
REVIEW
published: 17 September 2020
doi: 10.3389/frobt.2020.00082

Frontiers in Robotics and AI | www.frontiersin.org 1 September 2020 | Volume 7 | Article 82

Edited by:

Hakan Karaoguz,

Independent Researcher, Stockholm,

Sweden

Reviewed by:

Farah Bouakrif,

University of Jijel, Algeria

Dongming Gan,

Purdue University, United States

*Correspondence:

Veronica E. Arriola-Rios

v.arriola@ciencias.unam.mx

Puren Guler

puren.guler@oru.se

Specialty section:

This article was submitted to

Robot and Machine Vision,

a section of the journal

Frontiers in Robotics and AI

Received: 13 February 2020

Accepted: 19 May 2020

Published: 17 September 2020

Citation:

Arriola-Rios VE, Guler P, Ficuciello F,

Kragic D, Siciliano B and Wyatt JL

(2020) Modeling of Deformable

Objects for Robotic Manipulation: A

Tutorial and Review.

Front. Robot. AI 7:82.

doi: 10.3389/frobt.2020.00082

Modeling of Deformable Objects for
Robotic Manipulation: A Tutorial and
Review
Veronica E. Arriola-Rios 1*, Puren Guler 2*, Fanny Ficuciello 3, Danica Kragic 4,

Bruno Siciliano 3 and Jeremy L. Wyatt 5

1Department of Mathematics, Faculty of Science, UNAM Universidad Nacional Autonoma de Mexico, Ciudad de México,

Mexico, 2 Autonomous Mobile Manipulation Laboratory, Centre for Applied Autonomous Sensor Systems, Orebro University,

Orebro, Sweden, 3 PRISMA Laboratory, Department of Electrical Engineering and Information Technology, University of

Naples Federico II, Naples, Italy, 4 Robotics, Learning and Perception Laboratory, Centre for Autonomous Systems, EECS,

KTH Royal Institute of Technology, Stockholm, Sweden, 5 School of Computer Science, University of Birmingham,

Birmingham, United Kingdom

Manipulation of deformable objects has given rise to an important set of open problems

in the field of robotics. Application areas include robotic surgery, household robotics,

manufacturing, logistics, and agriculture, to name a few. Related research problems

span modeling and estimation of an object’s shape, estimation of an object’s material

properties, such as elasticity and plasticity, object tracking and state estimation during

manipulation, and manipulation planning and control. In this survey article, we start by

providing a tutorial on foundational aspects of models of shape and shape dynamics.

We then use this as the basis for a review of existing work on learning and estimation of

these models and on motion planning and control to achieve desired deformations. We

also discuss potential future lines of work.

Keywords: deformable objects, shape representation, learning of deformation, control of deformable objects,

registration of shape deformation, tracking of deformation

1. INTRODUCTION

Robotic manipulation work tends to focus on rigid objects (Bohg et al., 2014; Billard and Kragic,
2019). However, most objects manipulated by animals and humans change shape upon contact.
Manipulating a deformable object presents a quite different set of challenges from those that arise
when manipulating a rigid object. For example, forces applied to a rigid object simply sum to
determine the external wrench and, when integrated over time, result in a sequence of rigid body
transformations in SE(3). This is relatively simple dynamic model, albeit still difficult to estimate
for a given object, manipulator, and set of environment contacts.

Forces applied to a deformable body, by contrast, bothmove the object and change its shape. The
exact combination of deformation and motion depends on the precise material composition. Thus,
material properties become a critical part of the system dynamics, and consequently the underlying
physics of deformation is complex and hard to capture. In addition, the dynamicsmodels typically
employed in high-fidelity mechanical modeling—such as finite element models—while precise,
require detailed knowledge of the material properties, which would be unavailable to a robot
in the wild. Yet such a lack of detailed physics knowledge does not prevent humans and other
animals from performing dexterous manipulation of deformable objects. Consider the way a New
Caledonian crow shapes a tool from a branch (Weir and Kacelnik, 2006) or how a pizzaiolo

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00082
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00082&domain=pdf&date_stamp=2020-09-17
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:v.arriola@ciencias.unam.mx
mailto:puren.guler@oru.se
https://doi.org/10.3389/frobt.2020.00082
https://www.frontiersin.org/articles/10.3389/frobt.2020.00082/full

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

dexterously transforms a ball of dough into a pizza. Clearly,
robots have a long way to go to match these abilities.

Even though a great deal of work has been done on developing
solutions for each of these stages (Cootes et al., 1992; Montagnat
et al., 2001; Nealen et al., 2006; Moore and Molloy, 2007),
only a few combinations have actually been tried in robotics
to date (Nadon et al., 2018; Sanchez et al., 2018). In contrast
to earlier review articles, this paper consists of both a tutorial
and a review of related work, aimed at newcomers to robotic
modeling and manipulation of deformable objects who need
a quick introduction to the basic methods, which are adopted
from various other fields and backgrounds. We provide, in
a single place, a menu of possible approaches motivated by
computer vision, computer graphics, physics, machine learning,
and other fields, in the hope that readers can find new material
and inspiration for creatively developing their work. We then
review how these methods are applied in practice. In this way,
we take a more holistic approach than existing reviews. Since the
literature in the fields we touch on is abundant, we cannot be
exhaustive and will focus mostly on manipulation of volumetric
solid objects.

This review is motivated by a future goal in the form of an
ideal scenario. In this scenario a general purpose robot would
be capable of perceiving shape, dynamics, and necessary material
properties (e.g., elasticity, plasticity) of deformable objects to
implement manipulation strategies relying on planning and
control methods. Currently no robot has all these capabilities.

FIGURE 1 | A general purpose robot must be capable of: (i) perceiving and segmenting the object from the scene; (ii) tracking the object’s motion; (iii) predicting the

object’s behavior; (iv) planning and controlling new manipulation strategies based on the predictions; (v) selecting the appropriate model for each task, since all

models for shape and dynamics have limitations; and (vi) learning new models for previously unknown shapes and materials.

Therefore, we decompose the problem space into five main parts
that work like pieces in a puzzle: Because representational choices
are fundamental, we explain, in a tutorial style, (1) the modeling
of shape (section 2) and (2) the modeling of deformation
dynamics (section 3) to provide the reader with the necessary
mathematical background; then we discuss, in survey form,
(3) learning and estimation of the parameters of thesemodels that
are related to deformability of objects (e.g., material properties,
such as elasticity, or shape properties, such as resolution of a
mesh; section 4), (4) the application of the models to perception
and prediction, and (5) planning and control of manipulation
actions (section 5), since these topics build on the models
explained in (1) and (2) and there is such a wide range
of different approaches that it would be impossible to cover
them all in depth. Figure 1 shows our guideline processing
stream: (i) The robot perceives the object, segments it from
its environment, and selects an adequate representation for its
shape and intended task; the desired type of representation
will determine which algorithms must be used to recognize the
object. (ii) As the robot interacts with the object, it deforms the
object and must register the deformation by modifying the shape
representation accordingly; while doing so, it can make use of
tracking/registration techniques or enhanced predictive tracking
(which requires a model of the dynamics). (iii) A suitable model
for the dynamics is selected to predict new configurations of
the shape representation as the robot interacts with the object.
(iv) Information from the previous stages is used to integrate

Frontiers in Robotics and AI | www.frontiersin.org 2 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 2 | Relationships between shape, dynamics, learning models, and control methodologies as they have been used in the literature. Colored arrows indicate

subcategories, while black arrows show when a methodology in one level has been used for the next one.

Frontiers in Robotics and AI | www.frontiersin.org 3 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

the inputs and rules for the control strategies. Finally, all this
information can be fed into learning algorithms capable of
increasing the repertoire of known objects. At this stage, there
are three types of strategies: (a) estimating new parameters
directly (which is rarely viable); (b) calibrating known physics-
based models automatically by allowing the robot to take some
measurements that will help to determine the value of model
parameters; and (c) approximating new functions that describe
the dynamics, as is done with neural networks.

Figure 2 shows the connections between the different models

covered in this review as they have been used in the publications

mentioned. Table 1 gives a summary of the publications
discussed in each section. The following describes the notation

that will be used throughout the paper:

• Scalars: italic lower-case letters, e.g., x, y, z.
• Vectors: bold lower-case letters, e.g., p = {x, y, z}T .
• Matrices: bold upper-case letters, e.g., R.

TABLE 1 | Publication summary based on some papers from each section.

Shape Implicit Algebraic Gascuel, 1993; Kumar et al., 1995; Jaklic et al., 2000

Level set Sethian, 1997; Cremers, 2006; Sun et al., 2008

Eigenmodes Cootes et al., 1995; Blake et al., 1998; Leventon et al., 2000; Tsai et al., 2001; Cremers, 2006

Parameterized Splines de Boor, 1976; Catmull and Clack, 1978; Kass et al., 1988; Gibson and Mirtich, 1997; Unser,

1999; Cordero Valle and Cortes Parejo, 2003; Sederberg et al., 2003; Maraffi, 2004; Song and

Bai, 2008; Prasad et al., 2010

Modal decomposition Szekely et al., 1995

Free-form Sederberg and Parry, 1986; Moore and Molloy, 2007

Multigrid Xian et al., 2019

Discrete Meshes Delingette, 1999; Montagnat et al., 2001; Arvanitis et al., 2019

Skeletons Schaefer and Yuksel, 2007

Templates Yuille et al., 1992; Basri et al., 1998; Ravishankar et al., 2008; Arriola-Rios et al., 2013; Gallardo

et al., 2020

Landmarks Blake et al., 1998; Cootes and Taylor, 2004

Particles Nealen et al., 2006

Cloud of points Cretu et al., 2009; Newcombe and Davison, 2010; Martínez et al., 2019; Makovetskii et al., 2020

Dynamics Particle-based Particle systems Tonnesen and Terzopoulos, 2000

Mass-spring systems Bianchi et al., 2004; Teschner et al., 2004; Morris and Salisbury, 2008; Schulman et al., 2013;

Arriola-Rios and Wyatt, 2017

Neural networks Nurnberger et al., 1998; Zhang et al., 2019

Position-based Müller et al., 2005; Zhu et al., 2008; Tian et al., 2013; Macklin et al., 2014; Sidorov and Marshall,

2014; Guler et al., 2017; Romeo et al., 2020

Constitutive FEM Essa et al., 1992; Frank et al., 2014; Petit et al., 2018

FVM Teran et al., 2003; Barth et al., 2018

FDM Terzopoulos et al., 1987

BEM Greminger and Nelson, 2008

LEM Balaniuk and Salisbury, 2002

Approximations Modal analysis Pentland and Williams, 1989; Barbič and James, 2005; Fulton et al., 2019

Active contours Kass et al., 1988; Ahlberg, 1996; Nisirat, 2019

Learning Discrete Gelder, 1998

Minimizing

error

Exhaustive search Guler et al., 2015

Iterative methods Teschner et al., 2004; Frank et al., 2014

Genetic algorithms Bianchi et al., 2004

Neural networks Cretu et al., 2012

Probability Risholm et al., 2010; Schulman et al., 2013

Control and

planning

Planning Model-based Gopalakrishnan and Goldberg, 2004; Das and Sarkar, 2011; Frank et al., 2014

Data-driven Mira et al., 2015; Li et al., 2016

Control Model-based Largilliere et al., 2015; Lin et al., 2015; Zaidi et al., 2017; Ficuciello et al., 2018

Sensor-based Wada et al., 2001; Smolen and Patriciu, 2009; Berenson, 2013; Navarro-Alarcon et al., 2016;

Delgado et al., 2017b; Hu et al., 2019; Cherubini et al., 2020

Frontiers in Robotics and AI | www.frontiersin.org 4 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 3 | (A) Algebraic surfaces can represent basic and complex shapes, such as circles or the tangled cube; a limited but useful set of deformations is

straightforward to define, while other deformations that are not so intuitive tend to be used in combination with skeletons and skinning techniques. (B) Parametric

surfaces can represent a wider variety of shapes and their great flexibility allows deformation to be controlled with more intuitive parameters; therefore their use in

connection with models of dynamics is considerable. (C) Level set curves can show the evolution of a 2D shape in time; the intersection of a time plane with the

surface in 3D is a level curve, which represents the 2D contour shape of the object at a given time t. In this example cos2(r + c) is the mathematical representation of

the 2D contour shape’s evolution through time.

• Scalar functions whose range is R: italic lower-case letters
followed by parentheses, e.g., f (·).

• Vector functions whose range is Rn with n > 1: bold italic
letters followed by parentheses, e.g., S(·).

• Sets: calligraphic letters, e.g., S.
• Number sets: blackboard bold upper-case letters, e.g., R,N.

2. REPRESENTING SHAPE FOR
DEFORMABLE OBJECTS

The initial problem of manipulating a deformable object is
to perceive and segment the object shape from the scene as
it deforms (Figure 1i). The main difficulty with this problem
is the number of degrees of freedom required to model the
object shape. The expressiveness, accuracy, and flexibility of
the model can ease the modeling of the dynamics or make it
more difficult in different scenarios. For this reason, this section
introduces a variety of models from mathematics, computer
graphics, and computer vision for representation of the shape of
deformable objects.

2.1. Implicit Curves and Surfaces
An implicit curve or surface of dimension n − 1 is generally
defined as the zero set of a function f :Rn → R,

Sf = {p ∈ R
n | f (p) = 0}, (1)

where p is a coordinate in an n-dimensional space in which
the surface is embedded (Montagnat et al., 2001). Therefore,
the set Sf defines the surface formed by all points p in R

n

such that the function f , when evaluated at p, is equal to
zero. The implicit function is used to locate surface points by
solving the equation f (p) = 0 (Figure 3A). In robotics, n is

usually 3 to represent Cartesian coordinates, but sometimes an
extra dimension can be used to represent time. Representations
that fall within this category are explained in the rest of
this subsection.

2.1.1. Algebraic Curves and Surfaces
Algebraic curves and surfaces satisfy (1) with f (p) being
a polynomial. First-degree polynomials define planes and
hyperplanes; second-degree polynomials define conics, which
include circles, ellipses, parabolas, and hyperbolas, and
quadrics, which include ellipsoids, paraboloids, hyperboloids,
toroids, cones, and cylinders; their (n − 1)-dimensional
extensions are surfaces in an n-dimensional space that satisfy
the equation

f (p) = pTAp+ bp+ c = 0 (2)

where p = {x1, x2, . . . , xn}
T ∈ R

n is a column vector, pT

denotes the transpose of p (a row vector), A ∈ R
n×n is a

matrix, b ∈ R
n is a row vector, and c is a scalar constant. Note

that all the aforementioned shapes are included as particular
cases of this definition. To define a particular shape, which
satisfies a given set of constraints, the constant values in A, b,
and c must be determined; for example, with n = 2, the
constants that define a circle passing through a given set of
three points can be found by solving the system of three
equations where f (pi) = 0 for all i and f (pi) is a second-
degree polynomial. In some contexts the same equation can
be rewritten to facilitate this estimation; for example, it is easy
to determine the circle centered at (xc, yc) with radius r if the
second-degree polynomial is written as (x− xc)

2+ (y− yc)
2 = r2

with p = {x, y}.
Superquadrics are defined by second-degree polynomials,

while hyperquadrics are the most general form and allow the

Frontiers in Robotics and AI | www.frontiersin.org 5 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

representation of complex non-symmetric shapes; they are given
by the equation

N
∑

i = 1

|aix+ biy+ ciz + di|
γi = 1 (3)

where p = {x, y, z}T ∈ R
3, N is an arbitrary number of planes

whose intersection surrounds the object, a, b, c, and d are shape
parameters of these planes, and γi ∈ R with γi ≥ 0 for all i.
Kumar et al. (1995) presented a method for fitting hyperquadrics
to very complex deformable shapes registered as range data. A
model like (3) could be used as the base representation for a
model of the dynamics if the deformations are small. It can be
used in combination with local surface deformations to represent
a wider set of surfaces. For example, if the superquadric is the set
of points Q that satisfy the corresponding equation, a deformed
model could be given by S = c+R(Q+d) where c represents the
inertial center of the superquadric, R is a rotation matrix, and d

is a vectorial displacement field. Other types of deformation can
be defined as well (Montagnat et al., 2001). For more information
about superquadrics, see Jaklic et al. (2000).

