
ORIGINAL RESEARCH
published: 02 July 2020

doi: 10.3389/frobt.2020.00087

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2020 | Volume 7 | Article 87

Edited by:

Concepción A. Monje,

Universidad Carlos III de

Madrid, Spain

Reviewed by:

Cosimo Della Santina,

Massachusetts Institute of

Technology, United States

Chaoyang Song,

Southern University of Science and

Technology, China

*Correspondence:

Lars Schiller

lars.schiller@tuhh.de

Specialty section:

This article was submitted to

Soft Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 18 February 2020

Accepted: 02 June 2020

Published: 02 July 2020

Citation:

Schiller L, Seibel A and Schlattmann J

(2020) A Gait Pattern Generator for

Closed-Loop Position Control of a Soft

Walking Robot. Front. Robot. AI 7:87.

doi: 10.3389/frobt.2020.00087

A Gait Pattern Generator for
Closed-Loop Position Control of a
Soft Walking Robot

Lars Schiller 1*, Arthur Seibel 2 and Josef Schlattmann 1

1Workgroup on System Technologies and Engineering Design Methodology, Hamburg University of Technology,

Hamburg, Germany, 2 Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Hamburg, Germany

This paper presents an approach to control the position of a gecko-inspired soft robot in

Cartesian space. By formulating constraints under the assumption of constant curvature,

the joint space of the robot is reduced in its dimension from nine to two. The remaining

two generalized coordinates describe respectively the walking speed and the rotational

speed of the robot and define the so-called velocity space. By means of simulations

and experimental validation, the direct kinematics of the entire velocity space (mapping

in Cartesian task space) is approximated by a bivariate polynomial. Based on this, an

optimization problem is formulated that recursively generates the optimal references

to reach a given target position in task space. Finally, we show in simulation and

experiment that the robot can master arbitrary obstacle courses by making use of this

gait pattern generator.

Keywords: mobile robotics, gait pattern generator, closed-loop position control, gecko-inspired soft robot,

locomotion controller

1. INTRODUCTION

Soft robotics is an emerging field in the robotics sciences and enjoys increasing attention in the
scientific community (Bao et al., 2018). An important part of this field is mobile soft robotics,
which allows locomotion in unknown and unstructured (Katzschmann et al., 2018) as well as
potentially dangerous environments (Tolley et al., 2014). In order to navigate a robot through
any environment, some sort of feedback is needed. As discussed in Santina et al. (2017), high gain
feedback control results in good tracking performance, but imposes a reduction in the compliance
of the controlled system. Therefore, it takes away the essential characteristic and greatest advantage
of a soft robot—its softness (Rus and Tolley, 2015). When it comes to soft robots, usually the
dynamics of inputs are indirectly coupled with the dynamics of outputs and the coupling is
time-delayed (PneuNets: pressure—angle, SMA: heat—contraction, refer to Lee et al., 2013). In
order to take this into account, a cascaded control architecture has been established (see, e.g.,
Marchese et al., 2014; Hofer and D’Andrea, 2018). In the case of pneumatically operated robots,
the inner loop controls the pressure and the outer loop controls the pressure reference (see also
Figure 11B). In order to preserve softness, the feedback gain of the outer control loop needs to be
low. Most of the pressure reference should therefore be generated by a feed forward term (Santina
et al., 2017). There is a trend to implement the feed forward term by using Iterative Learning
Control (Bristow et al., 2006; see, e.g., Santina et al., 2017; Zhang and Polygerinos, 2018; Hofer
et al., 2019). As shown in Santina et al. (2020), the typical soft properties of a soft robot can also be
preserved with a model-based feed forward term when doing position control.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00087
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00087&domain=pdf&date_stamp=2020-07-02
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lars.schiller@tuhh.de
https://doi.org/10.3389/frobt.2020.00087
https://www.frontiersin.org/articles/10.3389/frobt.2020.00087/full
http://loop.frontiersin.org/people/718147/overview
http://loop.frontiersin.org/people/620122/overview
http://loop.frontiersin.org/people/867139/overview

Schiller et al. Position Control of Soft Robot

All the soft robots discussed so far are stationary. Thus,
position control refers to the position of the end effector and
not to the position of the entire robot. However, the same
principles are also valid for mobile soft robots. Most mobile
soft robots, such as in Shepherd et al. (2011), Godage et al.
(2012), Tolley et al. (2014), Qin et al. (2019), and Schiller et al.
(2019), are feed forward-controlled with predefined gait patterns.
In order to enable such robots to move autonomously even in
unknown terrain, a locomotion controller is needed that can
generate any gait path. For solving this task, different methods
have been employed, such as sine generators, central pattern
generators (CPG), predefined trajectories, finite state machines,
or heuristic control laws (Pratt et al., 2001). An example for sine
generator-based locomotion control is presented in Horvat et al.
(2015, 2017) for a salamander-like robot. The method enables
to operate the robot by only two drive signals, i.e., forward
and rotational speed. The main contribution here is the skilful
synchronization of spine and legs motion, which is very robot-
specific. In Ijspeert (2008), the suitability of central pattern
generators, i.e., biologically inspired neural circuits capable of
producing coordinated patterns for robot’s locomotion, are
discussed. It is concluded that CPGs are well-suited in general
and especially for distributed implementations (e.g., for snake-
like or reconfigurable robots). However, there is neither a sound
design methodology to solve a specific locomotor problem nor
a solid theoretical foundation. In order to implement CPGs in a
meaningful way, the basic gait pattern must therefore be known
from the outset, which again is robot-specific. An example for
the automatic generation of optimal joint-trajectories is given
in Bern et al. (2019). By using a forward shooting method and
an FEM-based direct kinematics simulation, high-level goals,
such as forward speed or direction of movement of various soft
walking robots can be met. This method does not require a priori
knowledge of a motion pattern, but can not be used online
without restrictions (computation time, stability, ...). However, it
can be well used to find robot-specific gait patterns.

