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Modeling of soft robots is typically performed at the static level or at a second-order fully

dynamic level. Controllers developed upon these models have several advantages and

disadvantages. Static controllers, based on the kinematic relations tend to be the easiest

to develop, but by sacrificing accuracy, efficiency and the natural dynamics. Controllers

developed using second-order dynamic models tend to be computationally expensive,

but allow optimal control. Here we propose that the dynamic model of a soft robot can be

reduced to first-order dynamical equation owing to their high damping and low inertial

properties, as typically observed in nature, with minimal loss in accuracy. This paper

investigates the validity of this assumption and the advantages it provides to themodeling

and control of soft robots. Our results demonstrate that this model approximation is a

powerful tool for developing closed-loop task-space dynamic controllers for soft robots

by simplifying the planning and sensory feedback process with minimal effects on the

controller accuracy.

Keywords: soft robotics, control, machine learning, dynamic modeling, first-order dynamics, model reduction

1. INTRODUCTION

Soft robotic technologies are becoming increasingly prevalent in the design and development of
robots (Kim et al., 2013). Subsequently, there has been growing interests in the modeling and
control of soft bodied systems, Unlike robots designed with rigid components, soft robotic systems
present novel challenges and opportunities in developing their controllers (George Thuruthel et al.,
2018).

The most common modeling and control strategy for soft robots are based on steady-state
models, which, under the steady-state assumption, can be equated to the kinematic model
(George Thuruthel et al., 2018). For cylindrically-shaped soft robots, this leads to the popular
constant curvature model (Webster and Jones, 2010). For other shapes, geometrically exact models
or Finite ElementMethod have been proposed (Trivedi et al., 2008; Renda et al., 2012; Duriez, 2013;
Gong et al., 2018). Machine learning techniques can also be used to develop such mappings in a
model-free manner (Giorelli et al., 2013; George Thuruthel et al., 2017; Jiang et al., 2017). Refer to
Sadati et al. (2017) for a detailed comparison into multiple static modeling techniques. Due to their
steady-state assumptions, such controllers will, however, be limited in their reachability, efficiency,
and speed. Therefore, controllers developed from dynamic models are much more desirable.

A popular method for developing dynamic models for soft robots is based on the cosserat-rod
mechanics. Such models have been extensively used for soft robotic manipulators driven by tendon
actuation (Rucker andWebster, 2011; Renda et al., 2014, 2018). For fluidic actuation, other models
have been adopted (Marchese et al., 2016; Della Santina et al., 2019). Hybrid models based on
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lumped mass systems also looks promising for general soft
robots (Sadati et al., 2019). However, all these models will be
more computationally intensive than their static counterparts.
Learning-based models are a promising alternative in such cases
(Thuruthel et al., 2017; Gillespie et al., 2018). Nevertheless,
deriving control strategies from dynamic models, in general,
introduces additional complexities in motion planning. For an
alternate approach that introduces a control-oriented modeling
of soft robots, the readers are suggested to look into Della Santina
and Rus (2019).

Unlike static controllers, developing fully-dynamic controllers
would involve a planning stage. Typically, this has to be
performed using some optimization techniques irrespective
of the modeling strategy. A good example is the use of
trajectory optimization for the control of a soft robotic
manipulator using a model-based (Marchese et al., 2016) and
model-free method (Thuruthel et al., 2017). This process
is time consuming and hence debilitating for closed-loop
dynamic control. For fully-actuated soft robots, closed-loop
dynamic controllers can be developed in the configuration
space (Della Santina et al., 2018). For task-space closed
loop control, model-based reinforcement learning is the
only viable solution till now, however, they tend to be
highly task specific and time consuming (Thuruthel et al.,
2018).

This article investigates the viability of a first-order dynamic
model for soft robots. It must be noted that unlike state-
space dimensionality reduction methods (Thieffry et al.,
2018), we are reducing the temporal dimensionality of the
dynamic model. Such a model reduction is based on the
hypothesis that soft robots typically have high damping and
low inertial properties. This makes it possible to approximate
the second-order dynamic model to a first-order dynamic
model by ignoring the inertial terms (Strogatz, 2001). Even
in nature, the ubiquitous muscle dynamics can be modeled
as a first-order dynamical system (Zajac, 1989). This model-
order reduction provides two advantages. First, first-order
dynamical systems are computationally cheaper than second-
order dynamical systems. Second, it opens the possibility
to develop novel closed-loop control strategies using the
reduced-order state feedback. Here, we show the direct
learning of the operational space dynamics of the first-order
dynamic model. Due to simplifying step, controllers can be
easily developed using machine learning and a simple path
planning algorithm. Moreover, the sensory requirements
for closed-loop dynamic control is reduced because of
the simplification.

