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Robotic agents should be able to learn from sub-symbolic sensor data and, at the same

time, be able to reason about objects and communicate with humans on a symbolic

level. This raises the question of how to overcome the gap between symbolic and

sub-symbolic artificial intelligence. We propose a semantic world modeling approach

based on bottom-up object anchoring using an object-centered representation of the

world. Perceptual anchoring processes continuous perceptual sensor data andmaintains

a correspondence to a symbolic representation. We extend the definitions of anchoring

to handle multi-modal probability distributions and we couple the resulting symbol

anchoring system to a probabilistic logic reasoner for performing inference. Furthermore,

we use statistical relational learning to enable the anchoring framework to learn symbolic

knowledge in the form of a set of probabilistic logic rules of the world from noisy

and sub-symbolic sensor input. The resulting framework, which combines perceptual

anchoring and statistical relational learning, is able to maintain a semantic world model of

all the objects that have been perceived over time, while still exploiting the expressiveness

of logical rules to reason about the state of objects which are not directly observed

through sensory input data. To validate our approach we demonstrate, on the one

hand, the ability of our system to perform probabilistic reasoning over multi-modal

probability distributions, and on the other hand, the learning of probabilistic logical rules

from anchored objects produced by perceptual observations. The learned logical rules

are, subsequently, used to assess our proposed probabilistic anchoring procedure. We

demonstrate our system in a setting involving object interactions where object occlusions

arise and where probabilistic inference is needed to correctly anchor objects.

Keywords: semantic world modeling, perceptual anchoring, probabilistic anchoring, statistical relational learning,

probabilistic logic programming, object tracking, relational particle filtering, probabilistic rule learning

1. INTRODUCTION

Statistical Relational Learning (SRL) (Getoor and Taskar, 2007; De Raedt et al., 2016) tightly
integrates predicate logic with graphical models in order to extend the expressive power of graphical
models toward relational logic and to obtain probabilistic logics than can deal with uncertainty.
After two decades of research, a plethora of expressive probabilistic logic reasoning languages and
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systems exists (e.g., Sato and Kameya, 2001; Richardson and
Domingos, 2006; Getoor, 2013; Fierens et al., 2015). One obstacle
that still lies ahead in the field of SRL (but see Gardner et al.,
2014; Beltagy et al., 2016), is to combine symbolic reasoning
and learning, on the one hand, with sub-symbolic data and
perception, on the other hand. The question is how to create
a symbolic representation of the world from sensor data in
order to reason and ultimately plan in an environment riddled
with uncertainty and noise. In this paper, we will take a
probabilistic logic approach to study this problem in the context
of perceptual anchoring.

An alternative to using SRL or probabilistic logics would
be to resort to deep learning. Deep learning is based on end-
to-end learning (e.g., Silver et al., 2016). Although exhibiting
impressive results, deep neural networks do suffer from certain
drawbacks. As opposed to probabilistic rules, it is, for example,
not straightforward to include prior (symbolic) knowledge in
a neural system. Moreover, it is also often difficult to give
guarantees for the behavior of neural systems, cf. the debate
around safety and explainability in AI (Huang et al., 2017; Gilpin
et al., 2018). Although not free from this latter shortcoming, this
is less of a concern for symbolic systems, which implies that
bridging the symbolic/sub-symbolic gap is therefore paramount.
A notion that aims to bridge the symbolic/sub-symbolic gap is the
definition of perceptual anchoring, as introduced by Coradeschi
and Saffiotti (2000, 2001). Perceptual anchoring tackles the
problem of creating and maintaining, in time and space, the
correspondence between symbols and sensor data that refer
to the same physical object in the external world (a detailed
overview of perceptual anchoring is given in section 2.1). In
this paper, we particularly emphasize sensor-driven bottom-up
anchoring (Loutfi et al., 2005), whereby the anchoring process is
triggered by the sensory input data.

A further complication in robotics, and perceptual anchoring
more specifically, is the inherent dependency on time. This
means that a probabilistic reasoning system should incorporate
the concept of time natively. One such system, rooted in the
SRL community, is the probabilistic logic programming language
Dynamic Distributional Clauses (DDC) (Nitti et al., 2016b),
which can perform probabilistic inference over logic symbols and
over time. In our previous work, we coupled the probabilistic
logic programming language DDC to a perceptual anchoring
system (Persson et al., 2020b), which endowed the perceptual
anchoring system with probabilistic reasoning capabilities. A
major challenge in combining perceptual anchoring with a high-
level probabilistic reasoner, and which is still an open research
question, is the administration of multi-modal probability
distributions in anchoring1. In this paper, we extend the
anchoring notation in order to handle additionally multi-modal

1A multi-modal probability distribution is a continuous probability distribution
with strictly more than one local maximum. The key difference to a uni-modal
probability distribution, such as a simple normal distribution, is that summary
statistics do not adequately mirror the actual distribution. In perceptual anchoring
these multi-modal distributions do occur, especially in the presence of object
occlusions, and handling them appropriately is critical for correctly anchoring
objects. This kind of phenomenon is well known when doing filtering and is the
reason why particle filters can be preferred over Kalman filters.

probability distributions. A second point that we have not
addressed in Persson et al. (2020b), is the learning of probabilistic
rules that are used to perform probabilistic logic reasoning. We
show that, instead of hand-coding these probabilistic rules, we
can adapt existing methods present in the body of literature of
SRL to learn them from raw sensor data. In other words, instead
of providing a model of the world to a robotic agent, it learns this
model in form of probabilistic logical rules. These rules are then
used by the robotic agent to reason about the world around it, i.e.,
perform inference.

In Persson et al. (2020b), we showed that enabling a perceptual
anchoring system to reason further allows for correctly anchoring
objects under object occlusions. We borrowed the idea of
encoding a theory of occlusion as a probabilistic logic theory
from Nitti et al. (2014) (discussed in more detail in section 2.3).
While Nitti et al. operated in a strongly simplified setting, by
identifying objects with AR tags, we used a perceptual anchoring
system instead—identifying objects from raw RGB-D sensor
data. In contrast to the approach presented here, the theory
of occlusion was not learned but hand-coded in these previous
works and did not take into account the possibility of multi-
modal probability distributions. We evaluate the extensions
of perceptual anchoring, proposed in this paper, on three
showcase examples, which exhibit exactly this behavior: (1)
we perform probabilistic perceptual anchoring when object
occlusion induces a multi-modal probability distributions, and
(2) we perform probabilistic perceptual anchoring with a learned
theory of occlusion.

