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Computer Tomography (CT) is an imaging procedure that combines many X-ray

measurements taken from different angles. The segmentation of areas in the CT images

provides a valuable aid to physicians and radiologists in order to better provide a

patient diagnose. The CT scans of a body torso usually include different neighboring

internal body organs. Deep learning has become the state-of-the-art in medical image

segmentation. For such techniques, in order to perform a successful segmentation, it

is of great importance that the network learns to focus on the organ of interest and

surrounding structures and also that the network can detect target regions of different

sizes. In this paper, we propose the extension of a popular deep learning methodology,

Convolutional Neural Networks (CNN), by including deep supervision and attention gates.

Our experimental evaluation shows that the inclusion of attention and deep supervision

results in consistent improvement of the tumor prediction accuracy across the different

datasets and training sizes while adding minimal computational overhead.

Keywords: medical image segmentation, CNN, UNet, VNet, attention gates, deep supervision, tumor

segmentation, organ segmentation

1. INTRODUCTION

The daily work of a radiologist consists of visually analyzing multiple anatomical structures
in medical images. Subtle variations in size, shape, or structure may be a sign of
disease and can help to confirm or discard a particular diagnosis. However, manual
measurements are time-consuming and could result in inter-operator and intra-operator variability
(Sharma and Aggarwal, 2010; Jimenez-del-Toro et al., 2016). At the same time, the amount of data
acquired via Computer tomography (CT) and Magnetic resonance (MR) is ever-growing (Sharma
and Aggarwal, 2010). As a result, there is an increasing interest in reliable automatic systems that
assist radiological experts in clinical diagnosis and treatment planning. One of such aids to experts
is medical image segmentation, which consists of voxel-wise annotation of target structures in the
image and it is present inmany recent research work. Yearlymedical image competition challenges1

allow to the computer vision and machine learning experts to access and evaluate medical image
data (Jimenez-del-Toro et al., 2016).

Deep learning techniques, especially convolutional neural networks (CNN), have become
the state-of-the-art for medical image segmentation. Fully convolutional networks (FCNs)

1For example website Grand Challenges in Biomedical Image Analysis gathers multiple competitions;

https://grand-challenge.org.
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(Long et al., 2015) and the U-Net (Ronneberger et al., 2015)
are two of the most commonly used architectures. Their area
of application includes anatomical segmentation of cardiac CT
(Zreik et al., 2016), detection of lung nodules in chest CT
(Hamidian et al., 2017), multi-organ segmentation in CT and
MRI images of the abdomen (Jimenez-del-Toro et al., 2016), and
ischemic stroke lesion outcome prediction based onmultispectral
MRI (Winzeck et al., 2018) among others.

Despite the success of deep CNN techniques, there are
difficulties inherent to their applicability. First, large datasets
are needed for the successful training of deep CNN models.
In medical imaging, this may be problematic due to the cost
of acquisition, data anonymization techniques, etc. Second,
volumetric medical image data require vast computational
resources, even when using graphical computation units (GPU)
the training process is very time-consuming. Therefore, every
new proposal should take into account not only the performance
but also the computational load.

Current CT-based clinical abdominal diagnosis relies on the
comprehensive analysis of groups of organs, and the quantitative
measures of volumes, shapes, and others, which are usually
indicators of disorders. Computer-aided diagnosis and medical
image analysis traditionally focus on organ or disease based
applications, i.e., multi-organ segmentation from abdominal
CT (Jimenez-del-Toro et al., 2016; Hu et al., 2017; Gibson
et al., 2018), or tumor segmentation in the liver (Linguraru
et al., 2012), the pancreas (Isensee et al., 2018), or the kidney
(Yang et al., 2018).

There are two significant challenges in automatic abdominal
organ segmentation from CT images (Hu et al., 2017). One of
such challenges is how to automatically locate the anatomical
structures in the target image because different organs lay
close to each other and can also overlap. Moreover, among
individual patients exists considerable variations in the location,
shape, and size of organs. Furthermore, abdominal organs
are characteristically represented by similar intensity voxels as
identify surrounding tissues in CT images. The other challenge is
to determine the fuzzy boundaries between neighboring organs
and soft tissues surrounding them.