We investigate the viability of this simplifying assumption
using extensive simulation studies. First, we present the
theoretical reasoning behind the first-order assumption
and its corresponding controller. Then we briefly introduce
the fully dynamic simulation model that is used to verify
the learned forward models and the dynamic controller.
Finally, we present details on the learning architecture
together with results of the model and the closed-loop
task-space controller.

2. THEORY

Given a soft robot that can be kinematically modeled by the
configuration-space q ∈ R

n, the task-space variable can be
obtained by the kinematic transformation:

x = F(q) (1)

Where, x ∈ R
m and m ≤ n. The task-space variable is

typically the pose of the end-effector and is to be controlled. The
configuration space is the set of independent variables that fully
defines the state of the robot. The fully dynamic model of the
soft robot can then be represented using the configuration-space
variable as:

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ (2)

Here, M(q) represents the inertial properties, C(q, q̇) combines
the coriolis, centrifugal and damping elements, G(q) represents
the gravitational and stiffness effects and τ is the generalized force
applied internally by the robot.

Soft robots typically have high damping values with low
inertial properties. This is because they are commonly fabricated
with viscoelastic materials with low material density. After the
initial transient motion of a soft robot from rest (when q̇ =

0), the first order term dominates the second order term [i.e.,
C(q, q̇)q̇ >> M(q)q̈]. Hence, the second-order term can be
ignored without sacrificing the accuracy of the model (Zajac,
1989). The dominant modeling error will occur during the initial
transient motion (Strogatz, 2001). This transforms the second-
order dynamical model (Equation 2) into:

C(q, q̇)q̇+ G(q) = τ (3)

After discretizing the equation, the dynamic model can now
be represented through the mapping : (qi, τi) → qi+1. Where,
qi, qi+1 are the current and the next configuration of the soft
robot, respectively. Correspondingly, this implies that a closed-
loop dynamic controller would require only the zero-order state
feedback (q) for control.

2.1. Controller Design
The obtained first-order dynamical Equation (3), the first-order
configuration-space term can be replaced using the well known
inverse kinematics mapping:

ẋ = J(q)q̇

q̇ = J(q)†ẋ (4)

Where, J(q) is Jacobian matrix and J(q)† is any generalized
inverse matrix. Note that we have ignored the null-space terms
for brevity. Now the first-order dynamic equation can be
reformulated as function of the task-space variables:

τ = F(q, ẋ) (5)
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FIGURE 1 | Schematic of the soft manipulator used for our studies. The manipulator is driven by three tendons arranged in the configuration shown above. Unless

stated otherwise, the single section manipulator is used for the study.

This functional mapping can now be directly learning by a
machine learning architecture. We can now transform the
mapping and introduce the target task-space variable xd as:

ẋ = xd − xc (6)

The operational space controller mapping now becomes:

τ = F(qc, xd) (7)

Here, (qc, xc) are the current configuration-space coordinates and
the current task-space coordinates, respectively. For the special
case when the cardinality of the configuration-space coordinate is
the same as the cardinality of the task-space coordinate (mapping
from q → x is bijective), the operational-space controller can
be further simplified to a mapping: (xc, xd) → τ . A simple
feedforward neural network can be used to learn this mapping
(Figure 2). In this paper, we restrict our studies to this condition
for simplicity. This allows us to test the learned controller by
providing trajectories in the task-space without the need to
solve the inverse kinematics problem. For redundant task-space
controllers (non-bijective mappings), additional planning stages
might be required to obtain the configuration-space trajectories.
In other words, the control trajectory cannot be represented
only in the task-space variables. In such a case, an augmented
trajectory can be defined with the task-space variable along with a
optimization routine to check for kinematic constraints as shown

before in Thuruthel et al. (2017). Note that the trajectories are
only zero-order task space variables and the feedback required
for closed-loop control is also zero-order. This greatly reduces the
requirement on the sensors, the effect of noise and the complexity
of the trajectory planner.