We structure the remainder of the paper as follows. In
section 2, we introduce the preliminaries of this work by
presenting the background and motivation of used techniques.
Subsequently, we discuss, in section 3, our first contribution by
first giving a more detailed overview of our prior work (Persson
et al., 2020b), followed by introducing a probabilistic perceptual
anchoring approach in order to enable anchoring in a multi-
modal probabilistic state-space. We continue, in section 4, by
explaining how probabilistic logical rules are learned. In section
5, we evaluate both our contributions on representative scenarios
before closing this paper with conclusions, presented in section 6.

2. PRELIMINARIES

2.1. Perceptual Anchoring
Perceptual anchoring, originally introduced by Coradeschi
and Saffiotti (2000, 2001), addresses a subset of the symbol
grounding problem in robotics and intelligent systems. The
notion of perceptual anchoring has been extended and refined
since its first definition. Some notable refinements include
the integration of conceptual spaces (Chella et al., 2003, 2004),
the addition of bottom-up anchoring (Loutfi et al., 2005),
extensions for multi-agent systems (LeBlanc and Saffiotti,
2008), considerations for non-traditional sensing modalities
and knowledge based anchoring given full scale knowledge
representation and reasoning systems (Loutfi, 2006; Loutfi
and Coradeschi, 2006; Loutfi et al., 2008), and perception
and probabilistic anchoring (Blodow et al., 2010). All these
approaches to perceptual anchoring share, however, a number
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of common ingredients from Coradeschi and Saffiotti (2000,
2001), including:

• A symbolic system (including: a set X = {x1, x2, . . . }
of individual symbols; a set P = {p1, p2, . . . } of
predicate symbols).
• A perceptual system [including: a set 5 = {π1,π2, . . . } of

percepts; a set 8 = {φ1,φ2, . . . } of attributes with values in
the domain D(φi)].
• Predicate grounding relations g ⊆ P × 8 × D(8) that

encode the correspondence between unary predicates and
values of measurable attributes (i.e., the relation g maps a
certain predicate to compatible attribute values).

While the traditional definition of Coradeschi and Saffiotti
(2000, 2001) assumed unary encoded perceptual-symbol
correspondences, this does not support the maintenance of
anchors with different attribute values at different times. To
address this problem, Persson et al. (2017) distinguishes two
different types of attributes:

• Static attributes φ, which are unary within the anchor
according to the traditional definition.
• Volatile attributes φt , which are individually indexed by time

t, which are maintained in a set of attribute instances ϕ, such
that φt ∈ ϕ.

Without loss of generality, we assume from here on that all
attributes stored in an anchor are volatile, i.e., that they are
indexed by a time step t. Static attributes are trivially converted
to volatile attributes by giving them the same attribute value in
each time step.

Given the components above, an anchor is an internal data
structure αx

t , indexed by time t and identified by a unique
individual symbol x (e.g., mug-1 and apple-2), which encapsulates
and maintains the correspondences between percepts and
symbols that refer to the same physical object, as depicted in
Figure 1. Following the definition presented by Loutfi et al.
(2005), the principal functionalities to create and maintain
anchors in a bottom-up fashion, i.e., functionalities triggered by
a perceptual event, are:

• Acquire—initiates a new anchor whenever a candidate object
is received that does not match any existing anchor αx

t . This

functionality defines a structure αx
t , indexed by time t and

identified by a unique identifier x, which encapsulates and
stores all perceptual and symbolic data of the candidate object.
• Re-acquire—extends the definition of a matching anchor αx

t

from time t − k to time t. This functionality ensures that the
percepts pointed to by the anchor are the most recent and
adequate perceptual representation of the object.

Based on the functionalities above, it is evident that an anchoring
matching function is essential to decide whether a candidate
object matches an existing anchor or not. Different approaches
in perceptual anchoring vary, in particular in how the matching
function is specified. For example, in Persson et al. (2020b),
we have shown that the anchoring matching function can be
approximated by a learned model trained with manually labeled
samples collected through an annotation interface (through
which the human user can interfere with the anchoring process
and provide feedback about which objects in the scene match
previously existing anchors).

In another recently published work on anchoring, Ruiz-
Sarmiento et al. (2017) focus on spatial features and distinguish
unary object features, e.g., the position of an object, from
pairwise object features, e.g., the distance between two objects,
in order to build a graph-based world model that can
be exploited by a probabilistic graphical model (Koller and
Friedman, 2009) in order to leverage contextual relations
between objects to support 3-D object recognition. In parallel
with our previous work on anchoring, Günther et al. (2018)
have further exploited this graph-based model on spatial features
and propose, in addition, to learn the matching function
through the use of a Support Vector Machine (trained on
samples of object pairs manually labeled as “same or different
object”), in order to approximate the similarity between two
objects. The assignment of candidate objects to existing anchors
is, subsequently, calculated using prior similarity values and
a Hungarian method (Kuhn, 1955). However, in contrast
to Günther et al. (2018), the matching function introduced
in Persson et al. (2020b) do not only rely upon spatial
features (or attributes), but can also take into consideration
visual features (such as color features), as well as semantic
object categories, in order to approximate the anchoring
matching problem.

FIGURE 1 | A conceptual illustration of the internal data structure that constitutes a single anchor, and which is first initiated by a percept π from a raw image. The

volatile and static attributes are derived from this percept, while predicates such as red, are derived from static attributes (which are not indexed by time), e.g., the

static color histogram attribute.
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2.2. Dynamic Distributional Clauses
Dynamic Distributional Clauses (DDC) (Nitti et al., 2016b)
provide a framework for probabilistic programming that extends
the logic programming language Prolog (Sterling and Shapiro,
1994) to the probabilistic domain. A comprehensive treatise
on the field of probabilistic logic programming can be found
in De Raedt and Kimmig (2015) and Riguzzi (2018). DDC
is capable of representing discrete and continuous random
variables and to perform probabilistic inference. Moreover, DDC
explicitly models time, which makes it predestined to model
dynamic systems. The underpinning concepts of DDC are related
to ideas presented in Milch et al. (2007) but embedded in logic
programming. Related ideas of combining discrete time steps,
Bayesian learning and logic programming are also presented
in Angelopoulos and Cussens (2008, 2017).

An atom p(t1, . . . , tn) consists of a predicate p/n of arity n and
terms t1, . . . , tn. A term is either a constant (written in lowercase),
a variable (in uppercase), or a function symbol. A literal is an
atom or its negation. Atoms which are negated are called negative
atoms and atoms which are not negated are called positive atoms.