The task of detecting cancerous tissue in an abdominal organ
is even more difficult because of the large variability of tumors
in size, position, and morphology structure. Results are quite
impressive when the focus is on detecting organs; an example of
this is (Isensee et al., 2018), achieving dice scores of 95.43 and
79.30 for liver and pancreas segmentation. On the other hand,
these values drop dramatically when the focus is on detecting
the tumor, where values are as low as 61.82 and 52.12 for their
respective (liver and pancreas) tumor classes. There is also a high
variability on tumor classification depending on the organ, e.g.,
Yang et al. (2018) presents dice scores of 93.1 and 80.2 when the
organ is the kidney and its tumor detection, respectively.

On the other hand, all the organs have a typical shape,
structure, and relative position in the abdomen. The model could
then benefit from an attentional mechanism consolidated in the
network architecture, which could help to focus specifically on
the organ of interest. For this purpose, we incorporated the idea

of attention gates (AG) (Oktay et al., 2018). Attention gates
identify salient image regions and prune feature responses to
preserve only the activations relevant to the specific task and
to suppress feature responses in irrelevant background regions
without the requirement to crop the region of interest.

Many research papers have incorporated attention into
artificial CNN visual models for image captioning (Xu et al.,
2015), classification (Mnih et al., 2014; Xiao et al., 2015), and
segmentation (Chen et al., 2016). In the case of Recurrent Neural
Networks (RNN), Ypsilantis and Montana (2017) presents an
RNN model that learns to sequentially sample the entire X-ray
image and focus only on salient areas. In these models, attention
could be divided into two categories: hard and soft attention. As
described by Xu et al. (2015), hard attention is when the attention
scores are used to select a single hidden state, e.g., iterative
region proposal and cropping. Such an attention mechanism
is often non-differentiable and relies on reinforcement learning
for updating parameter values, which makes training quite
challenging. On the other hand, soft attention calculates the
context vector as a weighted sum of the encoder hidden states
(feature vectors). Thus, soft attention is differentiable, and the
entire model is trainable by back-propagation. The attention
modules which generate attention-aware features presented by
Wang et al. (2017) was the state-of-the-art object recognition
performance on ImageNet in 2017. Huang et al. (2019) presents
a Criss-Cross Network (CCNet) with a criss-cross attention
module and achieves the state-of-the-art results of mIoU score
of 81.4 and 45.22 on Cityscapes test set and ADE20K validation
set, respectively. Grewal et al. (2018) combines deep CNN
architecture with the components of attention for slice level
predictions and achieves 81.82% accuracy for the prediction of
hemorrhage from 3D CT scans, matching the performance of a
human radiologist. Other boosted convolutional neural network
with attention and deep supervision (DAB-CNN) (Kearney et al.,

2019) achieves state-of-the-art results in automatic segmentation
of the prostate, rectum, and penile bulb.

Deep supervision was firstly introduced by Lee et al. (2015)

as a way to deal with the problem of the vanishing gradient in
training deeper CNN for image classification. This method adds

companion objective functions at each hidden layer in addition
to the overall objective function at the output layer. Such a
model can learn robust features even in the early layers; moreover

the deep supervision brings some insight on the effect that
intermediate layers may have on the overall model performance.
Since then, deep supervision was successfully applied in many
vision models. In the case of medical applications, it has been

employed to prostate segmentation (Zhu et al., 2017), to the

liver (Dou et al., 2016), and pancreatic cyst (Zhou et al., 2017)
segmentation in CT volumes, and to brain tumor segmentation
from magnetic resonance imaging (Isensee et al., 2017).

In the present work, we propose a methodology for a

more reliable organ and tumor segmentation from computed
tomography scans. The contribution of this work is three-fold:

• A methodology that achieves the state-of-the-art performance
on several segmentation tasks dealing with organ and tumor
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segmentation, of special interest is the increase obtained in the
precision of tumor segmentation.

• A visualization of the feature maps from our CNN architecture
to provide some insight into what is the focus of attention in
the different parts of the model for better tumor detection.

• Third and not last, we provide a novel and extended
comparison of CNN architectures for different organ-tumor
segmentation from abdomen CT scans.

