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Pervasive sensing is increasing our ability to monitor the status of patients not only

when they are hospitalized but also during home recovery. As a result, lots of data

are collected and are available for multiple purposes. If operations can take advantage

of timely and detailed data, the huge amount of data collected can also be useful

for analytics. However, these data may be unusable for two reasons: data quality and

performance problems. First, if the quality of the collected values is low, the processing

activities could produce insignificant results. Second, if the system does not guarantee

adequate performance, the results may not be delivered at the right time. The goal of

this document is to propose a data utility model that considers the impact of the quality

of the data sources (e.g., collected data, biographical data, and clinical history) on the

expected results and allows for improvement of the performance through utility-driven

data management in a Fog environment. Regarding data quality, our approach aims to

consider it as a context-dependent problem: a given dataset can be considered useful

for one application and inadequate for another application. For this reason, we suggest

a context-dependent quality assessment considering dimensions such as accuracy,

completeness, consistency, and timeliness, and we argue that different applications have

different quality requirements to consider. The management of data in Fog computing

also requires particular attention to quality of service requirements. For this reason, we

include QoS aspects in the data utility model, such as availability, response time, and

latency. Based on the proposed data utility model, we present an approach based on

a goal model capable of identifying when one or more dimensions of quality of service

or data quality are violated and of suggesting which is the best action to be taken to

address this violation. The proposed approach is evaluated with a real and appropriately

anonymized dataset, obtained as part of the experimental procedure of a research project

in which a device with a set of sensors (inertial, temperature, humidity, and light sensors) is

used to collect motion and environmental data associated with the daily physical activities

of healthy young volunteers.
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1. INTRODUCTION

The huge potential of the Internet of Things (IoT) paradigm
has been immediately understood and applied in many
domains (Ahmed et al., 2016) to provide advanced sensing
layers, enabling solutions for personal needs (e.g., monitoring
daily activities) (Alaa et al., 2017) as well as services for entire
communities (e.g., smart cities) (Zanella et al., 2014). In the
healthcare domain, IoT has also been adopted to similarly
improve current processes and to provide new services to
patients. However, extensive use of IoT data with continuous
data flows from monitored patients can pose several challenges
in developing effective and performing systems. For instance, the
continuous and real-time monitoring of body parameters has so
far been dedicated only to critically ill patients admitted to an
intensive care unit. In any other case, to reduce the amount of
transmitted data, either the patients are monitored at a lower rate
(e.g., with a daily or weekly visit at the hospital) or, even if the
sensors are able to constantly monitor patients, the monitoring
data are collected from time to time (for example, the data are
sent to the hospital every morning). In addition, the development
of a system becomes more complex if we consider that the
monitoring of a patient could require different types of sensors
from different manufacturers, thus requiring a significant effort
for integrating them and their underlying processes (Vitali and
Pernici, 2016).

Although the IoT paradigm is addressing most of these
challenges by considering the contribution of different
communities, such as device manufacturers, network
managers, internet-based solution providers, and semantic
web researchers (Atzori et al., 2010), additional effort is required
to create a more fruitful collaboration between the sensing
layer and the application layer. While the former is focused on
solving problems related to the observation and measurement
of physical phenomena and the digital representation of such
measurements, the latter is in charge of analyzing the sensed
data to provide information and knowledge. Focusing on the
deployment of this type of systems, the sensing layer is usually
located on the edge, while the application layer is located on
the cloud because it provides a more scalable and reliable
infrastructure. On the other hand, there are situations in which
the analysis (or a part of it) cannot be executed on the cloud.
For example, data could not be moved from the premises for
privacy reasons. Also, in the case of big datasets, moving all the
data to the cloud for processing may take too long. Therefore, a
more articulated deployment of the application layer—involving
both the edge and the cloud—is required. In this context, Fog
Computing (IEEE, 2018) has been introduced as a paradigm
for creating applications able to exploit both the cloud and
edge computational power as well as the devices in between to
create a continuum between the two sides. This is particularly
important in healthcare applications since data related to users
are sensitive by definition. Their analysis and storage must
therefore comply with current regulations, such as the General
Data Protection Regulation (GDPR) (Ducato, 2016). At the
same time, health monitoring solutions should be flexible with
respect to the type of users. For instance, there are situations

(e.g., emergencies) where the ability to provide rapid analysis is
more important than having a 100% accurate result that could
take an unacceptable period of time to be computed. Conversely,
when the data are collected for diagnostic reasons, data accuracy
is more important than their freshness.

The aim of this work is to present how the principles of the
Fog Computing paradigm can be adopted to improve health
monitoring with the aim of providing information at the right
time, in the right place, and with the right quality and format
for the user (D’Andria et al., 2015). For this reason, the proposed
framework is based on two main elements:

• The data utility concept (Cappiello et al., 2017), which
provides a quantitative evaluation of the relevance of the data
obtained as the combination of two factors: (i) data quality,
related to the fitness for use, which includes dimensions like
accuracy, volume, and timeliness, and (ii) Quality of Service
(QoS), related to the performance of the data delivery, which
depends on the mutual location of where the data are stored
and where they are used. Given a data source, not all the users
have the same utility requirements of that data source. Also,
the network can have different impacts on the user experience
when accessing the data source. Given these assumptions, the
data utility is assessed in two steps. First, a Potential Data
Utility (PDU) is calculated to evaluate the data utility of a data
source independently of a specific user. Second, when the user
is known, the PDU is refined to obtain the actual data utility
specific to the user’s requirements.

• A goal-based model (Plebani et al., 2018), which is adopted to
specify the requirements for the application layer with respect
to the data utility. Compared with the typical goal-based
models adopted in requirements engineering, the solution
proposed in this paper also includes an additional treatment
layer, following the methodology proposed in Vitali et al.
(2015), which includes the adaptation actions available and
the impact of the enactment of these actions on meeting
the requirements.

Consequently, the combination of these two components offers
to the Fog environment a tool to select the best strategy for
copying or moving data between the different storage units whilst
also considering the possible transformations required and the
impact of the network. Given the requirements specified for the
application, our framework reacts to their violations by selecting
the best adaptation action. Since we are dealing with a dynamic
environment, the best strategy as well as the impact of an action
over the application requirements can change over time. The
framework also takes this aspect into account.

The proposed approach was evaluated in the healthcare
scenario, where the interests for data could vary for different
users. For example, for a clinical expert monitoring a particular
patient, the data must be detailed and promptly available.
Conversely, when a clinician is performing data analysis for
research purposes, coarse-grained data—requiring less network
bandwidth—may be sufficient.

The rest of the paper is organized as follows. section 2
introduces the main characteristics of Fog Computing to the
reader, while section 3 discusses the motivating example used
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throughout the paper. section 4 focuses on the data utility
concept, and section 5 identifies the adaptation actions that could
affect the datamanagement. section 6 details the characteristics of
the enriched goal-based model used to select the best adaptation
actions, whose evaluation is illustrated in section 7. Finally,
section 8 discusses related work on the data movement in
Fog environments, and section 9 concludes the work outlining
possible future work.

2. FOG COMPUTING

Fog computing is emerging as a paradigm for the design,
development, implementation, and maintenance of applications
that are not necessarily distributed in the same environment—
either cloud or edge—but which could also be allocated to
resources in between (e.g., cloudlets) (IEEE, 2018). This paradigm
has been mainly conceived to have in mind IoT (Internet of
Things)-based applications, which can be organized around four
main layers: (i) the sensors and actuators, where the data are
generated or actions to the environment have effects; (ii) the
Monitoring and Control, where the state of the application is
monitored and controlled; (iii) the Operational Support, where
a deeper analysis of the produced data is performed; and (iv) the
Business Support, where data about different environments are
collected and analyzed as a whole. In particular, when referring
to Fog computing, different deployment models can be adopted
(see Figure 1) with the aim of exploiting not only the resources
available on the cloud but also those on the edge and in the
infrastructure layers connecting these two environments. Based
on this configuration, when the scalability of a solution is a key
issue, a cloud deployment is preferable, as it provides a virtually
unlimited amount of resources. Conversely, when latency must
be reduced asmuch as possible and/or privacy constraints require
that data should not leave the location where they are generated,
a deployment on the resources running on the edge is preferred.