A distributional clause is of the form h ∼ D ← b1, . . . ,bn,
where ∼ is a predicate in infix notation and bi’s are literals,
i.e., atoms or their negation. h is a term representing a random
variable and D tells us how the random variable is distributed.
The meaning of such a clause is that each grounded instance of
a clause (h ∼ D ← b1, . . . ,bn)θ defines a random variable
hθ that is distributed according to Dθ whenever all literals biθ
are true. A grounding substitution θ = {V1/t 1, . . . ,Vn/t n}

is a transformation that simultaneously substitutes all logical
variables Vi in a distributional clause with non-variable terms
t i. DDC can be viewed as a language that defines conditional
probabilities for discrete and continuous random variables:
p(hθ |b1θ , . . . ,bnθ) = Dθ .

Example 1: Consider the following DDC program:

n~poisson(6).
pos(P):0~uniform(0,100) ← n~=N, between(1,N,P).
pos(P):t+1~gaussian(X+3, 6) ← pos(P):t~=X.
left(O1,O2):t~finite([0.99:true, 0.01:false]) ←

pos(O1):t~=P1, pos(O2):t~=P2, P1<P2.

The first rule states that the number of objects n in the world
is distributed according to a Poisson distribution with mean 6.
The second rule states that the position of the n objects, which
are identified by a number P between 1 and n, are distributed
according to a uniform distribution between 0 and 100. Here, the
notation n~=N means that the logical variable N takes the value
of our random variable n. The label 0 (resp. t) in the program
denotes the point in time. So, pos(P):0 denotes the position of
object P at time 0. Next, the program describes how the position
evolves over time: at each time step the object moves three units
of length, giving it a velocity of 3 [length]/[time]. Finally, the
example program defines the left predicate, through which a
relationship between each object is introduced at each time step.
DDC then allows for querying this program through its built
in predicate:

query((left(1,2):t~=true, pos(1):t>0), Probability)

Probability in the second argument unifies with the probability
of object 1 being to the left of object 2 and having a positive
coordinate position.

A DDC program P is a set of distributional and/or definite
clauses (as in Prolog). A DDC program defines a probability
distribution p(x) over possible worlds x.

Example 2: One possible world of the uncountably many
possible worlds encoded by the program in Example 1. The
sampled number n determines that 2 objects exist, for which the
ensuing distributional clauses then generate a position and the
left/2 relationship:

n~= 2.
pos(1):t~= 30.5.
pos(2):t~= 63.2.
pos(1):t+1~= 32.4.
pos(2):t+1~= 58.8.
left(1,2):t~= true.
left(2,1):t~= false.

When performing inference within a specific time step,
DDC deploys importance sampling combined with backward
reasoning (SLD-resolution), likelihood weighting and Rao-
Blackwellization (Nitti et al., 2016a). Inferring probabilities in
the next time given the previous time step is achieved through
particle filtering (Nitti et al., 2013). If the DDC program does
not contain any predicates labeled with a time index the program
represents a Distributional Clauses (DC) (Gutmann et al., 2011)
program, where filtering over time steps is not necessary.

2.3. Occlusions
Object occlusion is a challenging problem in visual tracking
and a plethora of different approaches exist that tackle different
kinds of occlusions; a thorough review of the field is given
in Meshgi and Ishii (2015). The authors use three different
attributes of an occlusion to categorize it: the extent (partial or
full occlusion), the duration (short or long), and the complexity
(simple or complex)2. Another classification of occlusions
separates occlusions into dynamic occlusions, where objects in
the foreground occlude each other, and scene occlusions, where
objects in the background model are located closer to the camera
and occlude target objects by being moved between the camera
and the target objects3.

Meshgi and Ishhii report that the majority of research on
occlusions in visual tracking has been done on partial, temporal
and simple occlusions. Furthermore, they report that none of the
approaches examined in the comparative studies of Smeulders
et al. (2013) and Wu et al. (2013), handles either partial
complex occlusions or full long complex occlusions. To the best
of our knowledge, our previous paper on combining bottom-
up anchoring and probabilistic reasoning, constitutes the first
tracker that is capable of handling occlusions that are full,
long and complex (Persson et al., 2020b). This was achieved

2An occlusion of an object is deemed complex if during the occlusion the occluded
object considerably changes one of its key characteristics, e.g., position, color, size).
An occlusion is simple if it is not complex.
3Further categories exist, we refer the reader to Vezzani et al. (2011) and Meshgi
and Ishii (2015).
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by declaring a theory of occlusion (ToO) expressed as dynamic
distributional clauses.

Example 3: An excerpt from the set of clauses that constitute
the ToO. The example clause describes the conditions under
which an object is considered a potential Occluder of an other
object Occluded .

occluder(Occluded,Occluder):t+1~finite(1.0:true) ←

observed(Occluded):t,
\+observed(Occluded):t+1,
position(Occluded):t~= (X,Y,Z),
position(Occluder):t+1~= (XH,YH,ZH),
D is sqrt((X-XH)^2+(Y-YH)^2), Z<ZH, D<0.3.

Out of all the potential Occluder ’s the actual occluding object is
then sampled uniformly:

occluded_by(Occluded,Occluder):t+1 ←

sample_occluder(Occluded):t+1~= Occluder.
sample_occluder(Occluded):t+1~uniform

(ListOfOccluders) ← findall(O,occluder
(Occluded, O):t+1, ListOfOccluders).

Declaring a theory of occlusion and coupling it to the anchoring
system allows the anchoring system to perform occlusion
reasoning and to track objects not by directly observing them
but by reasoning about relationships that occluded objects have
entered with visible (anchored) objects. The idea of declaring a
theory of occlusion first appeared in Nitti et al. (2013), where,
however, the data association problem was assumed to be solved
by using AR tags.

As the anchoring system was not able to handle probabilistic
states in our previous work, the theory of occlusion had to
describe unimodal probability distributions. In this paper, we
repair this deficiency (cf. section 3.2). Moreover, the theory of
occlusion had to be hand-coded (also the case for Nitti et al.,
2013). We replace the hand-coded theory of occlusion by a
learned one (cf. section 4).