Algebraic curves, surfaces, and volumes can be used as 1D, 2D,
and 3D skeletons, or to represent objects of similar shapes and
deformations (Gascuel, 1993). They are easy to deform in certain
cases, but the types of deformations that are straightforward
to apply are very limited, such as matrix transformations that
bend, pitch, twist, stretch, or translate all the points on a curve
or the space in which the curve is embedded. For this reason,
algebraic curves and surfaces are more suited to representing
articulated or semi-articulated objects. Objects can also be
composed of several algebraic curves, where each component
is easy to manipulate with this representation. To model more
complex deformed shapes, Raposo and Gomes (2019) introduced
products of primitive algebraic surfaces, such as spheres and
cylinders, which enable both local and global deformations to
be controlled more easily than in traditional algebraic shape
models. Moreover, these models can be combined with skinning
techniques to emulate soft deformable objects and also have
parameterized representations.

2.1.2. Level Set Methods
In level set methods, the deformable model is embedded in a
higher-dimensional space, where the extra dimension represents
time (Sethian, 1997; Montagnat et al., 2001). A hypersurface
9 is defined by 9(p, 0) = dist(p, S0), where S0 is the
initial surface and dist can be the signed Euclidean distance
between a point p and the surface. The distance is positive if
the point lies outside the surface and negative otherwise. The
evolution of the surface S is governed by the partial differential
equation 9 t + |∇9|F = 0 involving the function 9(p, t)
and a speed function F, which determines the speed at which
each point of the surface must be moved. Thus, the function
9 evolves in time and the current shape corresponds to the
surface given by 9(p, t) = 0 (Figure 3C). The function 9

could have any form, such as a parameterized one, 9 =

9(x(u, v), y(u, v), z(u, v), t), with the surface still defined in
implicit form, 9(x(u, v), y(u, v), z(u, v), t) = 0. Unfortunately, it

could also be that 9 does not even have an algebraic expression
and may need to be approximated with numerical methods.
The main advantage of level set methods is that they allow
changes of surface topology implicitly. The set S may split into
several connected components, or several distinct components
may merge, while 9 remains a function.

In computer vision applications, such as human tracking and
medical imaging, level set methods have been used successfully
in tracking deformable objects (Sethian, 1997; Cremers, 2006).
For example, Sun et al. (2008) recursively segmented deformable
objects across a sequence of frames using a low-dimensional
modal representation and applied their technique to left
ventricular segmentation across a cardiac cycle. The dynamics
are represented using a distance level set function, whose
representation is simplified using principal component analysis
(PCA). Sun et al. used methods of particle-based smoothing as
well as non-parametric belief propagation on a loopy graphical
model capturing the temporal periodicity of the heart, with the
objective being to estimate the current state of the object not only
from the data observed at that instant but also from predictions
based on past and future boundary estimates. Even though we did
not find examples of this method being used in robotics, it seems
a suitable candidate since it models the shape change through
time implicitly and would thus allow the robot to keep track of
the evolving shape of an object during manipulation.

2.1.3. Gaussian Principal Component Eigenmodes
This kind of representation is valid when the types of
deformations can be described with a single mathematical
formulation. Given a representative set SN = {S0, S1, . . . , SN−1}

of the types of surface deformation that objects can undergo, it is
possible to use PCA to detect the main modes of deformation
(i.e., the eigenmodes 8n) and thus re-express the shapes as
a linear combination of those modes. Hence a new shape
estimation can be done using

S̄ = Sµ + α8n (4)

where 8n (n≪N) is the largest eigenmode of shape variations in
SN , Sµ is the mean of the representative set of shapes SN , and α is
a set of coefficients. Such an eigenmode representation is useful
for dealing with missing or misleading information (e.g., noise
or occlusions) coming from sensory data while constructing the
shape of the object (Cootes et al., 1995; Blake et al., 1998; Cremers,
2006; Sinha et al., 2019).

Employing combinations of previously cited methods,
Leventon et al. (2000) used eigenmode representation with
level set curves to segment images, such as medical images
of the femur and corpus callosum, by defining a probability
distribution over the variances of a set of training shapes. The
segmentation process embeds an initial curve as the zero level
set of a higher-dimensional surface, and then evolves the surface
such that the zero level set converges on the boundary of the
object to be segmented. At each step of the surface evolution, the
maximum a posteriori position and shape of the object in the
image were estimated based on the prior shape information and
the image information. The surface was then evolved globally

Frontiers in Robotics and AI | www.frontiersin.org 6 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 4 | (A) Two Bezier curves with control points; displacing one control point (e.g., p2) affects the entire curve. In this case, the line that joins the control points

p1 and p2 is the tangent of the polynomial at p1; and the line that joins p3 and p4 is the tangent at p4. (B) Two enchained Bezier curves; by placing p3, p4, and p5 on

a line it is possible to make the curve C1 at p4. (C) Free-form deformation of a spline; the black circles form a lattice in a new local coordinate system, the red circles

show the deformed lattice, and the red spline is the result of shifting the blue spline in accordance with this deformation.

toward the maximum a posteriori estimate and locally based on
image gradients and curvature. The results were demonstrated
on synthetic data and medical images, in both 2D and 3D. Tsai
et al. (2001) further developed this idea.

2.2. Explicit Parameterized
Representations
Explicit parameterized representations are evaluated directly
from their functional definition (Figure 3B). In 3D, they are
of the form C(u) = {x(u), y(u), z(u)}T for curves and
S(u, v) = {x(u, v), y(u, v), z(u, v)}T for surfaces, where u and v
are parameters. The curve or surface is traced out as the values
of the parameters are varied. For example, if u ∈ [0, 1], the shape
is traced out as u varies from 0 to 1, as happens with the circle

C(u) =

{

x = cos(u)
y = sin(u)

}

. (5)

It is common practice to parameterize a curve by time t if it will
represent a trajectory, or by arc length l1.

2.2.1. Splines
Amathematical spline S is a piecewise-defined real function, with
k polynomial pieces si(u) parameterized by u ∈ [u0, uk], used to
represent curves or surfaces (Cordero Valle and Cortes Parejo,
2003). The order n of the spline corresponds to the highest order
of the polynomials. The values u0, u1, . . . , uk−1, uk where the
polynomial pieces connect are called knots.

Frequently, for a spline of order n, S is required to be
differentiable up to order n − 1, that is, to be Cn−1 at knots and
C∞ everywhere else. However, it is also possible to reduce its
differentiability to take into account discontinuities.

In general, any spline function S(u) of order n with knots
u0, . . . , uk can be expressed as

S(u) =

k+n+1
∑

j = 1

pjsj(u), (6)

1The arc length is the distance between a starting point α on the curve and the

current point β . For example, the length of a 1D curve embedded in 3D space,

parameterized by u, is given by L =
∫ β

α

√

ẋ2 + ẏ2 + ż2 du, where ẋ = ∂x
∂u and

similarly for ẏ and ż.

where the coefficients pj are interpreted geometrically as the
coordinates of the control points that determine the shape of the
spline, and

sj(u) = (u− uj)
n for j = 1, . . . , k,

sk+j(u) = uj−1 for j = 1, . . . , (n+ 1) (7)

constitute a basis for the space of all spline functions with knots
u0, . . . , uk, called the power basis. This space of functions is a
(k + (n + 1))-dimensional linear space. By using other bases, a
large family of spline variations is generated (Gibson andMirtich,
1997); the most important ones are the following.

Bezier splines have each segment being a Bezier curve given by

B(u) =

n
∑

i = 0

piB
n
i (u), (8)

Bni (u) =

(

n

i

)

(1− u)n−iui, (9)

where each pi is a control point, the Bni are the Bernstein
polynomials of degree n,

(n
i

)

are the binomial coefficients,
and u ∈ [0, 1]. The curve passes through its first and last
control points, p0 and pn, and remains close to the control
polygon obtained by joining all the control points, in order,
with straight lines. Also, at its extremes it is tangent to the
line segment defined by p0p1 and pn−1pn. It is easy to add and
remove control points from a Bezier curve, but displacing one
causes the entire curve to change, which is why usually only
third-degree polynomial segments are used (see Figure 4).
A two-dimensional Bezier surface is obtained as the tensor
product of two Bezier curves:

B(u, v) =

n
∑

i = 0

m
∑

j = 0

Bni (u)B
m
j (v)pi,j. (10)

B-splines are more stable, since changes to the positions
of control points induce only local changes around that
control point, and the polynomials pass through the control
points (de Boor, 1976). They are particularly suitable for 3D

Frontiers in Robotics and AI | www.frontiersin.org 7 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

reconstructions. Song and Bai (2008) show how they can be
used to fill holes and smooth surfaces originally captured as
dense clouds of points, while producing a muchmore compact
and manipulable representation.
Catmull-Clark surfaces approximate points lying on a mesh
of arbitrary topology (Catmull and Clack, 1978).
Non-uniform rational B-splines (NURBS) are notable
because they can represent circles, ellipses, spheres, and other
curves which, in spite of their commonness and simplicity,
cannot be represented by polynomial splines. They achieve this
by introducing quotients of polynomials in the basis2.
T-splines and non-uniform rational Catmull-Clarck

surfaces with T-junctions (T-NURCCs) allow for high-
resolution representations of 3D deformable objects with a
highly reduced number of faces and improved representations
of joints between surface patches, by introducing connections
with the shape of a T between edges of the shape (Sederberg
et al., 2003).

Splines are a very flexible tool for representing all sorts
of deformable shapes. They are extremely useful for signal
and image processing (Unser, 1999) as well as for computer
animation (Maraffi, 2004) and shape reconstruction of 2D and
3D deformable objects (Song and Bai, 2008; Prasad et al., 2010).
Active contours (see section 3.4.2 and Kass et al., 1988), also
known as snakes, are splines governed by an energy function that
introduces dynamic elements to the shape representation and are
used for tasks, such as object segmentation (Marcos et al., 2018;
Chen et al., 2019; Hatamizadeh et al., 2019).

The advantage of splines is that compact representations of
deformable objects can be built on them in accordance with
the complexity of their shape at each time. When new corners
or points of high curvature appear, more control points can be
added for an adequate representation, and if the shape becomes
simplified these points can be removed. However, this flexibility
also makes splines sensitive to noise and can lead to computation
of erroneous deformations. Hence, learning the dynamics of such
a representation is difficult with current learning algorithms, and
a general solution remains an open problem.

2.2.2. Modal Decompositions
In modal decomposition, a curve or a surface is expressed as
the sum of terms in a basis, whose elements correspond to
frequency harmonics. The sum of the first modes constituting
the surface gives a good rough approximation of its shape, which
becomes more detailed as more modes are included (Montagnat
et al., 2001). Among methods for modal decomposition, Fourier
decomposition is in widespread use. A curve may be represented
as a sum of sinusoidal terms and a surface as a combination of
spherical harmonicsYm

l
(θ ,ϕ) which are explicitly parameterized:

S(r, θ ,ϕ) =

∞
∑

l = 0

l
∑

m = −l

cml r
l
Y
m
l (θ ,ϕ), (11)

2https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/

where rl is a normalization factor for Y and the cm
l
are constants.

It is also possible to use other bases that may be more suitable for
other shapes, such as surfaces homeomorphic to a sphere, torus,
cylinder, or plane.

Modal decomposition has mostly been used in model-based
segmentation and recognition of 2D and 3D medical images
(Szekely et al., 1995). Its main advantage is that it creates a
compact and easy-to-manipulate representation of objects whose
shape can be described as a linear combination of a few dominant
modes of deformation. The disadvantage of such methods is that
it is easy for them to miss details in objects, such as small dents,
because shapes are approximated by a limited number of terms.

2.3. Free-Forms
Free-form deformation is a method whereby the space in
which a figure is embedded is deformed according to a set of
control points of the deformation (Moore and Molloy, 2007;
see Figure 4C). It can be used to deform primitives, such as
planes, quadrics, parametric surface patches, or implicitly defined
surfaces. The deformation can be applied either globally or
locally. A local coordinate system is defined using a parallelpiped
so that the coordinates inside it are p = {x1, x2, x3}with 0 < xi <

1 for all i. A set of control points pijk lie on a lattice.When they are
displaced from their original positions, they define a deformation
of the original space with new coordinates p′. The new position
of any coordinate is interpolated by applying a transformation
formula that maps p into p′. For some transformations it is
enough to estimate the new coordinates of the nodes of a mesh
or control points of a spline with respect to the new positions
of the control points of the deformed space, and the rest of
the shape will follow them, as in Sederberg and Parry (1986),
where a trivariate tensor product Bernstein polynomial was
proposed as the transformation function. Loosely related are
multigrid representations, which also allow for local management
of deformation (Xian et al., 2019).

2.4. Discrete Representations
Discrete representations contain only a finite fixed number
of key elements describing them, mainly points and lines.
Representations that fall into this category include the following:

Meshes are collections of vertices connected through edges
that form a graph. Common shapes for their faces are triangles
(triangulations), quadrilaterals, and hexagons for surfaces, and
tetrahedrons for volumes. A special case consists of the simplex
meshes, which have a constant vertex connectivity. This type
of shape representation permits smooth deformations in a
simple and efficient manner (Delingette, 1999; Montagnat
et al., 2001). Therefore, meshes are used for various tasks, such
as 3D object recognition (e.g., Madi et al., 2019) and simulation
of the dynamics of deformable objects (see section 3.3.1) with
efficient coding (Arvanitis et al., 2019).
Skeletons are made of rigid edges connected by joints that
allow bending. The position and deformation of elements
attached to the skeleton are defined with respect to their
assigned bone. Skeletons tend to be used together with the
method known as skinning, where a deformable surface

Frontiers in Robotics and AI | www.frontiersin.org 8 September 2020 | Volume 7 | Article 82

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

is attached to the bone and softens the visual appearance
of the articulated joints through interpolation techniques.
By nature skeletons are designed to model articulated
deformations. Schaefer and Yuksel (2007) proposed a
method to automatically extract skeletons by detecting
articulated deformations.
Deformable templates are parameterized representations of a
shape that specify key values of salient features in an image.
They deform with greater ease around these features. The
features can be peaks and valleys in the image intensity, edges,
and the intensity itself, as well as points of high curvature3

(sharp turns or bends; see Yuille et al., 1992; Basri et al., 1998).
Deformable templates are mainly used for object recognition
and object tracking (e.g., Ravishankar et al., 2008; Xia et al.,
2019; Gallardo et al., 2020). They support the particular
relevance of critical points in modeling deformations, which
couldmake them key to developing a robot’s ability to generate
its own optimal representation of a deformable object. The
use of deformable templates is explored and illustrated by
experiments on natural and artificial agents in Arriola-Rios
et al. (2013).
Landmark points are points that would remain stable across
deformations. They can be corners, T-junctions, or points of
high curvature. For example, when a rectangular sponge is
pushed, its corners will still be corners after the deformation,
while the point of contact with the external force will become
a point of high curvature during the process and will remain
as such; these are all stable points. In particular, landmark
points can correspond to control points of splines (Blake et al.,
1998). Methods for further processing, such as the application
of deformations, can work more efficiently if they focus only
(or mainly) on landmark points rather than on the whole
representation (Cootes and Taylor, 2004).
Particles are idealized zero-dimensional dots. Their positions
are specified as a vector function parameterized by time, P(t).
They can store a set of attributes, such as mass, temperature,
shape (for visualization purposes), age, lifetime, and so on.
These attributes influence the dynamical behavior of the
particles over time and are subject to change due to procedural
stochastic processes. The particles can pass through three
different phases during their lifetime: generation, dynamics,
and death. However, manipulating them and maintaining
constraints, such as boundaries between them can become
non-trivial. For this reason, particles are used mainly to
represent gases or visual effects in animations, where the
interaction between them is very limited (Nealen et al., 2006).
Clouds of points are formed by large collections of
coordinates that belong on a surface. They are frequently
obtained from 3D scanned data and may include the color
of each point. A typical problem consists in reconstructing
3D surfaces from such clouds (Newcombe and Davison,
2010; Makovetskii et al., 2020). Cretu et al. (2009) gives
a comparative review of several methods for efficiently

3The curvature of a function is defined as κ =
dφ
ds

where φ is the tangential angle,

with tanφ =
dy
dx
, and s is the arc length as defined earlier.

processing clouds of points and introduces the use of self-
organizing neural gas networks for this purpose. Clouds of
points can be structured and enriched with orientations of the
3D normals, as well as other feature descriptors for perceptual
applications (Martínez et al., 2019).