On this basis, the Fog computing paradigm considers a data
flow that mainly moves data from the edge, where the data
are generated, to the cloud, where they are processed. However,
devices on the edge are getting more and more powerful in terms
of computational and storage resources. According to this, Fog
computing takes advantage of these resources by distributing the
computation among the layers. In each layer, data are processed
and analyzed to provide a synthesis for the layer above. In this
way, the amount of data that should be moved decreases layer
by layer. Moreover, the resulting data aggregation enables a
mitigation of the data privacy related issues.

Although there is consensus around this view of Fog
computing, such a paradigm must be more than creating a
data center in the box, i.e., Cloudlets (Satyanarayanan et al.,
2009), to bring the cloud closer to data producers. Instead, Fog
Computing must be seen as a “resource layer that fits between the
edge devices and the cloud data centers, with features that may
resemble either” (Varshney and Simmhan, 2017). In particular,
as discussed in Bermbach et al. (2018), the principles of Service
Oriented Computing can be valuable also for Fog-based solutions
to create a set of services able to simplify the data management

in a Fog infrastructure in terms of new abstraction models able
to hide the details of smart devices living on the edge of the
network that could be very heterogeneous. Moreover, the effort
in Fog computing should also be focused on simplifying resource
management while considering both edge and cloud resources.

In this direction, the DITAS project1 is focusing on improving
data-intensive applications by exploiting the peculiarities of Fog
infrastructures, starting from the observation that most of the
data, especially in IoT scenarios, are generated on the edge
and are usually moved to the cloud to perform the required
analyzes. While doing so can improve the performance of such
data analysis due to the capacity and scalability of cloud-based
technologies, there are situations in which this approach is not
convenient or even impossible. For instance, when the amount of
data to be analyzed is significant, the effect of the network may
be considerable2. Furthermore, for privacy reasons, the owner
of the data may not allow the movement of data outside of the
boundaries of the organization unless they are anonymized and,
in some cases, such an anonymization could hamper the analysis.
On the other hand, limiting the computation to the resources
on the edge could reduce the performance as the amount of
resources, and their capacities are generally limited.

The depicted scenario is perfectly suited to the e-health
domain where the data are heterogeneous (e.g., structured
and unstructured data, images, and videos) and produced by
heterogeneous devices; privacy is another a key issue, and the
analysis of these data is complex, and, in some cases (e.g.,
during emergencies) it must performed quickly. Focusing on a
single data analysis process, the adoption of the Fog computing
paradigm can be helpful. Indeed, the computation can be
organized hierarchically on the devices from the edge to the
cloud, each of them specialized on some operations. Conversely,
this approach cannot be so helpful in case there are many
operators aiming to analyze in different ways the same dataset.
In this case, there is a risk of having several deployments,
each of them attempting to reach a local optimum, without
any coordination in managing the common resources, like the
computational power and the network bandwidth.

Focusing on the optimization of the data movement,
it is fundamental to properly manage the information
logistics (Michelberger et al., 2013), i.e., the delivery of
information at the right time, in the right place, and with the
right quality and format to the user (D’Andria et al., 2015). As
a consequence, user requirements can be defined in terms of
functional aspects, i.e., contents, and non-functional ones, i.e.,
time, location, representation, and quality (Plebani et al., 2017).
To this aim, it is crucial to define a proper set of strategies to
enable data management involving the resources in the Fog to
enforce a given data utility (Cappiello et al., 2017). As shown
in Figure 2, the DITAS project investigates the possibility to
manage the deployment of applications which are based on the

1http://www.ditas-project.eu
2The influence of the network could be impactful to the point of making the

data movement via network intractable. For this reason, Amazon offers a service

called Snowball (https://aws.amazon.com/snowball/) to securely and efficiently

move huge amount of data by physically moving the data storage devices.
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FIGURE 1 | Possible deployment models in Fog Computing (inspired by IEEE, 2018).

same data sources. In this way, the resources in the Fog for a
given application can be organized according to a hierarchical
topology. At the same time, when the same processing is required
for different applications, the deployment approach could either
go for a duplication of the computation nodes or allow a node
to be shared among different applications. Regardless of the
deployment strategy, which is out of the scope of this article,
proper data management among the different nodes involved in
all the considered applications is required due to the motivations
discussed above. For instance, the data coming from the sensors
can be collected in the data storage of a gateway close to the
sensor layer. At the same time, different replicas of these data
have to be put in place to serve some of the fog nodes. Since the
type of computation performed on these nodes can vary, the
frequency and type of data to be transmitted to these nodes can
also vary.

3. MOTIVATING EXAMPLE

To properly introduce the approach proposed in this paper,
we here describe a reference example, related to the usage of
wearable devices as a means of facilitating patient monitoring.
Indeed, in recent years, thanks to technology advances in
the field of miniaturized sensors, various innovative wearable

technologies have been developed. The introduction of such
technologies in daily routines has raised great interest in new
means of data collection in healthcare research and clinical
contexts. Multiple applications for wearable devices have been
identified in different areas of prevention, therapy, and well-
being, ranging from the collection of relevant clinical data such
as heart rate variability (HRV) to daily monitoring of physical
activity. Furthermore, the possibility of collecting environmental
parameters that could affect the subject’s well-being through
wearable devices is considered of great interest. In a recent
H2020 project (I-SEE3), a newwearable device has been proposed
that integrates a series of sensors, including UV, pressure,
accelerometer, gyroscope, and light sensors. As depicted in
Figure 3, in the scenario considered in this paper, the data
collected by the wearable device are sent to a mobile application
via Bluetooth. Part of the data processing is running on the
wearable device and part on the mobile application. The data
collected by the mobile application are daily (automatically) sent
to the cloud. One of the main characteristics of the system is the
presence of the UV sensor. Indeed, prolonged human exposure to
solar UV radiation can have acute and chronic health effects on
the skin, eyes, and immune system. In the long run, UV radiation

3https://isee-project.eu/
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FIGURE 2 | Fog deployment in DITAS.

could also induce an inflammatory eye reaction. During outdoor
activities, it is therefore important to be protected from UV rays
to avoid their harmful effects especially for children, athletes, and
individuals with the pre-maculopatia diagnosis. The availability
of the UV sensor, correctly mounted on the wearable device,
therefore allows the system to collect data on exposure to UV
light during the day, consequently allowing for two interesting
and clinically relevant applications:

• Self-monitoring: the UV sensor measures the amount of
UV-A and UV-B and informs the user, through the mobile
application, about the current UV exposure and related
risk (on the basis of their risk profile, properly computed
thanks to the user information collected through the mobile
app). In case of overexposure, the mobile application alerts
the user and proposes a solution in order to meet the
compliance parameters. Since in the mobile application data
are automatically saved in the cloud, the user could also
verify, through a diary, their UV exposure condition over
the last months. In addition, further useful insights for the
user come from the combined analysis of the large amount of
data collected by other users who experiment similar exposure
conditions, e.g., the user can check their condition with respect
to other people with similar risk profiles (e.g., age, sex, and
photo-type) in the same geographical area. The user can also
define a pool of other users (e.g., family members) who will be
able to access their data.

• Expert-monitoring: the data collected and saved in the cloud
could also be queried by clinical experts (e.g., dermatologists).
Through a specific Web application, clinicians can remotely
monitor patients and, when a risky condition occurs, invite
them for a clinical visit. In this application, the possibility to
access data of a large number of users allows the experts to
obtain insights on different patients populations, based on the
age, the sex, and other relevant features.

Both applications require the analysis of the collected raw data
in order to extract meaningful information (i.e., UV intensity,
time spent under UV, and time over risk thresholds). While
the expert-monitoring application relies on the analysis of data
collected over a long period (i.e., day, week, and month), thus
not requiring a real-time analysis, the self-monitoring application
aims to let the user be aware on their current condition/risk
to get the proper information in real-time in order to act
if alerted.