Considering our previous work from the anchoring
perspective, our approach is most related to the techniques
proposed in Elfring et al. (2013), who introduced the idea of
probabilistic multiple hypothesis anchoring in order to match
and maintain probabilistic tracks of anchored objects, and
thus, maintain an adaptable semantic world model. From the
perspective of how occlusions are handled, Elfring. et al’s
and our work differs, however, substantially. Elfring et al.
handle occlusions that are due to scene occlusion. Moreover, the
occlusions are handled by means of a multiple hypothesis tracker,
which is suited for short occlusions rather then long occlusions.
The limitations with the use of multiple hypothesis tracking
for world modeling, and consequently also for handling object
occlusions in anchoring scenarios (as in Elfring et al., 2013), have
likewise been pointed out in a publication by Wong et al. (2015).
Wong et al. reported instead the use of a clustering-based data
association approach (opposed to a tracking-based approach),
in order to aggregate a consistent semantic world model
from multiple viewpoints, and hence, compensate for partial
occlusions from a single viewpoint perspective of the scene.

3. ANCHORING OF OBJECTS IN
MULTI-MODAL STATES

In this section, we present a probabilistic anchoring framework
based on our previous work on conjoining probabilistic
reasoning and object anchoring (Persson et al., 2020b). An
overview of our proposed framework, which is implemented
utilizing the libraries and communication protocols available
in the Robot Operating System (ROS)4, can be seen in
Figure 2. However, our prior anchoring system, seen in Figure 2–
2.©, was unable to handle probabilistic states of objects.
While the probabilistic reasoning module, seen in Figure 2–
3.©, was able to model the position of an object as a
probability distribution over possible positions, the anchoring
system only kept track of a single deterministic position:
the expected position of an object. Therefore, we extend the
anchoring notation toward a probabilistic anchoring approach
in order to enable the anchoring system to handle multi-modal
probability distributions.

3.1. Requirements for Anchoring and
Semantic Object Tracking
Before presenting our proposed probabilistic anchoring
approach, we first introduce the necessary requirements
and assumptions (which partly originate in our previous
work, Persson et al., 2020b):

1. We assume that unknown anchor representations, α
y
t , are

supplied by a black-box perceptual processing pipeline,
as exemplified in Figure 2– 1.©. They consist of extracted
attribute measurements and corresponding grounded
predicate symbols. We further assume that for each perceptual
representation of an object, we have the following attribute
measurements: (1) a color attribute (φcolor

y ), (2) a position

attribute (φ
pos
y ), and (3) a size attribute (φsize

y ).

Example 4: In this paper we use the combined Depth Seeding
Network (DSN) and Region Refinement Network (RNN), as
presented by Xie et al. (2019), for the purpose of segmenting
arbitrary object instances in tabletop scenarios. This two-
stage approach leverages both RGB and depth data (given
by a Kinect V2 RGB-D sensor), in order to first segment
rough initial object masks (based on depth data), followed by
a second refinement stage of these object masks (based on
RGB data). The resulting output for each segmented object,

is then both a 3-D spatial percept (φ
spatial
y ), as well as a 2-D

visual percept (φvisual
y ). For each segmented spatial percept,

and with the use of the Point Cloud Library (PCL), are both
a position attribute measured as the 3-D geometrical center,
and a size attributemeasured as the 3-D geometrical bounding
box. Similarly, using the Open Computer Vision Library
(OpenCV), a color attribute is measured as the discretized color
histogram (in HSV color-space) for each segmented visual
percept, as depicted in Figure 3.

4The code can be found online at: https://bitbucket.org/reground/anchoring
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FIGURE 2 | The overall framework architecture is divided into three basic sub-systems (or modules): 1.© an initial perceptual processing pipeline for detecting,

segmenting and processing perceived objects, 2.© an anchoring system for creating and maintaining updated and consistent representations (anchors) of perceived

objects, and 3.© an inference system for aiding the anchoring system and logically tracking objects in complex dynamic scenes.

2. In order to semantically categorize objects, we further assume
that a Convolutional Neural Network (CNN), such as the
GoogLeNet model (Szegedy et al., 2015), is available. In the
context of anchoring, the inputs for this model are segmented
visual percepts (πvisual

y ), while resulting object categories,

denoted by the predicate p
category
y ∈ P , are given together with

the predicted probabilities φ
category
y (cf. section 2.1)5.

Example 5: For this work, we have used the same fine-tuned
model as used in Persson et al. (2020b), which is based on the
network architecture of the 1K GoogLeNet model, developed
by Szegedy et al. We have, however, fine-tuned the model
to classify 101 objects categories that are only relevant for a
household domain, e.g., mug, ball, box, etc., where the model
was trained for a top-1 accuracy of 73.4% (and a top-5 accuracy
of 92.0%). An example of segmented objects together with the
3-top best object categories, given by the integrated GoogLeNet
model, is illustrated in Figure 4.

In addition, this integrated model is also used to enhance the
traditional acquire functionality such that a unique identifier x
is generated based on the object category symbol pcategory. For
example, if the anchoring system detects an object it has not
seen before and classifies it as a cup, a corresponding unique
identifier x = cup-4 could be generated (where the 4 means
that this is the forth distinct instance of a cup object perceived
by the system).

3. We require the presence of a probabilistic inference
system coupled to the anchoring system, as illustrated in

5The anchoring framework is conceived in a modular fashion. This would for
example allow us to replace the GoogLeNet-based classifier by more recent and
memory efficient architecture such as residual neural networks (He et al., 2016).
The modularity of the anchoring framework is presented in a separate demo
paper (Persson et al., 2020a).

FIGURE 3 | Examples of measured color attribute (measured as the

discretized color histogram over each segmented object).

Figure 2– 3.©. The anchoring system is responsible for
maintaining objects perceived by the sensory input data and
for maintaining the observable part of the world model.
Maintained anchored object representations are then treated
as observations in the inference system, which uses relational
object tracking to infer the state of occluded objects through
their relations with perceived objects in the world. This
inferred belief of the world is then sent back to the anchoring
system, where the state of occluded objects is updated.
The feedback-loop between the anchoring system and the
probabilistic reasoner results in an additional anchoring
functionality (Persson et al., 2020b):
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FIGURE 4 | Examples of semantically categorized objects (depicted with the

3-top best object categories for each segmented object).

• Track—extends the definition of an anchor αx from time
t − 1 to time t. This functionality is directly responding to
the state of the probabilistic object tracker, which ensures
that the percepts pointed to by the anchor are the adequate
perceptual representation of the object, even though the
object is currently not perceived.

Even though the mapping between measured attribute values
and corresponding predicate symbols is an essential facet of
anchoring, we will not cover the predicate grounding in further
detail in this paper. However, for completeness, we will refer
to Figure 3 and exemplify that the predicate grounding relation
of a color attribute can, intuitively, be expressed as the encoded
correspondence between a specific peek in the color histogram
and certain predicate symbol (e.g., the symbol black for the
mug object). Likewise, a future greater ambition of this work
is to establish a practical framework through which the spatial
relationships between objects are encoded and expressed using
symbolic values, e.g., object A is underneath object B.