2. METHODOLOGY

We will provide the details of the proposed methodology in
this section. Firstly, we will explain the preprocessing and
normalization of the medical image data. Secondly, we will
provide a detailed description of the model architecture, the
attention gates, and the deep supervision layers. The loss
function, the optimizer, and other specifics of interest are detailed
in the following subsection, which also describes patch sampling
and data augmentation techniques utilized in order to prevent
overfitting. The last part shortly outlines inference and how the
image patches are stitched back together. We provide a publicly
available implementation of our methodology using PyTorch at:
github.com/tureckova/Abdomen-CT-Image-Segmentation.

2.1. Data Preprocessing
CT scans might be captured by different scanners in different
medical clinics with nonidentical acquisition protocols; therefore
the data preprocessing step is crucial to normalize the data in a
way that enables the convolutional network to learn suitable and
meaningful features properly. We preprocess the CT scan images
as follows (Isensee et al., 2018):

• All patients are resampled to the median voxel spacing
of the dataset using the third-order spline interpolation
for image data and the nearest neighbor interpolation for the
segmentation mask.

• The dataset is normalized by clipping to the [0.5, 99.5]
percentiles of the intensity values occurring within the
segmentation masks.

• Z-score normalization is applied based on the mean and
standard deviation of all intensity values occurring within the
segmentation masks.

Because of memory restrictions, the model was trained on 3D
image patches. All the models were trained on an 11GB GPU. A
base configuration of the input patch size of 128 × 128 × 128
and a batch size of 2 was chosen to fit our hardware set up.
Then the model automatically adapts these parameters, so they
reflect the median image size of each dataset. We consider two
different approaches:

Full-resolution—the original resolutions of images are used
for the training, and relatively small 3D patches are chosen
randomly during training. This way, the network has access
to high-resolution details; on the other hand, it neglects
context information.
Low-resolution—the patient image is downsampled by a factor
of two until the median shape of the resampled data has less

than four times the voxels that can be processed as an input
patch. 3D patches are also chosen randomly during training. In
this case, the model has more information about the context but
lacks high-resolution details.

2.2. Model Architecture
Deep learning techniques, especially convolutional neural
networks, occupy the main interest of research in the area
of medical image segmentation nowadays and outperform
most techniques. A very popular convolution neural network
architecture used in medical imaging is the encoder-decoder
structure with skip connections at each image resolution level.
The basic principle was firstly presented by Ronneberger et al.
(2015) for segmenting 2D biomedical images; this network was
named U-Net. U-Net traditionally uses the max-pooling to
downsample the image in the encoder part and upsampling in the
decoder part of the structure. The work of Milletari et al. (2016)
extended the model for volumetric medical image segmentation
and replaced the max-pooling and upsampling by convolutions,
creating a fully convolutional neural network named V-Net.
The original U-Net architecture was quickly extended into 3D,
and since then, the literature seems to be using names U-Net
and V-Net interchangeably. In this work, all models work with
volumetric data, and we decided to keep the original architectures
naming and differences:

• UNet—the encoder-decoder structure with the skip
connections using the max-pooling to downsample the
image in the encoder part and upsampling in the decoder part
of the structure.

• VNet—the fully convolutional encoder-decoder architecture
with skip connections.

We follow encoder-decoder architecture choices applied to each
dataset by Isensee et al. (2018). We use 30 feature maps in the
highest layers (the number of feature maps doubles with each
downsampling), and we downsample the image along each axis
until the feature maps have size 8 or for a maximum of 5 times.
The encoder part consists of context modules, and the decoder
part is composed of localization modules. Each module contains
a convolution layer, a dropout layer, an instance normalization
layer, and a leakyReLU.

In addition to original encoder-decoder network architecture,
we add attention gates (Oktay et al., 2018) in the top two
model levels and deep supervision (Kayalibay et al., 2017).
Both extensions are described in the next two subsections. The
structure of proposed network architecture is shown in Figure 1.

2.2.1. Attention Gates
Attention coefficients, αi ∈ [0, 1] emphasizes salient image
regions and significant features to preserve only relevant
activations specific to the actual task. The output of AGs (1)
is the element-wise multiplication of input feature-maps and
attention coefficients:

x̂li,c = xli,c · α
l
i,c (1)
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Turečková et al. Tumor Segmentation in CT Images

FIGURE 1 | A block diagram of the segmentation model with attention gates and deep supervision.