The self-monitoring application to achieve the objectives
described is based on the characteristics of the users (i.e., age,
gender, type of photo, etc.) and on the data collected by the
sensors. These data are processed to (i) define the user profile (i.e.,
specific thresholds and risk factors) and ii) calculate the exposure.
Note that the user profile is calculated on the mobile application
since the user data are stored in the mobile device while the
exposure calculation is implemented on the wearable device
using the sensor data and then sent to the mobile application.
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FIGURE 3 | Data flow in the motivating scenario.

4. DATA UTILITY

The two applications introduced in section 3 have different users
and, in order to provide them with high-quality output at the
right time and in the right place, these applications must select
proper input data. For this reason, it is possible to associate each
application with requirements relating to the data of interest and
their granularity, as well as to the quality of the service (e.g.,
responsiveness to the request and availability). To represent these
differences and support different applications in a customized
way, we introduce the concept of data utility.

Data utility can be defined as the relevance of data for the
usage context (Cappiello et al., 2017). Relevance is evaluated
by considering the capability of the source to satisfy non-
functional requirements (i.e., data quality and QoS properties)
of the task using the data. Since data utility depends on the
application/user that aims to access data for a specific goal, its
assessment can be theoretically performed only when the usage
context is defined. However, it is possible to identify and assess
some dimensions in order to provide an objective estimation
of the data source utility level, the so called Potential Data
Utility (PDU). The potential data utility provides an estimation
of the quality level of the data contained in the whole data
source. Note that the potential data utility and the data utility
coincide when the user/application aims to use the entire data
source as it is offered. As soon as the usage context is related
to only a portion of the data source, the data utility must be
assessed. However, the potential data utility can be seen as
an aggregated reliability index of the data source. In order to
assess the data utility, a set of relevant dimensions must be
defined. In the following sections, data quality and QoS models
are presented.

4.1. Data Quality Model
Data quality is often defined as “fitness for (intended) use” (Batini
and Scannapieco, 2016), that is, the capability of a dataset to
be suitable for the processes/applications in which it has to be
used. Data quality is a multidimensional concept since different
aspects of the analyzed data must be considered. Such aspects
are modeled through data quality dimensions that are defined to
analyze specific issues and that are assessed through determined
metrics. The literature presents many data quality dimensions
but, traditionally, the most used ones are

• Accuracy: the degree to which a value v is close to a correct
value v′ (Redman, 1996)

• Completeness: the degree to which all the values are present in
the considered dataset

• Consistency: the degree of adherence to logical rules that link
two or more attributes of the considered dataset

• Timeliness: the extent to which the age of data is suitable for
the task at hand (Wang and Strong, 1996).

Note that the data quality model (i.e., the list of considered
dimensions and the metrics for evaluating them) depends on the
type of data source. For example, if we consider sensor networks,
and therefore a scenario like the one considered in this paper
in which the sources generate data streams, it is necessary to
consider that the dataset DS is an infinite sequence of elements
DS = (X1, t1)(X2, t2) . . . , (Xm, tm) in which Xm is, for example,
the set of values detected by the sensors on a wearable device
at the moment tm (Klein and Lehner, 2009). The model defined
for data quality management relies on the concept of “data
quality windows” for which data quality metadata are evaluated
by dividing the stream in windows and assessing the quality of the
k values included in a window. In this context, the metrics related
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to completeness, consistency, and timeliness do not change, while
for the assessment of accuracy the maximum absolute systematic
error a must be defined and a value v is correct if the expected
value v′ is in the range [v − a; v + a] (Klein and Lehner, 2009).
Accuracy is important, but it has to be considered together with
Precision is the degree to which repeated measurements show
the same or similar results. Precision is usually estimated by
considering the standard deviation and might be an additional
information to understand the stability of the measurement
process. In fact, situations in which data are not accurate but
precise may not always reveal malfunctioning sensors but also a
plausible slow change in the observed phenomenon (for example,
the expected temperature is increasing).

4.2. QoS Model
In the present work, the QoS model includes the following
dimensions, which are the most commonly used in evaluating
Quality of Service:

• Availability: it can be defined as “The ability of a functional
unit to be in a state to perform a required function under
given conditions at a given instant of time or over a given
time interval, assuming that the required external resources
are provided” (ISO/IEC, 2010). It usually shows the percentage
of the time that the service is up and operational.

• Response time: it is the amount of time (usually expressed in
seconds or milliseconds) the platform takes to provide the
output of a specific request.

• Throughput: it is generally defined as the total amount of work
completed in a given time. Considering data transmission, it
refers to the data transfer rate.

• Latency: it is the time interval taken to transmit data between
two points in a network.

• Volume: it is defined as the amount of disk space or the number
of entries in a database.

The evaluation of all these dimensions requires a monitoring
platform to provide this information as metadata associated with
the data source.

4.3. Data Utility in Use
In our approach, each dataset DS is firstly associated with a
Potential Data Utility vector:

PDU = (qd1, qd2...qdN) (1)

in which each value qdi provides an estimation of a data quality
or QoS dimension. As stated above, PDU is a set of metadata that
profiles the source without considering the usage context. In this
way, PDU provides aggregated information that helps users to
understand the reliability of the dataset. PDU can thus be a first
driver in the selection of sources if similar datasets are available.

As mentioned above, as soon as the context of use is related to
a portion of the data source, it is necessary to evaluate the data
utility. In fact, when a user aims to search for a dataset, they
will define their functional and non-functional requirements.
The former define the part of the available dataset that the
user intends to access. Considering our scenario, in the self-
monitoring application, the user could be interested only in

the values collected in the last 10 min, while, for the expert
monitoring application, the user can specify an interest for
the data referred to a specific class of customers (for example,
characterized by a specific profile, such as age or gender). Moving
to the non-functional requirements, they refer to the constraints
relating to a series of data quality/QoS dimensions (e.g., response
time less than 5 s) considered relevant for the application/process
in which the data are used. For example, accuracy, precision,
completeness, and consistency are relevant dimensions for
both applications, while timeliness is likely to be relevant
only in the self-monitoring application where up-to-date data
are needed. The description of the application together
with the specified requirements define the usage context. In
this second phase, the source can be associated with the
Data Utility vector (DU) for a given usage context. DU
informs users about the suitability of the dataset in satisfying
their requirements. Note that PDU and DU overlap if the
application/user asks to access the whole dataset, while DU
has to be reassessed if the usage context considers a dataset
DS′ ⊂ DS.

At the run time, data utility should be periodically assessed
in order to detect changes in the quality of data or service. In
our approach, if the utility decreases below a certain threshold,
one or more adaptation actions are triggered as described in
section 5 with the goal of maintaining the data utility at a
satisfactory level.

Note that, especially for what concerns the QoS criteria,
data utility is dependent on the locations in which data are
stored and consumed. In Fog computing, response time, for
example, can significantly vary considering datasets in the
cloud and datasets in the edge. By taking advantage of the
ability to manage datasets in the edge and in the cloud
and to move data between the different layers of the Fog
computing environment, it is possible to trigger an adaptation
action to continuously meet the requirements expressed.
In section 5, such adaptation actions are formally defined
and discussed.

5. ADAPTATION ACTIONS FOR DATA
MANAGEMENT

A key feature of the proposed approach, in addition to the
possibility to express the user requirements in terms of data
utility, is to enforce the proper satisfaction of such requirements
by enabling a set of adaptation actions that can be enacted to
solve or prevent violations of the requirements. In particular,
the actions considered in our approach refer to actions for
moving or copying data, actions for improving the quality of
data, and actions for transforming data to support or speed up
data analysis.