3.2. Probabilistic Anchoring System
The entry point for the anchoring system, seen in Figure 2–
2.©, is a learned matching function. This function assumes a
bottom-up approach to perceptual anchoring, described in Loutfi
et al. (2005), where the system constantly receives candidate
anchors and invokes a number of attribute specific matching
similarity formulas (i.e., onematching formula for eachmeasured
attribute). More specifically, a set of attributes8y of an unknown

candidate anchor α
y
t (given at current time t) is compared against

the set of attributes 8x of an existing anchor αx
t−k

(defined at
time t − k) through attribute specific similarity formulas. For
instance, the similarity between the positions attributes φ

pos
y of an

unknown candidate anchor, and the last updated position φ
pos

t−k,x

of an existing anchor, is calculated according to the L2-norm (in
3-D space), which is further mapped to a normalized similarity

value (Blodow et al., 2010):

dpos(φ
pos

t−k,x,φ
pos
t,y ) = e

−L2(φ
pos

t−k,x ,φ
pos
t,y ) (1)

Hence, the similarity between two positions attributes is given
in interval [0, 1], where a value of 1 is equivalent with perfect
correspondence. Likewise, the similarity between two color
attributes are calculated by the color correlation, while the
similarity between size attributes is calculated according to
the generalized Jaccard similarity (for further details regarding
similarity formulas, we refer to our previous work Persson et al.,
2020b). The similarities between the attributes of a known anchor
and an unknown candidate anchor are then fed to the learned
matching function to determine whether the matching function
classifies the unknown anchor to be acquired as a new anchor,
or re-acquired as an existing anchor. This matching function is
utilized by a support vector machine, which has been trained
with the use of 5, 400 samples of humanly annotated data (i.e.,
human users have provided feedback about what they think is the
appropriate anchoring action for objects in various scenarios),
to a classification accuracy of 96.4%. It should, however, be
noted that the inputs for this classifier are the various similarity
values between attributes (cf. Equation 1), and that the classifier
learns to interpret, combine and weight different similarity
values between attributes in order to correctly determine whether
a new anchor should be acquired, or if an existing anchor
should be re-acquired. By omitting similarity values of specific
attributes during training, we can also estimate the importance of
different attributes. For example, excluding the similarity values
between color attributes during training reduces the classification
accuracy to 92.5%, while excluding the similarity values between
position attributes, instead, decreases the accuracy to 72.8%. This
illustrating example of the importance of the position of an
object, in the context of anchoring, is a further motivation for
reasoning about possible states once the position of an object
changes during the absence of observations (e.g., in the case of
movements during occlusions).

In our prior work on anchoring, the attribute values have,
in addition, always been assumed to be deterministic within a
single time step. This assumption keeps the anchoring system de
facto deterministic even though it is coupled to a probabilistic
reasoning module. We, therefore, extend the anchoring notation
with two distinct specifications of (volatile) attributes:

1. An attribute φt ∈ ϕ is deterministic at time t if it takes a single
value from the domain D(φt).

2. An attribute φt ∈ ϕ is probabilistic at time t if it is distributed
according to a probability distribution Pr(φt) over the domain
D(φt) at time step t.

Having a probabilistic attribute value φt (e.g., φ
pos

t−k,x in
Equation 1), means that the similarity calculated with the
probabilistic attribute values (e.g., the similarity value dpos),
will also be probabilistic. Next, in order to use an anchor
matching function together with probabilistic similarity values,
two extensions are possible: (1) extend the anchor matching
function to accept random variables (i.e., probabilistic similarity
values), or (2) retrieve a point estimate of the random variable.
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We chose the second option as this allows us to reuse the
anchor matching function learned in Persson et al. (2020b)
without the additional expense of collecting data and re-training
the anchor matching function. The algorithm to produce the
set of matching similarity values that are fed to the anchor
matching function is given in Algorithm 1, where lines 4–5 are
the extension proposed in this work.

Algorithm 1 Attribute Compare

Input: 8x, 8y – sets of anchor attribute values
Output: Dx,y – set of matching similarity values
1: function ATTRIBUTECOMPARE(8x , 8y)
2: Dx,y ← empty set
3: for each φt,x ∈ 8x and φt,y ∈ 8y do

4: if φt−1,x is probabilistic then

5: Dx,y
+
← point_estimate

φt−1,x

(d(φt−1,x,φt,y))

6: else ⊲ deterministic case
7: Dx,y

+
← d(φt−k,x,φt,y)

8: return Dx,y

The point_estimate function in Algorithm 1 (line 5) is attribute
specific [indicated by the subscript (φt−1,x)], i.e., we can chose a
different point estimation function for color attributes than for
position attributes. An obvious attribute upon which reasoning
can be done is the position attribute, for example, in the case
of possible occlusions. In other words, we would like to perform
probabilistic anchoring while taking into account the probability
distribution of an anchor’s position. A reasonable goal is then
to match an unknown candidate anchor with the most likely
anchor, i.e., with the anchor whose position attribute value is
located at the highest mode of the probability distribution of the
position attribute values. This is achieved by replacing line 5 in
Algorithm 1 with:

F
pos
x ←

{

φ
pos
t−1,x

∣

∣

∣

∣

∣

∂Pr(φ
pos
t−1,x)

∂φ
pos
t−1,x

= 0

}

(2)

Dx,y
+
← max

φpos∈F
pos
x

(dpos(φpos,φ
pos
t,y )) (3)

F
pos
x is the set of positions situated at the modes of the probability

distribution Pr(φ
pos
t−1,x). In Equation (3) we take the max as the

co-domain of the position similarity value dpos is in [0, 1], where
1 reflects perfect correspondence (cf. Equation 1).

In Persson et al. (2020b), we approximated the probabilistic
state of the world in the inference system (cf. Figure 2– 3.©) by
N particles, which are updated by means of particle filtering.
The precise information that is passed from the inference
system to the anchoring system is a list of N particles that
approximate a (possible) multi-modal belief of the world. More
specifically, an anchor αx

t is updated according to the N particles
of possible states of a corresponding object, maintained in
the inference system, such that N possible 3-D positions are
added to the volatile position attributes ϕ

pos
x . In practice we

assume that samples are only drawn around the modes of the
probability distribution, which means that we can replace line 5
of Algorithm 1 with:

Dx,y
+
← max

i

(

dpos(φ
pos
t−1,x,i,φ

pos
t,y )

)

= max
i

(

e
−L2(φ

pos
t−1,x,i ,φ

pos
t,y )

)

(4)

Where φt−1,x,i is a sampled position and i ranges from 1 to the
number of samples N.