3. SIMULATION MODEL

The dynamic model is based on the Piece-wise Constant Strain
(PCS) approach for soft-rigid multibody system of Renda and
Seneviratne (2018) (see Figure 1). In the following, all the
quantities are expressed in the local (body) coordinate frame
if not specified otherwise. The superscript ′ and ˙ represent
partial differentiation with respect to the space variable and
time variables, respectively. The accent ˜ represents the usual
isomorphism between a vector in R

3 and its corresponding
skew-symmetric matrix in so(3).

3.1. Kinematics
The relative position and orientation of a soft body i with respect
to its predecessor in the chain is defined as a curve g i(·) :X ∈

[0, Li] 7→ g i(X) ∈ SE(3) with

g i(X) =

(
Ri ui
0T 1

)
.
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FIGURE 2 | Modeling of the forward dynamics and the inverse dynamics controller. Note that for the non-redundant cases, the configuration-space (q) can be

interchanged with the task-space variable (x), as done in this paper.

TABLE 1 | Parameters of the learned forward dynamic model.

Parameter Value

Type NARX network

Hidden layer size 40

No. of samples 7000

Training algorithm Levenberg-Marquardt backpropagation

Training:Testing:Validation ratio 70:15:15

Stopping criterion Validation set error

Maximum no. of epochs 100

The continuous models of the position, velocity and
acceleration of a soft body can be derived from the Cosserat rod
theory, which gives (Boyer and Renda, 2016):

g ′i = g îξ i , (8a)

η′i = ξ̇ i − adξ i
ηi , (8b)

η̇′i = ξ̈ i − adξ̇ i
ηi − adξ i

η̇i , (8c)

where ξ i(X) ∈ R
6 defines the strain state, ηi(X) ∈ R

6 is the cross-
section velocity twist and ad(·) ∈ R

6×6 is the adjoint operator

of the Lie algebra (see Nomenclature). Going further into detail,
we have

ξ̂ i(X) =

(
k̃i pi

0T 0

)
∈ se(3) , ξ i(X) =

(
kT
i ,pi

T
)T

∈ R
6 ,

η̂i(X) =

(
w̃i vi

0T 0

)
∈ se(3) , ηi(X) =

(
wT

i ,v
T
i

)T
∈ R

6 ,

with ki(X) ∈ R
3 and pi(X) ∈ R

3 the angular and linear
strain; and wi(X) ∈ R

3 and vi(X) ∈ R
3 the angular and linear

velocity, respectively.
To model constrained rod, such as the Kirchhoff-Love case

with angular strain only, the strain field is specified as:

ξ i = Biqi + ξ∗i ,

where Bi ∈ R
6×ni forms a basis for the allowed motion subspace,

qi ∈ R
ni contains the values of the allowed strains and, ξ∗i ∈ R

6

is the reference twist modeling the reference shape.
Assuming piece-wise constant strains (Renda et al., 2016),

Equations (8) can be analytically integrated using the matrix
exponential method, leading to:
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g i(X) = eXξ̂ i , (9a)

ηi(X) =Ad−1
g i

ηh + Ad−1
g i

Tg i
Biq̇i , (9b)

η̇i(X) =Ad−1
g i

η̇h + Ad−1
g i

∫ X

0
Adg i(s)adηi(s)dsBiq̇i + Ad−1

g i
Tg i

Biq̈i ,

(9c)

where Adg i (X) ∈ R
6×6 is the Adjoint operator of SE(3), and

Tg i
(X) =

∫ X
0 esadξ i ds is the tangent operator of the exponential

map, of which an analytic expression, derived from (Selig, 2007),
is given in the Nomenclature.

Successive applications of the kinematics (Equation 9) for all
the bodies of the system, yields to the definition of the geometric
Jacobian Ji(q,X) ∈ R

6×n and its derivative J̇i(q, q̇,X) ∈ R
6×n (n

being the total number of DOFs), which relates the generalized

coordinate vector q =
[
qT1 qT1 · · · q

T
N

]T
∈ R

n (N being the total
number of bodies) and the velocity twist ηi(X), for each soft body
i, as shown below.