Generally speaking, we refer to the actions that can be enacted
to manipulate the data sources in a fog scenario as adaptation
actions, which are composed of a set of atomic tasks T = DMT ∪

DT T , where (i) DMT are data movement tasks, and (ii) DT T

are data transformation tasks (see Figure 4).
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FIGURE 4 | Adaptation actions. (A) Data movement. (B) Data transformation.

In sections 5.1 and 5.2, we illustrate the atomic tasks for
adaptations actions4.

5.1. Data Movement Tasks
Data movement implies the transfer or the duplication of (a
portion of) a dataset from a storage resource to another one.
For instance, data can be moved from the edge—where they are
generated—to cloud storage, like in the reference example where
the data collected on a smartphone are periodically uploaded
to the cloud. Generally speaking, a data movement task can be
defined as

• The location of the resources involved in the movement from
source a to destination b, which can be classified according to
their layer (either in the edge E or in the cloud C)5.

• The kind of movement applied, e.g., movement of data from
one resource to another (deleting the previous version)Mab or
creation of a replica on different storage resources Dab.

Considering the possible combinations of resource location and
kind of movement, the following eight main relevant tasks are
considered in DMT :

• Move/Duplicate from cloud to edge (MCE/DCE): data are
moved or copied from a cloud to an edge resource.

• Move/Duplicate from edge to cloud (MEC/DEC): data are
moved or copied from an edge to a cloud resource.

• Move/Duplicate from cloud to cloud (MCC/DCC): data are
moved or copied from a cloud to another cloud resource.

4The following notation style is adopted: variables are strings in italic with a

leading non-capital letter (e.g., x, y); sets are strings with the leading letter in the

calligraphic font for mathematical expressions (e.g., G, I).
5For the sake of clarity and without losing generality, in this paper we assume in

the following examples to have a Fog environment composed of only two layers,

i.e., the edge and the cloud. When considering more layers, the formalization of

the data movement slightly changes by introducing an index, which reflects the

position on the hierarchy where the lower values represent the edge and the higher

ones the cloud.

• Move/Duplicate from edge to edge (MEE/DEE): data aremoved
or copied from an edge to another edge resource.

Considering the running example, data movement between two
edge devices occurs when data collected by one user is moved to
another user’s device, for example, to share information between
family members. In addition, data movement between edge and
cloud occurs when data about a user’s activity is moved from their
device to cloud storage. There, the data can be aggregated with
the data of other users to be analyzed in the future by an expert.

The Data Movement tasks introduced in this section are
categories of tasks. It means that they represent a generic
movement according to the type of resources involved. In fact,
categories are useful in aggregating together actions that are
likely to have similar impacts when applied in a specific context.
As discussed in Plebani et al. (2018), when implemented in a
specific scenario and according to the actual resources available,
one or more instances for each category might be instantiated
to represent all possible movements between all the possible
resources. Considering the example of Figure 3, two instances
for the class MCE and MEC are created (since we have two edge
devices connected with a cloud resource); similarly, two instances
for MEE are generated, and no tasks of type MCC are available
since only one cloud location is available in the scenario. The set
of instantiated tasks depends also on the policies defined in the
application context. For instance, in case we want to enable only
movement in one direction, from edge to cloud, the MCE tasks
are not instantiated.

5.2. Data Transformation Tasks
While data movement tasks affect the location of a dataset, in
the case of data transformation tasks a single data source is
affected. In particular, the goal of this type of tasks is to produce
a modified version of the dataset applying some filtering and/or
transformations. More precisely, given a dataset DS where the
degree (the number of domains) is deg(DS), and the cardinality
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(the number of tuples) is card(DS), a transformation task dtt ∈

DT T of a dataset DS produces a new dataset DS′

dtt(DS) → DS′ (2)

On this basis, the transformation tasks could affect both the
intensional and the extensional schema. In fact, in this class of
tasks, data aggregation as well as data projections are included. In
the first case, a set of tuples can be reduced to one (for example,
by averaging a series of observations), which thus reduces
cardinality. In the second case, some columns are removed as
they are considered irrelevant or—in case of privacy problems—
not accessible, thus reducing the degree of the dataset. Here we
define three types of transformation tasks, which have different
effects on the degree and the cardinality. In particular, we are
interested in this work in three main sets of transformations:
(i) data-cleaning-related transformations, (ii) performance-related
transformations, and (iii) security-related transformations,

Data Cleaning related transformations aim to improve the
quality of the data. In a data stream the cleaning tasks can be:

• Inputting missing values: missing values can be fixed by
considering different techniques, such as (a) using unbiased
estimators that estimate missing values without changing
characteristics of an existing dataset (e.g., mean and variance),
(b) using mean or median to replace missing values, or (c)
adopting a specific distribution.

• Outliermanagement: an outlier can be generated since (a) the
value has been incorrectly observed, recorded, or entered in a
dataset, or (b) the value is correct but represents a rare event.
The cleaning task is responsible for discovering outliers and
for deciding between rare data and data glitches. Data glitches
should be removed while rare events should be highlighted.

The former task mainly improves the completeness without
negatively affecting the accuracy. In fact, the inputting techniques
try to insert acceptable values. The latter task has instead a
positive effect on accuracy and precision when data glitches
are discovered. Note that a data cleaning task affects only the
extensional schema of the data source, while the intensional
schema is preserved. In fact, the improvement of data quality
operates at record level [deg(DS′) = deg(DS) and card(DS′) =

card(DS)]. In summary, it is possible to enact a specific cleaning
task on the basis of the dimension that caused a violation. The
enactment of this task is time consuming and expensive in
terms of computational power. Its execution performance might
therefore be different in the edge or in the cloud.

In the considered scenario, data cleaning is a transformation
technique that could be enabled both in the self- and expert
monitoring when data quality requirements are not satisfied.

Performance-related transformations can be enacted to
improve the performance of the enactment of an adaptation
action. One of the main issues with adaptation actions is the
management of high volumes of data that can generate delays and
performance issues. For instance, the volume of data collected by
the IoT and sensors at the edge makes the data movement for
analysis from the edge to the cloud difficult and time consuming,

and, in addition, it might introduce critical delays. For this
reason, it is important to reduce the size of the data to be
moved in order to make this task more agile. Performance related
transformations are:

• Aggregation: the content of a data storage is reduced
using aggregation operations (e.g., average, maximum, and
minimum) summarizing several tuples.

• Reduction: the data volume is reduced by exploiting relations
among data.

Both performance transformations reduce the volume of the data
that must be transferred from the source to the destination.

Aggregation applies classical operators (e.g., average,
maximum, minimum, and sum) to several events collected in
the dataset. The effect is to reduce the volume of the dataset
while affecting the level of detail contained in it. Aggregation
is not reversible (it is not possible to obtain the original data
from the aggregated set). This transformation aims to reduce
the cardinality of the dataset but it does not affect the degree
(deg(DS′) = deg(DS) and card(DS′) < card(DS)).

Reduction is based on the assumption that the information
stored in a dataset may contain related items. In literature, data
reduction is performed mainly on a single signal by varying the
sampling frequency based on the variability of the monitored
variable (Trihinas et al., 2018). We additionally propose to
exploit relations between different variables, which can be
expressed as dependencies among the values of related attributes.
For example, relations are those expressed through functional
dependencies between the data values in a dataset. Functional
dependencies are also used to check consistency in the dataset.
For instance, it is possible to obtain the city and the country
where a user resides from the postal code. A causal relation
between attributes in a dataset can be expressed through an
association rule A H⇒ B expressing that the value of attribute B
depends on the value of attribute A. Association rules are effective
to represent relations between non-numerical attributes that can
get a limited number of values. For numeric values, we instead
apply regression functions to represent the dependencies between
a dependent variable and a set of correlated variables from
which it is possible to calculate its value. Relations can be both
explicit and implicit. Explicit relations are declared by the data
owner, who also provides the association rules for non-numerical
attributes or the regression model for numerical values. Instead,
implicit relations can be detected using data mining and machine
learning techniques.While several approaches exist for extracting
association rules between attributes of a dataset, the detection
of dependencies between numerical values is not trivial (Peng
and Pernici, 2016). Reduction enables to regenerate the original
information, although with some approximations. It might
reduce both the degree and the cardinality (deg(DS′) ≤ deg(DS)
and card(DS′) ≤ card(DS)).