3. REPRESENTING DYNAMICS FOR
DEFORMABLE OBJECTS

After an object’s shape is defined as described in section 2, a
suitable model of the dynamics can be used to register and predict
deformations as a robot interacts with the object (Figures 1ii,iii).
In this section, we introduce some of the most commonly used
models from different fields (e.g., computer graphics; see Gibson
and Mirtich, 1997; Nealen et al., 2006; Moore and Molloy, 2007;
Bender et al., 2014) for predicting the dynamics of deformable
objects. In robotics, the important features used to select an
appropriate model are computational complexity (e.g., for real-
time perception and manipulation), physical accuracy or visual
plausibility, and simplicity or intuitiveness (i.e., the ability to
implement simple cases easily and to be built on iteratively to
accommodate more complex cases). Therefore, we divide the
models into three classes: (1) particle-based models, which are
usually computationally efficient and intuitive but physically
not very accurate; (2) constitutive models, which are physically
accurate but computationally complex and not very intuitive;
and (3) approximations of constitutive models, which aim to
decrease the computational complexity of constitutive models
through approximations.

3.1. Background Knowledge of
Deformation
First, we briefly review some background information about the
physics and dynamics of deformation. Initially, the object is in
a rest shape S0. In the discrete case it could be S0 = {p0i =

{x0i , y
0
i , z

0
i } ∈ R

n=3, i ∈ N} where N is the number of points
constituting the shape of the object. Then, when an external
force fext acts on the object, such as gravitational force or force
applied by a manipulator, the object deforms and its points move
to a new position pnew. In physics-based models, the resulting
deformation is typically defined using a displacement vector field
u = pnew − p0. From this displacement, the deformation can be
computed through the stress σ (i.e., the force applied per area of
the object shape) and the strain ǫ (i.e., the ratio of deformation to
the original size of the object shape). The stress tensor σ is usually
calculated for each point on the object shape using Hooke’s law,
σ = Eǫ, where ǫ can be calculated as ǫ = 1

2 (∇u+∇uT) with ∇u

denoting the spatial derivative of the displacement field,

∇u =





∂ux/∂x ∂ux/∂y ∂ux/∂z
∂uy/∂x ∂uy/∂y ∂uy/∂z
∂uz/∂x ∂uz/∂y ∂uy/∂z



 ; (12)

E is a tensor that is dependent on the real physical material
properties of the object, such as Young’s modulus E and Poisson’s
ratio υ . These properties are parameters in constitutive models

Frontiers in Robotics and AI | www.frontiersin.org 9 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 5 | (A) A simple circular deformable object represented in 2D with N = 7 particles in the particle system; the particles are in static equilibrium (initial rest

state). (B) When the distance r between the particles i and j increases, new forces exerted on i are calculated and the particles move. (C) A mass-spring model of a

simple cubic deformable object with N = 8 particles in 3D; the particles are connected with structural and shear springs that enable the object to resist longitudinal

and shear deformations. (D) In Nurnberger et al. (1998), the neurons of a recurrent neural network represent the mass nodes (light blue) and springs (gray) of a

mass-spring model; the activation functions between the neurons of the network were devised to reproduce the mass-spring system equations.

(e.g., finite element models). Constitutive models describe strain-
stress relationships as the response of materials (e.g., elastic
or plastic) to different loads (e.g., forces applied) based on
the material properties; they are commonly used to simulate
deformation because of their high physical accuracy.

To simulate the dynamical behavior of deformation over time,
Newton’s second law of motion is employed. Let pti be the
position of particle i at time t:

vti = ṗti , ati = v̇ti , mia
t
i = fext

t
i , (13)

where mi, fext
t
i ∈ R

3, ati ∈ R
3, and vt ∈ R

3 are respectively
the mass, external forces, acceleration, and velocity at time t,

and ṗti =
(pt+1t

i −pti)

1t and v̇ti =
(vt+1t

i −vti)

1t are first-order time
derivatives of the position and velocity, respectively, which are
approximated using finite differences. Then, according to these
derivative approximations, in each time step 1t the points
move according to a time integration scheme. The simplest such
scheme is explicit Euler integration:

pt+1t
i = pti + vti1t, (14)

vt+1t
i = vt +

1

m
fexti1t, (15)

where vti and pti are the velocity and position of point i at time t.
We remark that explicit Euler integration can cause problems,
such as unrealistic deformation behavior (e.g., overshooting).
There are other more stable integration schemes (e.g., implicit
integration, Verlet, Runge-Kutta; see Hauth et al., 2003) that can
be used.

Such a dynamical model can be represented simply as
G(S0, fext, θ), where input to the model G includes the initial
state of points p0 ∈ S0 of the object and the external forces
fext; θ represents model parameters that could be related to
material properties (e.g., E, υ), as in constitutive models, to

simulate desired deformations. Then, within G, the deformation
is computed and the points pt are iterated to time state t using an
integration scheme, such as (14) and (15).

3.2. Particle-Based Models
3.2.1. Particle Systems
In a particle system, a solid object shape S is represented as a
collection of N particles (see section 2.4). These particles are
initially in an equilibrium position, p0i = {x0i , y

0
i , z

0
i } ∈ R

3,
which can be regarded as the initial coordinates of each particle
i ∈ {1, . . . ,N} (Figure 5A). When an external force is applied,
the object deforms and the particles move to new coordinates
pti based on physics laws, in particular Newton’s second law of
motion (13), according to a time integration scheme, such as (14)
and (15) (Figure 5B).

Although particles are usually used to model objects, such
as clouds or liquids, there are also particle frameworks for
simulation of solids. These frameworks are based on so-called
dynamically coupled particles that represent the volume of an
object (Tonnesen and Terzopoulos, 2000). The advantage of
particle systems is their simplicity, which allows simulation of
a huge number of particles to represent complex scenes. A
disadvantage of particle systems is that the surface is not explicitly
defined. Therefore, maintaining the initial shape of the deforming
object is difficult, and this can be problematic for applications,
such as tracking the return of elastic objects to their original
shape after deformation during robotic manipulation. Hence, for
objects that are supposed to maintain a given structure, particle-
based models with fixed particle couplings are more appropriate,
such as models that employ meshes for shape representation.

3.2.2. Mass-Spring Systems
Mass-spring (MS) models use meshes for shape representation
(see section 2.4). In such a model N particles are connected by
a network of springs (Figure 5C). As in particle systems, particle
motion is simulated using Newton’s second law of motion (13).

Frontiers in Robotics and AI | www.frontiersin.org 10 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

However, there are other forces between the connected particles,
say i and j, that affect their motion, in particular the spring force

fs(pi) = ks(|(pj − pi)| − lij)
(pj−pi)

|(pj−pi)|
, where ks is the spring’s

stiffness and lij is the rest length of the spring, and the damping
force fd(p) = kd(vj − vi) of the spring, where kd is the damping
coefficient. Then, the equation of motion (13) becomes

miai = fext(pi)+ fd(pi)+ fs(pi). (16)

For the entire particle system, this can be expressed in matrix
form as

Ma+Dv+ Ku = fext, (17)

where M ∈ R
3N×3N , D ∈ R

3N×3N , and K ∈ R
3N×3N are a

diagonal mass matrix, a diagonal damping matrix, and a stiffness
matrix for n = 3 dimensions. The MS system can be represented
as a model GMS(S0, fext, θ), where input to GMS consists of the
initial state of the mesh shape p0 ∈ S0, the external forces fext,
and the model parameters θ = {ks, kd}, which can be changed
(tuned) to determine object deformability.

MS systems are a widely used type of physics-based
model for predicting and tracking object states during robotic
manipulation, since they are intuitive and computationally
efficient (Schulman et al., 2013). However, the spring constants
are difficult to tune according to the material properties to
obtain the desired deformation behavior. One way to overcome
this tuning problem is to use learning algorithms and reference
solutions (Bianchi et al., 2004; Morris and Salisbury, 2008;
Arriola-Rios and Wyatt, 2017). Another disadvantage of MS
models is that they cannot directly simulate volumetric effects,
such as volume conservation in its basic formulation. To simulate
such effects, Teschner et al. (2004) introduced additional energy
formulations. Also, the behavior of an MS model is affected
by the directions in which the springs are placed; to deal
with this issue, Bourguignon and Cani (2000) added virtual
springs to compensate for this effect. In addition, Xu et al.
(2018) proposed a new method by introducing extra elastic
forces into the traditional MS model to integrate more complex

mechanical behaviors, such as viscoelasticity, non-linearity,
and incompressibility.

3.2.3. Neural Networks
Nurnberger et al. (1998) designed a method for controlling the
dynamics of an MS model using a recurrent neural network
(NN). Different types of neurons are used to represent the
positions p, velocities v, and accelerations a of the mass points
(nodes) and the springs (spring nodes) of the mesh shape S

(Figure 5D). The differential equations governing the behavior
of the MS system are codified in the structure of the network.
The spring functions are used as activation functions for the
corresponding neurons. The whole system poses the simulation
as a problem of minimization of energy. The information is
propagated to the neurons in stages, starting from themass points
where the applied force is greatest, and an equilibrium point
must be reached to obtain the new configuration of the nodes
at each time t. The training is carried out with gradient descent
(backpropagation) for the NN. In addition, Zhang et al. (2019)
employed a convolutional neural network (CNN) to model
propagation of mechanical load using the Poisson equation
rather than an MS model.

The advantage of using an NN to control deformation
is the method’s flexibility, such as being able to modify the
network structure during simulation (e.g., by removing springs
as in Nurnberger et al., 1998) and simulate large deformations
efficiently (e.g., Zhang et al., 2019).

3.2.4. Position-Based Dynamics
Particle systems and MS models are force-based models where,
based on given forces, the velocities and positions of particles are
determined by a time integration scheme. In contrast, position-
based dynamics (PBD) models compute the positions directly by
applying geometrical constraints in each simulation step. PBD
methods can be used for various purposes, such as simulating
liquids, gases, and melting or visco-elastic objects undergoing
topological changes (Bender et al., 2014). Here we focus on a
special PBD method, called meshless shape matching (MSM; see
Müller et al., 2005), that is used to simulate volumetric solid
objects while preserving their topological shape.

FIGURE 6 | (A) Meshless shape matching applied to a simple object consisting of N = 4 particles. (B).1 The method estimates the optimal linear transformation A

that allows the particles to move to the actual deformed positions p with respect to the rest state p0, as in (C). (B).2 Then A is decomposed into a rotational (rigid) part

R and a symmetric (deformation) part S. (B).3 The R transformation is used to simulate rigid motion; to simulate deformation, A and R are combined using a

parameter, β.

Frontiers in Robotics and AI | www.frontiersin.org 11 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

In MSM, as in particle systems, an object is represented
by a set of N particles without any connectivity (Figure 6A).
Since there is no connectivity information between the particles,
when they are disturbed by external forces (Figure 6B) they
tend to adopt a configuration that does not respect the original
shape p0 of the object. We call this disturbed configuration the
intermediate deformed shape, p̄i = pt−1

i + v̄ti1t, where v̄i =

vt−1
i + fext

1t
mi
. MSM calculates an optimal linear transformation,

A = (
∑

imiriqi)(
∑

imiqiqi)
−1, between the initial shape p0 and

the intermediate deformed shape p̄ that allows preservation of
the original shape of the object; here ri = p̄i − c̄ and qi =

p0i − c0, with c = 1
∑N

i mi

∑N
i mipi being the center of mass of

the object (Figure 6B.1–3). Then, the linear transformation A is
separated into rotational and symmetric parts: A = RS where R
represents rigid behavior and S represents deformable behavior.
Hence, to simulate rigid behavior, the goal (actual) position of the
particles is

pi = Rqi + t (18)

where t = c is the translation of the object. If the object is
deformable, then S is also included and the goal position is

pi = (R((1− β)I− βS))qi + t

= ((1− β)R+ βA)qi + t,
(19)

where β is a control parameter that determines the degree of
deformation coming from the S matrix. If β = 0, (19) becomes
(18). If β approaches 1, then the range of deformation increases.
Subsequently, using the following integration scheme, the new
position and velocity at time t are updated:

pti = p̄i + α(pi − p̄i), (20)

vti = (pti − pt−1
i)/1t, (21)

where α affects the stiffness of the model (similar to the
MS model) and determines the speed of convergence of the
intermediate positions to the goal positions. In simplest form this

model can be represented as GMSM(S0, fext, θ), where input to the
model GMSM consists of the initial state S0, external forces fext,
and model parameters θ = {β ,α}, which can be tuned to decide
the range of deformability and stiffness of the model.

The main advantages of PBD methods are their simplicity,
computational and memory-wise (i.e., not needing a mesh
model) efficiency, and scalability owing to their particle-based
parallel nature. Also, they are able to calculate more visually
plausible deformations than MS models. Hence, they have been
used in a wide range of interactive graphical applications (Tian
et al., 2013; Macklin et al., 2014), particularly for modeling
the deformation of human body parts (Zhu et al., 2008;
Sidorov and Marshall, 2014; Romeo et al., 2020), and robotic
manipulation tasks (Caccamo et al., 2016; Guler et al., 2017).
A disadvantage of PBD methods is that they simulate physical
deformation less accurately than constitutive models, since they
are geometrically motivated.

3.3. Constitutive Models
To simulate more physically accurate deformations, constitutive
models, which incorporate real physical material properties,
are used. In this subsection, we start by introducing
the most commonly used constitutive models, namely
finite element models, and then briefly mention other
models that simplify finite element models to increase
computational efficiency.

3.3.1. Finite Element Method
The finite element method (FEM) aims to approximate the true
physical behavior of a deformable object by dividing its body into
smaller and simpler parts called finite elements. These elements
are connected through N nodes that make up an irregular grid
mesh (Figure 7A). Thus, instead of particles, we work with
node displacements. Themesh deformation is calculated through
the displacement vector field u. For simulation, an equation of
motion similar to (17) is used for an entire mesh. Usually, to
decrease the computational complexity, the dynamical parts of
the equation are skipped and the deformation is calculated for a
static state in equilibrium (a = v = 0). Then, the relationship

FIGURE 7 | (A) An irregular grid as the mesh of a cubic deformed object in 3D using the finite element method (left) and an element e of the mesh with its Ne = 4

nodes (right); the arrows show the displacement fields u1 = {u1,x , u1,y , u1,z} at node i = 1, and ue is the nodal displacement vector of the element e. (B) An element

with node j and forces applied on three adjacent faces in the finite volume model. (C) A regular discrete mesh to be used in calculations of the finite difference method.

Frontiers in Robotics and AI | www.frontiersin.org 12 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

between a finite element e and its Ne nodes (e.g., Ne = 4 for a
tetrahedron as in Figure 7A) can be expressed as

Keue = fe (22)

where fe ∈ R
3×Ne contains the Ne nodal forces, ue ∈ R

3×Ne

is the displacement of an element between the actual and the
deformed positions, and Ke ∈ R

3Ne×3Ne is the stiffness matrix of
the element. The stiffness matrices of the different elements are
assembled into a single matrix K ∈ R

3N×3N for an entire mesh
with N nodes:

K =
∑

e

Ke, (23)

Ku = f. (24)

The matrixK relies on the nodal displacement u ∈ R
3×N and the

constitutive material properties (e.g., E and υ) to compute the
nodal forces f ∈ R

3×N of the entire mesh. Therefore, this huge
matrix K should be calculated at every time step t.

The FEM can be represented as a model GFEM(S0, fext, θ),
which takes as input the initial state S0, external forces fext, and
constitutive model parameters θ , such as E and υ . Then, within
model GFEM, the new positions and velocities of the nodes are
updated using a time integration scheme, such as (14) and (15).

The FEM can produce physically realistic simulations and
model complex deformed configurations. Owing to these
properties, FEM models have been used in many robotics
applications, such as tracking (Essa et al., 1992; Petit et al.,
2018; Sengupta et al., 2019) and planning manipulation around
deformable objects (Frank et al., 2014). However, they can have a
heavy computational burden due to re-evaluating K at each time
step. This can be avoided by using linear FEM models where K
in (24) stays constant4. The drawback is that this assumption
limits the model to simulating only small deformations. Other
methods that can decrease computational complexity, such as
co-rotational FEM (Müller and Gross, 2004), can also be used.