Hence, for locomotion control of a robotic platform, a
robot-specific motion strategy must be known. This paper
analytically derives a robot-specific mapping of desired motion
(forward and rotational speed) to joint coordinates for the
gecko-inspired robot from Schiller et al. (2019), which is briefly
described in section 2. The mapping function is referred to
as “gait law” and is presented in section 3. In section 4,
the direct kinematics of the robot are approximated by a
polynomial by means of simulation and experiments to allow
a fast evaluation. This is necessary to implement a control
strategy in section 5 that maintains the softness of the robot
and allows it to approach arbitrary references in the task space.
The control strategy is referred to as Gait Pattern Generator.
Figure 1 shows the systematic procedure of this paper. To
summarize, the paper contributes in two ways: (i) it derives
the robot-specific motion strategy for the gecko-inspired robot
and (ii), for a given robot-specific motion strategy, it provides a
method to control the robot’s position. However, the underlying
assumptions of the former can also be transferred to other
soft robots, since the ability to adapt to the environment is
exploited herein.

FIGURE 1 | Overview of spaces: in order to approximate the inverse

kinematics, the joint space of the robot is reduced by formulating constraints

referred to as gait law ᾱ. The remaining two generalized coordinates q define

the so-called velocity space. The direct kinematics of the entire velocity space

(mapping in Cartesian task space) is approximated by a bivariate polynomial

1x. By formulating an optimization problem mind(x̄) that recursively generates

the reference minimizing the distance to a given target position x̄, the robot

can be operated in task space.

2. ROBOT AND EXPERIMENTAL SETUP

The soft robot this paper deals with has five limbs (four legs
and a torso) and four feet that can be operated independently.
Therefore, its joint space has nine dimensions: the five bending
angles of the limbs α = [α0,α1,α2,α3,α4] and the four states
of fixation actuators f = [f0, f1, f2, f3]. Since its locomotion is
only possible within two dimensions, its description in task space
needs only three coordinates: the x and y position of the robot
Ox and its orientation Oε, described in the global (Cartesian)
coordinate system {O}. Thus, the task space has three dimensions.
A photograph of the prototype of this robot is depicted in
Figure 2A and Table 1 summarizes its specifications. In order
to evaluate the performance of the robot, the test bench shown
in Figure 2B was built with an embedded camera system. To
measure the bending angles α, the robot orientation ε, and the
robot position x, apriltags (Wang and Olson, 2016) were fixed
on its body. For a more detailed description of the experimental
setup, refer to the Supplementary Material.

3. GAIT LAW

The straight gait of the robot can be described by a single
variable—the reference bending angle of the torso ᾱ2. All other
variables of the joint space can then be described as a function
of ᾱ2 by means of the gait law for the straight gait, which was
derived in Seibel and Schiller (2018):

ᾱstraight =

π
4 −

ᾱ2
2

π
4 +

ᾱ2
2

ᾱ2
π
4 −

ᾱ2
2

π
4 +

ᾱ2
2

, f =

0 if ᾱ2 < 0 else 1
1 if ᾱ2 < 0 else 0
1 if ᾱ2 < 0 else 0
0 if ᾱ2 < 0 else 1

. (1)

Frontiers in Robotics and AI | www.frontiersin.org 2 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 2 | Experimental setup. (A) Prototype of the gecko-inspired soft robot with attached visual markers. (B) Test bench with embedded camera system for

measuring the robot’s position and evaluating the walking performance.

TABLE 1 | Specifications of the soft robot.

Total weight 150 g

Max. speed 6 cm/s

Body length 12 cm

Body span 17 cm

Average applied pressure 0.76 bar

Pull-off force of suction cups 47N

For a constant cycle time, the torso’s bending angle is the essential
measure for the forward velocity. Therefore, q1 as the signal
driving the forward velocity is introduced, and for straight gait,
ᾱ2 = q1 is set. In order to operate the robot with different
velocities, the angle reference ᾱ(q1) for a given step size q1 is
inverted after a certain time interval tmove. Hence, it jumps from
ᾱ(q1) to ᾱ(−q1). The corresponding fixation reference f must
also be inverted.

3.1. Derivation for General Case
The above gait law can only generate gait patterns for straight
motion. It is based on the idea that the orientations of the feet
always remain constant. Now, we will loosen this restriction and
demand only constant orientations for the fixed feet, while the
unfixed feet are allowed to rotate. This implies two cases to
be considered:

1. What should be the rule for a fixed foot so that its orientation
remains constant regardless of the rotation of the body?

2. What should be the rule for a free foot so that its change of
orientation matches that of the body and enables a suitable
initial pose for the next cycle?

For both cases, the rules are based on the change of orientations
of the feet. The orientations of feet ϕ = [ϕ0 ϕ2 ϕ3 ϕ5]

⊤ described
in the global coordinate system—and consequently their change
during the change of pose—can be calculated assuming constant
curvature as follows:

ϕ(α, ε) =

ε − 1
2α2 − α0

ε − 1
2α2 + α1

ε + 1
2α2 + α3 + π

ε + 1
2α2 − α4 + π

. (2)

Since the feet’s orientations depend on the robot’s orientation
ε and the bending angles α, a description for the latter two is
required. First, it will be discussed how to describe and how to
change the walking direction of the robot ε, i.e., its orientation.
From Schiller et al. (2020), it is known that the asymmetrical
actuation of the torso leads to a rotation of the body. In order
to describe an asymmetrical actuation, the steering factor q2 is
introduced. The reference angle for the torso ᾱ2 is then described
as follows:

ᾱ2 = q1 + |q1|q2, (3)

where q2 ∈ [−0.5, 0.5] is dimensionless and shifts the reference
angle of the torso ᾱ2 in the direction of q2 (compare Figure 3).
In this way, the left side of the torso is actuated by |q1|q2
more in the first half of a cycle and the right side by the
same amount less in the second half of the cycle. It should
be noted that Equation (3) describes only one possible model
for asymmetric actuation. Several models have been tested and
this one has been established. Clearly, the change of orientation
per cycle 1ε is related to the steering factor q2 and the step
length q1. Simulation and experiment show that, for asymmetric

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 3 | Illustration of how the steering q2 influences the reference angle of

the torso ᾱ2.

actuation with positive q2, a negative change of orientation
occurs, and vice versa. The change in orientation per cycle is
therefore negatively proportional to the steering factor and the
step length:

1ε ∼ −|1q1|q2 ,

where |1q1| is the amount of change in torso actuation from
initial pose to subsequent pose. This results in a model for
orientation change per cycle 1ε̂ of the body:

1

2
1ε̂ = −c̃1|1q1|q2 , (4)

where the robot-specific constant c̃1 describes the ability of the
robot to rotate. Here, it is assumed that the robot rotates
consistently within the cycle. Therefore, the change in orientation
after a pose change (half cycle) is exactly half as much as after the
entire cycle; compare to Figure 4where 1

21ε = ε1−ε0 = ε2−ε1.
The second parameter for calculating the feet’s orientations

Equation (2) is the bending angles of the legs. Hence, a
specification for the legs is needed. The structure of the straight
gait law from Equation (1) was adopted for this purpose, whereby
the reference angles of the legs are extended with a yet unknown
term g(q1, q2). In the following, the procedure is shown for the
front left leg only (α0). However, it can be transferred to all other
legs. With this extension, the reference angle for the front left leg
results in:

ᾱ0 =
π

4
−

ᾱ2

2
+ g(q1, q2) . (5)

Now, the change of foot orientation when changing the pose
1ϕ can be derived from Equations (2)–(5) by treating the
references of the bending angles as the actual bending angles
and assuming the body rotates according to the model from
Equation (4):

1ϕ0 = ϕ0,1 − ϕ0,0

=
(

ε1 −
ᾱ2,1
2 − ᾱ0,1

)

−
(

ε0 −
ᾱ2,1
2 − ᾱ0,0

)

=
(

ε1 −
π
4 − g(q1,1, q2)

)

−
(

ε0 −
π
4 − g(q1,0, q2)

)

= (ε1 − ε0)−
(

g(q1,1, q2)− g(q1,0, q2)
)

= 1
21ε̂−1g(q1, q2)

, (6)

where q1,0 describes the step length of the initial pose and q1,1
that of the subsequent pose. When changing poses, the robot
always jumps from ᾱ(q1, ·) to ᾱ(−q1, ·). Therefore, q1,1 = −q1,0
and g(q1,1, q2) − g(q1,0, q2) can be combined to 1g(q1, q2).
Furthermore, it is assumed that the steering factor q2 remains
unchanged when changing poses. Next, a specification for the
additional term g(q1, q2) is derived for the two cases under
consideration (fixed and unfixed leg).

3.1.1. Fixed Leg

Figure 4 shows one cycle of trotting gait. Within the transition
from the initial pose (black) to the middle pose (gray), the front
left foot is fixed and thus its orientation should remain constant.
The bending angle must be determined in such a way that the
foot’s orientation is kept constant, i.e., independent of q1 or q2:

1ϕ0,f =
1

2
1ε̂−1gf (q1, q2) = 0 ∀ q1, q2 , (7)

where the index f denotes a fixed foot/leg. This means that
the robot can change from any pose described by the general
gait law to a subsequent pose without changing the orientation
of its fixed feet, with the limitation that the steering factor q2
remains constant with this change. From Equations (7) and (4),
the additional term for the fixed leg results in:

1gf (q1, q2) =
1

2
1ε̂ = −c̃1|1q1|q2 . (8)

Since the sign of q1 is always swapped when changing poses, the
change of the torso actuation always results in |1q1| = 2|q1|, and
thus, the additional term becomes (with c1 = −4c̃1):

gf (q1, q2) = c1|q1|q2 . (9)

Inserted in Equation (5), the reference for a fixed leg results in:

α0,f =
π

4
−

q1

2
−

1

2
|q1|q2 + c1|q1|q2 . (10)

3.1.2. Free Leg

As the foot was previously fixed, the rotation of the body must
affect its orientation in the non-fixed phase. The free foot should
therefore rotate in the unfixed phase exactly as much as the body
does during the entire cycle. This is illustrated in Figure 4 where
the change in orientation of the front left foot between the final
pose (lightgray) and the middle pose (gray) matches exactly the
rotation of the body 1ε̂. With the model for the change of foot
orientation from Equation (6), it must hold:

Frontiers in Robotics and AI | www.frontiersin.org 4 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 4 | Problem statement: which bending angles must be applied in order to turn the robot while keeping the orientation of its fixed feet? During the first change

of pose, the orientation of the front left foot (ϕ0) and the rear right foot (ϕ5) should be kept constant. During the second change of pose, the front right foot (ϕ2) and

the rear left foot (ϕ3) should not rotate.

1ϕ0,f̄ =
1

2
1ε̂−1gf̄ (q1, q2) = 1ε̂ ∀ q1, q2 , (11)

where f̄ indicates an unfixed foot. Clearly, this only applies if the
same additional term is added again, but with swapped sign:

gf̄ (q1, q2) = −gf (q1, q2) = −c1|q1|q2 . (12)

According to Equation (5), the reference for a free leg results in:

α0,f̄ =
π

4
−

q1

2
−

1

2
|q1|q2 − c1|q1|q2 . (13)

If a foot is fixed, we add the term g(q1, q2) = c1|q1|q2 to the
reference angle of the corresponding leg. If the leg is free, the
additional term g is subtracted. Whether a leg is fixed or not
is determined by the sign of the torso reference (see Equation
1): q1 positive→ foot fixed, q1 negative→ foot free. Thus, the
distinction between free and fixed leg can be avoided by dropping
the amount operation of q1 in the additional term g. The sign
of q1 then automatically controls the corrective direction of the
additional term g. This procedure can be performed for all legs
and results in the general gait law, which is formally described
as follows:

ᾱ =

π
4 −

q1
2 −

1
2 |q1|q2 + c1q1q2

π
4 +

q1
2 +

1
2 |q1|q2 + c1q1q2

q1 + |q1|q2
π
4 −

q1
2 −

1
2 |q1|q2 + c1q1q2

π
4 +

q1
2 +

1
2 |q1|q2 + c1q1q2

, f = (1) . (14)

The value of additional leg bending c1 is to be determined
via simulations or experiments. This is demonstrated in the
Supplementary Material and results in c1 = 1. The visualization
of this law is shown in Figure 5. Note that the middle layer
shows the special case for straight motion from Equation (1). By

introducing the index k specifying the extreme poses, references
for a gait can be generated recursively by

ᾱk = ᾱ(−q1,k−1, q2), f k = ¬f k−1, (15)

where ¬f is the logical negation of f .
The gait law generates reference angles for the robot,

depending on step length (forward velocity) q1 and steering
factor (rotational velocity) q2. These two generalized coordinates
define the so-called velocity space of trotting gaits, since each
pair (q1, q2) describes another trotting gait. If q1 and q2 remain
constant during gait, theoretically, the orientation of the fixed
feet does not change. However, the derivation of this law did
not examine whether the fixed feet also remain in position when
switching poses. Also, the robot should have the ability to change
its gait over time and should not always run the same circle
with the same velocity. Therefore, q1 and q2 must vary. The next
section examines whether this law provides useful references,
despite neglecting the feet positions.