Security-related transformations aim to satisfy security
constraints that might affect a data source when moved from
one location to another. As an example, when data are collected
inside the user device, they contain the information that is
needed to identify a specific person. When these data need to
be moved and stored outside the device, privacy constraints
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might require that sensitive information must be hidden so
that unauthorized customers cannot access it. Security-related
transformations include the following.

• Pseudonymization: data are manipulated to substitute
identifying fields within a data record with artificial identifiers.

• Anonymization: data are manipulated to remove all
possible identifiers.

• Encryption: the data contained in a data storage are
manipulated using encryption algorithms to make them
unreadable to unauthorized users.

None of the security-related transformations affect the
cardinality of the dataset (card(DS′) = card(DS)). Instead,
while pseudonymization and encryption do not affect the degree,
anonymization might remove some of the attributes from the
dataset (deg(DS′) ≤ deg(DS)).

5.3. Defining Relevant Adaptation Actions
Based on the knowledge of the available datasets, their location,
their relations, and the privacy and security constraints, there are
two main aspects that the system design has to take into account
to define suitable adaptation actions based on the atomic tasks
illustrated above:

• Defining the adaptation actions that are relevant in the
considered application domain

• Identifying the most suitable action to perform in a given time.

In this section, we focus on the first problem, discussing the
relevant aspects that must be taken into consideration when
adaptation actions are to be finalized. About the second issue,
section 6 discusses how the goal-based approach is adopted to
drive the execution of the adaptation actions with the aim to
improve data utility.

The different kinds of tasks introduced in this section are the
building blocks for composing an adaptation action. In fact, an
adaptation action can include one or more tasks. More formally,
an adaptation action aa ∈ AA in a specific application context is
defined as a tuple:

aa =< ta,ManT,OptT > (3)

where

• ta ∈ T is the main task of the action and can be either a data
movement or a transformation task.

• ManT ∈ DT T is a set of mandatory tasks that are always
executed with the main task.

• OptT ∈ DT T is a set of optional tasks that can be associated
with the main task.

Both mandatory and optional tasks are transformations applied
to the dataset for complying with the security requirements
or for improving the effect of the main task. As an example,
different privacy and security constraints might apply to each
location, and a datamovement action could therefore also require
some security-related data transformation. For instance, due
to the privacy regulations, data stored on the cloud must be

anonymized, and data collected on a smartphone should thus be
made anonymous by removing any direct reference to the user
(e.g., userid and name) beforemoving them from the user’s device
to the cloud. According to this, we can define an adaptation
action aa1 = {MEC, {anonymization}, {reduction, aggregation}}
composed of a main task ta = MEC, which moves the data
collected by a wearable device from the smartphone of the user
to the cloud storage. The mandatory task anonymization forces
to anonymize the data when the movement is performed. Finally,
Opt = {reduction, aggregation} defines as optional the tasks
reduction and aggregation, both reducing the volume of data to
be moved from the device to the cloud, and this consequently
improves latency and reduces cost.

As already defined, adaptation actions might affect both
the content (data transformation tasks) or the location (data
movement tasks) of a dataset. The argument of an adaptation
action can be a whole dataset or a subset of it. As an
example, when the cloud is fed with the data from the user’s
device, the action could include either a MEC or a DEC.
Considering our scenario, when the storage on the device is
almost full, moving data from the edge to the cloud might
require emptying all the collected data stored in the edge to
be saved in a cloud resource. However, the requirements
of the running applications might be in conflict with this
strategy since some data might be useful locally. For instance,
some of the data should be kept locally to support the
self-monitoring application. Observing the past executions of
the application it is possible to provide information on the
typical behavior expected by the system. Here, we focus on two
main aspects:

• Relevant data: not all the data collected by the sensors at the
edge are used locally. When deciding which data to move
from the edge to the cloud and vice versa, we should take
into account the frequently accessed data. This information is
relevant to improve the performance of the data retrieval. As
an example, when the storage resource at the edge side is full,
we should move some data to the cloud. In doing so, we can
select the data that are less likely to be used in the near future
and keep the other data on the device to keep the data retrieval
latency low.

• Device behavior: in a fog environment, we are often
subject to unreliable connections between the cloud and

the edge. Consequently, the user device can be offline at
some point, making the communication between the cloud

and the edge impossible. Observing the typical behavior of

the devices in terms of connectivity with the cloud, we

can prevent connectivity issues by using this information
when deciding where to place the data. As an example,
statistics and aggregation of monitoring data are usually

performed and stored in the cloud. A customer who wants
to access statistics needs to have an active connection all the

time. If a permanent active connection is not ensured, our

approach can improve the performance by saving an extract
of the statistics back to the edge, thus making it accessible

every time to the customers, even when connectivity is

not present.
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6. IMPROVING E-HEALTH MONITORING
WITH DATA-UTILITY DRIVEN ADAPTATION
ACTIONS

The main goal of each data provider is to offer its services by
meeting consumer demands in terms of data usage. However, Fog
computing is a dynamic environment in which the performance
of the fog nodes can deteriorate and the connections between the
nodes are not reliable or simply not durable due to the mobility
of the fog nodes. This section describes the part of the approach,
proposed in this document, which allows the provider to meet
the users’ data requirements in such a dynamic environment,
choosing the best adaptation action.

We define a goal-based modeling language in order to specify
(i) user requirements, (ii) the adaptation actions that can be
implemented, and (iii) the link between adaptation actions and
user requirements. The information modeled with this language
is the basis for selecting the best adaptation action.

In the literature, several goal-based modeling languages are
defined (Horkoff et al., 2015). However, as far as we know, no
goal-based modeling language allows the definition of adaptation
actions and their impact on goal models. We based the definition
of the language on our extension (Plebani et al., 2018) of BIM
modeling language (Horkoff et al., 2012).

6.1. A Modeling Language to Link User’s
Requirements With Adaptation Actions
Non-functional requirements of applications using the same
dataset are expressed through the concept of data utility
introduced in section 4. For each application, a different set of
dimensions is selected, and the desired value is indicated for each
dimension. When these requirements are not met, our approach
identifies the violations and detects which adaptation actions can
be enacted.

We have chosen a goal-based modeling language to represent
the requirements since this type of language allows for easy
classification of requirements based on users’ objectives (goals)
across different levels of abstraction. This feature allows the
readability of the goal model even by non-technical users.

In a goal model, the goal concept represents an objective to
be achieved. Formally, the set of goals G in a goal model is
defined as

G = {< Name,Metrics >} (4)

where Name is the name of the goal and Metrics a set of metrics
used to assess the goal defined as

Metric = {< Type,Comparator,Measure >} (5)

where Type ∈ Types indicates the type of the metric referring to
the set of data utility dimensions defined in section 4;Measure ∈
IR represents the reference value; Comparator ∈ {<,≤,>,≥
,=} represents the relation between the observed value and the
reference value.

In a goal model, each goal can be decomposed into sub-goals
forming a tree structure, where the root element is called root

goal. Sub-goals represent a set of objectives that, once achieved,
allow the achievement of their parent goal. Root goals specify
the main objectives (requirements) of users and, therefore, must
be satisfied.

The upper part of Figure 5 provides a graphical representation
of the goal-based model formalization applied to the self-
monitoring application described in section 3. Each ellipse
represents a goal that is linked to measurable metrics that
are used to specify when a goal is achieved. For example, the
“High availability” goal is linked to the “Availability >99.5%”
metric, which means that the goal is considered achieved if the
availability of the service is more than 99.5%. The diagram shows
two goal trees. On the left, the goal tree is composed only of a
“Light client” goal, which specifies that the user wants to limit the
volume of the data stored locally in the edge device. On the right,
the target tree represents the user’s data utility requirements, and
it is more complex since it contains a decomposition of the goal
model. For example, “Quality of Service” is a parent goal, while
“Fast response” and “High accessibility” are its sub-goals. Goal
models define two types of decomposition:

• AND-decomposition: all sub-goals must be achieved to
achieve the parent goal;

• OR-decomposition: at least one sub-goal must be achieved to
achieve the parent goal.