FIGURE 2 | A block diagram of additive attention gate (AG) (Oktay et al., 2018). Input features (xl ) are scaled with the attention coefficients (α) computed in AG.

Spatial regions are selected by analyzing both the activations and the contextual information provided by the gating signal (g) which is collected from a coarser

resolution scale. Attention coefficients are resampled to match the resolution of (xl ) by trilinear interpolation.

where αli,c is the attention coefficient (obtained using Equation 3,

below), and xli,c is pixel i in layer l for class c. xli ∈ R
Fl where Fl

corresponds to the number of feature-maps in layer l. Therefore,
each AG learns to focus on a subset of target structures. The
structure of an attention gate is shown in Figure 2. A gating
vector gi is used for each pixel i to determine the regions of focus.
The gating vector contains contextual information to reduce
lower-level feature responses. The gate uses additive attention (2),
formulated as follows (Oktay et al., 2018):

qlatt = ψT(σ1(W
T
x x

l
i,c +WT

g gi,c + bg))+ bψ (2)

αli,c = σ2(q
l
att(x

l
i,c, gi,c,2att)), (3)

where σ1(x
l
i,c) = max(0, xli,c) is rectified linear unit. AG is

characterized by a set of parameters 2att containing: linear
transformationsWx ∈ R

Fl×Fint ,Wg ∈ R
Fg×Fint , ψ ∈ R

Fint×1 and

bias terms bψ ∈ R, bg ∈ R
Fint . σ2(x

l
i,c) =

1

1+exp(−xli,c)
corresponds

to a sigmoid activation function. The linear transformations are
computed using channel-wise 1×1×1 convolutions of the input
tensors. All the AG parameters can be trained with the standard
back-propagation updates.

2.2.2. Deep Supervision
Deep supervision (Kayalibay et al., 2017) is the design
where multiple segmentation maps are generated at different
resolutions levels. The feature maps from each network level

are transposed by 1 × 1 × 1 convolutions to create secondary
segmentation maps. These are then combined in the following
way: First, the segmentation map with the lowest resolution is
upsampled with bilinear interpolation to have the same size as the
second-lowest resolution segmentation map. The element-wise
sum of the two maps is then upsampled and added to the third-
lowes segmentation map and so on until we reach the highest
resolution level. For illustration see Figure 1.

These additional segmentation maps do not primarily serve
for any further refinement of the final segmentation map
created at the last layer of the model because the context
information is already provided by long skip connections. The
secondary segmentation maps help in the speed of convergence
by “encouraging” earlier layers of the network to produce better
segmentation results. A similar principle has been used by
Kayalibay et al. (2017) and Chen et al. (2018).

2.3. Training
Unless stated otherwise, all models are trained with a five-fold
cross-validation. The network is trained with a combination of
dice (5) and cross-entropy (6) loss function (4):

Ltotal = Ldice + LcrossEntropy, (4)

Ldice = −
2

|C|

∑

c∈C

∑
i∈I u

c
i v

k
i∑

i∈I u
c
i +

∑
i∈I v

c
i

, (5)
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LcrossEntropy = −
∑

c∈C

∑

i∈I

(vci log(u
k
i )), (6)

where u is the softmax output of the network and v is a one
hot encoding of the ground truth segmentation map2. Both u
and v have shape I × C with i ∈ I being the number of pixels
in the training patch/batch and c ∈ C being the classes. The
cross-entropy loss speeds up the learning in the beginning of the
training, while the dice loss function helps to deal with the label
unbalance which is typical for medical images data.

The dice loss is computed for each class and each sample in
the batch and averaged over the batch and over all classes. We use
the Adam optimizer with an initial learning rate 3× 10−5 and l2
weight decay 3×10−5 for all experiments. An epoch is defined as
the iteration over all training images. Whenever the exponential
moving average of the training loss does not improve within the
last 30 epochs, the learning rate is decreased by a factor of 0.2.
We train till the learning rate drops below 10−6 or 1, 000 epochs
are exceeded.

