More, H. L., Hutchinson, J. R., Collins, D. F., Weber, D. J., Aung, S.
K., and Donelan, J. M. (2010). Scaling of sensorimotor control in
terrestrial mammals. Proc. R. Soc. B 277, 3563–3568. doi: 10.1098/rspb.2010.
0898

Mörl, F., Siebert, T., Schmitt, S., Blickhan, R., and Guenther, M. (2012). Electro-
mechanical delay in hill-type muscle models. J. Mech. Med. Biol. 12:1250085.
doi: 10.1142/S0219519412500856

Neftci, E. O., and Averbeck, B. B. (2019). Reinforcement learning
in artificial and biological systems. Nat. Mach. Intell. 1, 133–143.
doi: 10.1038/s42256-019-0025-4

Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J.,
Daley, M. A., et al. (2007). Neuromechanics: an integrative approach for
understanding motor control. Integr. Compar. Biol. 47, 16–54. doi: 10.1093/icb/
icm024

Niven, J., Anderson, J., and Laughlin, S. (2007). Fly photoreceptors demonstrate
energy-information trade-offs in neural coding. PLoS Biol. 5:e116.
doi: 10.1371/journal.pbio.0050116

Niven, J., and Laughlin, S. (2008). Energy limitation as a selective pressure
on the evolution of sensory systems. J. Exp. Biol. 211(Pt 11), 1792–1804.
doi: 10.1242/jeb.017574

Park, H. W., Sreenath, K., Hurst, J. W., and Grizzle, J. W. (2011). Identification
of a bipedal robot with a compliant drivetrain: parameter estimation for
control design. IEEE Control Syst. Mag. 31, 63–88. doi: 10.1109/MCS.2010.9
39963

Paul, C. (2006). Morphological computation: a basis for the analysis of
morphology and control requirements. Robot. Auton. Syst. 54, 619–630.
doi: 10.1016/j.robot.2006.03.003

Pinter, I. J., Van Soest, A. J., Bobbert, M. F., and Smeets, J. B. J. (2012).
Conclusions on motor control depend on the type of model used to
represent the periphery. Biol. Cybern. 106, 441–451. doi: 10.1007/s00422-012-
0505-7

Proctor, J., and Holmes, P. (2010). Reflexes and preflexes: on the role of
sensory feedback on rhythmic patterns in insect locomotion. Biol. Cybern. 102,
513–531. doi: 10.1007/s00422-010-0383-9

Rios, L. M., and Sahinidis, N. V. (2013). Derivative-free optimization: a review of
algorithms and comparison of software implementations. J. Global Optim. 56,
1247–1293. doi: 10.1007/s10898-012-9951-y

Rockenfeller, R., and Günther, M. (2016). Extracting low-velocity concentric and
eccentric dynamic muscle properties from isometric contraction experiments.
Math. Biosci. 278, 77–93. doi: 10.1016/j.mbs.2016.06.005

Rockenfeller, R., and Günther, M. (2018). Inter-filament spacing mediates calcium
binding to troponin: a simple geometric-mechanistic model explains the
shift of force-length maxima with muscle activation. J. Theor. Biol. 454,
240–252.

Shadmehr, R. (2010). Control of movements and temporal discounting of
reward. Curr. Opin. Neurobiol. 20, 726–730. doi: 10.1016/j.conb.2010.
08.017

Shadmehr, R., Smith, M. A., and Krakauer, J. W. (2010). Error correction, sensory
prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108.
doi: 10.1146/annurev-neuro-060909-153135

Shannon, C, andWeaver, W. (1949). The Mathematical Theory of Communication.
Urbana: University of Illinois Press.

Sreenath, K., Park, H.-W., Poulakakis, I., and Grizzle, J. W. (2011). A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal walking
on MABEL. Int. J. Robot. Res. 30, 1170–1193. doi: 10.1177/0278364910
379882

Stollenmaier, K., Ilg, W., and Haeufle, D. (2020). Predicting Perturbed human arm
movements in a neuro-musculoskeletal model to investigate the muscular force
response. Front. Bioeng. Biotechnol. 8:308. doi: 10.3389/fbioe.2020.00308

Todorov, E., and Jordan, M. I. (2003). “A minimal intervention principle for
coordinated movement,” in Advances in Neural Information Processing Systems,
27–34.

Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM J.

