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Group interactions are widely observed in nature to optimize a set of critical collective

behaviors, most notably sensing and decision making in uncertain environments.

Nevertheless, these interactions are commonly modeled using local (proximity) networks,

in which individuals interact within a certain spatial range. Recently, other interaction

topologies have been revealed to support the emergence of higher levels of scalability

and rapid information exchange. One prominent example is scale-free networks. In this

study, we aim to examine the impact of scale-free communication when implemented

for a swarm foraging task in dynamic environments. We model dynamic (uncertain)

environments in terms of changes in food density and analyze the collective response of

a simulated swarm with communication topology given by either proximity or scale-free

networks. Our results suggest that scale-free networks accelerate the process of building

up a rapid collective response to cope with the environment changes. However, this

comes at the cost of lower coherence of the collective decision. Moreover, our findings

suggest that the use of scale-free networks can improve swarm performance due

to two side-effects introduced by using long-range interactions and frequent network

regeneration. The former is a topological consequence, while the latter is a necessity

due to robot motion. These two effects lead to reduced spatial correlations of a

robot’s behavior with its neighborhood and to an enhanced opinion mixing, i.e., more

diversified information sampling. These insights were obtained by comparing the swarm

performance in presence of scale-free networks to scenarios with alternative network

topologies, and proximity networks with and without packet loss.

Keywords: swarm robotics, foraging, collective decision-making, scale-free networks, dynamic environments,

adaptive swarm

1. INTRODUCTION

The efficiency of the information sharing mechanisms used by individuals during group decision
processes determines to a large extent the fitness of the group decision. In nature, collective
systems consist of a high number of individuals living in large and unknown environments, and
needing to perform complex tasks to survive. Among the many examples of collective decision-
making is choosing a new site to build their home (Richardson et al., 2018), or deciding among a
number of foraging patches (Michelena et al., 2009). Despite the high diversity of tasks, uncertainty
and complexity are common features. Hence, individuals apply information pooling to mitigate
uncertainty and increase decision accuracy (Conradt, 2011). Achieving efficient opinion sampling
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depends to a large extent on the network topology that defines
the interaction structure and opinion sharing of these individuals
(Khaluf et al., 2018; Rausch et al., 2019b). The use of such
network is fundamental for collective decision-making. It is
generally exploited at two stages of the process (i) when spreading
information on one or multiple stimuli that are initially perceived
by a limited number of individuals that are able to trigger
the collective decision process—e.g., a predator attack—; and
(ii) when spreading the individuals’ opinions or choices to
achieve consensus (Khaluf et al., 2019a).

In artificial systems such as swarm robotics, collective
decision-making is mostly designed in static environments
(Bayındır, 2016), where options and their qualities are defined
at the beginning and do not change over time. In these studies
the focus is mainly on the design of efficient voting mechanisms
that enable a high level of decision coherence within the shortest
time possible (Khaluf et al., 2018). Alternatively, other studies
were addressing the design of decision strategies that tackle
the accuracy vs. speed trade-off (Valentini, 2017)—i.e., taking
longer time to gather enough information and making more
accurate decisions vs. exploiting the available information and
taking the decision as soon as possible. In both cases, the
speed of converging on a decision is a fundamental goal in
the design of decision-making. The decision speed strongly
depends on the interaction topology the individuals are part of, to
spread stimuli or opinions during the decision-making process.
Interactions in collective systems are frequently modeled using
local (i.e., proximity) communication, where the neighborhood
of an individual is defined spatially based on their interaction
range, i.e., interacting with all peers within the individual’s
communication radius. Nevertheless, other interaction models
such as scale-free networks were revealed in several real-
world examples (Albert and Barabási, 2002; Holme, 2019).
A comprehensive review on scale-free phenomena in a more
general context can be found in Khaluf et al. (2017a). In various
works, scale-free networks enable scalable, fast and efficient
information transfer. For example, in Goh et al. (2001), authors
showed how the betweenness centrality scales with the scale-
free exponent. Other works showed how the ultrasmall diameter
of the scale-free networks contributes to their efficiency in
information transmission (Cohen and Havlin, 2003; Thivierge,
2014). Finally, scale-free topologies were studied in natural
collective systems such as in Cavagna et al. (2010). In this work,
the authors studied starlings flocks and suggest that collective
response to predator’s attacks may be achieved through scale-free
behavioral correlations. Based on these studies, we extend the
application of scale-free networks to artificial swarms in order
to investigate the role these networks can play in improving a
swarm’s collective decision-making process.

A key aspect of scale-free networks is the presence of hubs—
i.e., nodes with a comparably high connectivity degree—(Albert
et al., 2000; Albert and Barabási, 2002). Hubs represent a
small percentage of the network nodes, however, their high
connectivity leads to a small network diameter. This facilitates
efficient communication by enabling any two random nodes
to share information over only few hops, resulting in fast
information transfer (Cohen and Havlin, 2003). In this paper,

we exploit this critical feature of scale-free networks to help
collective systems to faster respond to changes in dynamic
environments. In dynamic environments, conditions change
over time and hence, the collective system needs to adapt its
behavior within a short period of time in order to survive. We
refer to this as the collective response time. In our study, this
is the time required for the group to collectively change the
intensity of its foraging activities as a response to a change in the
availability of the food items.