Performing probabilistic inference in the coordinate space is a
choice made in the design of the probabilistic anchoring system.
Instead, the probabilistic tracking could also be done in the HSV
color space, for instance. In this case, the similarity measure
used in Algorithm 1 would have to be adapted accordingly. It
is also conceivable to combine the tracking in coordinate space
and color space. This introduces, however, the complication
of finding a similarity measure that works on the coordinate
space and the color space at the same time. A solution to
this would be to, yet again, learn this similarity function from
data (Persson et al., 2020b).

4. LEARNING DYNAMIC DISTRIBUTIONAL
CLAUSES

While several approaches exist in the SRL literature that learn
probabilistic relational models, most of them focus on parameter
estimation (Sato, 1995; Friedman et al., 1999; Taskar et al.,
2002; Neville and Jensen, 2007) and structure learning has
been restricted to discrete data. Notable exceptions include the
recently proposed hybrid relational formalism by Ravkic et al.
(2015), which learns relational models in a discrete-continuous
domain but has not been applied to dynamics or robotics, and
the related approach of Nitti et al. (2016b), where a relational tree
learner DDC-TL learns both the structure and the parameters of
distributional clauses. DDC-TL has been evaluated on learning
action models (pre- and post-conditions) in a robotics setting
from before and after states of executing the actions. However,
there were several limitations of the approach. It simplified
perception by resorting to AR tags for identifying the objects, it
did not consider occlusion, and it could not deal with uncertainty
or noise in the observations.

A more general approach to learning distributional clauses,
extended with statistical models proposed in Kumar et al. (2020)6.
Such a statistical model relates continuous variables in the body
of a distributional clause to parameters of the distribution in
the head of the clause. The approach simultaneously learns
the structure and parameters of (non-dynamic) distributional
clauses, and estimates the parameters of the statistical model
in clauses. A DC program consisting of multiple distributional
clauses is capable of expressing intricate probability distributions
over discrete and continuous random variables. A further
shortcoming of DDC-TL (also tackled by Kumar et al.) is the
inability of learning in the presence of background knowledge—
that is, additional (symbolic) probabilistic information about
objects in the world and relations (such as spatial relations)

6https://github.com/niteshroyal/DreaML
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among the objects that the learning algorithm should take
into consideration.

However, until now, the approach presented in Kumar et al.
(2020) has only been applied to the problem of autocompletion
of relational databases by learning a (non-dynamic) DC program.
We now demonstrate with an example of how this general
approach can also be applied for learning dynamic distributional
clauses in a robotics setting. A key novelty in the context of
perceptual anchoring is that we learn a DDC program that allows
us to reason about occlusions.

Example 6: Consider again a scenario where objects might get
fully occluded by other objects. We would now like to learn the
ToO that describes whether an object is occluded or not given
multiple observations of the before and after state. In DDC we
represent observations through facts as follows

pos(o1_exp1):t~= 2.3.
pos(o1_exp1)t+1~= 9.3.
pos(o2):t~= 2.2.
pos(o2):t+1~= 9.2.
occluded_by(o1_exp1,o2_exp1):t+1.
pos(o3_exp1):t~= 8.3.

...

For the sake of clarity, we have considered only one-dimensional
positions in this example.

Example 7: Given the data in form of dynamic distributional
clauses, we are now interested in learning the ToO instead of
relying on a hand-coded one, as in Example 3. An excerpt from
the set of clauses that constitute a learned ToO is given below.
As in Example 3, the clauses describe the circumstances under
which an object (Occluded ) is potentially occluded by an other
object (Occluder ).

occluder(Occluded,Occluder):t+1~finite(1.0:false)
← occluded_by(Occluded,Occluder):t,
observed(Occluded):t+1.

occluder(Occluded,Occluder):t+1~finite(0.92:true,
0.08:false) ← occluded_by(Occluded,Occluder):
t,\+observed(Occluded):t+1.

occluder(Occluded,Occluder):t+1~finite(P1:true,P2:
false) ← \+occluded_by(Occluded,Occluder):t,
\+observed(Occluded):t+1,
distance(Occluded,Occluder):t~=Distance,
logistic([Distance],[-16.9,0.8],P1),
P2 is 1-P1.

Note that, in the second but last line of the last clause above the
arbitrary threshold on the Distance is superseded by a learned
statistical model, in this case a logistic regression, which maps
the input parameter Distance to the probability P1:

P1 =
1

1+ e16.9×D-0.8 (5)

Replacing the hand-coded occluder rule with the learned one in
the theory of occlusion allows us to track occluded objects with a
partially learned model of the world.

In order to learn dynamic distributional clauses, we first map
the predicates with subscripts that refer to the current time step t

and the next time step t+1 to standard predicates, which gives us
an input DC program. For instance, we map pos(o1_exp1):t to
pos_t(o1_exp1) , and occluder(o1_exp1,o2_exp2):t+1

to occluder_t1(o1_exp1,o2_exp2) . The method
introduced in Kumar et al. (2020) can now be applied
for learning distributional clauses for the target predicate
occluder_t1(o1_exp1,o2_exp2) from the input DC program.

Clauses for the target predicate are learned by inducing a
distributional logic tree. An example of such a tree is shown in
Figure 5. The key idea is that the set of clauses for the same target
predicate are represented by a distributional logic tree, which
satisfies the mutual exclusiveness property of distributional
clauses. This property states that if there are two distributional
clauses defining the same random variable, their bodies must
be mutually exclusive. Internal nodes of the tree correspond to
atoms in the body of learned clauses. A leaf node corresponds to a
distribution in the head and to a statistical model in the body of a
learned clause. A path beginning at the root node and proceeding
to a leaf node in the tree corresponds to a clause. Parameters
of the distribution and the statistical model of the clause are
estimated by maximizing the expectation of the log-likelihood
of the target in partial possible worlds. The worlds are obtained
by proving all possible groundings of the clause in the input DC
program. The structure of the induced tree defines the structure
of the learned clauses. The approach requires declarative bias
to restrict the search space while inducing the tree. Note that
the fragment of programs that can be learned by the algorithm
described in Kumar et al. (2020) does not include recursive
programs, as only tree structured programs can be learned.

In summary, the input to the learner of Kumar et al. (2020) is
a DC program consisting of

• background knowledge, in the form of DC clauses;
• observations, in the form of DC clauses—these constitute the

training data;
• the declarative bias, which is necessary to specify the

hypothesis space of the DC program (Adé et al., 1995);
• the target predicates for which clauses should be learned.