3.3.2. Finite Volume Method
In the finite volume method (FVM), instead of calculating the
nodal forces of the mesh shape S individually as in FEM, the
force per unit area with respect to a certain plane orientation
is calculated. This is done by using the constitutive law for the
computation of the stress tensor σ (section 3.1). Then, the total
force acting on face i of a finite element can be calculated using
the formula

fAi = Aiσni (25)

where Ai is a scalar representing the area of face i and ni is its
normal vector. To calculate the nodal forces, the forces of surfaces
adjacent to node j are summed and distributed evenly to each
node (Teran et al., 2003; see Figure 7B):

fj = −
1

n
(fA1 + fA2 + fA3). (26)

4For a detailed tutorial on how to efficiently compute the K matrix, we direct the

reader to the notes of Müller et al. (2008).

The FVM model can be represented as GFVM(S0, fext, θ), which
takes as input the initial state S0, in which areas A and normals
n can be calculated, the external forces fext, and the constitutive
model parameters E and υ . Then, within model GFVM, the new
positions p of nodes of S0 are updated at each time step t using
a time integration scheme. Since this method is computationally
more efficient than the FEM, it has been used in many computer
graphics applications (Barth et al., 2018; Cardiff and Demirdžić,
2018). However, it restricts the types of deformation that can be
simulated, such as the deformation of irregular meshes.

3.3.3. Finite Difference Method
In the finite difference method (FDM), the volume of the object
is defined as a regular M × N × P discrete mesh of nodes with
horizontal, vertical, and stacked inter-node spacings h1, h2, and
h3, respectively (Figure 7C). The nodes are indexed as [m, n, p]
where 1 ≤ m ≤ M (parallel to the x-axis), 1 ≤ n ≤ N
(parallel to the y-axis), and 1 ≤ p ≤ P (parallel to the z-axis),
and pm,n,p ∈ R

3 is the position of the node in 3D space. The
object is deformed when an external force is applied. To calculate
the nodal forces, a displacement vector u should be calculated
using spatial derivatives. This is done by defining finite difference
operators between the new node positions in the deformed mesh.
For example, for pm,n,p the first-order finite difference operator
along the x-axis can be defined as dx(pm,n,p) = (pm+1,n,p −

pm,n,p)/h1. Using the finite difference operators, the nodal forces
are calculated and the deformation of the object can be computed
as in the FEM (section 3.3.1).

The FDM is one of the alternative methods suggested
for decreasing the computational complexity of the FEM
(Terzopoulos et al., 1987). A disadvantage of this method is that
it is more difficult to approximate the boundaries of objects using
a regular grid for the mesh (Nealen et al., 2006), and hence the
accuracy is decreased.

3.3.4. Boundary Element Method
The boundary element method (BEM) computes the
deformation of S by calculating the equation of motion
(17) over a surface rather than over a volume as in the FEM.
The boundary (surface) S is discretized into a set of N non-
overlapping elements (e.g., mesh elements) e, whose node
coordinates pi, i = 1, . . . ,N, are the centroids of the elements.
These elements represent displacements and tractions, and Su

and Sr are surface parts where the displacement and traction
boundary conditions are defined, respectively.

The BEM provides a significant speedup compared to the
FEM because it requires fewer nodes and elements. However, it
only works for objects whose interior consists of homogeneous
material. It has been used in the ArtDefo System (James and Pai,
1999) to simulate volumetric models in real-time. Also, it has
been used to improve tracking accuracy against occlusions and
spurious edges in (Greminger and Nelson, 2008).

3.3.5. Long Elements Method
In the long elements method (LEM), a solid object is considered
to be filled with incompressible fluid as in biological tissues. The
volume of object shape S is discretized into Cartesianmeshes (i.e.,

Frontiers in Robotics and AI | www.frontiersin.org 13 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 8 | (A) In the boundary element method, the deformable object’s shape S is discretized into a set of elements e; S is disturbed by a force that displaces the

centroid node coordinates p, and the deformation is calculated based on the displacement and traction boundary conditions defined on Su and Sr , respectively. (B) A

virtual object discretized as Cartesian meshes according to the long elements method. Here, for the sake of simplicity, we show a 2D object with only two axes (i and

j). On the left and right figures are meshes of the object discretized with long elements Li and Lj parallel to the i and j axes, respectively. External pressure is applied at

a particular point on the surface of the object, and the resulting force f on the particle (red dot) is calculated using the deformations 1li of long elements crossing

the particle.

one mesh for each axis), and each mesh contains long elements
(LEs) e ∈ {1, . . . ,Ni}, where Ni is the number of elements
in the mesh shape Si discretized parallel to axis i (Figure 8B).
The crossings of the LEs of the different axes define cells, each
of which contains a particle. By calculating the state of these
particles (e.g., position p and velocity v), the deformation of the
object is simulated.

The state of each particle is calculated using the laws of fluid
mechanics (e.g., Pascal’s law). Then, a system of linear equations
for each e that fills the object volume is created. By solving
this system of equations by numerical methods, the deformation
of e, 1li, is calculated. From 1li the forces occurring due to
deformation are computed. Here, the LE is regarded as a spring
attached to a particle with known mass. As an example, in
Figure 8B, pressure is applied to an object. As a result of this
pressure, a force fi acts on the particle along the ith axis and is
calculated using the displacements of the crossing LEs attached
to the particle:

fi = kLi (1li − 1li′)+ kLj (1lj − 1lj′) (27)

where k is the spring constant. Therefore, an LEM model
can be represented as GLEM(Si, Sj, fext, θ), which takes as input
meshes of axes i and j for 2D space, external forces fext, and
model parameters, such as spring constants that determine
object deformability. Subsequently, the force obtained is used
to calculate the velocities and positions of the particles along
each axis.

The LEM was developed for modeling soft tissues, especially
for surgical simulation (Balaniuk and Salisbury, 2002). It uses
a smaller number of elements than tetrahedral (e.g., FEM)
and cubic (e.g., FD) meshing, so the computational complexity
of the model is reduced as well. It is therefore capable
of interactive real-time soft tissue simulation for haptic and
graphic applications, such as robotic surgery. However, it
provides only an approximation of real physical deformation

and so presents a trade-off between physical accuracy and
computational efficiency.

3.4. Approximations of Constitutive Models
3.4.1. Modal Analysis
What makes constitutive models, such as the FEM expensive is
calculation of the motion with large matrices M, D, and K in
Equation (17); for example, with N = 20 nodal points of a mesh
shape p = (x, y, z), the calculation would involve three matrices
of size 60 × 60. Pentland and Williams (1989) proposed a way
of reducing this computational complexity based on a method
called modal analysis. Modal analysis is used for identifying an
object’s vibrational modes (Figure 9A) by decoupling (17). This
is done by using linear algebraic formulations (Nealen et al.,
2006). Below, we outline the steps of modal analysis using these
formulations, while skipping the detailed derivations.

First, the matrices are diagonalized by solving the following
eigenvalue problem (i.e., whitening transition):

M83 = K8, (28)

where 3 and 8 are matrices containing the eigenvalues and
eigenvectors of MK−1. Then, the eigenvectors of 8 are used to
transform the displacement vector u:

u = 8q. (29)

By substituting (29) into (17) and multiplying by 8T , the
following system of equations is constructed:

8TM8q̈+ 8TD8q̇+ 8TK8q = 8Tfext, (30)

∇Mq̈+ ∇Dq̇+ ∇Kq = ∇fext, (31)

where∇M,∇D, and∇K are all diagonal matrices. This generates
3N independent equations of motion for the modes:

∇Miq̈i + ∇Diq̇i + ∇Kiqi = ∇fexti. (32)

Frontiers in Robotics and AI | www.frontiersin.org 14 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 9 | (A) A simple 2D rectangular object in different deformation modes in modal analysis: the upper shape is a deformation mode in response to compression,

and the middle and lower shapes are deformation modes in response to bending forces from different directions. (B) Active contour S(u) controlled by external (Eext)

and shape (Eshape) energies that attract or repel according to the shape of the object (e.g., in an image); as the object deforms, the position of S(u) is updated iteratively.

Then, (32) can be solved analytically for qi to compute the
motion of each mode i ∈ {1, 2, . . . ,N}. The matrix 8 contains
a different mode shape in each of its columns (Figure 9A), i.e.,
8 = [81,82, . . . ,8N]. Hence, by analyzing the eigenvalues in
3, high-frequency modes in 8 can be eliminated so that only the
most dominant modes are updated using (32). This reduces the
number of equations in (32) and hence lowers the computational
cost significantly.

In modal analysis, as in constitutive models, taking K to be
constant can increase the computational efficiency. However,
this assumption is valid only when simulating small linear
deformations and leads to errors when dynamically simulating
large deformations. To overcome this problem, some methods
use different formulations of the strain tensor (e.g., the Green
strain as in Barbič and James, 2005) to enable simulation of larger
non-linear deformations (An et al., 2008; Pan and Manocha,
2018), or adopt more data-driven approaches (e.g., by employing
CNNs as in Fulton et al., 2019).

3.4.2. Active Contours
Active contour (AC) models are approximations of constitutive
models, such as the FEM. They were first introduced by Kass et al.
(1988) in the form of the snakes model. In their simplest form
they can be described as a function of a spline shape (section
2.2.1), S(u) ∈ R

n for u ∈ [0, 1], in an n-dimensional space,
for example S(u) = {x(u), y(u)} ∈ R

2 in an image I :R2 → R

(Figure 9B). This spline is fitted to the shape of an object in the
image by minimizing the following energy formulation:

Esnake =

∫ 1

0
Eext(S(u))+ Eshape(S(u)) du. (33)

Here Eext depends on the contour position with respect to an
attractor function f :

Eext = f (S(u)), (34)

where in the n = 2 case the f (x, y) function could be the image
intensity I(x, y), which would attract the snake to the brightest
regions, or an edge detector, which would attract the snake to the
edges (Moore and Molloy, 2007).

In (33), Eshape is the internal energy of the contour, which
depends on the shape of the contour:

Eshape = α(n)|S′(u)2| + β(i)|S′′(u)|2. (35)

The first-order derivative |S′(u)2| controls the length of the
contour, and the goal is to minimize the total length. The second-
order derivative |S′′(u)|2 controls the smoothness of the contour;
this term enables the contour to resist stretching or bending
by external forces due to f (S′(u)) and is used to regularize the
contour. The weight parameters α and β determine elasticity and
rigidity, respectively.

The energy Esnake can be discretized intoN parts as si(u) where
the ui = ih, for i ∈ {1, . . . ,N}, are knots and h = 1

N :

E∗snake =

N
∑

i = 1

Eext(si(u))+ Eshape(si(u)). (36)

Then, from the discretization, the derivatives in Eshape can be
approximated using finite difference operators:

Eshape(i) = αi
|s(ui)− si−1(u)|

2

2h2
+βi

|si−1(u)− 2si(u)+ si+1(u)|
2

2h4
.

(37)
To find the contour that minimizes the total energy, E∗

snake
is

minimized. The resulting expression is then put into matrix form
and used to update the position of the contour iteratively in time
by using a time integration scheme as demonstrated in Kass et al.
(1988). To represent anAC in 3D, some additional parameters are
included in the shape energy formulation: the elasticity parameter

Frontiers in Robotics and AI | www.frontiersin.org 15 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 10 | The general schema for learning: (A) A type of model and ground truth are selected, such as 2D images used as ground truth to calibrate a mass-spring

model. (B) If the model’s parameters have not been calibrated correctly, there will be a difference between the observed ground truth and the simulation; the observed

ground truth is shown in red, the simulation in blue, and their intersection in yellow. (C) When the model is properly calibrated, it should be able to predict the behavior

of the object if given the corresponding interaction parameters, such as external forces (e.g., contact forces of the manipulator) or geometric constraints (e.g., not

crossing the floor).

β is defined along the third axis as well, and an extra parameter is
added to control the resistance to twisting (Ahlberg, 1996).

AC models have been widely used, especially in medical
imaging, for motion tracking and shape registration tasks
(Williams and Shah, 1992; Leventon et al., 2000; Das and
Banerjee, 2004), and they can also be combined with constitutive
models to achieve greater physical accuracy (Luo and Nelson,
2001). The main disadvantage of ACmodels is their reliance on a
good initialization of the snake contour near the desired shape in
the image. To overcome this drawback, attractor functions other
than image intensity, such as edge maps, have been proposed in
recent years (e.g., Nisirat, 2019).

This concludes our tutorial-style description of models to
provide some technical grounding in the basic mathematical
approaches to deformable object modeling. The content of
sections 4 (learning and estimation) and 5 (planning and control)
builds on the models we have described. These sections are
written in the form of broad surveys, as there is such a wide range
of different approaches that we cannot cover them all in depth.

4. LEARNING AND ESTIMATION OF
MODEL PARAMETERS

In the previous sections, we introduced computational models of
deformable objects that have numerous applications. However,
for the models to be useful, several parameters must be
known beforehand (Figure 1vi), so these models should be
calibrated carefully. In this section we give an overview of some
representative cases of applying various learning algorithms,
which canmake the calibration process autonomous (Figure 10).
The methods we review can be grouped into three types of
strategies: (a) estimating parameters directly, which is rarely
feasible (section 4.1); (b) calibrating known physics-based
models, G, automatically by allowing the robot to take some
measurements that will help to determine the values of model
parameters, θ (section 4.2.2); and (c) approximating new
functions that describe the dynamics, as is done with neural
networks (section 4.2.4).

4.1. Direct Estimation
For some models, it is possible to derive a formula to directly
calculate the parameters. For example, Gelder (1998) obtained a
formula for the parameter ks of an MS model (section 3.2.2) in
a static state, where the materials are non-uniform but isotropic.
An isotropic material is a material whose local deformation in
response to force is independent of the direction in which the
force is applied. However, in a non-uniformmaterial the response
varies with the position where the force is applied. For 3D
tetrahedral meshes, the spring constant ks can be obtained from
the formula

ks =
E

∑

e Ve

|c|2
(38)

where the sum is over the volume Ve of a triangular element e of
a 3D mesh shape S0 on its edge c. Young’s modulus, E, is chosen
empirically to give the desired amount of elasticity.

Direct estimation is a computationally efficient method.
However, often it is not possible to do such calculations for
models that rely on complex constitutive material laws as in
the FEM.

4.2. Minimizing Error
This group of methods relies on the definition of an error
function Err(pθ , p̂) = dist(pθ , p̂) that measures the difference
(e.g., Euclidean distance) between the deformation of some
ground truth p̂ and the simulated virtual deformable object
position pθ ∈ G(S0, fext, pc, θ), where pc is the point of
contact. The ground truth p̂ can be obtained from camera
observations of a real-world deformable object or from another,
more reliable, simulation, usually an FEM simulation. Then, pθ ∈

S
θ is simulated with various θ values and the same interaction
parameters as in the ground truth observations, such as the
contact forces fext and positions pc ∈ S

θ of the manipulator
or geometric constraints (boundary conditions) like the object
not crossing the bottom surface. The objective of the learning
algorithm is to find a set of parameters θ for the model G
that minimizes the error function Err(pθ , p̂) with the given
interaction parameters.

Frontiers in Robotics and AI | www.frontiersin.org 16 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

Error minimization methods are usually successful at
calibrating models that are difficult to tune, such as non-
constitutive models (e.g., MS models) for which there is no direct
link between the model parameters (e.g., ks) and the material
properties (e.g., E and υ). However, they require the simulations
to be run multiple times with different parameter values, which
can be computationally expensive. Therefore, most of the time,
offline estimation is performed (e.g., Leizea et al., 2017). Thus,
these methods are not adaptable for online or for more dynamic
deformable object manipulations. Also, in cases where the error
function is not exactly convex, the algorithm may get stuck at a
local minimum and result in deformations that are physically not
very accurate or visually implausible.

4.2.1. Exhaustive Searches
Guler et al. (2015) used exhaustive search to obtain the β value
for the MSM model (section 3.2.4) GMSM(S0, fext, pc,β ,α). This
parameter determines the degree of deformability of a material.
Camera images of real-world objects are used as the ground truth,
with p̂ being the points detected on the surface of the object shape
in the images. For β , uniform samples are taken from the interval
[0, 1], and the deformed shape Sβ is simulated for these different
β values with the corresponding interaction parameters (e.g., fext
and pc ∈ Sβ) coming from ground truth observations. The β

value that gives the minimum error between pβ ∈ Sβ and p̂ is
selected as the deformation parameter that represents the ground
truth deformation in the best way:

min
β

Err(pβ , p̂). (39)

4.2.2. Iterative Methods
Iterative methods try to decrease Err(p, p̂) by moving the
parameters step by step through the error function space.
Techniques that help to ease the finding of the global minimum,
such as gradient descent and simulated annealing, are frequently
used to minimize the error of the model G(S0, fext, pc, θ)
being calibrated.