Among many examples of collective tasks in natural systems,
we select foraging (Liu et al., 2007) and perform our study
using a simulated population of swarming robots. Foraging is
a complex task used by many species to retrieve food to their
homes, but beyond that it is a metaphor for many real-world
robotics tasks such as search and rescue, retrieve materials
for collective construction and others. In foraging, individuals
(robots) need to continuously make a decision between staying
at their base or leaving to forage for food items. A large body of
literature has been dedicated to investigate foraging in artificial
systems such as swarm robotics. These studies have addressed
various research questions such as the foraging performance
under the influence of physical robot interference (Lerman and
Galstyan, 2002; Khaluf et al., 2016), the multi-foraging task
(Campo and Dorigo, 2007)—i.e., the foraging for different types
of items—or consensus achievement (Hoff et al., 2013; Khaluf
et al., 2017b). Additionally, some studies have focused on how
to optimize the task allocation in foraging using cost functions
(Pini et al., 2013; Khaluf et al., 2019b). Also how to investigate
simple probabilistic models that rely on the foraging success
probability in achieving an efficient foraging behavior (Pinciroli
et al., 2012). Other studies have gone further to investigate
whether the performance of swarms in the foraging tasks bears
a particular characteristic distribution (e.g., a power law) for any
of its time or space features (Khaluf and Dorigo, 2016; Rausch
et al., 2019a). Despite this intensive research effort, foraging
of robot swarms in dynamic environments and the influence
of different interaction models are still not well understood.
However, these questions are paramount, given the prevalence of
scale-free phenomena in real-world systems and admitting that
most real environments are dynamic. Therefore, in this paper,
we focus on the fundamental question of how the integration
of a scale-free interaction structure may influence the collective
response of simulated swarms to changes in food density
within the foraging environment. We approach this question by
analyzing the speed and coherence of the collective response to
those changes. We begin with defining the robot (microscopic)
and the swarm (macroscopic) behaviors in sections 2.1, 2.3,
respectively. The details on generating scale-free networks from
local neighborhoods are given in section 2.2. In section 2.4,
we describe the experimental setup. Thereafter, in section 3 we
compare the collective response of the swarm in presence and
absence of scale-free interactions. We discuss our findings that
suggest that the use of scale-free interactions can be advantageous
due to (i) reduced correlations between a robot’s decisions and
those of its spatial neighbors and (ii) enhanced information
spread through long-range interactions and frequent rewiring of
communication links. These insights are obtained by comparing
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the influence of scale-free networks to scenarios with alternative
random networks as well as scenarios that include packet loss.
Conclusions are drawn in section 4.

2. METHODS

2.1. Robot Behavior
Robots are placed in an arena that is divided into two areas:
the nest and the foraging environment. Inspired by the behavior
observed in harvester ants Pogonomyrmex barbatus (Schafer
et al., 2006; Pinter-Wollman et al., 2013), each robot can
switch between two essential states: resting and foraging. In the
foraging state, the robot attempts to find a food item inside the
foraging environment by performing a pseudo-random walk. In
particular, the robot moves on a straight line until it encounters
another robot or an obstacle (e.g., a wall), in which case a collision
avoidance maneuver is initiated. By executing this maneuver,
the robot attempts to move in the direction of least physical
interference, as sensed by its proximity sensors. After executing
the collision avoidance maneuver, the robot goes back to its
standard motion following a straight line. When the robot
encounters a food item, it collects this item and retrieves it back
to the nest where the robot rests for a given period of time θr .

In the resting state, the robot remains inside the nest, which is
the only area where communication with other robots can take
place. This is inspired by several natural systems, in which the
communication occurs mainly inside the nest or the hive (Liu
et al., 2007; Seeley et al., 2012; Reina et al., 2015; Valentini et al.,
2016). This approach accommodates two relevant properties of
foraging systems: (i) it is common that the foraging environment
is significantly larger than the nest area, and hence, individual
encountering rates outside the nest are negligibly low. (ii) Due
to the high density of individuals inside the nest there is a high
likelihood of interaction between individuals that have explored
different parts of the foraging environment, and hence a more
diversified sample of information about the environment can
be collected.

Robots can communicate only with neighbors that are within
a direct line of sight, sharing their individual experiences. This is
a continuous process—i.e., each robot broadcasts at every time
step its previous experience (success or failure in finding a food
item) until it switches again to the foraging state. Continuous
communication activity is a required choice of the experiment
design to research the role of network topology in the emergent
behavior (Rausch et al., 2019a).

All robots, in our study, are identical and each robot is a
probabilistic finite state machine. In particular, a robot’s behavior
is shaped by two switching probabilities that describe at every
time step the robot’s likelihood to switch from foraging to resting
(Pf→r) or the opposite (Pr→f ). These probabilities are updated
differently at the robot’s resting and foraging states. At the
foraging state, the switching probabilities are updated using the
robot’s foraging experience. The impact of this experience on
the robot’s decision-making is given by the set of two individual
cues

{

if , ir
}

∈ R
+
0 × R

+
0 . More specifically, the cue if defines

a numerical value by which the probability to switch from
resting to foraging (Pr→f ) is increased when the robot has

experienced foraging success—i.e., a discovered food item during
the latest foraging attempt. The same value is used to decrease
this switching probability in case of a failed foraging attempt, i.e.,
when the robot has spent a specific time (θf ) foraging without
finding a food item. The cue ir updates the robot’s switching
probability from foraging to resting (Pf→r) in a manner that
is inverse to if . Besides updating the switching probabilities at
the foraging state, the robot updates those while resting. This
update is performed using the experience received from the
robot’s neighbors and is numerically given by two social cues
{

sf , sr
}

∈ R
+
0 × R

+
0 . The social cue sf is used to update the

switching probability from resting to foraging (i.e., Pr→f ) by
increasing (decreasing) Pr→f when the robot’s neighbors report
primarily on successful (failed) foraging attempts. Whereas, sr is
used to update the switching probability from foraging to resting
(i.e., Pf→r), inversely to sf . In the following we define how the
switching probabilities are updated at every simulation step (as
described in Rausch et al., 2019a; to prevent divergence, both
probabilities were truncated between zero and one):

Pr→f (t + 1) = Pr→f (t)+ δη(t)sf + δφ(t)if (1)