Gradient updates are computed by standard backpropagation
using a small batch size of 2. Initial weights values are extracted
from a normal distribution (He et al., 2015). Gating parameters
are initialized such that the attention gates let pass all feature
vectors at all spatial locations.

2.3.1. Data Augmentation and Patch Sampling
Training of the deep convolutional neural networks from
limited training data suffers from overfitting. To minimize
this problem, we apply a large variety of data augmentation
techniques: random rotations, random scaling, random elastic
deformations, gamma correction augmentation, and mirroring.
All the augmentation techniques are applied on the fly during
training. Data augmentation is realized with a framework
which is publicly available at: https://github.com/MIC-DKFZ/
batchgenerators.

The patches are generated randomly on the fly during the
training, but we force thatminimally one of the samples in a batch
contains at least one foreground class to enhance the stability of
the network training.

2.4. Inference
According to the training, inference of the final segmentation
mask is also made patch-wise. The output accuracy is known to
decrease toward the borders of the predicted image. Therefore,
we overlap the patches by half the size of the patch and also
weigh voxels close to the center higher than those close to the
border, when aggregating predictions across patches. The weights
are generated, so the center position in a patch is equal to one,
and the boundary pixels are set to zero, in between the values are
extracted from a Gaussian distribution with sigma equal to one-
eight of patch size. To further increase the stability, we use test
time data augmentation by mirroring all patches along all axes.

2A one-hot encoding was created from the original ground true segmentation map

in a way, that each image channel contains only one class present in segmentation

map, this way all the classes are represented by value one just in different image

channels. For example, if we have ground true segmentation map of size (1 ×

imSize1×imSize2×imSize3) with three labels: 0, 1, 2. The one-hot encoding would

have the size (3× imSize1× imSize2× imSize3).

TABLE 1 | An overview of image shapes, training setups, and network topologies

for each task.

High resolution Low resolution

Kidney Num. images training 168 168

Num. images validation 42 42

Median patient shape 511× 511× 136 247× 247× 127

Input patch size 160× 160× 48 128× 128× 80

Num. downsampling per axis 5, 5, 3 5, 5, 4

Batch size 2 2

Liver Num. images training 105 105

Num. images validation 26 26

Median patient shape 482× 512× 512 189× 201× 201

Input patch size 96× 128× 128 96× 128× 128

Num. downsampling per axis 5, 5, 5 5, 5, 5

Batch size 2 2

Pancreas Num. images training 224 224

Num. images validation 57 57

Median patient shape 96× 512× 512 88× 299× 299

Input patch size 40× 192× 160 64× 128× 128

Num. downsampling per axis 3, 5, 5 3, 5, 5

Batch size 2 2

3. EXPERIMENTAL EVALUATION AND
DISCUSSION

In order to show the validity of the proposed segmentation
method, we evaluate the methodology on challenging abdominal
CT segmentation problem. We appraise the detection of
cancerous tissue inside three different organs: pancreas, liver,
and kidney.

3.1. CT Scan Datasets
The experiments are evaluated on three different CT abdominal
datasets featuring organ and tumor segmentation classes: kidney,
liver, and pancreas. Each dataset brings slightly different
challenges for the model. More information about each task
dataset, training setups, and concrete network topologies are as
follows (see also Table 1).

3.1.1. Kidney
The dataset features a collection of multi-phase CT imaging,
segmentation masks, and comprehensive clinical outcomes for
300 patients who underwent nephrectomy for kidney tumors
at the University of Minnesota Medical Center between 2010
and 2018 (Heller et al., 2019). Seventy percent (210) of these
patients have been selected at random as the training set for
the 2019MICCAI KiTS Kidney Tumor Segmentation Challenge3

and have been released publicly.
We perform five-fold cross-validation during training: 42

images are used for validation and 168 images for training. The
mean patient shape after the resampling is 511×511×136 pixels

3kits19.grand-challenge.org
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FIGURE 3 | Examples of attention maps (AM) obtained from attention gates in the three topmost levels of the low-resolution VNet (from left to right: full spatial

resolution, downsampling of two and four).

in case of high-resolution and 247 × 247 × 127 pixels in low-
resolution. According to the median shapes, we use 5, 5, and 3
downsampling for each respective image axis in high-resolution
and 5, 5, 4 downsamplings in low-resolution. The patch size in
case of high-resolution is 160×160×48 pixels and 128×128×80
pixels for low-resolution.