For example, Frank et al. (2014) used gradient descent to find
the E and υ values required by an FEM model (section 3.3.1)
GFEM(S0, fext, pc,E, υ). The applied forces fext are measured with
a sensor located in the robotic manipulator; pc is identified based
on the collision point of themanipulator and the object in camera
observations. Then, S0 is deformed according to these interaction
parameters. To evaluate the simulation, 3D point clouds obtained
from real objects through a depth camera are used as the ground
truth p̂ and compared with the simulated FEM mesh, pE,υ ∈

S
E,υ . Since the error function involves a computationally complex
FEM model, it is difficult to compute the gradient directly. It is
therefore approximated numerically by carrying out a sequence
of deformation simulations that fix the interaction parameters in
GFEM and vary E and υ . The model thus obtained is good enough
to be used for the planning of motion around deformable objects.

In contrast, Morris and Salisbury (2008) used simulated
annealing to automatically calibrate an MS model and a mesh
shape model based on Teschner’s linear, planar, and volumetric
spring energies (Teschner et al., 2004). An FEM simulation
is used as the ground truth p̂. The forces fext are applied at

vertices of a 3D mesh S
0 that represents the object, producing

deformations and resulting in a new state of static equilibrium
(in which the object does not move but its shape is deformed
under the influence of the forces). The objective is to reconstruct
the FEM result with the MS model. To obtain the right set of
parameters (e.g., ks), pools of sets of parameters are generated by
randomly assigning values to the parameters of the springs. The
simulations are run with these parameter sets, and those whose
behavior is unstable or which do not reach static equilibrium after
a certain number of steps are eliminated. For every surviving set,
an error function (e.g., Err(pks , p̂)) is defined, whichmeasures the
distance between the nodes in the FEM simulation and the same
nodes when displaced by MS simulation after a stable static state
has been reached. Simulated annealing is used to minimize this
error function.

4.2.3. Genetic Algorithms
Genetic and evolutive algorithms are optimization strategies
inspired by natural evolution. Combinations of elements (e.g.,
the spring stiffness ks of an MS model) that constitute solutions
to a defined problem (e.g., calibrating the MS model) are
codified as individuals in a population. A fitness or cost function,
such as Err(pks , p̂), is defined to evaluate the potential solution
represented by each individual; p̂ may come from an FEM
simulation (Bianchi et al., 2004) or from camera images of a
deforming object (Arriola-Rios and Wyatt, 2017). The objective
of the algorithm is to find the individuals with the highest fitness
value. To accomplish this, the population is evolved by means
of genetic operators, such as mutation and crossover. Mutation
applies random changes to each member of the population
with a certain probability (e.g., sampling new ks values from a
Gaussian distribution). Crossover creates offspring by selecting
genes from a pair of individuals and combining them into a
new one, also with a predefined probability (e.g., combining
some ks values sampled in the previous generation with newly
sampled values in the current generation). Different criteria can
be used to select which members of the population are passed
onto each new generation. Although genetic algorithms do not
guarantee convergence to the global optimum, local optima that
are attained can still be good approximations.

4.2.4. Neural Network Estimations
NNs can be used to estimate the parameters of different types
of models (e.g., shape models S or dynamics models G). An
NN is made up of several convolutional or fully connected
layers. The weights of the connections between layers enable
the observable parameters (e.g., the force fext applied by the
external manipulator to deform the object) to be mapped to an
output (e.g., the predicted deformed positions p ∈ S of points
constituting the shape of the object).

In several studies, Cretu et al. used neural gas networks to
segment and track the shape of deformed objects (Cretu et al.,
2010, 2012; Tawbe and Cretu, 2017). The shape of the object is
represented using a mesh and neural gas, which allows a more
adaptable representation (e.g., by increasing the resolution of the
mesh around the manipulator, which needs a higher accuracy
in the deformation computation, and decreasing the resolution

Frontiers in Robotics and AI | www.frontiersin.org 17 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

FIGURE 11 | A block schema representing connections between different elements of a complex architecture for robotic manipulation of 3D deformable objects,

namely modeling, perception, planning, simulation, and control. In this representation a cylindrical object and an anthropomorphic hand are taken as an example of a

practical application.

in the rest of the areas for computational efficiency). An NN
model is used to predict the positions of the nodal points of the
mesh p with respect to the applied force fext. The NN is trained
with data captured through force sensors and a depth camera.
There are also works in which an NN is used with an FEM
model to estimate parameters, such as E and υ and to predict
the deformed positions of nodal points of the mesh of an object
(e.g., Wang et al., 2018). The NN is trained offline using reference
deformations with known parameters obtained from an FEM
simulation and then used to predict online the deformation of
real-world objects observed through a depth camera.

The advantage of such methods is that NNs provide efficient
estimation similar to direct estimation, via an offline-trained NN
mapping the observed input (e.g., forces applied) to an output
(e.g., deformation). However, NNs require a lot of annotated
training data, which may not be available or possible to obtain
for every type of object that a robot might encounter.

4.3. Probabilistic Methods
In probabilistic approaches, usually one attempts to characterize
a posterior probability, such as p(p | p̂) or p(u | p̂). The posterior
probability represents the position p or the displacement u

of the deformed shape with the highest probability relative to
the erroneous (e.g., noisy or missing) observed deformation

p̂ coming from a sensor, such as a depth camera. Shape and
dynamics models are used to represent and calculate p or u. To
compute the posterior probability, methods, such as expectation
maximization (Schulman et al., 2013) or sampling techniques,
such as Markov chain Monte Carlo (Risholm et al., 2010)
are used.

5. MANIPULATION PLANNING AND
CONTROL

Accurate tracking and prediction of deformations, supported by
learning models, are needed to control the actively changing
shape and motion of objects during manipulation (Figure 1iv).
Active control of shape and motion consists of five main modules
(Figure 11). The core is (1) the modeling of deformation (i.e.,
shape representation, section 2) and dynamics (section 3) and
the estimation of parameters (section 4), which contributes to
(2) simulation, (3) planning, and (4) control, while receiving
input from (5) perception. Developing a system that can perform
precise information exchanges between all these modules is still
an open research problem.

Figure 11 shows an architecture for the control of deformable
objects inspired by the work of Ficuciello et al. (2018), in
which only some aspects of the manipulation problem are

Frontiers in Robotics and AI | www.frontiersin.org 18 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

addressed. In the schema, the example of an anthropomorphic
hand deforming a soft cylindrical object is considered. The
manipulation is based primarily on modeling the deformation,
with the model being refined and updated according to sensory
perception that involves touch and vision (connection 1 in
Figure 11). Then, based on the modeled shape S and dynamics
G, planning consists in establishing the points/areas on S

where concentrated/distributed external forces (called actuators)
must be exerted by an end-effector to obtain desired (target)
deformations. The choice of the points at which to exert the
forces and the intensity of the forces are established during
the planning phase, using G and a simulation that involves
G and the object behavior, and this information is sent to
the control (connection 3). Once the action is planned, the
control module makes sure that the desired actions are correctly
executed and that the expected deformations are achieved. To do
this, it is necessary to consider a closed-loop control in which
measurements of the state of the object and of the robot are used
to correct errors (connection 4). Finally, based on the result of
the action measured in the real world, a subsequent action can be
planned (connection 5).

By taking into account this ideal architecture, in this section
we survey the literature on robotic manipulation of deformable
objects and organize the topic into two main categories, planning
of object manipulation and control of deformation. The field
of deformable object manipulation is still at an early stage of
development. Therefore, as in Ficuciello et al. (2018), the works
we review in the following cover only some of the modules
depicted in Figures 1, 11 and do not describe a full system for
complex deformation control of 3D objects.

5.1. Planning Object Manipulation
Only recently has the robotics community begun to publish
results on manipulation of soft 3D objects. Most of the studies
on motion planning for deformable object manipulation relate
to deformable linear objects studied using mainly probabilistic
roadmaps (Holleman et al., 1998; Moll and Kavraki, 2004; Saha
and Isto, 2007) or deformable surgical tools and snake robots
(Anshelevich et al., 2000; Bayazit et al., 2002; Teschner et al., 2004;
Gayle et al., 2005). We identify two main bodies of work in the
literature, namely work on deformable robots interacting with
the environment and work on robots interacting with deformable
environments. A few works concern planning in a complex
deformable environment (Alterovitz et al., 2009; Maris et al.,
2010; Patil et al., 2011).

As evidenced by the two blocks at the top of Figure 11, path
planning for deformable object manipulation requires simulation
of deformation, either when the deformation is the goal or when
it is simply a side-effect of a planned action. In Jiménez (2012), a
survey of model-based, offline planning strategies for deformable
objects is presented and organized according to the type
of manipulation, namely motion planning, folding/unfolding,
topological modifications, and assembly. The paper is organized
based on the geometric and physical characteristics of the object
to be manipulated.

One of the methods adopting a model-based approach is that
of Das and Sarkar (2011). In their method, three actuators are

used to move the position of a point lying within the deformable
object toward a goal location (target deformation). First an
optimization technique, which minimizes the total force on the
object to plan the location of the actuation points, is applied,
and then a proportional-integral (PI) controller determines the
motions of the actuators. The method uses a spline-like shape
representation S (section 2.2.1) and an MS model (e.g., GMS) to
simulate the dynamics of the deformable object (section 3.2.2).

Li et al. (2016) also used a model-based approach. However,
rather than simulating the deformation using a dynamics model,
they used a database of deformed shapes S simulated by a
commercial physics simulator called Maya (Autodesk, INC.,
2019). A predictive model-driven approach is used to generate
a large number of instances that can be used for learning and
to optimize trajectories for manipulation of deformable objects,
so as to create a bridge between the simulated and real worlds.
Another work that uses a database approach is Mira et al. (2015),
but rather than shape models, their database contains previous
grasps, which are used by their grasp planner to determine
the contact points. The grasp planner was designed for flexible
objects that can be grasped by exploiting their inherent flexibility.
Due to similarities between the robot’s hand and the human hand,
the planner reproduces the action of the human hand.

A method for efficient planning of trajectories for interaction
with deformable objects that is closest to the ideal schema in
Figure 11 is that of Frank et al. (2014), which uses an FEMmodel
(GFEM, section 3.3.1) and a mesh representation (section 2.4).
First, the robot perceives the object through a depth camera and
the model S as a mesh. Then, it calibrates the model parameters
of GFEM with the gradient descent approach by estimating the
material properties (i.e., E and υ) through physical interaction
using a force sensor (section 4.2.2). However, to avoid time-
consuming computation of the FEM during online planning of
manipulation, an approximate, object-specific deformation cost
function is created by means of Gaussian process regression.

A few works are also available that study the problem of
finding the optimal contact location for handling a deformable
object. InWakamatsu et al. (1996), the concept of bounded force-
closure, which is an extension of the concept of force-closure, is
introduced, and stable grasping of deformable objects based on
the concept is analyzed. In Gopalakrishnan and Goldberg (2004),
a new framework for holding deformable parts is developed,
building on the well-established form-closure framework for
holding rigid parts. Deformable parts are modeled as linearly
elastic polygons with a triangular mesh in an FEM model
and a given stiffness matrix. New concepts, such as D-space
(deformation-space) and deform closure grasps are introduced
in that work, inspired by rigid-body grasp theory.

5.2. Control of Deformation
Works on deformation control mostly adopt one of two
approaches: model-based and real-time sensor-based.

5.2.1. Model-Based Deformation Control
The methods discussed in the following require a deformation
model of the target object. A simplified solution is often needed
in order to derive a real-time control policy for manipulation that

Frontiers in Robotics and AI | www.frontiersin.org 19 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

reduces the computational cost. In this direction, Smolen and
Patriciu (2009) introduced a model-based deformation control
algorithm that relies on non-linear elasticity. In their work, the
boundary of a deformable object is manipulated by defining a
set of control points on the object surface which must converge
to desired positions. In addition, Nanayakkara et al. (2016)
focus on maintaining a stable grip on a soft object. In their
study a soft object, which undergoes temporal variations in its
internal impedance, is presented. A control law is derived based
on a relaxed stability criterion, with the aim of maintaining a
stable grip on the object. The proposed controller uses only
three parameters to interpret the probability of failure, which is
estimated using a history of grip forces.

There are also methods that use constitutive models. In
Largilliere et al. (2015), the inverse solution of an FEM model
(e.g., GFEM) is used in the setting of soft robots that deform
by the actions of a certain number of actuators. The goal is
to generate proper actuator displacements so as to produce
desired object deformations by means of desired displacements
of selected control points. The desired actuator displacements
are computed from the real-time inverse solution of the FEM
equations, obtained by reducing the size of the constraint
problem. For this purpose, a set of control points on the object
is obtained using Lagrange multipliers. In Ficuciello et al. (2018),
this framework is adapted to perform an active deformation
control task with an anthropomorphic robot hand grasping a
soft object. The method relies onGFEM for real-time deformation
control during dexterous manipulation of the 3D soft object.
The goal is to generate proper forces at the fingertips during in-
hand manipulation, so as to produce desired displacements of
the selected control points on the object shape S2. The desired
motions of the fingers are computed in real-time as an inverse
solution of GFEM, with the forces applied (e.g., fext) by the
fingertips at the contact points pc being modeled by Lagrange
multipliers (section 3.3.1). The model parameters (e.g., E and υ

of GFEM) are initially estimated using a vision system and a force
sensor. Similarly, in Lin et al. (2015) an FEM formulation, GFEM,
is adopted to simulate the deformation of the object shape S based
on the displacement caused by the finger contacts (e.g., pc as the
contact points and fext as the force applied). The simulation is
used to check that the contact points do not slide while lifting
the object. In this way, it is possible to properly control the
motion of the fingers, so as to properly squeeze and lift the object.
Moreover, in Zaidi et al. (2017), an FEM simulation based on a
non-linear MS system is used to compute the deformation of an
object grasped by three fingers. The contact forces are computed
using the contact model based on the fingers’ positions and
velocities. After the contact forces are computed by simulation
of the contact model guaranteeing equilibrium of the grasp, they
are used as references for the grasping control strategy.

5.2.2. Real-Time Sensor-Based Deformation Control
Approaches that do not use anymodeling cannot predict whether
the desired object shape will be achieved, but they generally
have lower computational costs. Here we briefly review such
approaches that do not fully conform to our ideal schema
described in Figure 11 but do provide innovative and efficient

control strategies for deformable objects using only sensory
information. We divide them into two main categories, namely
vision-based and tactile-based control strategies.

In recent work, visual servoing has been demonstrated to be
a promising solution for accurate manipulation of deformation.
Inspired by Smolen and Patriciu (2009), Berenson (2013) present
a method of manipulating deformable objects that does not
require modeling and simulation of deformation. They use a
Jacobian-based method to drive the points within the deformable
object toward a set of targets, assuming that they are able to
sense the geometry of the object. Similar approaches are used in
Cherubini et al. (2020), Hirai et al. (2001), andWada et al. (2001).
These methods align points of interest on the deformable object
to targets, using a visual-servoing controller or a proportional-
integral-derivative (PID) controller.

In addition, a series of works by Navarro-Alarcon et al.
are based on a vision system (e.g., stereo vision) that tracks
specific control points on the object and directs motion of a
robotic manipulator to achieve a desired configuration (Navarro-
Alarcon and Liu, 2013; Navarro-Alarcon et al., 2014; Navarro-
Alarcon et al., 2016). In these papers, the deformation features
based on a set of control points for describing different types
of deformations are introduced for the first time. These features
constitute the principal innovation of the work, together with
the introduction of the deformation Jacobian. The deformation
Jacobian defines the relationship between the manipulator’s
motion and the deformation feature vector, and it is estimated
using Broyden’s method.

In contrast, Hu et al. (2019) follows the general framework of
visual servoing but combines it with a deep NN-based controller
to servo-control the position and shape of a deformable
object with unknown deformation properties. To describe the
deformable object’s deformation, a novel feature based on the fast
point feature histogram (FPFH) is directly extracted from the 3D
point cloud.