Pf→r(t + 1) = Pf→r(t)− δη(t)sr − δφ(t)ir , (2)

where δη(t) is the difference between the successful and the failed
foraging attempts communicated to the robot by its neighbors.
Hence, it has a positive sign when there are more successful
attempts than failed ones and a negative sign otherwise.
Consequently, the former increases the switching probability
from resting to foraging and the latter increases the switching
probability from foraging to resting. δη(t) = 0 if the robot is not
resting. Additionally, the robot’s individual experience during a
foraging attempt that starts at tf is defined as follows:

δφ(t) =











+1, at tif

0, if tf < t ≤ tf + θf & no item is found

−1, if t > tf + θf & the robot is still foraging

(3)

where tif is the (unique) time step at which the robot finds an
item while in foraging state. While in the foraging state, the robot
may find an item at any time tf < tif (i.e., it could also happen
that tf + θf < tif ). After finding an item, i.e., subsequently to
tif , the robot leaves the foraging state. If no item is found and
the foraging time crosses the threshold θf , then δφ(t) = −1. This
increases Pf→r(t) at every time step t > tf + θf , guaranteeing
that the robot will probabilistically leave the foraging state at
some t, even without finding an item. δφ(t) = 0 outside of the
foraging state.

The robot behavior is illustrated in Figure 1 using a state
diagram. It includes the following states: (i) foraging: after having
spent at least θr time steps resting, the robot switches with
probability Pr→f from resting to foraging. It attempts to search
the foraging area for a food item to retrieve to the nest. If the
robot fails to find a food item within a predefined time θf , it
switches with probability Pf→r to homing; (ii) homing: in this
transitional state the robot returns to the nest, with δη(t) = 0
and δφ(t) = 0; as soon as the robot reaches nest, it switches
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FIGURE 1 | The state transition diagram of a robot performing the

foraging task.

to distancing; (iii) distancing: having returned to the nest, the
robot searches for an empty spot in the nest where it can rest;
similar to the homing state, distancing is a transitional state with
δη(t) = 0 and δφ(t) = 0; distancing terminates after θd time
steps and the robot switches to resting; (iv) resting: subsequent
to distancing the robot rests for at least θr time steps after which
it switches with probability Pr→f to foraging. A resting robot
broadcasts “success” (or “failure”) to its neighbors if the latest
foraging attempt was successful (or not), respectively. If the robot
failed to leave the nest in state (i), it has no information about the
foraging environment and, thus, does not broadcast any message.
Throughout the entire experiment, the robot performs collision
avoidance maneuvers if other robots or walls enter its proximity
sensors’ range (not shown in Figure 1 for better readability).

2.2. Robot Scale-Free Communication
Network
In this section, we describe the design and implementation of
the algorithm that leads to a scale-free robot communication
network. An implementation of this algorithm in C++ is publicly
available online1 (Rausch et al., 2020). The generation of a scale-
free network from local neighborhoods is an iterative process,
where at each time step t the robot communication is updated
according to the following procedure:

1. Identify all connected components (CCs) in the resting swarm
using depth-first-search. A CC is the maximal set of nodes
(robots), where each two nodes are connected through a finite
path. TheCCs are initially derived from the spatial networks in
which the robots are neighbors if they are within each other’s
communication radius.

2. Generate the scale-free network topology within a CC
using preferential attachment (Albert and Barabási, 2002) as
summarized in Algorithm 1. This algorithm is largely inspired
by previously proposed approaches (Li and Chen, 2003; Jiang

1https://osf.io/48b9h/

et al., 2014). We begin by selecting a sink node νs,0 which
is the node with the highest number of neighbors within its
spatial proximity—i.e., within the initial radius of rs = 1.25 m.
Within this rs, each spatial neighbor νs,i is linked to νs,0,
creating an initial sink network Gs. Next, we increase rs by
0.2 m. Due to this increase, new nodes νnew enter rs. Each νnew
is connected to any νs following preferential attachment. In a
preferential attachment process, the higher the degree of node
νs compared to the sum of all node degrees withinGs, themore
likely is νnew to connect to νs. After all νnew were added to Gs,
rs is increased again by 0.2 m. This process continues until Gs

is of the same size as CC.
3. Repeat 2. for every CC in the swarm.

In Algorithm 1, Nsink is the size of the sink network Gs, in terms
of the number of nodes. Similarly, NCC is the size of the selected
connected component; ds is the degree of node νs, and

∑

i di is
the sum over all degrees in the sink-network. Note that the robot
communication approaches the scale-free network topology only
for large enough CC. However, due to the relatively small area of
the nest the robots had a high tendency to self-aggregate into a
giant connected component.

To test how successful Algorithm 1 was in generating a scale-
free topology, we recorded the degree distributions at t = 10 of
1,000 simulation runs. At t = 10 the large majority of robots
was still resting inside the nest, providing us with at least one
large CC. Scale-free networks are characterized by the power law
degree distribution. Thus, we tested whether our recorded degree
distributions follow the power law using previously established
statistical methods (Clauset et al., 2009; Broido and Clauset, 2019;
Rausch et al., 2019a). Essentially, this statistical analysis is a
highly rigorous power law fitting procedure that consists of three
critical steps: (i) testing whether the shape of the distribution
is due to random fluctuations, i.e., testing the goodness-of-fit
given by a p-value. We proceed to the next step only if p <