The output is:

• a set of DC clauses represented as a tree for each target
predicate specified in the input.

In contrast to learning algorithms that tackle discrete data, the
declarative bias used to learn rules with continuous random
variables has to additionally specify whether a random variable
is distributed according to a discrete probability distribution
or a continuous probability distribution. In other words, the
declarative bias specifies whether a leaf in the learned tree
represents continuous or a discrete probability distribution.
Currently the algorithm of Kumar et al. (2020) only supports
normal distributions for continuous random variables and finite
categorical distributions for discrete random variables.

Once the clauses are learned, predicates are
mapped back to predicates with subscripts to
obtain dynamic distributional clauses. For instance,
occluder_t1(Occluded,Occluder) in the learned clauses
is mapped back to occluder(Occluded,Occluder) :t+1.
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FIGURE 5 | A distributional logic tree that represents learned clauses for the target occluder(Occluded,Occluder):t+1 . The leftmost path corresponds

to the first clause, the rightmost path corresponds to the last clause for occluder(Occluded,Occluder):t+1 in Example 6. Internal nodes such as

occluder(Occluded,Occluder):t and observed(Occluded):t+1 are discrete features, whereas, internal nodes such as

distance(Occluded,Occluder):t+1~=Distance is a continuous feature.

FIGURE 6 | Depicted are two training points in the data set that were used to learn the transition rule of an object to another object. The panels on the left show a ball
that is being occluded by a box, and on the right, the same ball that is being grabbed by a hand (or a skin object, as we have only trained our used GoogLeNet model

to recognize general human skin objects instead of particular human body parts, cf. section 3.1). The plotted dots on top of the occluding object represent samples

drawn from the probability distribution of the occluded object, in other words the object that is labeled in the data set to transition into the occluding counterpart.

The data used for the learning of the theory of occlusion
consists of training points of before-after states of two kinds. The
first kind are pairs describing a transition of an object from being
observed to being occluded. Here, the data set contained 58 data
point pairs, with 13 pairs describing the transition of an object
from being observed to being occluded and the remaining 45
describing situations with an object being observed in the before
state, as well as in the after state. Examples of two raw data points
for the first kind can be seen in Figure 6. The second kind of
data pairs describe an object being occluded in the before state
as well as in the after state. Here we had 425 positively labeled
data pairs, i.e., an object was occluded in the after state. For 416
of these pairs the labeling was correct while the remaining were
mislabeled (the occluded object in the after state was labeled as
observed in the before state). For negative data points (objects

not occluded in the after state) we had 1,152 data pairs. For 473 of
these pairs the non-occluded object was labeled as not occluded
in the before state as well, for 2 it was labeled as occluded and
for the remaining there was no label in the before state. While
for the first kind we did not have any mislabeled data, the data
points for the second kind did exhibit a small percentage of
inaccurately labeled data pairs, for example approximately ≈
3% for positive data pairs. Noise in the data was also present
in the position of the objects—originating from the perceptual
anchoring system.

The predicate specifying whether an object is occluded in
the after state or not was the target predicate of the learner.
In the declarative bias we specified the predicates to be used
as features. These included predicates specifying whether an
object is occluded in the before state, position predicates,
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and distance predicates between objects. Furthermore, the rule
learner automatically decides on which statistical models, if any,
to use in the learned rules. The available statistical models are
linear, softmax, and logistic models.

The processed data that was fed to the distributional clauses
learner is available online7 as well as models with the learned
theory of occlusion8. The learned theory of occlusions is
conceptually close to the one shown in Example 7. The first-
order nature of the learned rules enable the usage of the rules
in situations of object occlusions with specific objects that were
not present in the training data set.

5. EVALUATION

A probabilistic anchoring system that is coupled to an inference
system (cf. section 3.2) is comprised of several interacting
components. This turns the evaluation of such a combined
framework, with many integrated systems, into a challenging
task. We, therefore, evaluate the integrated framework as
a whole on representative scenarios that demonstrate our
proposed extensions to perceptual anchoring. In section 5.1,
we demonstrate how the extended anchoring system can
handle probabilistic multi-modal states (described in section 3).
In sections 5.2 and 5.3, we show that semantic relational
object tracking can be performed with the probabilistic
logic rules (in form of a DDC program) instead of
handcrafted ones.

5.1. Multi-Modal Occlusions
We present the evaluation in the form of screenshots captured
during the execution of a scenario where we obscure the stream
of sensor data. We start out with three larger objects (two
mug objects and one box object), and one smaller ball object.
During the occlusion phase, seen in Figure 7– 1.©, the RGB-
D sensor is covered by a human hand and the smaller ball

is hidden underneath one of the larger objects. In Figure 7–
1.©, it should also be noted that the anchoring system preserves
the latest update of the objects, which is here illustrated by
the outlined contour of each object. At the time that the
sensory input stream is uncovered, and there is no longer any
visual perceptual input of the ball object, the system can only
speculate about the whereabouts of themissing object. Hence, the
belief of the ball’s position becomes a multi-modal probability
distribution, from which we draw samples, as seen in Figure 7–
2.©. At this point, we are, however, able to track the smaller
ball through its probabilistic relationships with the other larger
objects. During all the movements of the larger objects, the
probabilistic inference system manages to track the modes of
the probability distribution of the position of the smaller ball.
The probability distribution for the position of the smaller
ball (approximated by N samples) is continuously fed back to
the anchoring system. Consequently, once the hidden ball is
revealed and reappears in the scene, as seen in Figures 7– 3.©,
4.©, the ball is correctly re-acquired as the initial ball-1 object.

7https://bitbucket.org/reground/anchoring/downloads/
8https://bitbucket.org/reground/anchoring

This would not have been possible with a non-probabilistic
anchoring approach.

5.2. Uni-Modal Occlusions With Learned
Rules
The conceptually easiest ToO is one that describes the occlusion
of an object by another object. Using the method described in
section 4, we learned such a ToO, which we demonstrate in
Figure 8. Shown are two scenarios. In the one in the upper row a
can gets occluded by a box—shown in the second screenshot. The
can is subsequently tracked through its relation with the observed
box and successfully re-anchored as can-1 once it is revealed. Note
that in the second screenshot, the mug is also briefly believed to
be hidden under box, shown through the black dots, as the mug

is temporally obscured behind the box and not observed by the
vision system. However, once the mug is again observed the black
dots disappear.