It is worth noting that a violation of a single metric—and
therefore of the linked goal—may not imply the violation of the
root goal. For example, if the latency of the provided service goes
above 50 ms while its availability is greater than 99.5%, then the
user’s requirements are not violated since the two metrics are
linked to two goals which OR-decompose the parent goal. The
goal model in the figure requires only one of them to be achieved.

The set of all decompositions are represented by the set
Decompositions that is defined as

Decompositions = {< g, sub, type >} (6)

where:

• g ∈ Goals, is the parent goal;
• sub ∈ P(Goals), belongs to the power set (i.e., the set of all

possible combinations of the elements) of goals and contains
the children goals that decompose the parent goal;

• type ∈ {and, or} is the type of decomposition.

For example, the goal “High data utility” is AND-decomposed in
three goals: “High quality of service,” “Privacy,” and “High data
quality.” This results in the following decomposition:

{High data utility, {High quality of service, Privacy,High data

quality},AND}

The lower part of the model in Figure 5 represents the adaptation
actions that can be enacted in this running example. The
adaptation actions modeled define movement and duplication
between edge devices to cloud storage, and data transformations.
Adaptation actions are represented by boxes with a label that
defines the source, the destination, and the type of action. All
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FIGURE 5 | Example of a goal model.

tasks composing the adaptation action are linked to goals with
relations that specify the positive or negative impact that their
enactment has on the achievement of the goal. For example,
the adaptation action MEC, according to the definition given in
section 5.3, defines an action in which the main task concerns
the movement between the sensors and the cloud. The action is
linked with a positive impact on the “High volume” goal since
the movement of data in the cloud has a positive impact on the
linked metrics. Indeed, storing data in the cloud, instead of in an
edge device, enables the storage of a higher volume of data.

As specified in section 5.3, an adaptation action is associated
with optional and mandatory tasks. In the modeling language
proposed in this paper, these tasks are represented with a box
with double borders on both sides associated with an action:
mandatory tasks have a white background, while optional tasks
have a gray background.

Each action is associated with a link to the goals that represents
the impact of the action over the goal satisfaction. Impacts can be
positive or negative. For each action, Pos ⊆ Goals represents the
set of goals that receive a positive impact when the main task is
executed, and N eg ⊆ Goals represents a set of goals negatively
impacted. Also, Pos ∩ N eg = ∅. Optional and mandatory tasks
inherit impacts of the adaptation actions they are linked to. If
they provide additional or different impacts, links to the affected
goals are represented in the model. For example, the adaptation
actionMEC has one mandatory task “Encryption,” which specifies
that data can be encrypted before moving them. Such task has a
positive impact on the “Privacy” goal since the encryption will
prevent the disclosure of personal data. In this example, the
adaptation action and the linked task have an opposite impact
on the “Privacy” goal. If this is the case, the impact of the task
overcomes the impact of the main task of the adaptation action.
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Impact relations can be designed by experts or learned/refined
automatically by observing the effects of executing a task on the
metrics linked to goal model.

As specified in section 5.3, adaptation actions are enriched
with metadata. These metadata in our model specify two aspects:
the execution time of the action and the economic cost of its
execution. Metadata are represented in the model as dashed
boxes. For example, the adaptation action MEC has attached two
metadata specifying the execution time (i.e., an estimation of
0.3 s per MB) and the cost (i.e., 1$ per TB). According to this,
for each action we can define an element of the metadata set
metaData ∈ MetaData as

metaData =< metaType, IR > (7)

where metaType ∈ {ExecT,Cost} is the set of possible metadata.
Optional and mandatory tasks can change the metadata of the
action to which they are linked.

Formally, we define a task t ∈ T , including impact relations
and meta data:

t =< taskType,Pos,N eg,MetaData > (8)

where taskType is the type of task, as defined in section 5, Pos
and N eg are the positive and negative impacts of the task, and
MetaData are the metadata associated with the task.

At this point we can define a goal model GM :

GM =< G,Decompositions,AA > (9)

6.2. Creation of A Goal-Based Diagram for
Supporting Adaptation Action Selection
The creation of a diagram based on the modeling language
defined in section 6.1 consists of the following phases:

• Creation of the goal model structure that represents
user requirements;

• Specification of the adaptation actions that can be
enacted, complemented with mandatory and optional
tasks and metadata;

• Specification of the impact of adaptation actions and tasks on
the goal model.

In terms of the specification of the goal model, users specify
their requirements based on their objectives. As already described
before, we chose a goal-based modeling language since it can be
used to represent requirements at different levels of abstraction.
Users can thus express abstract requirements in the upper
part of the goal model, while they can specify more concrete
requirements on the lower part nearer to the leaves and up to
the definition of the reference values for the metrics.

The specification of the adaptation actions largely depends on
the infrastructure and on the resources. In section 5.3, we defined
a set of classes that will be instantiated according to the actual
context of execution. Instances of adaptation actions are not
specified in Figure 5 due to space constraints. For example, the
adaptation actionsMEE, which consists in themovement between
two edge devices, will be instantiated by generating two actions

for each possible pair of edge elements authorized to exchange
the data.

6.3. Automated Selection of Adaptation
Actions
The main objective of the proposed goal-based model is to
provide a method for identifying which is the best action to be
enacted in case a goal is violated. In fact, when the violation of a
metric prevents the achievement of the top goal of a goal tree, the
model supports the selection of the best adaptation action to be
implemented in order to remove the violation. This is reflected
by the connections between the upper and the lower layers of
the model. A software component has been developed6 supports
this identification by exploring the tree and the positive/negative
impacts. The selection is divided into the three phases described
below. The software requires the implementation of a monitoring
system that identifies the violations of user requirements.
Phase 1: Selection of the relevant adaptation actions The first
step is to identify the set of adaptation actions that can be
enacted to solve a violation. In this step, impacts are used to
identify the actions with a positive effect on the violated goal.
For example, if the latency goes above 50 ms, the requirement
specified by Figure 5 for the sub-goal “Fast Response” is violated.
Two adaptation actions are then selected:MEE andMCE.

This phase executes two algorithms: the first one identifies
the violated goals (Algorithm 1), while the second one
identifies the adaptation actions that have a positive impact on
them (Algorithm 2).

Algorithm 1 requires as input the goal model GM =

{G,Decompositions,AA} defined in Equation (9), and a set
of measures Me = {Tme,Mme}, where Tme ∈ Types and
Mme ∈ IR. Measures are generated by a monitoring system that
continuously checks the system targeted by the goal model.

Algorithm 1: Identify unsatisfied goals

1: ∀ (g,Metrics) ∈ G

2: ∀ (tm,Cm,Mm) ∈ Metrics
3: if ∃ me = (tme,mme) ∈ Me s.t. tme = tm ∧

¬apply(mme, cm,mm)
4: then g is violated

where apply(m1, c,m2) : boolean is a function that applies the
operator c ∈ Comparators to the two measuresmme,mm ∈ IR.

Algorithm 1 inspects all goals in the goal model (Line 1).
For each metric in each goal (Line 2), the algorithm checks if it
exists a measure that has the same type and violates one of its
metrics (line 3). If this is the case, the goal is considered to be
violated (Line 4).

Given a goal model GM = {G,Decompositions,AA} and
the set of violated goals VG identified thanks to Algorithm 1,
Algorithm 2 identifies the relevant adaptation actions inAA.