0.1, otherwise the power law fit is considered unreliable. (ii)
As the power law behavior is commonly found at the tail of
the distribution, we proceed to the third step only if the data
that is fit the power law behavior represents at least 10% of
all data points. (iii) Finally, we compare the power law fit to
other common distributions (such as the exponential or the log-
normal) that may also tend to resemble a linear shape on a
log-log scale (which is characteristic for the power law) (Clauset
et al., 2009; Alstott et al., 2014). This is done by considering
the log-likelihood ratio of each pair of distributions, which has
a negative value if the distribution we compare the power law
to is a significantly better fit. Consequently, the hypothesis that
the data is power law distributed is not rejected only if this log-
likelihood ratio is positive and only if we did not reject it at steps
(i) and (ii). The result of the testing procedure can be captured
by a numeric value to categorize whether the support for the
hypothesis is not present, weak, moderate or strong (for more
details see Rausch et al., 2019a). The test results for Algorithm 1
have shown a statistically sound support for the power law
distribution in 76% of tests (we ran 1,000 tests), suggesting
that Algorithm 1 was considerably successful in creating
scale-free networks.
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Algorithm 1: Pseudo-code for the implementation of the
preferential attachment, executed at each time step.

initialize a sink network Gs ⊆ CC:

Choose a node ν ∈ CC with the highest degree and connect it
to its spatial neighbors within the radius rs around ν.
while Nsink < Ncc do

increase rs
for each νnew ∈ CC do

for each νs ∈ Gs do
create a bi-directional link between νnew and νs
with probability PBA = ds/

∑

i di
if no link created then

PBA ← PBA + ds/
∑

i di
end

end

end

end

Alternatively, one can use Algorithm 1 to construct networks
with a degree distribution that is less skewed than power law
and more symmetric around the mean degree, i.e., networks that
resemble more closely the well-known small-world networks.
To this end, one can simply replace the preferential attachment
component ds/

∑

i di by a real number.

2.3. Swarm Behavior
At the swarm level, the foraging behavior emerges as a result
of complex interactions between the robots as well as between
robots and their environment. As mentioned above, we evaluate
this performance in dynamic environments, in which the food
density is subject to single and periodic changes. The quality
of the emergent performance is evaluated with respect to the
swarm response (adaptivity) to the changing number of items
in the foraging environment. In particular, we define the swarm
performance with respect to (i) the speed of the swarm’s collective
response, and (ii) the number of retrieved items. The collective
response is quantified using the number of resting robots at any
time step. For instance, in case of a sudden high availability
of food items an ideal swarm’s response would be to allocate
more robots to the foraging state shortly after the increase in the
number of food items is detected.

We borrow the term of settling time from control theory to
measure the time of the swarm’s collective response, referred
to as the convergence time—i.e., the time the swarm needs
to adapt the number of resting/foraging robots to any change
in the items density. The settling time is defined as the time
elapsed from the moment of applying a particular stimulus (i.e.,
changing the items’ density) to the time the system output (i.e.,
number of robots Nrest that are in the resting state) reaches and
remains within a specified margin of error. Hence, the time to
convergence is computed as in the following:

tconv = inf {S},

where S = {t : |Fn(Nrest(t))− Fn(Nrest(tsteady))| < ζ }, (4)

TABLE 1 | Robot and arena parameters.

Parameter Value

ROBOT PARAMETERS

Physical avoidance range 0.1 m

Communication range 1.25 m

Maximum moving speed 1 m/s

Minimum resting time θr 100 s

Minimum unsuccessful foraging time θf 500 s

Minimum distancing time θd 100 s

Individual cues if ,ir 0.01

Social cues sf ,sr {0.01, 0.25, 0.99}

ARENA PARAMETERS

Total area of the arena A 50× 50 m2

Area of the Nest An 10× 50 m2

Area of the Foraging environment Af 40× 50 m2

Number of robots Nrobots 950

Number of items Nitems 30 or 300

Total experiment duration T 104 ts

where inf {S} is the greatest lower bound of the set S, and the
set S includes all time steps t at which the difference between
the transformed number of resting robots at a specific time step
Nrest(t) and the transformed number of resting robots at the
steady state Nrest(tsteady) is smaller than a threshold ζ . In our
study we set ζ = 0.1. Here, tsteady is the time step at which
the system reaches its steady state. To compute the time to
convergence, we use the matlab tool STEPINFO2, that first applies
Fn(...) to transform the input into a continuous representation.
This transformation was used for Nrest .

Finally, in addition to the convergence time, we investigate
the swarm performance in terms of the number of retrieved
items. The number of retrieved items is strongly related to the
time to convergence, since a faster convergence implies a higher
efficiency in retrieving items. We compute this performance
measure using the cumulative sum of the items retrieved
over time.

2.4. Simulation Setup
We ran the simulations using ARGoS3, a well-established
physics-based simulator for swarm robotics (Pinciroli et al.,
2012). The values of particular parameter settings that can
be used to reproduce our simulations and results are listed
in Table 1. Additionally, the reader is encouraged to find our
project on the Open Science Framwork4 (Rausch et al., 2020) to
download the development sources and run the simulations.

Figure 2 displays snapshots from simulations with proximity
(Figure 2A) and scale-free (Figure 2B) networks. The square-
shaped arena is of the size L × L (L = 50 m) and consists of
the nest An = 10 × 50 m2 (gray colored floor in Figure 2) in
addition to the foraging environment Af = 40 × 50 m2 (white

2https://www.mathworks.com/help/control/ref/stepinfo.html
3http://www.argos-sim.info/
4https://osf.io/48b9h/
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FIGURE 2 | Illustrations of the arena taken from ARGoS simulations. Gray area: nest; white area: foraging environment; black dots: items; blue objects: Footbots;

light-blue lines: communication (range-and-bearing) links. Top views onto the entire arena; the communication network is constructed in (A) using spatial network

given by the local robot interactions, and in (B) using Algorithm 1; the inset shows a close-up view on the robots. In all figures, the communication links are formed

only for resting robots inside the nest, as in our experiments moving robots neither broadcast nor listen to any messages.Therefore, it can happen that although a

robot is within the communication range of another, no communication link is established between the two.

in Figure 2). Inside the foraging environment, food items are
uniformly distributed. When a robot brings a food item to the
nest, a new food item appears at a random location within the
foraging environment, preventing item depletion that might lead
the foraging activity to halt.