ηi(X) =

i∑

h=0

Ad−1
gh···g i

Tgh
Bhq̇h =

i∑

h=0

iShq̇h = Ji(q,X)q̇ , (10a)

η̇i(X) =

i∑

h=0

iShq̈h + Ad−1
gh···g i

∫ X

0
Adgh(s)adηh(s)dsBhq̇h

=

i∑

h=0

iShq̈h +
iṠhq̇h = Ji(q,X)q̈+ J̇i(q, q̇,X)q̇ ,

(10b)

FIGURE 3 | Dynamic workspace of the manipulator obtained by motor babbling. This is obtained by recording end-effector position of the manipulator when actuated

by random continuous actuation signals.
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FIGURE 4 | Step response of the learned models in comparison to the actual analytical model. The step signal is given to single actuator at time = 2 s.

where the block elements of the ith Jacobian iS(·) ∈ R
6×n(·)

and its derivative iṠ(·) ∈ R
6×n(·) have been defined.

Note that the last three rows of Equation (10a) provide
an analytical expression of the kinematics map required
by Equation (4).

3.2. Dynamics
Once a Jacobian is found, the generalized dynamics of the system
can be obtained by projecting the free dynamics of each soft
body by virtue of the D’Alembert’s principle. The free dynamic
equation, with its boundary conditions, of a soft body is given by
(Renda et al., 2018):

Miη̇i + ad∗ηiMiηi =
(
F ii − Fai

)′
+ ad∗ξ i

(
F ii − Fai

)
+ F̄ ei ,(

F ii − Fai

)
(0) = −F Ji ,

(
F ii − Fai

)
(Li) = −Ad∗g ijF Jj ;

(11)

where Mi(X) = diag(Jxi , Jyi , Jzi ,Ai,Ai,Ai)ρi ∈ R
6×6 is the

screw inertia matrix of the cross-section (J·i (X) being the second
moment of area about the axis · and Ai(X) the area of the
cross-section); F̄ ei (X) ∈ R

6 is the distributed external load;
Fai (X) ∈ R

6 is the internal wrench due to the distributed
actuation (Renda et al., 2017);F ii (X) ∈ R

6 is the internal wrench
due to the elasticity of the soft body; F J(·) ∈ R

6 is the wrench

transmitted across joint (·) and ad∗(·) (respectively Ad
∗
(·)) ∈ R

6×6

is the co-adjoint (respectively co-Adjoint) map of the Lie algebra
(respectively Lie group) defined in Nomenclature. Regarding the
internal elastic force, a linear viscoelastic constitutive model is

usually chosen:

F ii (X) = 6i

(
ξ i − ξ∗

)
+ ϒ iξ̇ i = 6iBiqi + ϒ iBiq̇i , (12)

where

6i(X) = diag(GiJxi ,EiJyi ,EiJzi ,EiAi,GiAi,GiAi) ∈ R
6×6 and

ϒ i(X) = diag(Jxi , 3Jyi , 3Jzi , 3Ai,Ai,Ai)νi ∈ R
6×6

are the screw stiffness and viscosity matrix (Ei being
the young modulus, Gi the shear modulus and νi the
shear viscosity).

By Jacobian projection of the free dynamics (Equation 11),
we obtain the generalized dynamics in its classical
configuration-space form:

M
(
q
)
q̈+

(
C

(
q, q̇

)
+ D

)
q̇+ Kq = τ

(
q
)
+ F

(
q
)
, (13)

where M ∈ R
n×n is the generalized mass matrix, C ∈ R

n×n is
the generalized Coriolis matrix, D ∈ R

n×n is the block-diagonal
generalized damping matrix, K ∈ R

n×n is the block-diagonal
generalized stiffness matrix, F ∈ R

n is the vector of generalized
position-dependent external forces and τ ∈ R

n is the vector
of applied actuation forces. Note that the dynamic Equation
(13) can be written in the form required by Equation (2), with
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FIGURE 5 | Periodic response of the learned models in comparison to the actual analytical model.
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C(q, q̇) = C
(
q, q̇

)
+ D and G(q) = Kq − F

(
q
)
. Going further

into details, the coefficient matrices take the form:

M
(
q
)
=

N∑

i=1

∫ Li

0
JTi MiJidX , (14a)

C
(
q, q̇

)
=

N∑

i=1

∫ Li

0
JTi

(
ad∗Jiq̇MiJi +MiJ̇i

)
dX (14b)

D = diag

(
BT
1

∫ L1

0
ϒ1dXB1,B

T
2

∫ L2

0
ϒ2dXB2, · · · ,

BT
N

∫ LN

0
ϒNdXBN

)
, (14c)