Apart from vision, the tactile sense is also widely used to
control the shape of deformable objects during manipulation.
For instance, recent work on sensor-based control by Delgado
et al. uses tactile control for in-hand manipulation of elastic
objects (Delgado et al., 2015; Delgado et al., 2017a,b). In their
work, they adapt contact forces to different elastic properties
of the object by estimating the deformability degree during the
grasping process using only tactile sensors. The deformability
degree can be a relative value between 0 and 1 (where 1 represents
no deformation) or a classification, such as rigid body, soft elastic
body, or soft plastic object, and it is related to the relationship
between finger position displacement and the applied forces after
the grasping process. Afterwards, contact points and forces are
regulated according to the tactile information.

6. DISCUSSION

Manipulating deformable objects presents more challenges than
manipulating rigid objects. Developing methods to specify
models that take into account the dynamics of shape change
is important for robotic manipulation. In this paper we have

Frontiers in Robotics and AI | www.frontiersin.org 20 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

introduced, using a combination of tutorial and review styles,
some of the methods for modeling deformation. We have
presented an ideal scenario for autonomous manipulation of
deformable objects, which is summarized in Figure 1. According
to this scenario, the problem consists of five main components.

6.1. Future Lines of Work
The five components of manipulating deformable objects still
need improvements in the areas of shape perception, dynamics
modeling, and planning/control of manipulation. Techniques
from outside of robotics can help with this.

6.1.1. Modeling Shape
In most state-of-the-art work, the representation of shape
deformation using various models is a missing aspect that
could bring in more information for controlling the shape
of the object. In this direction, the different shape models
described in section 2 that are not yet widely used in robotics
should be explored more. For instance, the level set method,
which is mostly used in medical imaging or human tracking,
could be developed further to include the temporal aspect of
deformation. Also, in many works, deformed object detection
and segmentation from the scene are done either by hand or
using simplistic color segmentation techniques (e.g., Hu et al.,
2019), which may not work for complex, cluttered scenes. Hence,
more autonomous methods should be investigated, such as the
deformable-templates method introduced in Ravishankar et al.
(2008), which is mostly used in medical imaging, or neural
network-based methods that have had success in many computer
vision problems, such as segmentation (Marcos et al., 2018; Chen
et al., 2019; Hatamizadeh et al., 2019).

6.1.2. Simultaneous Modeling, Learning, and Control
As described in sections 2 and 3, shape and dynamics models and
their various parameters need to be known in order to perceive,
track, and predict deformable behavior during manipulation.
Currently, for realistic and accurate computation of deformation
during planning and control, these models must be calibrated
or learned beforehand. We have mentioned some methods
for learning model parameters in section 4, but in most of
the planning and control strategies (section 5), these learning
techniques are applied in an offline setting because of their
computational complexity. However, offline calibration may not
be possible for every single object that a robot might encounter
during online manipulation in real-world settings. In contrast,
some control strategies do not rely on any modeling, and control
of the object shape is based only on sensory measurements
(e.g., Berenson, 2013), but such methods cannot predict whether
the desired object shape will be achieved (section 5.2.2). To
overcome this difficulty, manipulation could be controlled with a
combination of model-building to incrementally learn the shape
and dynamics of a previously unseen object—where the model
includes the object’s dynamics (e.g., force calculations and time
integration scheme for updating the position and velocity)—and
knowledge of properties, such as shape, mass, elasticity, etc.

In this direction, an interesting vein of work has started to
emerge in recent years that we would like to mention briefly
here: learning the physics of objects using deep NNs (Battaglia

et al., 2016; Ajay et al., 2018). Deep NN models are similar to
the NN dynamics models described in section 3.2.3 but are more
scalable; for example, they can be used to model interactions
between multiple objects in a single scene. We call these
methods deep learning-based dynamics models. An advantage
of these models is that they can learn directly from sensory
observations (e.g., images of the observed scene) with high
accuracy by virtue of their end-to-end differentiability, unlike
the more computationally expensive analytical dynamics models
in section 3, which are mostly too complex to differentiate.
However, deep learning-based models have two limitations. First,
most methods based on differentiable dynamicsmodels are tested
on limited scenarios with a few interacting rigid objects (e.g.,
balls colliding), which makes them difficult to generalize to
more complicated behaviors of deformable objects. There are
differentiable dynamics models that can learn more complex
deformable object behavior, as in Mrowca et al. (2018) and Li
et al. (2018); however, they may exhibit visually implausible
deformations, such as the loss of shape preservation over time,
or may not be able to deal with visual perception that includes
partial or noisy observations of the state of objects, for instance
due to the occlusion of a robot manipulator with an object.
Furthermore, NN-basedmethodsmostly work on entities of fixed
dimensionality and do not exploit characteristics, such as the
flexibility of splines.

In conclusion, for the future we need algorithms that
can deal with various challenging manipulation scenarios
where previously unseen objects appear in a scene (e.g.,
in contexts, such as cooking or nursing) by incrementally
learning the shape and dynamics of a previously unseen object
simultaneously while planning and controlling manipulation.
To develop such methods, different approaches, such as
integrating efficient differentiable models with physically
accurate dynamics models, should be investigated. Also, models
of dynamics should be adapted to work on different families of
shape representations.

AUTHOR CONTRIBUTIONS

VA-R and PG were the main authors who contributed to
each section. Additionally, VA-R was the main contributor to
section 2, PG was the main contributor to section 3, and FF was
the main contributor to section 5. JW, DK, and BS have made
the substantial contributions to the conception or design of the
work, revising the intellectual content critically, and providing
the approval for publication.

FUNDING

This research has been funded by SIP-STRIM project TracMac
(2017-02205). SIP-STRIM was a strategic research initiative
funded by Vinnova, Formas and the Swedish Energy Agency.
Also, it has been partially funded by the POR FESR 2014-2020
Italian National programme within BARTOLO project (CUP
B41C17000090007) and by the PNR 2015-2020 Italian National
programmewithin PROSCANproject (CUP E26C18000170005).
In addition, it has been supported by The Swedish Research
Council and Swedish foundation for strategic research.

Frontiers in Robotics and AI | www.frontiersin.org 21 September 2020 | Volume 7 | Article 82

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

REFERENCES

Ahlberg, J. (1996). Active Contours in Three Dimensions (thesis), Linkoping

University, Sweden. Available online at: https://pdfs.semanticscholar.org/2cc5/

13dbfef8ec6d7b4992adae3ff236e3e137a1.pdf?_ga=2.236805827.391043127.

1596479054-447384472.1596479054.

Ajay, A., Wu, J., Fazeli, N., Bauza, M., Kaelbling, L. P., Tenenbaum, J.

B., et al. (2018). “Augmenting physical simulators with stochastic neural

networks: case study of planar pushing and bouncing,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid:

IEEE), 3066–3073. doi: 10.1109/IROS.2018.8593995

Alterovitz, R., Goldberg, K. Y., Pouliot, J., and Hsu, I. (2009). Sensorless

motion planning for medical needle insertion in deformable tissues. IEEE

Trans. Inform. Technol. Biomed. 13, 217–225. doi: 10.1109/TITB.2008.

2008393

An, S. S., Kim, T., and James, D. L. (2008). Optimizing cubature for

efficient integration of subspace deformations. ACM Trans. Graph. 27, 1–10.

doi: 10.1145/1409060.1409118

Anshelevich, E., Owens, S., Lamiraux, F., and Kavraki, L. (2000).

“Deformable volumes in path planning applications,” in IEEE International

Conference on Robotics and Automation (San Francisco, CA), 2290–2295.

doi: 10.1109/ROBOT.2000.846368

Arriola-Rios, V. E., Demery, Z. P., Wyatt, J., Sloman, A., and Chappell, J. (2013).

Salient Features and Snapshots in Time: An Interdisciplinary Perspective on

Object Representation. Berlin; Heidelberg: Springer Berlin Heidelberg.

Arriola-Rios, V. E., and Wyatt, J. L. (2017). A multi-modal model of object

deformation under robotic pushing. IEEE Trans. Cogn. Dev. Sys. 9, 153–169.

doi: 10.1109/TCDS.2017.2664058

Arvanitis, G., Lalos, A., and Moustakas, K. (2019). Adaptive representation of

dynamic 3d meshes for low-latency applications. Comput. Aided Geometr. Des.

73, 70–85. doi: 10.1016/j.cagd.2019.07.005

Autodesk, INC. (2019).Maya.

Balaniuk, R., and Salisbury, K. (2002). “Dynamic simulation of deformable objects

using the long elements method,” in 10th Symposium On Haptic Interfaces

for Virtual Environment and Teleoperator Systems, Proceedings (Orlando, FL),

58–65. doi: 10.1109/HAPTIC.2002.998941

Barbič, J., and James, D. L. (2005). Real-time subspace integration for st.

venant-kirchhoff deformable models. ACM Trans. Graph. 24, 982–990.

doi: 10.1145/1073204.1073300

Barth, T., Herbin, R., and Ohlberger, M. (2018). “Finite volume methods:

foundation and analysis,” in Encyclopedia of Computational Mechanics, 2nd

Edn., eds E. Stein, R. de Borst, and T. J. R. Hughes, (New York, NY: John Wiley

& Sons, Ltd.), 1–60. doi: 10.1002/9781119176817.ecm2010

Basri, R., Costa, L., Geiger, D., and Jacobs, D. (1998). Determining

the similarity of deformable shapes. Vision Res. 38, 2365–2385.

doi: 10.1016/S0042-6989(98)00043-1

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. (2016). “Interaction

networks for learning about objects, relations and physics,” in Advances in

Neural Information Processing Systems, eds D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, (Barcelona: Neural Information Processing

Systems Foundation, Inc.), 4502–4510.

Bayazit, O., Lien, J.-M., and Amato, N. (2002). “Probabilistic roadmap

motionplanning for deformable objects,” in IEEE International Conference on

Robotics and Automation (Washington, DC), 2126–2135.

Bender, J., Müller, M., Otaduy, M., Teschner, M., andMacklin, M. (2014). A survey

on position-based simulation methods in computer graphics. Comput. Graph.

Forum 33, 228–251. doi: 10.1111/cgf.12346

Berenson, D. (2013). “Manipulation of deformable objects without

modeling and simulating deformation,” in 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Tokyo), 4525–4532.

doi: 10.1109/IROS.2013.6697007

Bianchi, G., Solenthaler, B., Székely, G., and Harders, M. (2004). “Simultaneous

topology and stiffness identification for mass-spring models based on fem

reference deformations,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (Saint-Malo: Springer),

293–301. doi: 10.1007/978-3-540-30136-3_37

Billard, A., and Kragic, D. (2019). Trends and challenges in robot manipulation.

Science 364:eaat8414. doi: 10.1126/science.aat8414

Blake, A., Bascle, B., Isard, M., and MacCormick, J. (1998). Statistical

models of visual shape and motion. Proc. R. Soc. Lond. 356, 1283–1302.

doi: 10.1098/rsta.1998.0222

Bohg, J., Morales, A., Asfour, T., and Kragic, D. (2014). Data-

driven grasp synthesis–a survey. IEEE Trans. Robot. 30, 289–309.

doi: 10.1109/TRO.2013.2289018

Bourguignon, D., and Cani, M.-P. (2000). “Controlling anisotropy in mass-

spring systems,” in 11th Eurographics Workshop on Computer Animation and

Simulation, EGCAS 2000, August, 2000, Springer Computer Science, eds N.

Magnenat-Thalmann, D. Thalmann, and B. Arnaldi (Interlaken: Springer-

Verlag), 113–123. doi: 10.1007/978-3-7091-6344-3_9

Caccamo, S., Bekiroglu, Y., Ek, C. H., and Kragic, D. (2016). “Active exploration

using gaussian random fields and gaussian process implicit surfaces,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Daejeon: IEEE), 582–589. doi: 10.1109/IROS.2016.7759112

Cardiff, P., and Demirdžić, I. (2018). Thirty years of the finite volume method for

solid mechanics. arXiv [Preprint] arxiv 1810.02105.

Catmull, E., and Clack, J. (1978). Recursively generated b-spline surfaces

on arbitrary topological meshes. Comput. Aided Des. 10, 350–355.

doi: 10.1016/0010-4485(78)90110-0

Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R.,

and Zheng, Y. (2019). “Learning active contour models for medical

image segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Long Beach, CA), 11632–11640.

doi: 10.1109/CVPR.2019.01190

Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., and Corke, P. (2020). Model-

free vision-based shaping of deformable plastic materials. Int. J. Robot. Res.

doi: 10.1177/0278364920907684

Cootes, T., Taylor, C., Cooper, D., and Graham, J. (1992). “Training models of

shape from sets of examples,” in Proceedings of the British Machine Vision

Conference (London: Springer-Verlag), 9–18. doi: 10.5244/C.6.2

Cootes, T., Taylor, C., Cooper, D., and Graham, J. (1995). Active shape models-

their training and application. Comput. Vis. Image Understand. 61, 38–59.

doi: 10.1006/cviu.1995.1004

Cootes, T. F., and Taylor, C. J. (2004). StatisticalModels of Appearance for Computer

Vision, University of Manchester, Manchester, United Kingdom. Available

online at: https://www.face-rec.org/algorithms/AAM/app_models.pdf.

Cordero Valle, J. M., and Cortes Parejo, J. (2003). Curvas y Superficies para

Modelado Geometrico. Madrid: Alfaomega-Ra-Ma.

Cremers, D. (2006). Dynamical statistical shape priors for level set-

based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1262–1273.

doi: 10.1109/TPAMI.2006.161

Cretu, A.-M., Payeur, P., and Petriu, E. M. (2009). Neural gas and growing neural

gas networks for selective 3D sensing: a comparative study. Sens. Transd. J,

(Phoenix, AZ), 5, 119–134. doi: 10.1109/ROSE.2008.4669190

Cretu, A.-M., Payeur, P., and Petriu, E. M. (2012). Soft object deformation

monitoring and learning for model-based robotic hand manipulation. IEEE

Trans. Syst. Man Cybern. 42, 740–753. doi: 10.1109/TSMCB.2011.2176115

Cretu, A.-M., Petriu, E., Payeur, P., andKhalil, F. (2010). “Estimation of deformable

object properties from shape and force measurements for virtualized reality

applications,” in 2010 IEEE International Symposium on Haptic Audio-Visual

Environments and Games (HAVE), 1–6. doi: 10.1109/HAVE.2010.5623970

Das, B., and Banerjee, S. (2004). Inertial snake for contour detection in

ultrasonography images. IEE Proc. Vis. Image Signal Process. 151, 235–240.

doi: 10.1049/ip-vis:20040310

Das, J., and Sarkar, N. (2011). Autonomous shape control of a deformable

object by multiple manipulators. J. Intell. Robot. Syst. 62, 3–27.

doi: 10.1007/s10846-010-9436-5

de Boor, C. (1976). Splines as linear combinations of b-splines. A survey. Approx.

Theory II, 1–47.

Delgado, A., Corrales, J., Mezouar, Y., Lequievre, L., Jara, C., and Torres, F.