The robots are able to rapidly leave or return to the nest
thanks to the phototaxis behavior. For that purpose, light beacons
are installed on one side of the nest, opposite to the foraging
environment (yellow dots at the top of Figure 2A or Figure 2B).
Robots are repelled from the lights whenever they need to
leave the nest, and attracted to the lights to return to the
nest. The swarm consists of Nrobots homogeneous robots (we
use Footbots; Bonani et al., 2010). Robots are equipped with
probabilistic controllers, which tune their behavior to forage
or rest based on the above mentioned probabilities (i.e., Pr→f

and Pf→r).
To implement the proposed networks (i.e., scale-free and

proximity), we utilize the range-and-bearing medium (that
includes sensor and actuator) provided in ARGoS. However, this
communication medium is used differently for the two networks.
In the case of proximity networks, the communication range
of the range-and-bearing medium is set to 1.25 m (as we can
see in Table 1). In the case of the scale-free networks, at each
time step, we first obtain the connected components using the
spatial proximity network, where the robots communicate via
the range-and-bearing medium within a radius of 1.25 m. In
the same time step, for each of these connected components, we
create a scale-free network in which the connections can span
over the entire length of the nest, if the connected component
spans over that area. Thus, the resulting scale-free networks can
include much longer ranges than 1.25 m. For implementing such
a communication topology in real-world swarms, it is possible to
apply other communication systems than the range-and-bearing
medium, such as other radio communication technologies
(e.g., the well-established wifi Li et al., 2008), shared memory

(Bayındır, 2016) or promising concepts such as the augmented
reality for Kilobots (ARK) (Reina et al., 2017).

3. RESULTS AND DISCUSSION

The goal of this study is to investigate the influence of
the scale-free topology on the collective performance and
response of a swarm foraging in a dynamic environment.
The dynamics of the environment is modeled in terms of
single and periodic changes in the food density. In robot
swarms, the interaction among individuals is mostly modeled
using local communications, where each robot has a limited
communication range. The communication range is usually
much smaller than the dimension of the world. The robot’s
neighborhood is defined as the set (or a subset) of robots
that is located within its communication range. In this study,
besides local interactions, we make use of the well-known
preferential attachment mechanism (applied in Algorithm 1, see
section 2.2) to construct a scale-free topology that accelerates
information sharing. Hence, we investigate whether it may
improve the efficiency of the swarm collective response to
environmental dynamics.

As mentioned above, we define the collective response in
terms of the number of resting robots and measure it as the
change in this number over time. In our experiments, initially, the
entire swarm is in the resting state. In the following, a transient
period begins, during which the swarm displays oscillations at
the group level. First, almost all robots begin foraging during
the first 500 time steps (ts)—Note that a simulated time step is
one second, with one tick per second. Within the subsequent ≈
500 ts most of the swarm individuals come back to the nest and
switch to resting. Even though such collective behavior oscillates
over several following time periods—due to the probabilistic
nature of the robot controller—the coherence increases rapidly
and the swarm converges on a relatively stable number of resting
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robots. The duration of this transient period is mostly shorter
than 5 · 103 ts, after which we begin our measurements. Finally,
based on preliminary results, we set the swarm size to N = 950,
which balances physical interference with swarm performance
and delivers a sufficiently large number of samples for statistically
sound analysis.

We use two experimental settings. In the first setting, after the
system converges on a number of resting robots Nrest (number
of foraging robots is then Nforg = N − Nrest), a single external
stimulus is applied. This stimulus represents an increase in the
number of food items Nitems by the factor of 10 (from 30 to 300
items) at a particular time point tcrit . In the second experimental
settings, we challenge the swarm further by applying a periodic
change in the density of the food items, hence the benefit of a
quicker response becomes clearer. The periodic change is applied
over periods of 2500 ts and can be of two types, either increasing
or decreasing the number of food items Nitems, always by a factor
of 10.

In each of the two experimental settings, two interaction
networks are implemented, proximity network (emerging
from local interactions), and scale-free network (generated
using preferential attachment). As mentioned above, for the
construction of scale-free networks, the connected components
of the robots resting at the nest site are used to impose the
network topology. Over these networks the robots exchange
specific information about their success or failure of the latest
foraging attempt seeking an accurate estimation of the current
situation in the foraging environment.

According to our experiments, there are two main cases, in
which the influence of the communication topology is negligible.
These are (i) small social cues (i.e., with sf and si values smaller
than 0.01), and (ii) small number of resting robots Nrest . The first
case is straightforward, as the social cues decrease, the impact of
the information obtained from other robots decreases, and hence
the impact of the interaction network on the emergent dynamics
vanishes. The second case is associated with the particular
implementation of the scale-free communication network in
the nest. Since the construction of this network relies on the
connected components present in the nest at every time step,
small numbers of resting robots result in scaling down the size of
such connected components and hence topological contribution
becomes negligible. Therefore, as we aim to investigate the
influence of the interaction network on the emerging dynamics,
we consider those cue configurations in which the social feedback
of the robot’s neighborhood has a distinguishable role in shaping
its decision. This is achieved by setting the social cues to have a
clear advantage over the individual cues—i.e., sf ≫ if , sr≫ ir . For
an extensive discussion on the impact of cue values on swarm
behavior in a similar settings of the foraging task the interested
reader is referred to Liu et al. (2007) and Rausch et al. (2019a).
For the reasons mentioned above, we set the cue values to sf =
0.25, sr = 0.25, if = 0.01, ir = 0.01. Nevertheless, further below
we will additionally compare our results to those obtained with
more extreme values of the social cues, i.e., sf = 0.01, sr = 0.01
and sf = 0.99, sr = 0.99.