In Algorithm 2:

6https://github.com/DITAS-Project/decision-system-for-data-and-

computation-movement/
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Algorithm 2: Identify adaptation actions

1: ∀(ta,ManT,OptT) ∈ AA

2: if ∃g ∈ VG s.t.g ∈ (pos(ta) ∪ poss(ManT)) \ negs(ManT)
3: then (ta,ManT,∅) → SelectedAA
4: ∀op ∈ OptT
5: if ∃g ∈ VG s.t.g ∈ pos(op)
6: then (ta,ManT, {op}) → SelectedAA
7: ∀selectedAA = (ta,ManT,OptT) ∈ SelectedAA
8: if ∃g ∈ VG s.t. g ∈

9: (neg(ta) \ (poss(ManT) ∪ poss(OptT)))∪
10: (negs(ManT) \ poss(OptT))∪
11: negs(OptT)
12: then remove selectedAA from SelectedAA

• pos(T) :Goals, where T ∈ T is a function that returns the set
of goals positively impacted by the task in input;

• neg(T) :Goals, where T ∈ T is a function that returns the set
of goals negatively impacted by the task in input;

• poss(T ′) :Goals, where T ′ ⊆ T returns the union of all goals
positively impacted by all tasks in the set received as input;

• negs(T ′) :Goals, where T ′ ⊆ T returns the union of all goals
negatively impacted by all tasks in the set received as input.

Algorithm 2 considers each adaptation action (Line 1) and
verifies if there exists a violated goal that belongs to the set
of goals that are impacted positively by the main task or the
mandatory tasks of the adaptation action (Line 2). If this is the
case, the adaptation action is added to the set of selected actions
selectedAA. The selected action set includes only the main task
and the mandatory tasks (Line 3). Please notice that, in Line 2,
we subtract the goal negatively impacted by ManT tasks since
impacts of mandatory and optional tasks override impacts of the
main task (see section 6.1).

Additionally, for each optional task of the action (Line 4) the
algorithm verifies if they have a positive impact on a violated goal
in VG (Line 5). If this is the case, the adaptation action is selected,
including the optional task.

Finally, for each action in selectedAA (Line 7), the algorithm
checks if the action has a negative impact on one of the violated
goals (Line 8–11), removing it from the set (12). Similarly to
Line 2, also in this case the algorithm subtracts from the set of
goals negatively impacted by the main task the positive goals
of mandatory and optional task (Line 9). Line 10 specifies that
an impact relation of an optional goal overrides an impact
relation of a mandatory goal. We chose this criterion since we
assume optional tasks are chosen to improve the behavior of the
adaptation action (and its mandatory tasks).
Phase 2: Prioritization of the adaptation actions The second
phase consists of the prioritization of the adaptation actions
selected in the first phase based on their metadata and on the
strategy selected by the user. Strategies are optimization functions
that consist of the (set of) metadata that the user would like
to minimize or maximize. For example, they can define as a
strategy the minimization of the costs or the minimization of the
execution time. Once the strategy has been defined, the selected

adaptation actions will be ranked and the enactment of the action
with the highest score suggested.

The selection, and consequently the enactment, of an
adaptation action brings to the system a new configuration where
data have been moved, copied, and/or transformed to resolve
a violation. Algorithm 2 selects the actions that have a positive
impact on violated goals. It is worth noting that the correctness of
the output, i.e., whether the selected adaptation action positively
impacts the violated goals as expected, is based on the correctness
of the input, i.e., the goal model analyzed.
Phase 3: Update of impact relations After the enactment of
an adaptation action, the framework will periodically check
the metrics and update the impact relations based on the
performance of the system after the enactment.

Adaptation actions are selected and enacted one at time, with
a time span between two enactments that is sufficient to measure
the impact of the action on the goal model. Every time an action
is selected by Algorithm 2, it is enacted, and metrics of the
goal model are measured in order to detect the impacts of the
adaptation action and, possibly, update its impact relations.

Algorithm 2 selects only adaptation actions with a positive
impact on the goals violated in the model. This ensures that,
granted the correctness of the goal model, the system is led to
a configuration that resolves (or reduces) the violations. This is
guaranteed by lines 1–3 of the Algorithm 2 where only actions
with positive impacts on violated goals are selected. Lines 4–6
enrich this set of actions with actions with optional tasks, having
at least a positive impact on violated goals, while lines 8–11
remove from the set adaptation actions with negative impacts on
the violated goals. This last step aims to avoid side effects in the
enactment of an action.

It is worth noticing that the method described in this section
is successful only if the goal model is generated in a proper
way. First of all, the goal model must contain all the relevant
requirements of the application/user. It is very important to be
able to capture whether the current configuration does or does
not satisfy the users’ needs. Second, the treatment layer of the
goal model must contain all and only the actions applicable
in the context. This is very important for avoiding the system
to be driven in undesired configurations. This depends on a
proper definition of the rules for where and how it is possible
to move data from a location to another set by the data
administrator. Finally, impacts linking the treatments to goals
must properly represent the effects of enacting the selected
action. For this, the expert’s knowledge is very relevant, but
might not be enough. To help in the definition and refinement
of the impacts, real effects are analyzed to improve the model
by updating impacts according to what observed at run-time.
Correct impacts enable us to predict the positive and negative
effects of an action and to avoid disruptive decisions. A sound
model thus provides all the elements to detect and react to
violations taking informed decisions.

The described framework considers only the goal model for
a specific user at a time. In future work, we will consider multi-
users scenarios, where multiple goal models, potentially defining
conflicting requirements, will be evaluated. In this case, two
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solutions can be adopted: (i) a centralized decision system that
will have the control on all the goal models and it will select
the best adaptation action and (ii) a distributed decision system
that will divide the responsibility for the selection of the best
adaptation actions among all its participants.

6.4. Using the Goal-Model in the
Healthcare Scenario
Referring to our motivating example discussed in section 3 and
to the goal model shown in Figure 5, we explain the usage of the
proposed approach through some examples.

Let us suppose that the telecommunication provider of user
A’s smartphone is experiencing traffic congestion. This negatively
impacts both latency and availability, which decrease to the
point that they violate both the Fast response and the High
accessibility goals. Consequently, the goal model can be used to
find compensating actions capable of fulfilling the requirements
once again. Based on the goal model, the adaptation action MCE

(i.e., move data from cloud to edge) is selected, as it has a positive
impact on both violated goals, and the negative impact on other
goals is negligible. To decrease the time required to perform data
movement, the Data reduction transformation is additionally
applied while moving data from the cloud to user B smartphone.
Although Data reduction has a negative impact on the Error Free
goal, the effect of such impact is not sufficient to violate that goal.
Its execution thus has a positive effect.

Let us now consider that the volume of UV light
measurements on user A’s smartphone exceeds 10,000 samples,
violating the Light client goal. Based on the goal model, the
adaptation actions labeled MEC and MEE are selected, as they
both have a positive impact on the Light client goal. In terms of
the smartphone of user B in proximity with the one of user A,
the adaptation action MEE, which moves data between the two
devices, is enacted, as it has no negative effects on the other goals,
and its cost is lower or equal to the one of every action of the
MEC class. .

Let us also consider that it is possible to experience issues
related to the reliability of values received from the UV
sensor. Such problems can be caused by two main reasons:
communication problems between sensors and the smartphone
and degradation of the sensor’s performance due to, for example,
low battery or failures. In both cases, the reliability of the
UV sensor values decreases to the point that it no longer fulfills
the completeness and/or accuracy requirements specified for the
Error free goal. Consequently, the adaptation actions labeledMEC

and DataCleaning are identified as candidates. Since MEC has
a negative impact on the Fast response, High accessibility, and
Privacy goals, it is set aside in favor of DataCleaning, which
will have only impact on Fast Response . In fact, enabling the
data cleaning transformation will, on the one hand, take longer
to process and display data but, on the other hand, it will
try to provide reliable results. Within the “inputting values”
features, null values will be detected and (if possible) substituted
with reliable values. The “outlier detection” will analyze outliers,
that will be removed or substituted with acceptable values if
related to data glitches. In any case, it is necessary to underline

that, if the quantity of values received is too low, no cleaning
operation is possible, and the application should warn users of
the system failure.