K = diag

(
BT
1

∫ L1

0
61dXB1,B

T
2

∫ L2

0
62dXB2, · · · ,

BT
N

∫ LN

0
6NdXBN

)
, (14d)

τ
(
q
)
=

[(
BT
1

∫ L1

0
Fa1dX

)T (
BT
2

∫ L2

0
Fa2dX

)T

· · ·

(
BT
N

∫ LN

0
FaNdX

)T
]T

, (14e)

F
(
q
)
=

N∑

i=1

∫ Li

0
JTi F̄ ei . (14f)

It is worth noting here the different structure of the components
of the generalized dynamics Equation (13). Similarly to the
minimal Lagrangian models of traditional rigid robots, inertial
loads are characterized by full coefficient matrices, as can
be see from Equations (14a) and (14b), while damping and
stiffness loads are characterized by block-diagonal coefficient
matrices, as for Equations (14c) and (14d). This is in contrast
with other modeling approaches that use absolute coordinates,
such as Finite Elements, for which the opposite holds. Inertial
coefficient matrices are block-diagonal while damping and
stiffness coefficient matrices are full. Thus, neglecting inertial
terms will be well suited for minimal Lagrangian models for soft
robotic manipulator, such as the PCS approach.

4. METHODS AND RESULTS

This section investigates two studies. First, we validate the
accuracy of the learned first-order model with respect to the
learned second-order model. Second, we perform simulated
experiments to validate the accuracy of the proposed controller.
All the tests are performed on the fully dynamic model described
in section 3.

4.1. Dynamic Modeling
The learned models are derived using a kind of recurrent neural
network called a nonlinear autoregressive exogenous (NARX)
model (Billings, 2013). The NARX network is particularly suited

FIGURE 6 | Root sum squared error of the learned model for varying dynamic

properties of the manipulator.

FIGURE 7 | Root sum squared error of the learned model for the 4-section

underactuated manipulator.

TABLE 2 | Parameters of the first-order inverse dynamics controller.

Parameter Value

Type Feedforward neural network

Hidden layer size 30

No. of samples 7,000

Training algorithm Levenberg-Marquardt backpropagation

Training:Testing:Validation ratio 70:15:15

Stopping criterion Validation set error

Maximum no. of epochs 100
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FIGURE 8 | Controller results for a continuous path. The motion of the end-effector is shown here.

FIGURE 9 | Testing the first-order controller in open-loop, closed-loop, and with a late start.
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FIGURE 10 | Tracking error for the scenario shown in Figure 9.

for our study as it allows us to define the feedback horizon of
the recurrent connection explicitly (Figure 2). In other words,
we can ensure that the neural network receives only zeroth-order
feedback for the first-order model and the appended first-order
feedback for the second-order model. For the single section soft
manipulator, the configuration-space (q) is equivalent to the task-
space variable (x), which is defined as the three-dimensional
position of the end-effector.We use a recurrent network with one
hidden layer with a size of 40 for both the first-order and second-
order model, for a fair comparison. The training parameters of
the NARX network is given in Table 1.

Random actuation of the tendons are performed (motor
babbling) for 70 s to obtain the samples for learning the forward
model (Figure 3). Specifically, random actuation inputs are used
to drive the manipulator and the corresponding actuator inputs
and end-effector position is recorded over time. The same
data samples can also be used for developing the closed-loop
controller. Note that the dynamic workspace is concentrated
along the direction of the three actuators. This is because tendons
in tension have a strong attractor behavior. Hence, it will be easier
to move along this direction. When testing our controller, careful
measure is taken to ensure that our trajectories pass across this
workspace regions.

Figures 4, 5 show the performance of the learned model in
comparison to the original cosserat model for a step and periodic
response, respectively. Note the higher errors in the first-order
model in the beginning of motion for the step response. Since
the inertial effects are ignored, it is also visible that oscillations
caused by overshoot is not found in the first-order model.
However, the steady state error, with respect to the second-order
model is relatively small. For the periodic excitation case, the
difference between the first-order model and the second-order
model is almost non-existent in the relevant coordinates. This is
as expected since our approximations are more valid when the
manipulator is in a non-stationary state.