(2017b). Tactile control based on gaussian images and its application in bi-

manual manipulation of deformable objects. Robot. Auton. Syst. 94, 148–161.

doi: 10.1016/j.robot.2017.04.017

Delgado, A., Jara, C. A., Mira, D., and Torres, F. (2015). “A tactile-based grasping

strategy for deformable objects’ manipulation and deformability estimation,” in

2015 12th International Conference on Informatics in Control, Automation and

Robotics (ICINCO) (Colmar), Vol. 2, 369–374. doi: 10.5220/0005562103690374

Frontiers in Robotics and AI | www.frontiersin.org 22 September 2020 | Volume 7 | Article 82

https://pdfs.semanticscholar.org/2cc5/13dbfef8ec6d7b4992adae3ff236e3e137a1.pdf?_ga=2.236805827.391043127.1596479054-447384472.1596479054
https://pdfs.semanticscholar.org/2cc5/13dbfef8ec6d7b4992adae3ff236e3e137a1.pdf?_ga=2.236805827.391043127.1596479054-447384472.1596479054
https://pdfs.semanticscholar.org/2cc5/13dbfef8ec6d7b4992adae3ff236e3e137a1.pdf?_ga=2.236805827.391043127.1596479054-447384472.1596479054
https://doi.org/10.1109/IROS.2018.8593995
https://doi.org/10.1109/TITB.2008.2008393
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1109/ROBOT.2000.846368
https://doi.org/10.1109/TCDS.2017.2664058
https://doi.org/10.1016/j.cagd.2019.07.005
https://doi.org/10.1109/HAPTIC.2002.998941
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1002/9781119176817.ecm2010
https://doi.org/10.1016/S0042-6989(98)00043-1
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1109/IROS.2013.6697007
https://doi.org/10.1007/978-3-540-30136-3_37
https://doi.org/10.1126/science.aat8414
https://doi.org/10.1098/rsta.1998.0222
https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.1007/978-3-7091-6344-3_9
https://doi.org/10.1109/IROS.2016.7759112
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1109/CVPR.2019.01190
https://doi.org/10.1177/0278364920907684
https://doi.org/10.5244/C.6.2
https://doi.org/10.1006/cviu.1995.1004
https://www.face-rec.org/algorithms/AAM/app_models.pdf
https://doi.org/10.1109/TPAMI.2006.161
https://doi.org/10.1109/ROSE.2008.4669190
https://doi.org/10.1109/TSMCB.2011.2176115
https://doi.org/10.1109/HAVE.2010.5623970
https://doi.org/10.1049/ip-vis:20040310
https://doi.org/10.1007/s10846-010-9436-5
https://doi.org/10.1016/j.robot.2017.04.017
https://doi.org/10.5220/0005562103690374
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

Delgado, A., Jara, C. A., and Torres, F. (2017a). Adaptive tactile control for in-

hand manipulation tasks of deformable objects. Int. J. Adv. Manuf. Technol. 91,

4127–4140. doi: 10.1007/s00170-017-0046-2

Delingette, H. (1999). General object reconstruction based on simplex meshes. Int.

J. Comput. Vis. 32, 111–142. doi: 10.1023/A:1008157432188

Essa, I.A., Sclaroff, S., and Pentland, A. (1992). A unified approach for physical

and geometric modeling for graphics and animation. Comp. Graphics Forum

11, 129–138. doi: 10.1111/1467-8659.1130129

Ficuciello, F., Migliozzi, A., Coevoet, E., Petit, A., and Duriez, C. (2018). “FEM-

based deformation control for dexterous manipulation of 3D soft objects,”

in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (Madrid), 4007–4013. doi: 10.1109/IROS.2018.8593512

Frank, B., Stachniss, C., Schmedding, R., Teschner, M., and Burgard, W. (2014).

Learning object deformation models for robot motion planning. Robot. Auton.

Syst. 62, 1153–1174. doi: 10.1016/j.robot.2014.04.005

Fulton, L., Modi, V., Duvenaud, D., Levin, D. I., and Jacobson, A. (2019). Latent-

space dynamics for reduced deformable simulation. Comput. Graph. Forum 38,

379–391. doi: 10.1111/cgf.13645

Gallardo, M., Pizarro, D., Collins, T., and Bartoli, A. (2020). Shape-from-template

with curves. Int. J. Comput. Vis. 128, 121–165. doi: 10.1007/s11263-019-01214-z

Gascuel, M.-P. (1993). “An implicit formulation for precise contact modeling

between flexible solids,” in Proceedings of the 20th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’93 (New York, NY:

ACM), 313–320. doi: 10.1145/166117.166157

Gayle, R., Segars, P., Lin, M. C., and Manocha, D. (2005). Path planning

for deformable robots in complex environments. Robot. Syst. Sci.

doi: 10.15607/RSS.2005.I.030

Gelder, A. V. (1998). Approximate simulation of elasticmembranes by triangulated

spring meshes. J. Graph. Tools 3, 21–41. doi: 10.1080/10867651.1998.10487490

Gibson, S. F. F., and Mirtich, B. (1997). A Survey of Deformable Modeling in

Computer Graphics. Technical report, MERL (Mitsubishi Electric Research

Laboratory).

Gopalakrishnan, K., and Goldberg, K. Y. (2004). “D-space and deform closure:

a framework for holding deformable parts,” in IEEE International Conference

on Robotics and Automation, 2004. Proceedings. ICRA ’04, Vol. 1, 345–350.

doi: 10.1109/ROBOT.2004.1307174

Greminger, M. A., and Nelson, B. J. (2008). A deformable object tracking algorithm

based on the boundary element method that is robust to occlusions and

spurious edges. Int. J. Comput. Vis. 78, 29–45. doi: 10.1007/s11263-007-0076-6

Guler, P., Pauwels, K., Pieropan, A., Kjellstrom, H., and Kragic, D. (2015).

“Estimating the deformability of elastic materials using optical flow

and position-based dynamics,” in 2015 IEEE-RAS 15th International

Conference on Humanoid Robots (Humanoids) (Seoul: IEEE), 965–971.

doi: 10.1109/HUMANOIDS.2015.7363486

Guler, P., Pieropan, A., Ishikawa, M., and Kragic, D. (2017). “Estimating

deformability of objects using meshless shape matching,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (IEEE),

5941–5948. doi: 10.1109/IROS.2017.8206489

Hatamizadeh, A., Hoogi, A., Sengupta, D., Lu, W., Wilcox, B., Rubin, D.,

et al. (2019). “Deep active lesion segmentation,” in International Workshop

on Machine Learning in Medical Imaging (Shenzhen: Springer), 98–105.

doi: 10.1007/978-3-030-32692-0_12

Hauth, M., Etzmuß, O., and Straßer, W. (2003). Analysis of numerical methods

for the simulation of deformable models. Visual Comput. 19, 581–600.

doi: 10.1007/s00371-003-0206-2

Hirai, S., Tsuboi, T., and T., W. (2001). “Robust grasping manipulation of

deformable objects,” in Proceeding of the IEEE Symposium on Assembly and Task

Planning (Fukuoka), 411–416. doi: 10.1109/ISATP.2001.929069

Holleman, C., Kavraki, L., and Warren, J. (1998). “Planning paths for a flexible

surface patch,” in IEEE International Conference on Robotics and Automation

(Leuven), 21–26. doi: 10.1109/ROBOT.1998.676243

Hu, Z., Han, T., Sun, P., Pan, J., and Manocha, D. (2019). 3-D deformable

object manipulation using deep neural networks. IEEE Robot. Autom. Lett. 4,

4255–4261. doi: 10.1109/LRA.2019.2930476

Jaklic, A., Leonardis, A., and Solina, F. (2000). Segmentation and Recovery of

Superquadrics. Heidelberg: Springer.

James, D., and Pai, D. (1999). “Artdefo: accurate real time deformable objects,”

in Proceedings of the 26th Annual Conference on Computer Graphics

and Interactive Techniques (New York, NY: ACM Press; Addison-Wesley

Publishing Co.), 65–72. doi: 10.1145/311535.311542

Jiménez, P. (2012). Survey on model-based manipulation planning of

deformable objects. Robot. Comput. Integr. Manuf. 28, 154–163.

doi: 10.1016/j.rcim.2011.08.002

Kass, M., Witkin, A., and Terzopuolos, D. (1988). Snakes: active contour models.

Int. J. Comput. Vis. 1, 321–331. doi: 10.1007/BF00133570

Kumar, S., Han, S., Goldgof, D., and Bowyer, K. (1995). On recovering

hyperquadrics from range data. IEEE Trans. Pattern Anal. Mach. Intell. 17,

1079–1083. doi: 10.1109/34.473234

Largilliere, F., Verona, V., Coevoet, E., Sanz-Lopez, M., Dequidt, J., and

Duriez, C. (2015). “Real-time control of soft-robots using asynchronous finite

element modeling,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA) (Seattle, WA), 2550–2555. doi: 10.1109/ICRA.2015.71

39541

Leizea, I., Mendizabal, A., Alvarez, H., Aguinaga, I., Borro, D., and Sanchez,

E. (2017). Real-time visual tracking of deformable objects in robot-

assisted surgery. IEEE Comput. Graph. Appl. 37, 56–68. doi: 10.1109/MCG.

2015.96

Leventon, M. E., Grimson, W. E. L., and Faugeras, O. D. (2000). “Statistical

shape influence in geodesic active contours,” in 2000 Conference on

Computer Vision and Pattern Recognition (CVPR 2000) (Berder), 1316–1323.

doi: 10.1109/CVPR.2000.855835

Li, Y., Wang, Y., Yue, Y., Xu, D., Case, M., Chang, S.-F., et al. (2016).Model-Driven

Feed-Forward Prediction for Manipulation of Deformable Objects.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba, A. (2018). Learning

particle dynamics for manipulating rigid bodies, deformable objects, and fluids.

arXiv [Preprint] arxiv 1810.01566.

Lin, H., Guo, F., Wang, F., and Jia, Y.-B. (2015). Picking up a soft

3D object by “feeling” the grip. Int. J. Robot. Res. 34, 1361–1384.

doi: 10.1177/0278364914564232

Luo, Y. H., and Nelson, B. J. (2001). Fusing force and vision feedback

for manipulating deformable objects. J. Robot. Syst. 18, 103–117.

doi: 10.1002/rob.1009

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. (2014). Unified

particle physics for real-time applications. ACM Trans. Graph. 33:104.

doi: 10.1145/2601097.2601152

Madi, K., Paquet, E., and Kheddouci, H. (2019). New graph distance for deformable

3D objects recognition based on triangle-stars decomposition. Pattern Recogn.

90, 297–307. doi: 10.1016/j.patcog.2019.01.040

Makovetskii, A., Voronin, S., Kober, V., and Voronin, A. (2020). An efficient

algorithm for non-rigid object registration. Comput. Opt. 44, 67–73.

doi: 10.18287/2412-6179-CO-586

Maraffi, C. (2004). Maya Character Creation, Modeling and Animation Controls.

Indianapolis, IN: Stephanie Wall; New Riders Publisher.

Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., et al. (2018).

“Learning deep structured active contours end-to-end,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Salt Lake City,

UT), 8877–8885.

Maris, B., Botturi, D., and Fiorini, P. (2010). “Trajectory planning with task

constraints in densely filled environments,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Taipei), 2333–2338.

doi: 10.1109/IROS.2010.5650483

Martínez, L., Ruiz-del Solar, J., Sun, L., Siebert, J., andAragon-Camarasa, G. (2019).

Continuous perception for deformable objects understanding. Robot. Auton.

Syst. 118, 220–230. doi: 10.1016/j.robot.2019.05.010

Mira, D., Delgado, A., Mateo, C. M., Puente, S. T., Candelas, F. A.,

and Torres, F. (2015). “Study of dexterous robotic grasping for

deformable objects manipulation,” in 2015 23rd Mediterranean

Conference on Control and Automation (MED) (Torremolinos), 262–266.

doi: 10.1109/MED.2015.7158760

Moll, M., and Kavraki, L. (2004). “Path planning for minimal energy curves of

constant length,” in IEEE International Conference on Robotics and Automation

(New Orleans, LA), 2826–2831. doi: 10.1109/ROBOT.2004.1307489

Frontiers in Robotics and AI | www.frontiersin.org 23 September 2020 | Volume 7 | Article 82

https://doi.org/10.1007/s00170-017-0046-2
https://doi.org/10.1023/A:1008157432188
https://doi.org/10.1111/1467-8659.1130129
https://doi.org/10.1109/IROS.2018.8593512
https://doi.org/10.1016/j.robot.2014.04.005
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1007/s11263-019-01214-z
https://doi.org/10.1145/166117.166157
https://doi.org/10.15607/RSS.2005.I.030
https://doi.org/10.1080/10867651.1998.10487490
https://doi.org/10.1109/ROBOT.2004.1307174
https://doi.org/10.1007/s11263-007-0076-6
https://doi.org/10.1109/HUMANOIDS.2015.7363486
https://doi.org/10.1109/IROS.2017.8206489
https://doi.org/10.1007/978-3-030-32692-0_12
https://doi.org/10.1007/s00371-003-0206-2
https://doi.org/10.1109/ISATP.2001.929069
https://doi.org/10.1109/ROBOT.1998.676243
https://doi.org/10.1109/LRA.2019.2930476
https://doi.org/10.1145/311535.311542
https://doi.org/10.1016/j.rcim.2011.08.002
https://doi.org/10.1007/BF00133570
https://doi.org/10.1109/34.473234
https://doi.org/10.1109/ICRA.2015.7139541
https://doi.org/10.1109/MCG.2015.96
https://doi.org/10.1109/CVPR.2000.855835
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1002/rob.1009
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1016/j.patcog.2019.01.040
https://doi.org/10.18287/2412-6179-CO-586
https://doi.org/10.1109/IROS.2010.5650483
https://doi.org/10.1016/j.robot.2019.05.010
https://doi.org/10.1109/MED.2015.7158760
https://doi.org/10.1109/ROBOT.2004.1307489
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

Montagnat, J., Delingette, H., and Ayache, N. (2001). A review of deformable

surfaces: topology, geometry and deformation. Image Vis. Comput. 19,

1023–1040. doi: 10.1016/S0262-8856(01)00064-6

Moore, P., and Molloy, D. (2007). “A survey of computer-based deformable

models,” in IMVIP 2007: International Machine Vision and Image Processing

Conference, Proceedings, Irish Pattern Recognit&Classificat Soc, IEEE Computer

Soc. International Machine Vision and Image Processing Conference, eds J.

McDonald, C.Markham, and J. Ghent (Los Alamitos, CA;Maynooth: Natl Univ

Ireland Maynooth), 55–64.

Morris, D., and Salisbury, K. (2008). Automatic preparation, calibration, and

simulation of deformable objects. Comput. Methods Biomech. Biomed. Eng. 11,

263–279. doi: 10.1080/10255840701769606

Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L. F., Tenenbaum, J., et al.

(2018). “Flexible neural representation for physics prediction,” in Advances

in Neural Information Processing Systems, eds S. Bengio, H. Wallach, H.

Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett, (Montreal: Neural

Information Processing Systems Foundation, Inc.), 8799–8810.

Müller, M., and Gross, M. (2004). “Interactive virtual materials,” in Proceedings

of Graphics Interface 2004 (Waterloo: Canadian Human-Computer

Communications Society), 239–246.

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. (2005). “Meshless

deformations based on shape matching,” in SIGGRAPH (Los Angeles, CA:

ACM). doi: 10.1145/1186822.1073216

Müller, M., Stam, J., James, D., and Thürey, N. (2008). “Real time physics:

class notes,” in ACM SIGGRAPH 2008 Classes (Los Angeles, CA: ACM), 88.

doi: 10.1145/1401132.1401245

Nadon, F., Valencia, A. J., and Payeur, P. (2018). Multi-modal sensing

and robotic manipulation of non-rigid objects: a survey. Robotics 7:74.

doi: 10.3390/robotics7040074

Nanayakkara, T., Jiang, A., del Rocío Armas Fernández, M., Liu, H., Althoefer,

K., and Bimbo, J. (2016). Stable grip control on soft objects with time-varying

stiffness. IEEE Trans. Robot. 32, 626–637. doi: 10.1109/TRO.2016.2549545

Navarro-Alarcon, D., hui Liu, Y., Romero, J. G., and Li, P. (2014). On the visual

deformation servoing of compliant objects: uncalibrated control methods and

experiments. Int. J. Robot. Res. 33, 1462–1480. doi: 10.1177/0278364914529355

Navarro-Alarcon, D., and Liu, Y. (2013). “Uncalibrated vision-based deformation

control of compliant objects with online estimation of the Jacobian matrix,”

in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

(Tokyo), 4977–4982. doi: 10.1109/IROS.2013.6697075

Navarro-Alarcon, D., Yip, H. M., Wang, Z., Liu, Y., Zhong, F., Zhang, T.,

et al. (2016). Automatic 3-D manipulation of soft objects by robotic arms

with an adaptive deformation model. IEEE Trans. Robot. 32, 429–441.

doi: 10.1109/TRO.2016.2533639

Nealen, A., Mueller, M., Keiser, R., Boxerman, E., and Carlson, M. (2006).

Physically based deformable models in computer graphics. Comput. Graph.