3.1.2. Liver
The dataset features a collection of 201 portal-venous-phase CT
scans and segmentation masks for liver and tumor captured at
IRCADHôpitaux Universitaires. Sixty-five percent (131) of these
images have been released publicly as the training set for the
2018 MICCAI Medical Decathlon Challenge4 (Simpson et al.,
2019). This dataset contains a big label unbalance between organ
(liver) and tumor. The inclusion of the dice term in the loss
function (section 2.3) helps to mitigate the negative effects of
such unbalance.

We perform five-fold cross-validation during training: 26
images are used for validation and 105 images for training. The
mean patient shape after the resampling is 482 × 512 × 512
pixels in case of high-resolution and 189 × 201 × 201 pixels in

4medicaldecathlon.com

low-resolution. According to the median shapes, we downsample
five times each respective image axis in both high-resolution and
low-resolution. The patch size in case of high-resolution was
96×128×128 pixels and 96×128×128 pixels for low-resolution.

3.1.3. Pancreas
The dataset features a collection of 421 portal-venous-phase
CT imaging and segmentation masks for pancreas and tumor
captured at Memorial Sloan Kettering Cancer Center. Seventy
percent (282) of these images have been released publicly
as the training set for the 2018 MICCAI Medical Decathlon
Challenge4 (Simpson et al., 2019). This dataset is also class
unbalanced, the background being the most prominent class,
followed by the organ (pancreas) and the tumor as the least
present class. Appearance is quite heterogeneous for pancreas
and tumor. As before, the inclusion of the dice term in the loss
function helps to mitigate the negative effects of such unbalance.

We perform five-fold cross-validation during training: 26
images are used for validation and 105 images for training. The
mean patient shape after the resampling is 96× 512× 512 pixels
in the case of high-resolution and 88 × 299 × 299 pixels in low-
resolution. According to the median shapes, we do 3, 5, and 5
downsampling for each respective image axis in high-resolution
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and 3, 5, 5 downsamplings in low-resolution. The patch size in
case of high-resolution is 40×192×160 pixels and 64×128×128
pixels for low-resolution.

3.2. Visualization of the Activation Maps
The network design allows us to visualize meaningful activations
maps from the attention gates as well as from the deep
supervision layers. The visualizations enable an exciting insight
into the functionality of the convolutional network. The
understanding of how the model represents the input image
at the intermediate layers can help to gain more insight into
improving the model and uncover at least part of the black-box
behavior for which the neural networks are also known.

3.2.1. Visualization of the Attentional Maps
The low-resolution VNet was chosen to study the attention
coefficients generated at different levels of a network trained
on the Medical Decathlon Pancreas dataset. Figure 3 shows the
attention coefficients obtained from three top network levels
(working with full spatial resolution and downsampled two and
four times). The attention gates provide a rough outline of

the organs in top two network levels, but not in the lower
spatial resolution cases. For this reason, in our experiments,
we decided to implement the AG only at two topmost
levels and save the computation memory to handle larger
image patches.

The attention coefficients obtained from two randomly chosen

validation images from each studied dataset are visualized in
Figure 4. All visualized attentionmaps correlate with the organ of

interest, which indicates that the attentionmechanism is focusing
on the areas of interest, i.e., it emphasizes the salient image
regions and significant features relevant for organ segmentation.
In the case of liver segmentation, the attention map correlates
accurately with the organ on the second level while in the
top-level, the attention seems to focus on the organ borders.
In kidney and pancreas datasets, we can observe exactly the
opposite behavior. The attention map from top-level covers
the organ, and the second level attention map focuses on the
borders and the close organ surroundings. This difference is
possibly associated with the different target sizes as the liver is
taking a substantially larger part of the image than the kidney
or pancreas.

FIGURE 4 | Visualization of attention maps (AM) in low-resolution for VNet and two randomly chosen patient images from the validation set of each studied dataset.

For each patient, the left picture shows the attention from the topmost layer (with the highest spatial resolution), and the right picture shows the attention from the

second topmost layer.
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FIGURE 5 | The secondary segmentation maps (SSM) obtained from deep supervision layers of low-resolution VNet for one randomly chosen patient image from the

validation set of the Medical Decathlon Pancreas dataset.