In order to analyze the effects of the viscosity and the inertial
effects on our modeling assumption, we further perform studies

on the accuracy of the first-order model for varying material
viscosity and density. As material density increases and the
material viscosity decreases, the inertial effects become more
and more dominant. Hence, one would expect the accuracy of
the first-order model to decrease and the second-order model
to remain constant. However, this is not necessarily the case as
the training of second-order recurrent neural networks is more
prone to instabilities (Pascanu et al., 2013).

Figure 6 shows how the root sum squared (RSS) error of
the first-order model is affected when the material properties
of the soft arm is changed in a way that weakens our main
assumption. The material density is increased up to a factor of
2 and the material viscosity is reduced by a factor of 6. The motor
babbling inputs and the neural network parameters are kept the
same for the tests. It is clear from the prediction errors that the
second-order model always performs better than the first-order
model. However, the change in accuracy of both the models are
not affected significantly by the change in material properties.
Note that the initial parameters of the simulated cosserat model
soft arm were obtained from real experiments on an Octopus-
inspired soft manipulator, which was manufactured with silicone
and driven by tendons (Renda et al., 2014).

Increasing the length of the manipulator is another way
to increase the inertial properties and weaken the first-order
assumption. For this, we test the same methodology on a 4
section manipulator, however, actuated only on the first section.
Each section has approximately the same length, with the total
length of the manipulator adding to 418 mm. We test two
designs, one with a tapered morphology and the other with a
cylindrical morphology (higher inertial properties). The radius
of the tapered morphology linearly reduces from 30 to 10
mm while the cylindrical morphology has a fixed diameter of
30 mm. For this test and the following controller results, the
default parameters of the manipulator is used (i.e., with the
material density of 1,080 kg/m3 and viscosity of 300 Pas; Renda
et al., 2014). The results of our forward dynamics prediction
on both the systems are shown in Figure 7. Contrary to our
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expectation, increasing the length of the manipulator did not
affect the performance of the first-order model when compared
to the second-order model. We believe this is because the inertial
effects are still compensated by the medium (water) in which
the manipulator is surrounded in. Our previous studies have
shown that the dynamics of themanipulator becomes chaotic and
hence unpredictable without a surrounding medium and when
the length increases (Thuruthel et al., 2019). Based on our results,
it can be deduced that this is more because of the first-order
terms rather than the second-order terms. It could be because
of the increased length, gravity, centripetal/centrifugal forces,
higher DoFs etc. Note that this is a limitation of learning-based
approaches as increased sensitivity to initial conditions decrease
the stability of the training process and hence the performance of
the model. The same applies to the parameter tuning process for
analytical models. It could be concluded that it is a good practice
to reduce the inertial effects of a soft-bodied system to improve
the predictability of its dynamics, irrespective of the order of
the model.

4.2. First-Order Dynamic Controller
The closed-loop task-space controller is derived by learning the
operational-space dynamics mapping as described in section 2.1.
As the mapping is not recursive, it can be learned using a simple
feedforward neural network, as shown in Figure 2. For our non-
redundant case, we can replace the configuration-space variable,
q, with the task-space variable, x. The samples for learning the
mapping is obtained through the same motor babbling process
as described in the previous section. For training the controller
the mapping is defined as: (xi, xi+1) → τ . When testing
the controller, the next task-space coordinate, xi+1, is replaced
by the desired task-space variable xd. The parameters of the
neural network used for learning the first-order inverse dynamics
mapping is given in Table 2.

Path planning is usually a complex problem in inverse
dynamics based controllers, but as our inversemodel is developed
with only zeroth order state feedback, the development of the
task-space trajectory is greatly simplified. Acceptable paths can
easily be generated using the data points obtained from the
workspace of the manipulator, which is obtained during the
motor babbling phase. The desired paths can be generated by
picking reachable points from the workspace and routing a
path through them, ensuing that there is sufficient time for the
manipulator to reach adjacent points. This can be easily done
by fixing a cap on the maximum distance between adjacent
task-space variables.

To test our controller, we generate randomized linear paths
for the end-effector of the manipulator to follow. This is done
by picking two random points from the robot workspace and
linearly interpolating a trajectory between them and from the
initial position of the end-effector. If the initial position of the
end-effector is p0 and the two random points are p1 and p2, the
generated path is from p0 → p1 → p2 → p1. Note that the
intermediate points are not necessarily reachable by this naive
approach. Accurate trajectories can be generated by searching for
adjacent points in the workspace or by projecting the trajectory
onto the workspace surface.