In the second scenario, we occlude one of two ball objects
with a box and track the ball again through its relation with
the box. Note that some of the probability mass accounts for the
possibility for the occluded ball to be occluded by the mug. This
is due to the fact that the learned rule is probabilistic.

In both scenarios, we included background knowledge that
specifies that a ball cannot be the an occluder of an object (it
does not afford to be the occluder). This is also why we see a
probability mass of the occluded ball at the mug’s location and
not at the observed ball’s location in the second scenario.

5.3. Transitive Occlusions With Learned
Rules
Learning (probabilistic) rules, instead of a black-box function,
has the advantage that a set of rules can easily be extended with
further knowledge. For example, if we would like the ToO to
be recursive, i.e., objects can be occluded by objects that are
themselves occluded, we simply have to add the following rule
to the DDC program describing the theory of occlusion:

occluded_by(Occluded,Occluder):t+1 ←

occluded_by(Occluded,Occluder):t,
\+observed(Occluded):t+1,
\+observed(Occluder):t+1,
occluded_by(Occluder,_):t+1.

Extending the ToO from section 5.2 with the above rule,
enables the anchoring system to handle recursive occlusions.
We demonstrate such a scenario in Figure 9. Initially, we start
this scenario with a ball, a mug and a box object (which in
the beginning is miss-classified as block object, cf. Figure 4). In
the first case of occlusion, seen in Figure 9– 1.©, we have the
same type of uni-modal occlusion as described in the previous
section 5.2, where the mug occludes the ball and, subsequently,
triggers the learned relational transition (where plotted yellow

dots represent samples drawn from the probability distribution
of the occluded ball object). In the second recursive case of
occlusion, seen in Figure 9– 2.©, we proceed by also occluding
the mug with the box. Above rule administers this transitive
occlusion—triggered when the ball is still hidden underneath the
mug and the mug is occluded by the box. This is illustrated here
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FIGURE 7 | Screen-shots captured during the execution of a scenario where the stream of sensor data is obscured. Visually perceived anchored objects are

symbolized by a unique anchor identifiers (e.g., mug-1), while occluded hidden objects are depicted by plotted particles that represent possible positions of the

occluded object in the inference system. The screenshots illustrate a scenario where the RGB-D sensor is covered and a ball is hidden under either one of three larger

objects. These larger objects are subsequently shuffled around before the whereabouts of the hidden ball is revealed.

FIGURE 8 | The two scenario show how a learned ToO is used to perform semantic relational object tracking. In both scenarios, an object is occluded by a box and

successfully tracked before the occluded object is being revealed and again re-acquired as the same initial object.

by both yellow and black plotted dots that represent samples
drawn from the probability distributions of occluded mug and
the transitively occluded ball object, respectively. Consequently,
once the box is moved, both the mug and the ball are tracked

through the transitive relation with the occluding box. Reversely,
it can be seen, in Figure 9– 3.©, that once the mug object is
revealed the object is correctly re-acquired as the same mug-1

object, while the relation between the mug and the occluded ball

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2020 | Volume 7 | Article 100

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Zuidberg Dos Martires et al. Symbolic Learning and Reasoning

FIGURE 9 | A scenario that demonstrates transitive occlusions based on learned rules for handling the theory of occlusions. First the ball is occluded by the mug
(indicated by the yellow dots) and subsequently the mug is occluded in turn by the box (indicated by the black dots). Once the mug is observed again the ball is still

believed to be occluded by the mug.

object is still preserved. Finally, as the ball object is revealed,
in Figure 9– 4.©, it can be also seen that the object is, likewise,
correctly re-acquired as the same ball-1 object.

6. CONCLUSIONS AND FUTURE WORK

We have presented a two-fold extension to our previous work
on semantic world modeling (Persson et al., 2020b), where
we proposed an approach to couple an anchoring system
to an inference system. Firstly, we extended the notions of
perceptual anchoring toward the probabilistic setting by means
of probabilistic logic programming. This allowed us tomaintain a
multi-modal probability distribution of the positions of objects in
the anchoring system and to use it for matching and maintaining
objects at the perceptual level—thus, we introduce probabilistic
anchoring of objects either directly perceived by the sensory
input data or logically inferred through probabilistic reasoning.
We illustrated the benefit of this approach with the scenario
in section 5.1, which the anchoring system was able to resolve
correctly only due to its ability of maintaining a multi-modal
probability distribution. This also extends an earlier approach to
relational object tracking (Nitti et al., 2014), where the symbol-
grounding problem was solved by the use of AR tags.

Secondly, we have deployedmethods from statistical relational
learning to the field of anchoring. This approach allowed us to
learn, instead of handcraft, rules needed in the reasoning system.
A distinguishing feature of the applied rule learner (Kumar et al.,

2020) is its ability to handle both continuous and discrete data.
We then demonstrated that combining perceptual anchoring
and SRL is also feasible in practice by performing relational
anchoring with a learned rule (demonstrated in section 5.2).
This scenario did also exhibit a further strength of using
SRL in anchoring domains, namely that the resulting system
becomes a highly modularizable system. In our evaluation, for
instance, we were able to integrate an extra rule into the ToO,
which enabled us to resolve recursive occlusions (described
in section 5.3).

A possible future direction would be to exploit how anchored
objects and their spatial relationships, tracked over time, facilitate
the learning of both the function of objects, as well as object
affordances (Kjellström et al., 2011; Moldovan et al., 2012;
Koppula et al., 2013; Koppula and Saxena, 2014). Through the
introduction of a probabilistic anchoring approach, together with
the learning of the rules that express the relation between objects,
we have presented a potential framework for future studies of
spatial relationship between objects, e.g., the spatial-temporal
relationships between objects and human hand actions to learn
the function of objects (cf. Kjellström et al., 2011; Moldovan et al.,
2012). Such a future direction would tackle a similar question,
currently discussed in the neural-symbolic community (Garcez
et al., 2019), namely how to propagate back symbolic information
to sub-symbolic representations of the world. A recent piece of
work that combines SRL and neural methods is, for instance,
Manhaeve et al. (2018).
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Another aspect of our work that deserves future investigation
is probabilistic anchoring, in itself. With the approach presented
in this paper we are merely able to perform MAP inference.
In order to perform full probabilistic anchoring, one would
need to render the anchor matching function itself fully
probabilistic, i.e. the anchor matching function would
need to take as arguments random variables and again
output probability distributions instead of point estimates—
ideas borrowed from multi-hypothesis anchoring (Elfring
et al., 2013) might, therefore, be worthwhile to consider for
future work.
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