Forum 25, 809–836. doi: 10.1111/j.1467-8659.2006.01000.x

Newcombe, R. A., and Davison, A. J. (2010). “Live dense reconstruction

with a single moving camera,” in CVPR (San Francisco, CA).

doi: 10.1109/CVPR.2010.5539794

Nisirat, M. A. (2019). A new external force for snake algorithm based

on energy diffusion. Int. J. Mach. Learn. Comput. 9, 316–321.

doi: 10.18178/ijmlc.2019.9.3.804

Nurnberger, A., Radetzky, A., and Kruse, R. (1998). “A problem specific recurrent

neural network for the description and simulation of dynamic spring models,”

in 1998 IEEE International Joint Conference on Neural Networks Proceedings.

IEEE World Congress on Computational Intelligence (Cat. No.98CH36227)

(Anchorage, AK), Vol. 1, 468–473. doi: 10.1109/IJCNN.1998.682312

Pan, Z., and Manocha, D. (2018). Active animations of reduced deformable

models with environment interactions. ACM Trans. Graph. 37, 1–17.

doi: 10.1145/3197565

Patil, S., van den Berg, J., and Alterovitz, R. (2011). “Motion planning

under uncertainty in highly deformable environments,” in Robotics: Science

and Systems VII (Los Angeles, CA: University of Southern California).

doi: 10.15607/RSS.2011.VII.033

Pentland, A., and Williams, J. (1989). “Good vibrations: modal dynamics for

graphics and animation,” inComputer Graphics Proceedings, Annual Conference

Series, ACM SIGGRAPH, SIGGRAPH ’89 (New York, NY: ACM), 215–222.

doi: 10.1145/74333.74355

Petit, A., Cotin, S., Lippiello, V., and Siciliano, B. (2018). “Capturing deformations

of interacting non-rigid objects using RGB-D data,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid:

IEEE), 491–497. doi: 10.1109/IROS.2018.8593756

Prasad, M., Fitzgibbon, A., Zisserman, A., and Van Gool, L. (2010). “Finding nemo:

deformable object class modelling using curve matching,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (San Francisco,

CA). doi: 10.1109/CVPR.2010.5539840

Raposo, A. N., and Gomes, A. J. (2019). “Pi-surfaces: products of implicit

surfaces towards constructive composition of 3D objects,” in Proceedings

of WSCG 2019 WSCG 2019 27. International Conference in Central

Europe on Computer Graphics, Visualization and Computer Vision (Pilsen).

doi: 10.24132/CSRN.2019.2901.1.13

Ravishankar, S., Jain, A., and Mittal, A. (2008). “Multi-stage contour

based detection of deformable objects,” in Computer Vision–

ECCV 2008, Pt I, Proceedings (Marseille), Vol. 5302, 483–496.

doi: 10.1007/978-3-540-88682-2_37

Risholm, P., Samset, E., and Wells, W. (2010). “Bayesian estimation of

deformation and elastic parameters in non-rigid registration,” in International

Workshop on Biomedical Image Registration (Lübeck: Springer), 104–115.

doi: 10.1007/978-3-642-14366-3_10

Romeo, M., Monteagudo, C., and Sánchez-Quirós, D. (2020). Muscle and fascia

simulation with extended position based dynamics. Comput. Graph. Forum, 39,

134–146. doi: 10.1111/cgf.13734

Saha, M., and Isto, P. (2007). Manipulation planning for deformable linear objects.

IEEE Trans. Robot. 23, 1141–1150. doi: 10.1109/TRO.2007.907486

Sanchez, J., Corrales Ramon, J. A., Bouzgarrou, B.-C., and Mezouar, Y.

(2018). Robotic manipulation and sensing of deformable objects in domestic

and industrial applications: a survey. Int. J. Robot. Res. 37, 688–716.

doi: 10.1177/0278364918779698

Schaefer, S., and Yuksel, C. (2007). “Example-based skeleton extraction,” in ACM

International Conference Proceeding Series (New York, NY), Vol. 257, 153–162.

Schulman, J., Lee, A., Ho, J., and Abbeel, P. (2013). “Tracking deformable

objects with point clouds,” in 2013 IEEE International Conference

on Robotics and Automation (ICRA) (Karlsruhe: IEEE), 1130–1137.

doi: 10.1109/ICRA.2013.6630714

Sederberg, T. W., and Parry, S. R. (1986). “Free-form deformation of solid

geometric models,” in SIGGRAPH ’86 Proceedings of the 13th Annual

Conference on Computer Graphics and Interactive Techniques (Dallas, TX), Vol.

20, 151–160. doi: 10.1145/15922.15903

Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. (2003). T-splines and

t-nurccs. ACM Trans. Graph. 22, 477–484. doi: 10.1145/882262.882295

Sengupta, A., Krupa, A., and Marchand, E. (2019). “Tracking of non-rigid

objects using RGB-D camera,” in 2019 IEEE International Conference

on Systems, Man and Cybernetics (SMC) (Bari: IEEE), 3310–3317.

doi: 10.1109/SMC.2019.8914543

Sethian, J. A. (1997). Tracking interfaces with level sets: an “act of violence”

helps solve evolving interface problems in geometry, fluid mechanics, robotic

navigation and materials sciences. Am. Sci. 85, 254–263.

Sidorov, K., and Marshall, A. (2014). Learnt real-time meshless simulation.

Comput. Graph. Forum 33, 147–156. doi: 10.1111/cgf.12440

Sinha, A., Billings, S. D., Reiter, A., Liu, X., Ishii, M., Hager, G. D., et al. (2019).

The deformable most-likely-point paradigm. Med. Image Anal. 55, 148–164.

doi: 10.1016/j.media.2019.04.013

Smolen, J., and Patriciu, A. (2009). “Deformation planning for robotic soft

tissue manipulation,” in 2009 Second International Conferences on Advances in

Computer-Human Interactions (Cancun), 199–204. doi: 10.1109/ACHI.2009.31

Song, Y., and Bai, L. (2008). “3D modeling for deformable objects,” in Articulated

Motion and Deformable Objects, Proceedings (Mallorca), Vol. 5098, 175–187.

doi: 10.1007/978-3-540-70517-8_18

Sun, W., Cetin, M., Chan, R., andWillsky, A. S. (2008). Learning the dynamics and

time-recursive boundary detection of deformable objects. IEEE Trans. Image

Process. 17, 2186–2200. doi: 10.1109/TIP.2008.2004638

Szekely, G., Kelemen, A., Brechbuhler, C., and Gerig, G. (1995). “Segmentation

of 3D objects from mri volume data using constrained elastic deformations

of flexible fourier surface models,” in Proceedings of the First International

Conference on Computer Vision, Virtual Reality and Robotics in Medicine,

CVRMed’95 (Nice). doi: 10.1007/978-3-540-49197-2_66

Frontiers in Robotics and AI | www.frontiersin.org 24 September 2020 | Volume 7 | Article 82

https://doi.org/10.1016/S0262-8856(01)00064-6
https://doi.org/10.1080/10255840701769606
https://doi.org/10.1145/1186822.1073216
https://doi.org/10.1145/1401132.1401245
https://doi.org/10.3390/robotics7040074
https://doi.org/10.1109/TRO.2016.2549545
https://doi.org/10.1177/0278364914529355
https://doi.org/10.1109/IROS.2013.6697075
https://doi.org/10.1109/TRO.2016.2533639
https://doi.org/10.1111/j.1467-8659.2006.01000.x
https://doi.org/10.1109/CVPR.2010.5539794
https://doi.org/10.18178/ijmlc.2019.9.3.804
https://doi.org/10.1109/IJCNN.1998.682312
https://doi.org/10.1145/3197565
https://doi.org/10.15607/RSS.2011.VII.033
https://doi.org/10.1145/74333.74355
https://doi.org/10.1109/IROS.2018.8593756
https://doi.org/10.1109/CVPR.2010.5539840
https://doi.org/10.24132/CSRN.2019.2901.1.13
https://doi.org/10.1007/978-3-540-88682-2_37
https://doi.org/10.1007/978-3-642-14366-3_10
https://doi.org/10.1111/cgf.13734
https://doi.org/10.1109/TRO.2007.907486
https://doi.org/10.1177/0278364918779698
https://doi.org/10.1109/ICRA.2013.6630714
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/882262.882295
https://doi.org/10.1109/SMC.2019.8914543
https://doi.org/10.1111/cgf.12440
https://doi.org/10.1016/j.media.2019.04.013
https://doi.org/10.1109/ACHI.2009.31
https://doi.org/10.1007/978-3-540-70517-8_18
https://doi.org/10.1109/TIP.2008.2004638
https://doi.org/10.1007/978-3-540-49197-2_66
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Arriola-Rios et al. Modeling of Deformable Objects for Robotic Manipulation

Tawbe, B., and Cretu, A.-M. (2017). Acquisition and neural network prediction of

3D deformable object shape using a kinect and a force-torque sensor. Sensors

17:1083. doi: 10.3390/s17051083

Teran, J., Blemker, S., Hing, V., and Fedkiw, R. (2003). “Finite volume methods

for the simulation of skeletal muscle,” in Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, CA:

Eurographics Association), 68–74.

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable

models. SIGGRAPH Comput. Graph. 21, 205–214. doi: 10.1145/37402.37427

Teschner, M., Heidelberger, B., Muller, M., and Gross, M. (2004). “A

versatile and robust model for geometrically complex deformable solids,” in

Proceedings of Computer Graphics International (CGI’04) (Crete), 312–319.

doi: 10.1109/CGI.2004.1309227

Tian, Y., Yang, Y., Guo, X., and Prabhakaran, B. (2013). “Haptic-enabled interactive

rendering of deformable objects based on shape matching,” in 2013 IEEE

International Symposium on Haptic Audio Visual Environments and Games

(HAVE) (Istanbul: IEEE), 75–80. doi: 10.1109/HAVE.2013.6679614

Tonnesen, D. L., and Terzopoulos, D. (2000). Dynamically Coupled Particle

Systems for Geometric Modeling, Reconstruction, and Animation. Toronto, ON:

University of Toronto.

Tsai, A. Jr., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson,

W., et al. (2001). “Model-based curve evolution technique for image

segmentation,” in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR) (Kauai, HI), 463–468. doi: 10.1109/CVPR.2001.

990511

Unser, M. (1999). Splines: a perfect fit for signal and image processing. IEEE Signal

Process. Mag. 16, 22–38. doi: 10.1109/79.799930

Wada, T., Hirai, S., Kawamura, S., and Kamiji, N. (2001). “Robust manipulation of

deformable objects by a simple pid feedback,” in IEEE International Conference

on Robotics and Automation (Seoul), 85–90. doi: 10.1109/ROBOT.2001.932534

Wakamatsu, H., Hirai, S., and Iwata, K. (1996). “Static analysis of deformable

object grasping based on bounded force closure,” in Proceedings of IEEE

International Conference on Robotics and Automation (Minneapolis, MN), Vol.

4, 3324–3329. doi: 10.1109/ROBOT.1996.509219

Wang, Z., Rosa, S., Yang, B., Wang, S., Trigoni, N., and Markham A. (2018).

“3D-PhysNet: learning the intuitive physics of non-rigid object deformations,”

in 27th International Joint Conference on Artificial Intelligence and the 23rd

European Conference on Artificial Intelligence IJCAI-ECAI, ed M. Hansson

(Stockholm: International Joint Conferences on Artificial Intelligence).

Weir, A. A., and Kacelnik, A. (2006). A new caledonian crow (corvus

moneduloides) creatively re-designs tools by bending or unbending aluminium

strips. Anim. Cogn. 9:317. doi: 10.1007/s10071-006-0052-5

Williams, D., and Shah, M. (1992). A fast algorithm for active contours

and curvature estimation. CVGIP-Image Understand. 55, 14–26.

doi: 10.1016/1049-9660(92)90003-L

Xia, H., Zhao, W., Jiang, F., Li, H., Xin, J., and Zhou, Z. (2019). Fast

template matching based on deformable best-buddies similarity measure.

Multimed. Tools Appl. 78, 11905–11925. doi: 10.1007/s11042-018-

6722-x

Xian, Z., Tong, X., and Liu, T. (2019). A scalable galerkin multigrid method

for real-time simulation of deformable objects. ACM Trans. Graph. 38:162.

doi: 10.1145/3355089.3356486

Xu, L., Lu, Y., and Liu, Q. (2018). Integrating viscoelastic mass spring dampers into

position-based dynamics to simulate soft tissue deformation in real time. R. Soc.

Open Sci. 5:171587. doi: 10.1098/rsos.171587

Yuille, A. L., Hallinan, P. W., and Cohen, D. S. (1992). Feature extraction

from faces using deformable templates. Int. J. Comput. Vis. 8, 99–111.

doi: 10.1007/BF00127169

Zaidi, L., Corrales, J. A., Bouzgarrou, B. C., Mezouar, Y., and Sabourin,

L. (2017). Model-based strategy for grasping 3D deformable objects

using a multi-fingered robotic hand. Robot. Auton. Syst. 95, 196–206.

doi: 10.1016/j.robot.2017.06.011

Zhang, J., Zhong, Y., Smith, J., and Gu, C. (2019). Neural dynamics-based poisson

propagation for deformable modelling. Neural Comput. Appl. 31, 1091–1101.

doi: 10.1007/s00521-017-3132-3

Zhu, B., Gu, L., Zhang, J., Yan, Z., Pan, L., and Zhao, Q. (2008). “Simulation

of organ deformation using boundary element method and meshless shape

matching,” in EMBS 2008. 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (Vancouver: IEEE), 3253–3256.

doi: 10.1109/IEMBS.2008.4649898

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors DK.

Copyright © 2020 Arriola-Rios, Guler, Ficuciello, Kragic, Siciliano and Wyatt. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 25 September 2020 | Volume 7 | Article 82

https://doi.org/10.3390/s17051083
https://doi.org/10.1145/37402.37427
https://doi.org/10.1109/CGI.2004.1309227
https://doi.org/10.1109/HAVE.2013.6679614
https://doi.org/10.1109/CVPR.2001.990511
https://doi.org/10.1109/79.799930
https://doi.org/10.1109/ROBOT.2001.932534
https://doi.org/10.1109/ROBOT.1996.509219
https://doi.org/10.1007/s10071-006-0052-5
https://doi.org/10.1016/1049-9660(92)90003-L
https://doi.org/10.1007/s11042-018-6722-x
https://doi.org/10.1145/3355089.3356486
https://doi.org/10.1098/rsos.171587
https://doi.org/10.1007/BF00127169
https://doi.org/10.1016/j.robot.2017.06.011
https://doi.org/10.1007/s00521-017-3132-3
https://doi.org/10.1109/IEMBS.2008.4649898
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Modeling of Deformable Objects for Robotic Manipulation: A Tutorial and Review
	1. Introduction
	2. Representing Shape for Deformable Objects
	2.1. Implicit Curves and Surfaces
	2.1.1. Algebraic Curves and Surfaces
	2.1.2. Level Set Methods
	2.1.3. Gaussian Principal Component Eigenmodes

	2.2. Explicit Parameterized Representations
	2.2.1. Splines
	2.2.2. Modal Decompositions

	2.3. Free-Forms
	2.4. Discrete Representations

	3. Representing Dynamics for Deformable Objects
	3.1. Background Knowledge of Deformation
	3.2. Particle-Based Models
	3.2.1. Particle Systems
	3.2.2. Mass-Spring Systems
	3.2.3. Neural Networks
	3.2.4. Position-Based Dynamics

	3.3. Constitutive Models
	3.3.1. Finite Element Method
	3.3.2. Finite Volume Method
	3.3.3. Finite Difference Method
	3.3.4. Boundary Element Method
	3.3.5. Long Elements Method

	3.4. Approximations of Constitutive Models
	3.4.1. Modal Analysis
	3.4.2. Active Contours

	4. Learning and Estimation of Model Parameters
	4.1. Direct Estimation
	4.2. Minimizing Error
	4.2.1. Exhaustive Searches
	4.2.2. Iterative Methods
	4.2.3. Genetic Algorithms
	4.2.4. Neural Network Estimations

	4.3. Probabilistic Methods

	5. Manipulation Planning and Control
	5.1. Planning Object Manipulation
	5.2. Control of Deformation
	5.2.1. Model-Based Deformation Control
	5.2.2. Real-Time Sensor-Based Deformation Control

	6. Discussion
	6.1. Future Lines of Work
	6.1.1. Modeling Shape
	6.1.2. Simultaneous Modeling, Learning, and Control

	Author Contributions
	Funding
	References