The results of the trajectory tracking is shown in Figure 8. The
performance of the controller is excellent considering the fact
that it is myopic with no step-ahead planning and the task-space
trajectory being non-optimal. Due to the low computational cost
in running the inverse-dynamic controller, we are able to run
closed-loop task-space controller at a very high control frequency
of 100 Hz. This will also allow the controller to compensate for
any modeling errors incurred by the approximation.

The quality of the task-space trajectory can be analyzed
by running the controller in open-loop. This can be done by
assuming the manipulator is able to reach each trajectory point
perfectly and obtaining the best control action at each time step.
The results of such a scenario is shown in Figure 9, along with
the corresponding control inputs. As expected, the open-loop
controller performs worse than the closed-loop controller even
though there are no external disturbances in the simulation. The
same scenario is repeated with the controller inactive for the first
0.2 s in Figure 9. As the desired targets are now farther from
the current position of the manipulator, it is not necessary that
the controller is able to follow the trajectory accurately. However,
as evident from the results, the controller is able to recover and
remarkably converge to the same solution as the original closed-
loop controller. This also shows how important it is to close-the-
loop, even at the cost of reduced model accuracy. The tracking
error of the three tests described in this scenario is shown in
Figure 10.

5. CONCLUSION

This paper presents and verifies a model simplifying assumption
for soft robots. The core idea of the assumption is that soft robots,
by definition, tend to have low inertial and high viscoelastic
properties. This leads to dynamic behaviors which are well
approximated by a first-order system, as typically observed
in nature. We verify this assumption using a simulated fully
dynamic model of an Octopus-like manipulator and a type
of recurrent neural network called NARX network. Finally,
we develop easy-to-develop closed-loop task-space dynamic
controllers based on this assumption. Our results indicate
that controllers developed on this assumption can compensate
the errors in modeling accuracy with the increased control
frequency. Our method makes path planning simpler for non-
redundant cases. Moreover, the sensory requirements for closed-
loop dynamic control is reduced because of the simplification.
This is because the state feedback required for the controller is
only the zeroth-order component. Our work also indicates that
the additional modeling complexity that soft elements introduce
can, to some extent, be reduced by designing low inertial highly
visco-elastic soft robot designs.

Although we use machine learning tools to test our modeling
assumption and develop our controller, the approach is equally
suited for analytical approaches. In fact, ignoring the inertial
elements would greatly simply the modeling and parameter
estimation process involved in model-based control of soft
robots. Not only can we reduce the states of the dynamical
system, but we also avoid the problem of estimating and inverting
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the full mass matrix (see section 3.2). However, it must be kept
in mind that first-order systems present numerical challenges in
their implementation. Such problems are not found in a learning
based approach and hence desirable in that respect. Typically, the
first-order model leads to a stiff differential equation and requires
specialized techniques for solving them. Interested readers are
suggested to refer to Strogatz (2001) for further information.
Future work involve extending the work to redundant systems.
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NOMENCLATURE

[adξ ,η] (X) =

(
k̃, w̃ 03×3

q̃, ṽ k̃, w̃

)
∈ R

6×6. adjoint representation of

the strain twist vector in SE(3).

[ad∗ξ ,η] (X) =

(
k̃, w̃ q̃, ṽ
03×3 k̃, w̃

)
∈ R

6×6. coadjoint

representation of the strain twist vector in SE(3).

[Adg ] (X) =

(
R 03×3

ũR R

)
∈ R

6×6. Adjoint representation of

SE(3).

[Ad∗g ] (X) =

(
R ũR

03×3 R

)
∈ R

6×6. coAdjoint representation

of SE(3).

[eXξ̂ ] = I4 + Xξ̂ + 1
θ2

(1− cos (Xθ)) ξ̂
2

+

1
θ3

(Xθ − sin (Xθ)) ξ̂
3
. Exponential map in SE(3) with θ2 = kTk.

[Tg] (X) = XI6 +
1
2θ2

(4− 4 cos (Xθ) − Xθ sin (Xθ)) adξ +

1
2θ3

(4Xθ − 5 sin (Xθ) + Xθ cos (Xθ)) ad2ξ +

1
2θ4

(2− 2 cos (Xθ) − Xθ sin (Xθ)) ad3ξ +

1
2θ5

(2Xθ − 3 sin (Xθ) + Xθ cos (Xθ)) ad4ξ . Analytic expression
of the tangent operator of the exponential map in SE(3).
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