3.2. Experimental Validation
Within an experiment, it shall be analyzed whether the
orientations of fixed feet actually remain constant during a cycle
or ignoring the feet positions leads to significant discrepancies.
The gait was slowed down (tmove = 10 s) as highly dynamic
changes smear the camera images and the tags can no longer
be detected by image processing. Figure 6 shows an exemplary
cycle of a gait for q1 = 80◦ and q2 = −0.5. The figure shows
the mean values and standard deviations of five experiments
in total. For the detailed processing steps in the evaluation,
refer to the Supplementary Material. The upper graph shows
the progression of the bending angles α and the lower graph
shows the progression of the orientations ϕ and ε during a cycle.
Initially, all feet are fixed (pose 1a). The bending angle of the
front left (red line) and the rear right leg (dark blue line) differs
significantly from the reference at this point in time because the
robot is forced into this pose by the fixation of its feet. After
about five percent of the cycle time, the front left and rear right
foot are released (pose 1b). At this point, a jump in the bending

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 5 | Visualization of the velocity space defined the by general gait law from Equation (14) for q2 ∈ {−0.5,−0.25, 0, 0.25, 0.5}.

angle of the two corresponding legs can be observed—the angles
jump to their reference. The same effect can be observed when
changing the feet fixation in the middle of the cycle (pose 2a
→ 2b). From this observation, it can be deduced that the robot
cannot match the reference generated by the gait law because
the closed kinematic chain of its parallel structure prevents it
from adopting the specified bending angles. The ϕ graph shows
that the orientations of the fixed feet remain nearly constant as
assumed when deriving the gait law. An exception is the rear
left foot (blue line): its orientation changes significantly during
the fixed phase. As already seen in Schiller et al. (2020), the
suction cups of the robot have a certain margin of rotation. This
must now be utilized; otherwise, the feet would have to move
(which is not possible because of the fixation). In summary,
it can be concluded from the experiment in Figure 6 that the
gait law provides references which cannot be fully realized due
to the closed kinematic chain, but nevertheless lead to the
desired behavior.

4. APPROXIMATING THE DIRECT
KINEMATICS

The next step is to determine how the robot behaves in the task
space for each point (q1, q2) in the velocity space—that is, how it
moves per cycle and by how much it rotates. Thus, the bivariate

polynomial 1x(q1, q2) is searched for which approximates the
transformation of the velocity space into the task space (compare
Figure 1). The form of the polynomial is defined as follows:

1x(q1, q2) =

1ε

1x
1y

 ,1ε,1x,1y :=
∑

i,j

ai,jq
i
1q

j
2 . (16)

In order to identify the coefficients, the velocity space is gridded
and for each set of values the motion of the robot is measured.
This can either be done experimentally or the simulation model
is used and the movement is simulated. The result of both
approaches depends on the way they are implemented. Therefore,
the influencing factors must be identified and their value must
be meaningfully determined. Table 2 summarizes the conditions
under which the following experiments or simulation were
carried out. A detailed discussion of the experimental conditions
can be found in the Supplementary Material.

Figure 7 shows the results of simulation (Figure 7A) and
experiment (Figure 7B). In both cases, the velocity space was
gridded with q1 ∈ {50, 60, · · · , 90} and q2 ∈ {−0.5,−0.3, · · · 0.5}
and a measurement was performed for each grid point. A
simplified representation of the extreme poses of the resulting
gait illustrates the movement. The tip of the torso of the initial
pose is always at the position (q1, q2) and the orientation of

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 6 | Simulation and experiment of one gait cycle for q = [80◦ − 0.5]

and c1 = 1. Theoretical values (according to the gait law) are illustrated with

light dotted lines. Simulated values are illustrated with light solid lines.

Experimental values are illustrated as solid lines together with an area

indicating the standard deviation. In the orientation plot and the poses shown

above, lines representing unfixed feet/legs are illustrated as dashed lines. The

switch of fixation happens at half cycle time. Color code as follows: front left

leg (red), front right leg (dark red), torso (orange), rear left leg (blue), rear right

leg (dark blue), robot orientation (green).

TABLE 2 | Influencing factors on simulation and experiment.

Initial pose α0 = ᾱ(q1,q2), f 0 = [1, 0, 0, 1]

Number of cycles min. ncyc = 2, drop initial cycle

Dimensions of robot ℓleg = 9.1 cm, ℓtorso = 10.3 cm

Weighting parameters (only simulation) fl , fo, fa = 89, 10, 5.9

Model order of 1x(q1,q2) order = 2

the robot faces upwards. The resulting translation [1x1y]⊤ per
cycle is indicated by a red arrow. Besides, the orientation of
the robot after a cycle is represented by a green line. The heat
map in the background shows the resulting rotation 1ε(q1, q2)
per cycle. The numerical value of this function is noted in a

green box below the individual measurements. In the figure
of the experiment (Figure 7B), the standard deviation of the
translation is shown as a red ellipse with the corresponding
semi axes. The standard deviation of the rotation is visualized
as a light green triangle with an opening angle of 2std(δε). The
blue arrow shows the polynomial fit of the translation and the
blue line the polynomial fit of the rotation at the corresponding
grid point. A detailed view of a single experiment is shown
in Figure 8.