The plots in Figure 3 depict results obtained over 30 runs.
They compare the emergent collective response of the swarm

to a single stimulus (i.e., change in food density) as well as to
multiple stimuli when individuals interact locally in comparison
to interacting via scale-free topologies. Firstly, our results reveal
a clear impact of the network structure on the robot activation
level across all types of stimuli (i.e., increasing or decreasing
food item density). This is illustrated through the number of
resting robots being considerably smaller when using the scale-
free network as opposed to the proximity network throughout the
entire simulation time (see Figures 3A,B). Proximity networks
in Figure 3B show a non-adaptive swarm behavior that is largely
due to the very low number of foraging robots. When there are
too few foraging robots, the system tends to approach a global
absorbing state in which robots cease to switch to foraging. In
case of proximity networks in Figure 3B, this tendency toward
the global resting state is due to the initial low density in food
items (i.e., Nitems = 30). Low Nitems leads to a large number
of failed attempts to find and retrieve them. Consequently, this
increases Pf→r up to its maximum Pf→r = 1, pushing the
robots to keep resting. Thus, the subsequent increase in items to
Nitems = 300 is not sensed by the swarm. As an example, this
behavior is evident at t = 7, 500 ts when Nrest did not decrease in
response to the increasing Nitems.

Therefore, it is important to consider the robustness of
the swarm behavior to initial conditions, prior to the external
stimulus. To this end, we inverted the changes of Nitems, starting
with Nitems = 300, reducing it to Nitems = 30 at t = 7, 500 ts,
then increasing it back to Nitems = 300, etc. . . Under this specific
setting, foraging robots have a higher likelihood to find items
than when the initial item density is as low as Nitems = 30.
Consequently, the returning robots broadcast a larger number of
“success” messages, increasing the robots’ probability to switch
to foraging (Pr→f ). Figure 3C shows that this configuration of
the initial conditions led to an adaptive swarm behavior for the
case of proximity networks. This adaptive behavior comes with a
reduced time to convergence (see Figure 3F vs. Figure 3E) and a
significantly higher number of retrieved items (see Figure 3I vs.
Figure 3H). Nevertheless, with scale-free networks the collective
response not only remained more rapid but also appeared to
be more robust to the initial conditions of the system, as
the trajectory of Nrest in Figure 3C is qualitatively similar to
Figure 3B. Nevertheless, the scale-free networks display higher
fluctuations of Nrest compared to the relatively coherent decision
achieved when using proximity networks (Figures 3A–C). This
is due to the high impact that a single hub can have on a large
population of the swarm.

The key contribution of the network topology is reflected
in the time the swarm requires to build up its collective
response. When using scale-free networks, hubs—i.e., robots
with an exceptionally high connectivity degree—help accelerate
the information propagation in twomanners: (i) due to their high
connectivity degree, their individual experience is shared with a
large number of robots within one time step. (ii) Their presence
creates a shorter average path of the network compared to
proifbximity networks, which allows any two robots to exchange
information over a smaller number of hops (i.e., within fewer
time steps). As mentioned above, we use the settling time
defined in Equation (4) to compute the swarm’s convergence time
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FIGURE 3 | Swarm performance comparison between the scale-free networks (blue) and the proximity networks (red). (Top) Swarm collective response in terms of

Nrest. (A) Single stimulus of item gain from Nitems = 30 to Nitems = 300 at tcrit = 7, 500 ts, and (B) multiple stimuli are executed in intervals of 1tcrit = 2, 500 ts. The

items are repeatedly increased to Nitems = 300 (indicated by △) or reduced to Nitems = 30 (indicated by ▽). (C) Similar setting to (B), but starting from Nitems = 300

and changing the items in an inverse order, as indicated by the △ and ▽ markers. (Center) Swarm convergence time. (D) Single stimulus of item gain, S1 is the index

for the stimulus applied at tcrit = 7, 500. (E) Multiple stimuli where items are repeatedly increased or reduced. S1...7 correspond to the seven stimuli applied between

tcrit = 7500 ts and t = 25, 000 ts in intervals of 1tcrit = 2, 500 ts, as in (B). (F) Similar to (E) but with an inverse order, as in (C). (Bottom) Cumulative sum of the

retrieved items. (G) Scenario with a single stimulus. (H) Scenario that starts with Nitems = 30, as in (B). (I) Scenario that starts with Nitems = 300, as in (C). In (A–C)

and in (G–I), shaded areas indicate the confidence interval of 95%. All results were averaged over 30 runs.

after each stimuli—i.e., change in the items’ density. Figure 3D
shows the time it took the swarm to converge to a steady
number of resting/foraging robots after increasing the items
at the foraging area from Nitems = 30 to Nitems = 300
at time step 1tcrit = 7, 500. Figures 3E,F show the same
measure for the repeated stimuli of items increase and decrease,
starting from Nitems = 30 (Figure 3E) and Nitems = 300
(Figure 3F). In all three findings, Figures 3D–F, we can notice
the significantly shorter convergence timewhen robots in the nest
are communicating using the scale-free network in comparison
to the proximity network. These results suggest a higher level
of swarm adaptivity to dynamic environments under scale-
free communications. Furthermore, as shown in Figures 3G–I,

using scale-free networks the cumulative sum of the retrieved
items is either considerably higher from the beginning or at the
later stages of the experiment, compared to the scenarios with
proximity networks.