7. TOOL EVALUATION

The main feature of the software component we developed
consists of deciding which is the best adaptation action to be
enacted and, consequently, foreseeing the effects of such actions.
We therefore executed tests to measure the ability of the software
component to perform a choice that leads the system to a
configuration that does not violate any goals defined in the
goal model.

We simulated typical configurations for the case study and
triggered several violations multiple times. We measured how
many times the system is brought to a configuration where
violations are removed and how many actions are enacted to
reach such configuration.

We repeated the test with (i) a growing number of violations,
(ii) reduced the number of edge/cloud resources where it is
possible to move data, and (iii) reducing the quality of the
network connection between resources. We have implemented
software optimizations that allow the analysis of available
resources and the selection of the best one; however, these
optimizations cannot be applied on a network where, especially
in a fog environment, the connection may not be stable. We
therefore ran an additional set of tests to verify the behavior of
the software component when optimizations cannot be applied.

Figure 6 shows the number of adaptation actions (Y axis)
enacted based on the number of violations detected (X axis)
simultaneously. The dashed line shows the situations in which
multiple goal models (one for each user/application) are
managed. In the test, increasing the number of violations
corresponds to the introduction of an additional goal model; at
any step, therefore, only one violation per goal model is detected.
For example, five violations mean that five goal models (one for
each user/application) detected one violation each. In this case,
the number of adaptation actions, required to reach a system
without violations, is equal to the number of violations received.
The software examines one violation at a time and enacts
the corresponding adaptation action to solve it. The solid line,
instead, shows the behavior with multiple violations on a single
goal model. As can be seen, in the experiments one adaptive
action is sufficient to resolve all violations. By comparing the two
behaviors, we can observe that, for a single goal model, an action
can resolve multiple violations. Actions, however, have an impact
on the system only at the local level. When multiple goal models
are considered, an action must be taken for each goal model that
has detected a violation.

Figure 7 shows the number of adaptation actions necessary
in the event of deterioration of the quality of the network. We
simulated the network using virtual connections, each of them
with a set of properties, such as latency. The chart in Figure 7

shows in the X axis the number of virtual network connections
that can be used to restore a configuration of the system without
violations, while the Y axis represents the number of adaptation
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FIGURE 6 | Number of adaptation actions per violation.

actions enacted to bring the system to a configuration where no
violations are detected. For a large number of available network
connections (3, 4, 5) the correct decision is made immediately.
For fewer available network connections, the correct decision
is made after the second adaptation action. We repeated the
experiment several times, but the number of adaptation actions
was always the same since the software component uses a
deterministic algorithm for the decision.

Summarizing what is shown in this section, the results of
the experiments show that the number of violations affects the
selection of the best adaptation action. When we deal with a
single goal model (solid line in Figure 6), a single adaptation
action can solve all violations. Instead, with multiple goal models
(dashed line in Figure 6) each violation is triggered by a different
node, therefore, the number of adaptation actions needed is equal
to the number of violations detected. Concerning the relation
between the number of adaptation actions and the quality of the
network, the results in Figure 7 have shown that the lower the
network quality, the higher the number of adaptation actions
that may be needed to restore a configuration of the system
with no violations. Network connections in fog environments
are unstable and their characteristics change frequently. To know
the state of the network, a continuous benchmark would be
necessary; however, the impact of this activity would create an
excessive overload. The software component therefore tries to
implement an adaptation action and waits for the next violation.

8. RELATED WORK

The evolution of data management systems in the last year
has confirmed that the “one size fits all” approach is no
longer valid (Stonebraker and Cetintemel, 2005) and this is also
confirmed in the healthcare domain. In fact, nowadays, data
intensive applications (Kleppmann, 2017) are not based on a

unique database technology (e.g., relational databases) (Prasad
and Sha, 2013). Also, the computation is now polyglot (Kaur
and Rani, 2015), i.e., different modules are developed with
different languages. This trend has been boosted also by the
availability of platforms that usually support the micro service
architectural style.

Although these new approaches provide a support for
an easy development and execution of scalable and reliable
solutions, the negative aspect concerns the need for inter-
process communications in place of the shared memory access
that is heavily affected by the network performances (Dragoni
et al., 2017). For this reason, proper data management is
required, and the information logistics principles are useful
in this context (Sandkuhl, 2008; Haftor et al., 2011). In
particular, (Michelberger et al., 2013) identifies different
perspectives around which Information Logistics can be studied:
e.g., from an organizational standpoint in terms of how to
exploit the data collected and managed inside an organization
for strategy purposes or how to properly distribute the data
in a supply chain management. The so-called user-oriented
Information Logistics (i.e., the delivery of information at the
right time, place, and with the right quality and format to the
user) advocates data movement (D’Andria et al., 2015). The
issue of inter-process communication has been faced also in
Vitali and Pernici (2016) based on healthcare scenario. In this
work, hidden dependencies between the processes of different
organizations where discovered by taking advantage of the data
collected by the IoT devices in the environment. By combining
and analyzing the information generated by different actors,
an improved coordination between stakeholders can thus be
reached. The issue of how to collect and manage these data
remains open.

The approach proposed in this paper to express requirements
about datamovement relies on goal-basedmodels that are usually
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FIGURE 7 | Number of adaptation actions per available network connection.

adopted in requirement engineering to specify the objectives
of users and applications to be designed (Van Lamsweerde,
2001; Amyot and Mussbacher, 2011; Horkoff et al., 2015).
By using the tree-like structures of goal models, decisions on
which subset of the modeled goals must be achieved can be
taken. To this aim, several techniques have been proposed
(Letier and Van Lamsweerde, 2004; Horkoff and Yu, 2016). The

satisfaction analyzes propagate the satisfaction or denial of goals

forward and backward in the goal tree structure. The forward

propagation (Letier and Van Lamsweerde, 2004) can be used

to check alternatives, while the backward propagation (Giorgini
et al., 2003; Sebastiani et al., 2004; Chung et al., 2012) can be
used to understand what are the consequences of a satisfied or
denied goal.

Among the several requirements that can be expressed
through our application of the goal-based model, the quality of
data and quality of service aspects are the most relevant ones;

in this paper, they are considered together under the data utility

umbrella. Data utility has been defined in different ways in the

literature. In statistics (i), it has been defined as “A summary
term describing the value of a given data release as an analytical

resource. This comprises the data’s analytical completeness and

its analytical validity” (Hundepool et al., 2012). In business (ii),

it has been defined as “business value attributed to data within
specific usage contexts” (Syed et al., 2008). In IT environments

(iii), it has been defined as as “The relevance of a piece of

information to the context it refers to and how much it differs
from other similar pieces of information and contributes to
reduce uncertainty” (Kock and Kock, 2007). More related to a
Fog computing environment, (Cappiello et al., 2017) defines data
utility as a numeric measure that reflects the relative importance
and value contribution of a record from a business/usage
perspective and provides a flexible approach that has been
adopted in this paper to cover different types of applications as

well as customizable set of data quality parameters. In fact, in
the literature, some papers consider data utility in specific usage
contexts (Ives et al., 1983; Lin et al., 2015; Wang et al., 2016)
or on a specific set of data quality dimensions, e.g., accuracy,
accessibility, completeness, currency, reliability, timeliness, and
usability (Skyrme, 1994; Moody and Walsh, 1999).

9. CONCLUDING REMARKS

The ever-growing adoption of IoT-based solutions in the
healthcare sector has resulted in a significant increase in data
production, which could have the potential to be used in internal
hospital processes but could also be relevant externally. On this
basis, this document presented an approach based on the Fog
computing paradigm, which demonstrates how this paradigm
fits perfectly as a way to organize a distributed software solution
in which data is produced at the edge of the network and
consumed in other nodes that could be internal or external
while preserving the data utility requirements. This goal was
achieved by considering a formalization of data utility defined as
a combination of data quality and quality of service. In addition,
a goal-based model approach is adopted to select and enact an
adaptation action capable of recovering the situation in the event
that data utility is not satisfied.
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