In contrast to the experiment in section 3.2, in Figure 7,
a clear deviation between simulated and experimental results
can be observed. The resulting rotation and the shift in
transverse direction are noticeably higher for all grid points. The
simulation model does not reproduce friction effects or external
disturbances, such as the influence of the supply tubes. In the
previous experiment (from section 3.2), these effects played a
subordinate role because of the reduced speed and the relatively
short distance traveled. This experiment was executed at full
speed (tmove = 1 s); thus, friction has a significantly larger
influence. Furthermore, we can observe that the experiment is
not symmetrical, meaning that swapping the sign of q2 does
not yield to mirrored behavior [1x(q1, q2) ≁ −1x(q1,−q2)].
This can be attributed to manufacturing inaccuracies of the
robot and an optimizable pressure-bending angle calibration.
The calibration procedure and associated difficulties are also
discussed in the Supplementary Material. A final observation
is that, in the experiment, the resulting rotation decreases for a
large step length q1. This is different to the simulation, where
the resulting rotation increases steadily with increasing step
length. For large values of q1 and q2, the gait law prescribes
relatively large reference angles. If these are out of range of
calibration of the respective actuator, the reference pressure
is saturated to prevent damage to the robot. Exactly this
effect occurs in the upper part (q1 ≥ 80◦) of Figure 7B.
Therefore, the poses here deviate much more from their
simulated counterparts in Figure 7A than in the lower part
of the figure (q1 < 80◦). Apart from the “over-simulation”
and the missing saturation effect, the simulation reproduces the
behavior very well. It can be seen as the behavior of a robot
that has been perfectly manufactured and calibrated, consisting
of actuators as robust as saturation is no longer necessary,
whose feet have the optimum torsional stiffness, and where
all friction effects have been reduced to a minimum. For the
implementation of the Gait Pattern Generator, however, the
actual interest focuses on the polynomial fit of the motion. In
most cases, the second-order fit shown in blue matches the
measurement or is at least within the standard deviation. The
coefficients for the polynomial 1x(q1, q2) for Equation (16) are
listed in Table 3.

5. GAIT PATTERN GENERATOR

The last step to control the robot’s position is the calculation of
the optimal tuple q∗ to move from the current position x closer
to a given target position x̄ (compare Figure 1).

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 7 | Resulting experimental gaits according to the gait law in Equation (14) for a variation of step length and steering factor. The rows each have a constant

step length q1 and the columns a constant steering factor q2. Each frame shows the resulting motion of one cycle with the pattern corresponding to (q1,q2). Below

each frame, the rotation per cycle in degrees 1ε is stated. The heat map in the background shows the polynomial fit of 1ε. The bold red vector pointing from the initial

position of each individual gait to its end position is called [1x1y]⊤. (A) Simulation (89, 10, 5.9) and (B) experiment.

FIGURE 8 | Detailed view of resulting experimental gait according to the gait

law for (q1,q2) = (90◦, 0.3).

5.1. Derivation
As derived in section 4, the robot turns around 1ε and moves by
[1x1y]⊤ with each cycle. Therefore, the position of the (n+1)th
pose given in the coordinate system of the nth pose can be
described by

R(n)x(n+1) =

[

1x(q1, q2)
1y(q1, q2)

]

, (17)

where the index n starts from 0 indicating the initial pose and
accordingly the subsequent poses. If step length q1 and steering
factor q2 do not change during gait (q = const.), the translation
and rotation per cycle will remain the same. Let us assume
that it would be possible to reach the target position in a finite
number of cycles without changing the gait. Accordingly, the

vector R(n) x̄(n) pointing from the nth pose to the target, can be
described in the coordinate system of the nth pose as a function
of the target vector of the (n− 1)th pose:

R(n) x̄(n) = R(−1ε)
(

R(n−1) x̄(n−1) −
R(n−1)x(n)

)

, (18)

where R ∈ R
2×2 is the rotation matrix. Since for multiple

rotations around the same axis Rk(x) = R(kx) applies, this can
be formulated explicitly:

R(0) x̄(n) = R(−n1ε) R
(0)
x̄0 −

n
∑

i=0

R(−i1ε)

[

1x
1y

]

. (19)

Figure 9 visualizes these formulas, whereby the opacity of poses
that lie further in the future decreases. Now, the distance dn to
the target position x̄ after n cycles of trotting with the pattern
corresponding to the gait law ᾱ(q1, q2) can be calculated with

dn(
R(0) x̄0,1x) =

∣

∣

∣

R(0) x̄(n)

∣

∣

∣

2
. (20)

Frontiers in Robotics and AI | www.frontiersin.org 8 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

TABLE 3 | Coefficients of the bivariate polynomial fit of the motion per cycle 1x for the experiment.

f(q1,q2) = a0,0 a1,0 · q1 a0,1 · q2 a2,0 · q2
1 a0,2 · q2

2 a1,1 · q1q2

1ε (◦) 5.4154 −0.0457 −44.1944 −0.0006 0.778 −0.0832

1x (cm) 0.1106 0.2225 11.4146 −0.0008 −17.5133 −0.1213

1y (cm) 1.9498 −0.0682 −3.6997 0.0004 −0.0333 −0.0580

FIGURE 9 | Visualization of Equations (17)–(22). By using the approximation of the direct kinematics 1x, the approximated position in Cartesian space after n cycles

can be easily calculated. In the figure, the opacity decreases with increasing cycle number.

For a given target, the optimal tuple for n cycles can then be
calculated as the minimum of the distance function

q∗1 , q
∗
2 = min

q1 ,q2∈Q
d2n

(

R(0) x̄0,1x
)

, (21)

where Q describes the set of feasible values for q1 and q2,

respectively. Note that the vector R(0) x̄0 describes the target
position in the coordinate system of the initial pose. In the test
bed with an external camera measurement system, this vector
must be calculated from the measurements of the current pose
Ox and the target position Ox̄:

R(0) x̄0 = R(−Oε)
(

Ox̄− Ox
)

. (22)

However, the target measurement could also happen with
a camera directly mounted on the robot without having
to reformulate the equations, as the Gait Pattern Generator
demands the target position in the robot coordinate system.

Figure 10 shows a visualization of the distance function dn
for different target points and the patterns corresponding to
its minimum. In Figure 10A, the target is located slanted right
in front of the robot and a planning horizon of n = 1 is
considered. The minimum of the distance function is at full step
length q1 = 90◦ and a medium steering factor q2 = 0.3. The
resulting reference allows the robot to move precisely to the front
right. In Figure 10B, the target is located behind the robot. With

a planning horizon of n = 1, the minimum distance results
in the smallest allowed step length and steering. However, this
solution does not bring the robot closer to the target, but it is
the solution that minimizes the increase in distance. There is
simply no gait pattern that can bring the robot closer to the target
within only one cycle. For this reason, the planning horizon in
Figure 10Cwas increased to n = 4. Theminimum of dn=4 is now
at maximum step length and maximum steering factor for the
same target position. The resulting reference leads to the desired
behavior: the tightest possible right turn.