An important aspect to notice is the physical division between
the site at which the information is to harvest (i.e., the foraging
environment), and the site at which the information is to
exchange (i.e., the nest). Usually, the communication speed is
considerably higher than motion speed. However, specifically in
the foraging scenario, the communication speed is limited by the
motion speed, since it is necessary for the robot to travel across
the foraging environment to reach the nest, where it can start
communicating. One of the clear consequences of this important
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remark is that even for the case of scale-free networks where the
collective response is accelerated, there is a considerably faster
swarm reaction to an increase in the food density compared
to the reaction to a decrease (see the blue line in Figure 3B).
Before the increase of food items, there were few foraging robots.
Those robots consumed time to return to the nest, switch to
resting, inform their neighbors about their foraging experience,
and, ultimately, convince more robots to leave the nest in case
of a successful foraging attempt. For scale-free networks this
resulted in a rapid activation of resting robots. Differently,
collective reaction slowed down when the environmental change
was a decrease in food items. This behavior can be explained
as follows: the large number of robots foraging while the food
density was high experienced the drop in the food density
through their failed foraging attempts. Upon returning to the
nest, these robots led to considerably higher crowding at the
nest entrance. This prolonged the time that the robots needed
to enter the nest and start communicating. Moreover, the higher
Nrest the higher the likelihood that there is one, giant, connected
component inside the nest, spanning over a large number of
robots. If such a network is scale-free, the hubs have a high
chance of influencing many robots to switch to foraging. By
contrast, a low Nrest often led to fragmented networks, reducing
the influence of hubs, lowering the number of switching robots
and, thus, slowing down the collective response compared to
a high Nrest . Hence, the collective response time—even when
using scale-free networks—is longer when there are many
robots foraging.

To obtain a closer look at the interaction network topology,
we can analyze the degree distributions of the resting robots
interacting inside nest. We draw the degree distributions for
different time steps that are selected when the item density
was both high (i.e., 300 items) and low (i.e., 30 items). As
we can see in Figure 4A, scale-free networks strongly resemble
a power-law distributed degree for all time steps at which
the networks are recorded. Similar consistent is the degree
distribution of the proximity networks in Figure 4B for all tested
time steps. However, the degree distribution here appears closer
to a Gaussian distribution which is more symmetrical around
the mean than the scale-free network and has fewer outliers.
To get a clearer look at the outliers, in Figures 4C,D, we show
the communication degree using boxplots. For the scale-free
networks the density of outliers is notably large, the most extreme
among those are the hubs in the network. We can also notice
a clear trend of a higher number of hubs when the number
of resting robots Nrest is higher due to low Nitems. This density
of outliers changes periodically between the external stimuli
Si together with Nrest . In the case of proximity networks, the
boxplots show a relatively low density of outliers and negligible
changes with Si.

Additionally, it is worthwhile considering the effect of
rewiring on the collective response. As elaborated in section 2.2,
Algorithm 1 is applied at every time step as the robots are
in motion. However, because Algorithm 1 has a stochastic
component, the resulting network at time step t is very likely
to be different from t − 1. Such dynamic rewiring increases the
probability that two remote robots share a link. Consequently,

a random robot is more likely to obtain information from
spatially uncorrelated sources, i.e., it obtains a sample that is more
representative of the swarm opinion. This resembles the common
“random mixing” paradigm often found in swarm robotics,
stating that an encounter probability between two robots is the
same for any pair of robots. Thus, the adaptive behavior that
follows from using Algorithm 1 could be largely attributed to this
rewiring-induced opinion mixing.

To examine whether this may indeed be the case, we ran
simulations with a modified version of Algorithm 1 where we
replaced the preferential attachment component ds/

∑

i di by a
real number ρ ∈ {0.01, 0.1}. Note that while this modification
aims at altering the network topology, the resulting alternative
networks are still regenerated at each time step, similar to scale-
free networks, i.e., the notion of rewiring is preserved. The results
are shown in Figure 5. The similarity to the scale-free networks
scenario is particularly striking for ρ = 0.01. When Nrest is low,
it becomes difficult to separate a scale-free network (where the
degrees are power law distributed) from a small-world network
(where the degree distribution is much less skewed, i.e., more
symmetric around the mean value). Therefore, for low Nrest the
impact of the preferential attachment component in Algorithm 1
can be well-approximated by a constant such as ρ = 0.01. More
importantly, it shows that the strong effect that dynamic rewiring
has on swarm adaptivity and collective response.

A feature that frequently occurs in realistic communication is
the packet loss. It occurs when a robot fails to receive a message
broadcast by a neighbor, due to radio-frequency interference or
due to overflow of a robot’s receiver queue. We implemented
packet loss events by allowing the robots to ignore incoming
messages with probability ppl. Figure 6 shows the results for
the proximity and scale-free networks with ppl ∈ {0.1, 0.5}.
Surprisingly, the swarm adaptivity considerably improves in
case of proximity networks, while with scale-free networks the
swarm remains more robust to the influence of the packet
loss. Higher probabilities of packet loss appears to shorten
the time to convergence and slightly increase the number of
collected items. One possible explanation for this behavior could
be that by probabilistically ignoring incoming messages the
robots become to some extent able to reduce the correlation
between their behavior and that of their spatial neighbors.
Synthetically generated networks, such as the scale-free networks
considered in this study, represent an extreme case of such spatial
decorrelation. In contrast, in proximity networks and absence of
packet loss, spatial correlations are very high, leading to feedback
mechanisms that reduce sensitivity to new information. The
presence of packet loss appears to create a middle ground that
bolsters the adaptive behavior at the swarm level. However, we
only tested two values of ppl and it is possible that for ppl > 0.5
inverse effects could be observed. Finally, when resting state can
be associated with low energy consumption, the behavior of the
system in the presence of here considered ppl may demonstrate
a high level of efficiency, in terms of increasing Nrest while
preserving the high number of retrieved items. Nevertheless,
as mentioned above, the detailed investigation of the influence
of packet loss is beyond the scope of the current study and
future research is needed to confirm the generality of our
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FIGURE 4 | Degree distributions of the networks within the nest at different time instances. (A) Scale-free networks; (B) Proximity networks. At t = 5, 000 ts and

t = 11, 250 ts there are Nitems = 30 to retrieve, while at t = 8, 750 ts and t = 13, 750 ts the item count is Nitems = 300. Additionally, box plots for the (C) scale-free and

(D) proximity networks illustrate the presence of outliers for the different onsets of stimuli S1...7 (starting at tcrit = 7, 500 ts and occurring in intervals of

1tcrit = 2, 500 ts). As expected, in contrast to the proximity networks, in case of scale-free networks, the outliers (indicated by the + markers) are so extreme that the

boxes containing the mean values are barely recognizable at the bottom of plot (C).