Optim. 7, 1–25. doi: 10.1137/S1052623493250780
van der Krogt, M. M., de Graaf, W.W., Farley, C. T., Moritz, C. T., Richard Casius,

L. J., and Bobbert, M. F. (2009). Robust passive dynamics of the musculoskeletal
system compensate for unexpected surface changes during human hopping. J.
Appl. Physiol. 107, 801–808. doi: 10.1152/japplphysiol.91189.2008

van Soest, A., and Bobbert, M. (1993). The contribution of muscle properties
in the control of explosive movements. Biol. Cybern. 69, 195–204.
doi: 10.1007/BF00198959

Frontiers in Robotics and AI | www.frontiersin.org 13 June 2020 | Volume 7 | Article 77

https://doi.org/10.1109/TNSRE.2010.2047592
https://doi.org/10.1098/rspb.2003.2454
https://doi.org/10.3389/frobt.2016.00042
https://doi.org/10.1523/JNEUROSCI.13-02-00467.1993
https://doi.org/10.1007/s002210000547
https://doi.org/10.1088/1748-3182/5/1/016004
https://doi.org/10.1098/rsif.2011.0694
https://doi.org/10.1016/j.jbiomech.2014.02.009
https://doi.org/10.1103/PhysRevE.89.012716
https://doi.org/10.1007/BF00337268
https://doi.org/10.1242/jeb.02363
https://doi.org/10.1137/S0036144504445133
https://doi.org/10.1080/10255842.2011.627560
https://doi.org/10.1016/j.jphysparis.2009.08.006
https://doi.org/10.1152/jn.00542.2011
https://doi.org/10.1016/j.jbiomech.2004.08.025
https://doi.org/10.1152/jn.00983.2005
https://doi.org/10.1007/s00221-012-3000-4
https://doi.org/10.1016/S0377-0427(00)00423-4
https://doi.org/10.1098/rspb.2010.0898
https://doi.org/10.1142/S0219519412500856
https://doi.org/10.1038/s42256-019-0025-4
https://doi.org/10.1093/icb/icm024
https://doi.org/10.1371/journal.pbio.0050116
https://doi.org/10.1242/jeb.017574
https://doi.org/10.1109/MCS.2010.939963
https://doi.org/10.1016/j.robot.2006.03.003
https://doi.org/10.1007/s00422-012-0505-7
https://doi.org/10.1007/s00422-010-0383-9
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1016/j.mbs.2016.06.005
https://doi.org/10.1016/j.conb.2010.08.017
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1177/0278364910379882
https://doi.org/10.3389/fbioe.2020.00308
https://doi.org/10.1137/S1052623493250780
https://doi.org/10.1152/japplphysiol.91189.2008
https://doi.org/10.1007/BF00198959
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Haeufle et al. Muscles Reduce Control Effort

Wagner, H., and Blickhan, R. (1999). Stabilizing function of skeletal muscles: an
analytical investigation. J. Theor. Biol. 199, 163–179. doi: 10.1006/jtbi.1999.0949

Wagner, H., and Blickhan, R. (2003). Stabilizing function of antagonistic
neuromusculoskeletal systems: an analytical investigation. Biol. Cybern. 89,
71–79. doi: 10.1007/s00422-003-0403-0

Wochner, I., Driess, D., Zimmermann, H., Haeufle, D. F. B., Toussaint,
M., Schmitt, S., (2020). Optimality principles in human point-to-manifold
reaching accounting for muscle dynamics. Front. Comput. Neurosci. 14.
doi: 10.3389/fncom.2020.00038

Zahedi, K., and Ay, N. (2013). Quantifying morphological computation. Entropy
15, 1887–1915. doi: 10.3390/e15051887

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Haeufle, Wochner, Holzmüller, Driess, Günther and Schmitt.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 14 June 2020 | Volume 7 | Article 77

https://doi.org/10.1006/jtbi.1999.0949
https://doi.org/10.1007/s00422-003-0403-0
https://doi.org/10.3389/fncom.2020.00038
https://doi.org/10.3390/e15051887
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking
	1. Introduction
	2. A Summary of the Approach to Quantify Control Effort
	3. New Algorithm to Quantify Control Effort
	3.1. Outline of the Algorithm
	3.1.1. Phase 1: Rapid Parallel Reduction of Resolution in All Signals
	3.1.2. Phase 2: Pattern Search
	3.1.3. Phase 3: Check Local Neighborhood and Calculate Error

	3.2. Optimal Result: Control Effort Imin
	3.3. Error Estimation

	4. Control Effort in Typical Human Movement Tasks
	4.1. Movement 1: Pointing
	4.1.1. Models
	4.1.2. Nonlinear Constraint: Movement Performance for Pointing

	4.2. Movement 2: Walking
	4.2.1. Models
	4.2.2. Nonlinear Constraint: Movement Performance for Walking

	4.3. Discretization of Signals to Determine Control Effort
	4.3.1. Discretize Muscle Stimulations (STIM)
	4.3.2. Discretize Proprioceptive Sensor Signals (SENS)
	4.3.3. Discretize Torque Actuations (TORQUE)


	5. Results
	6. Discussion
	6.1. Influence of Delay on Control Effort
	6.2. Information Processing in Walking Machines
	6.3. A Hypothetical Scenario Where an Ideal Torque Generator Would Be Advantageous
	6.4. Other Optimal Control Approaches for Measuring Simplicity
	6.5. The Optimization Algorithm

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