5.2. Implementation
As seen in the previous section, the distance to the target cannot
always be reduced in just one cycle. The simplest strategy to
solve this problem is to incrementally increase the planning
horizon as long as the minimum possible distance to the target
within the next n cycles dn,min is larger than the current distance
d0. Furthermore, a strategy for transitioning between different
gait patterns is required. So far, all simulations and experiments
have only studied the motion of consistent gaits (q = const.).
However, the pattern generator should be able to dynamically
change both step length and steering factor. The easiest way to
make this possible is to assume that the robot is able to switch
between any gait pattern, which means to allow all possible
references regardless of the current pose. Here, it is questionable
whether the output q∗ actually minimizes the distance to the

Frontiers in Robotics and AI | www.frontiersin.org 9 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 10 | Evaluation of the distance function dn for different target positions x̄ and planning horizons n. The lowest values are represented by green and the

highest values by red color. The lower image always shows the resulting simulated gait for n cycles, corresponding to the minimum distance (marked by a purple

circle). Simulations were initialized with: Ox = (0, 0), Oε = 0◦, α0 = [90 0 − 90 90 0], f 0 = [1 0 0 1]. (A) Planning horizon n = 1 for target at x̄ = (35,−20), (B) n = 1 for

target at x̄ = (−35,−20), and (C) n = 4 for target at x̄ = (−35,−20).

target or whether another solution might be more suitable,
since the calculation in most cases will be based on a different
initial pose. Thus, it can be assumed that a different q∗ would
be calculated when considering the current pose of the robot.
But by feeding back the current position after each step and a
recalculation of the reference, reaching the target position can
still be ensured. Algorithm 1 implements exactly this strategy.
Figure 11A shows the procedure as a block diagram. The
sampling rate of this control loop depends on the length of half
a cycle and is slightly less than 1Hz. The Gait Pattern Generator
is paused as soon as the actual distance to the target is less than a
defined value ǫ = 5 cm. For better comprehension, Figure 11B
shows the low-level control architecture of the robotic system
for a single actuator. Note that the simulation model mimics the
coupled behavior of six of these blocks.

5.3. Experiments
In Figure 12A, the simulation for a list of four different target
positions is shown. The next target position becomes active when
d0 < ǫ applies, i.e., the robot has almost reached the current
target. In Figure 12B, the corresponding course of q is shown.
It is clear to see that both values change over time. This proves
that the robot can transition between different gait patterns, at
least in the simulation. The same situation is now studied in
the experiment shown in Figure 12C where the tracks of the
tags of five independent experiments are overlaid. The difference
between the right and left curves is significant. While the right-
hand curves have a relatively small radius, the radii of the left-
hand curves are much larger. This difference has already been

Algorithm 1: Gait Pattern Generator.

1: procedure GENERATE REFERENCE (x̄k)
2: n← 1 ⊲ start with planning horizon of 1 cycle
3: q∗

k
, dn,min ← minq dn

(

x̄,1x(q)
)

⊲minimal distance to
goal after 1 cycle

4: while d0 > dn,min do ⊲ stop if we get closer to goal
5: n← n+ 1 ⊲ increase planning horizon
6: q∗

k
, dn,min ← minq dn

(

x̄,1x(q)
)

⊲minimal distance
to goal after n cycles

7: end while

8: q∗
1,k
←−sign(q∗

1,k−1
)q∗

1,k
⊲ switch sign of step length

9: ᾱk ← ᾱ
(

q∗
1,k
, q∗

2,k

)

⊲ reference according to Eq. (14)
10: f k ← ¬f k−1 ⊲ switch fixation
11: return ᾱk, f k ⊲ next reference
12: end procedure

noticed in the experiment from Figure 7; here, it is especially
pronounced. The difference is due to manufacturing inaccuracies
and pressure angle calibration, as discussed in section 4. The
lacking ability to control the exact time of fixation of the feet also
plays a role: since the strong actuation of a leg also deforms the
suction cup, it may no longer be able to suck, despite negative
pressure is applied. This effect is most prominent in the rear right
foot. All other feet usually fix according to plan. However, the
delayed fixation of the rear right leg supports a fast execution
of the right turn (see Supplementary Video). Figure 12D shows
the mean values and standard deviations of the step size q1

Frontiers in Robotics and AI | www.frontiersin.org 10 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 11 | Control architecture of the Gait Pattern Generator. (A) For a given target position x̄ and the position of the robot x, the optimal step length q1 and

steering factor q2 are calculated and then mapped into reference bending angles ᾱ(·) by the gait law, which are then fed into the robotic system. In (B), the block

diagram of a single actuator is shown. The reference bending angle ᾱ is mapped by a calibration function p(α) into a reference pressure p̄ (feed forward term), which in

turn is corrected by a saturated PI controller (feedback term). The reference pressure is then fed into the inner loop, where a PID controller generates the control input

u for a proportional valve, which causes the pressure p to be applied to the actuator.

(blue) and the steering factor q2 (red). Here, the mean value was
calculated over the number of steps. The different number of
steps required results in a high standard deviation in the region
of the four target positions. In order to reach the final target
position, 45 steps were required in the fastest run and 51 steps
in the worst run. The course of the mean value is similar to
the simulation in Figure 12B and is not constant. Nevertheless,
in all cases, the robot reaches the final goal and always follows
a similar path. This proves that also the physical robot can
transition between different gait patterns and the reproducibility
of the experiments to a certain extent. Figures 12E,F show
the results of the same experiment now performed with the
robot from Seibel and Schiller (2018). The robot is basically the
same, but is a little bigger (body length/span: 15/25). For the
experiment, the same approximation of the direct kinematics
was used (see Table 3), and still the robot shows the desired
behavior. This shows that 1x only needs to reflect the qualitative
trend. The exact values are not particularly important because as
Figures 12B,D,F show, the step length is most of the time at the
maximum and therefore the goal cannot be reached within one
cycle anyway.