FIGURE 5 | Comparison of the (A) swarm collective response, (B) time to convergence, and (C) swarm performance, between scale-free networks and random

networks created with ρ = 0.01 and ρ = 0.1.
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FIGURE 6 | Swarm performance comparison between the scale-free networks (blue) and the proximity networks in presence of packet loss, with packet loss

probability ppl = 0.1 (red) and ppl = 0.5 (magenta). The number of items is repeatedly increased to Nitems = 300 (indicated by △) or reduced to Nitems = 30 (indicated

by ▽). These repeating changes occur in intervals of 1tcrit = 2, 500 ts, starting at tcrit = 7, 500 ts. (Left) Scenario with initially Nitems = 30. (Right) Scenario with initially

Nitems = 300; (A,B) Swarm collective response in terms of Nrest. (C,D) Swarm convergence time. S1...7 correspond to the seven stimuli between tcrit = 7, 500 ts and

t = 25, 000 ts. (E,F) Cumulative sum of the retrieved items. In (A,B,E,F), the shaded areas indicate the confidence interval of 95%. All results represent averages over

30 runs.
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FIGURE 7 | Comparison of the (A) swarm collective response, (B) time to convergence, and (C) swarm performance, between different values of social cues for

swarms communicating through scale-free networks. Apart from sf = sr = 0.25 we consider two extreme cases: low values (sf = sr = 0.01) and high values of social

cues (sf = sr = 0.99). All results were averaged over 30 runs.

findings5. Moreover, here we consider constant values of ppl that
are the same for every robot in the swarm and that do not
change based on the location of the robot or the number of
communication links. In contrast, in more realistic settings not
only the packet loss but also ppl itself may have fluctuating values
depending on the situation and both could be profoundly difficult
to control.

Finally, we compare the intensity of the collective response
resulting from different social cues. As mentioned above, social
cues are the main driver of the dynamics to build up a faster
response over the interaction network. Our results show that
higher social cues lead to a higher activation of the resting
robots, see Figure 7 that shows the activation of the resting
robots when setting sf = 0.99, sr = 0.99 in comparison
to the setting sf = 0.01, sr = 0.01 (results are averaged
over 30 runs). High social cues activate considerably more
resting robots (i.e., reduces number of resting robots) than low
cue values (Figure 7A). However, the convergence time with
high cue values is comparable to the previously considered
default case of sf = sr = 0.25 (see Figure 7B). The
number of collected items overlaps for all three cue values
(see Figure 7C).

4. CONCLUSION

The goal of this study is to investigate the role of network
topology in influencing the propagation of information in
a foraging scenario with changing the availability of food
items. Therefore, we have addressed scenarios with dynamic
environments, a realistic aspect of most real-world applications.
We considered two types of changes: a single abrupt change
(referred to a single stimulus) and periodic changes (multiple
stimuli). We aimed to examine how scale-free networks, in
particular, may accelerate the spreading of information and hence
enable a quicker collective response than proximity networks to
the global changes.

5To this end, the interested reader is encouraged to use our publicly available

resources provided on https://osf.io/48b9h/.

We have implemented scale-free networks across the robots
resting in the nest, as the nest is usually the part of the
environment in which communication takes place. We applied
the well-known preferential attachment technique to construct
the scale-free topology. Following preferential attachment, the
probability of connecting to a robot is proportional to its
current connectivity degree. Therefore, a number of robots
emerge to have a relatively high degree of connectivity, those
are referred to as the hub robots. When the density of food
items changes at the foraging environment, and this change is
reflected in the robots’ experience, scale-free networks enable a
faster spreading of this information in the nest. This led to a
faster collective response compared to the scenarios in which
interactions between the resting robots were implemented using
proximity networks.

Our results suggest that the use of scale-free networks can
improve the collective response of the swarm to changes in
their dynamic environment, by improving the spread of shared
information and reducing the spatial correlation in the robots’
decisions. These two desired features in collective systems are
achieved due to the introduced possibility to communicate over
long distances, as well as due to the dynamic rewiring of the
interaction network at every time step as a consequence of
robot motion. These insights were obtained by comparing the
swarm behavior in scenarios with and without systematic packet
loss, in addition to comparing the swarm performance between
scenarios with scale-free networks and with alternative random
networks. Furthermore, our findings showcase the effect of social
cues on the intensity of the collective response in presence of
scale-free networks. Our results show that higher social cues lead
to a higher activation of the resting robots, due to the increased
influence of their neighbors’ experience.

Although scale-free networks have shown to equip the swarm
with a quicker reaction to changes in dynamic environments—
studied for the collective foraging task—this came at the cost
of the coherence of the collective response. Scale-free topologies
led to more fluctuations of the swarm decision (whether to
rest or to forage). These fluctuations can be explained in
terms of the high influence of particular individuals (i.e., the
hubs) on the opinions of a large population of the resting
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robots. Two particularly promising research directions for
future work include the design of self-organized algorithms to
implement scale-free topologies in robots swarms. Additionally,
the design of efficient individual decision mechanisms that
helps the collective response to demonstrate a higher stability.
Finally, generalizing this study to other collective tasks such
as site selection, flocking, and others may also lead to new
interesting insights.
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