6. CONCLUSION

The aim of this work was position control of the gecko-
inspired soft robot from Schiller et al. (2019) in Cartesian
space. The solution to this complex task is based on two major
simplifications: (i) the formulation of a gait law to reduce the
state space of the robot from nine to two dimensions and
(ii) the approximation of the direct kinematics to allow a fast
evaluation. The gait law restricts the choice of possible references
extremely; e.g., only specific trotting gaits are allowed. In this
work, it was successfully examined whether a position control
system can function with this limitations. However, it has not
been investigated whether a larger permitted choice of references
leads to better results. In fact, it is possible that the introduction
of additional generalized coordinates or a different gait law
may lead to a better performance of the robot. Furthermore,
neither frictional effects nor any dynamics were considered.
Also, by approximating the direct kinematics in the polynomial
1x, an assumption is made which is fulfilled only in very few
cases (compare section 5.2). Instead of using the approximation,
the simulation model could also be employed to find the best

Frontiers in Robotics and AI | www.frontiersin.org 11 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

FIGURE 12 | Simulation and experiment with the Gait Pattern Generator in action. In (A), the simulation of gait for a list of four target positions is shown. In (B), the

course of q1 and q2 is plotted over the number of steps. In (C,D), the corresponding plots are shown for the experiment with the small prototype. (E,F) Show the

experiment with the large prototype. For the experiments, the color code is as follows: front left foot (red), front right foot (dark red), tip of the torso (orange), torso’s

end (dark orange), rear left foot (blue), and rear right foot (dark blue).

possible reference for the current situation. But the simulation
of one step takes an average of 0.1 s on an AM335x 1GHz
ARMr Cortex-A8 processor, which is used for control. With an
average of 10 evaluations of the direct kinematics required to
find the reference leading to the minimum distance, this adds
up to 1 s. In contrast to a polynomial approximation where
the Jacobi matrix can be easily formed to find the minimum
efficiently, no analytical Jacobi matrix has been formulated for the
simulation model so far. This means that when the simulation
model is used, calculation would require most of the time
of the cycle. However, the experiments show that the robot
always reaches the target, even if the assumptions made in the
derivation of the Gait Pattern Generator are not fulfilled and the
approximation of the direct kinematics was done for a robot of
different dimensions.

The path planning algorithm implemented is very basic,
as it minimizes the Euclidean norm of the target vector, i.e.,
it dictates the direct path from the current position to the
target. The gait law provides an intuitive way (forward and
rotational speed) to control a quite complex robot and the
approximation of the direct kinematics provides the resulting
quantitative motion. This opens an interface to a wide variety
of more dedicated path planning algorithms, as the robot can
now be treated as a unicycle. For example, the path could be
planned using Cartesian polynomials (Siciliano et al., 2010) and
thus the robot orientation could also be controlled. Although

the softness of the robot is very complex to model, it also
allows the formulation of very drastic references, even if these
cannot be fulfilled at all, as hindered by the closed kinematic
chain. How these contradictory demands are solved is then
“computed” by the body itself. Conventional parallel kinematic
robots, such as the Stewart-Gough platform, would be damaged
in this case. The gecko-inspired soft robot is therefore a good
example of Embodied Intelligence (Cangelosi et al., 2015) or
Morphological Computation (Pfeifer and Gómez, 2009) since
it does the right thing “intuitively.” This is in agreement
with the principle of controlling soft robots mainly in a feed
forward way in order to maintain and make use of their softness
(Santina et al., 2017). The cascaded controller structure, as
discussed in the introduction, can therefore also be applied to
position control of mobile robots. The method of deriving a
basic locomotion strategy like the presented gait law by very
simple (feet rotate only in swing phase), but mathematically
(with the constant curvature model) unfulfillable assumptions,
can be transferred to any other soft mobile robot. Although
this needs to be done individually for each robotic platform,
this work can serve as a reference for future and/or existing
robots.

DATA AVAILABILITY STATEMENT

The raw data generated for this study are available on request.

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Schiller et al. Position Control of Soft Robot

AUTHOR CONTRIBUTIONS

LS derived the Gait Pattern Generator, performed the
experiments, and discussed the results. LS and AS wrote
and revised the manuscript. AS and JS supervised the project.
All authors contributed to the article and approved the
submitted version.

FUNDING

The publication of this work was supported by the German
Research Foundation (DFG) and Hamburg University of

Technology (TUHH) in the funding programme “Open
Access Publishing.”

ACKNOWLEDGMENTS

We thank Rohat Yildiz, Duraikannan Maruthavanan, and Jakob
Muchynski for the inspiration and preliminary work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2020.00087/full#supplementary-material

REFERENCES

Bao, G., Fang, H., Chen, L., Wan, Y., Xu, F., Yang, Q., et al. (2018). Soft robotics:

academic insights and perspectives through bibliometric analysis. Soft Robot. 5,

229–241. doi: 10.1089/soro.2017.0135

Bern, J., Banzet, P., Poranne, R., and Coros, S. (2019). “Trajectory optimization

for cable-driven soft robot locomotion,” in Proceedings of Robotics: Science and

Systems (Freiburg im Breisgau). doi: 10.15607/RSS.2019.XV.052

Bristow, D. A., Tharayil, M., and Alleyne, A. G. (2006). A survey

of iterative learning control. IEEE Control Syst. Mag. 26, 96–114.

doi: 10.1109/MCS.2006.1636313

Cangelosi, A., Bongard, J., Fischer, M., and Nolfi, S. (2015). Embodied Intelligence.

Berlin; Heidelberg: Springer. doi: 10.1007/978-3-662-43505-2_37

Godage, I. S., Nanayakkara, T., and Caldwell, D. G. (2012). “Locomotion

with continuum limbs,” in 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Vilamoure), 293–298.

doi: 10.1109/IROS.2012.6385810

Hofer, M., and D’Andrea, R. (2018). “Design, modeling and control of a soft

robotic arm,” in 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (Madrid), 1456–1463. doi: 10.1109/IROS.2018.8594221

Hofer,M., Spannagl, L., andD’Andrea, R. (2019). “Iterative learning control for fast

and accurate position tracking with an articulated soft robotic arm,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Macau), 6602–6607. doi: 10.1109/IROS40897.2019.8967636

Horvat, T., Karakasiliotis, K., Melo, K., Fleury, L., Thandiackal, R., and Ijspeert,

A. J. (2015). “Inverse kinematics and reflex based controller for body-limb

coordination of a salamander-like robot walking on uneven terrain,” in 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Hamburg), 195–201. doi: 10.1109/IROS.2015.7353374

Horvat, T., Melo, K., and Ijspeert, A. J. (2017). Spine controller for

a sprawling posture robot. IEEE Robot. Autom. Lett. 2, 1195–1202.

doi: 10.1109/LRA.2017.2664898

Ijspeert, A. J. (2008). Central pattern generators for locomotion

control in animals and robots: a review. Neural Netw. 21, 642–653.

doi: 10.1016/j.neunet.2008.03.014

Katzschmann, R. K., DelPreto, J., MacCurdy, R., and Rus, D. (2018). Exploration

of underwater life with an acoustically controlled soft robotic fish. Sci. Robot.

3:eaar3449. doi: 10.1126/scirobotics.aar3449

Lee, J., Jin, M., and Ahn, K. K. (2013). Precise tracking control of

shape memory alloy actuator systems using hyperbolic tangential sliding

mode control with time delay estimation. Mechatronics 23, 310–317.

doi: 10.1016/j.mechatronics.2013.01.005

Marchese, A. D., Komorowski, K., Onal, C. D., and Rus, D. (2014). “Design and

control of a soft and continuously deformable 2D roboticmanipulation system,”

in 2014 IEEE International Conference on Robotics and Automation (ICRA)

(Hong Kong), 2189–2196. doi: 10.1109/ICRA.2014.6907161

Pfeifer, R., and Gómez, G. (2009). “Morphological computation-connecting brain,

body, and environment,” in Creating Brain-Like Intelligence, eds B. Sendhoff, E.

Körner, O. Sporns, H. Ritter and K. Doya (Berlin, Heidelberg: Springer), 66–83.

doi: 10.1007/978-3-642-00616-6_5

Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., and Pratt, G. (2001). Virtual model

control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20,

129–143. doi: 10.1177/02783640122067309

Qin, L., Liang, X., Huang, H., Chui, C. K., Yeow, R. C.-H., and Zhu, J. (2019).

A versatile soft crawling robot with rapid locomotion. Soft Robot. 6, 455–467.

doi: 10.1089/soro.2018.0124

Rus, D., and Tolley, M. T. (2015). Design, fabrication and control of soft robots.

Nature 521, 467–475. doi: 10.1038/nature14543

Santina, C. D., Bianchi,M., Grioli, G., Angelini, F., Catalano,M., Garabini,M., et al.

(2017). Controlling soft robots: balancing feedback and feedforward elements.

IEEE Robot. Autom. Mag. 24, 75–83. doi: 10.1109/MRA.2016.2636360

Santina, C. D., Katzschmann, R. K., Bicchi, A., and Rus, D. (2020). Model-

based dynamic feedback control of a planar soft robot: trajectory tracking

and interaction with the environment. Int. J. Robot. Res. 39, 490–513.

doi: 10.1177/0278364919897292

Schiller, L., Seibel, A., and Schlattmann, J. (2019). Toward a gecko-inspired,

climbing soft robot. Front. Neurorobot. 13:106. doi: 10.3389/fnbot.2019.00106

Schiller, L., Seibel, A., and Schlattmann, J. (2020). A lightweight simulation model

for soft robot’s locomotion and its application to trajectory optimization. IEEE

Robot. Autom. Lett. 5, 1199–1206. doi: 10.1109/LRA.2020.2966396

Seibel, A., and Schiller, L. (2018). Systematic engineering design helps creating new

soft machines. Robot. Biomimet. 5. doi: 10.1186/s40638-018-0088-4

Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo,

A. D., et al. (2011). Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108,

20400–20403. doi: 10.1073/pnas.1116564108

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics: Modelling,

Planning and Control. London: Springer. doi: 10.1007/978-1-84628-642-1

Tolley, M. T., Shepherd, R. F., Mosadegh, B., Galloway, K. C., Wehner, M.,

Karpelson, M., et al. (2014). A resilient, untethered soft robot. Soft Robot. 1,

213–223. doi: 10.1089/soro.2014.0008

Wang, J., and Olson, E. (2016). “Apriltag 2: Efficient and robust fiducial

detection,” in 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (Daejeon), 4193–4198. doi: 10.1109/IROS.2016.775

9617

Zhang, W., and Polygerinos, P. (2018). “Distributed planning of multi-

segment soft robotic arms,” in 2018 Annual American Control

Conference (ACC) (Milwaukee, WI), 2096–2101. doi: 10.23919/ACC.2018.

8430682

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Schiller, Seibel and Schlattmann. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2020 | Volume 7 | Article 87

https://www.frontiersin.org/articles/10.3389/frobt.2020.00087/full#supplementary-material
https://doi.org/10.1089/soro.2017.0135
https://doi.org/10.15607/RSS.2019.XV.052
https://doi.org/10.1109/MCS.2006.1636313
https://doi.org/10.1007/978-3-662-43505-2_37
https://doi.org/10.1109/IROS.2012.6385810
https://doi.org/10.1109/IROS.2018.8594221
https://doi.org/10.1109/IROS40897.2019.8967636
https://doi.org/10.1109/IROS.2015.7353374
https://doi.org/10.1109/LRA.2017.2664898
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1126/scirobotics.aar3449
https://doi.org/10.1016/j.mechatronics.2013.01.005
https://doi.org/10.1109/ICRA.2014.6907161
https://doi.org/10.1007/978-3-642-00616-6_5
https://doi.org/10.1177/02783640122067309
https://doi.org/10.1089/soro.2018.0124
https://doi.org/10.1038/nature14543
https://doi.org/10.1109/MRA.2016.2636360
https://doi.org/10.1177/0278364919897292
https://doi.org/10.3389/fnbot.2019.00106
https://doi.org/10.1109/LRA.2020.2966396
https://doi.org/10.1186/s40638-018-0088-4
https://doi.org/10.1073/pnas.1116564108
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1089/soro.2014.0008
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.23919/ACC.2018.8430682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	A Gait Pattern Generator for Closed-Loop Position Control of a Soft Walking Robot
	1. Introduction
	2. Robot and Experimental Setup
	3. Gait Law
	3.1. Derivation for General Case
	3.1.1. Fixed Leg
	3.1.2. Free Leg

	3.2. Experimental Validation

	4. Approximating the Direct Kinematics
	5. Gait Pattern Generator
	5.1. Derivation
	5.2. Implementation
	5.3. Experiments

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