3.2.2. Visualization of the Deep Supervision

Segmentation Maps
The low-resolution VNet was also chosen to study the secondary
segmentation maps created at lower levels of the network trained
on the Medical Decathlon Pancreas dataset. The segmentation
maps are shown in Figure 5. Although the primary aim of
the secondary segmentation maps is not the refinement of the
final segmentation created at the last layer of the model, we
could see the correlation between the occurrence of each label
and the activation in the segmentation maps. The topmost
segmentation map copies the final output. The second and third
levels of activation are noisier, as it would be expected. We could

see higher activations around the pancreas in the tumor class
channels and also higher activations around the borders of the
organ in the background label channel.

The more in-depth segmentation maps in the organ label
channel are more challenging to interpret. The second level
map seems to be inverted, including the pancreas into a darker
part of the input image. On the other hand, the third level
map highlights all the organs present in the image. After
a summation of these two maps, we achieve the desired
highlight of the pancreas. Overall, we could say that all the
secondary segmentation maps have a relevant impact on the
final result.
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3.3. Evaluation Metrics
We use the following metrics score to evaluate the final
segmentation in the subsequent sections: precision, recall, and
dice. Each of the metrics is briefly explained below.

In the context of segmentation, precision, and recall compare
the results of the classifier under test with the ground-true
segmentation by a combination the true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The
terms positive and negative refer to the classifier’s prediction,
and the terms true and false refer to whether that prediction
corresponds to the ground-truth labels. To summarize, Precision
P (7) and Recall R (8) are determined as follows:

P =
TP

TP + FP
∗ 100, (7)

R =
TP

TP + FN
∗ 100. (8)

This way both the precision and recall are normalized in the
range 〈0, 100〉, higher values indicating better performance.

When applied to a binary segmentation task, the dice
score evaluates the degree of overlap between the predicted
segmentation mask and the reference segmentation mask. Given
binary masks, U and V, the Dice score D (9) is defined as:

D =
2 ∗ |U ∪ V|

|U| + |V|
∗ 100. (9)

In this variant, the dice score lays in the range 〈0, 100〉, higher
values indicating better performance.

3.4. Evaluating Four Architectures and
Three Datasets
Next, we present a comprehensive study of the organ and tumor
segmentation tasks on the three different abdominal CT datasets.
For each dataset, four model variants were trained to show the
impact of the different model architecture choices. The UNet
utilizes max-pooling and the upsampling layers, while VNet is
fully convolutional. Each architecture variant was trained on two
different image resolutions: full-resolution and low-resolution.
For more details about the model variants, please refer to
section 2.2. Moreover, we provide assembly results from the
respective full and low-resolution models. The soft-max output
maps from the full and the low-resolution model variant were
averaged and only then the final segmentation map was created.
Tables 2–4 summarize the results from five-fold cross-validation
for all model variants for the Medical Decathlon Challenge
(MDC) Liver dataset, the Medical Decathlon Challenge Pancreas
dataset and the Kidney Tumor Segmentation Challenge (KiTS)
dataset, respectively.

Due to the prominent inter-variability of position, size,
and morphology structure, the tumor labels segmentation was
less successful than the organ segmentation. We can see
lower score values and also more significant inter-variability
between the folds. The variability is especially high in the
Liver-tumor label, where the lesions are usually divided into

many small occurrences, and missing some of them means
a significant change in the segmentation score results. The
model could benefit from some postprocessing, which may
help to sort out some of the lesions outside the liver organ,
as suggested in Bilic et al. (2019). The overall scores are
the lowest for the MDC Pancreas dataset. The variability in
shape and size of the pancreas makes its segmentation a
challenging task. Nevertheless, the attention mechanism helps
the network to find the pancreas, thus obtaining a reasonably
good performance.

Generally, the performance of the UNet and the fully
convolutional VNet is comparable, but we could observe
slightly better scores achieved by VNet in the MDC Liver
dataset and KiTS dataset while the trend is opposed in
the MDC Pancreas dataset, where the UNet provided
better results than the VNet. Still, when it comes to the
assembly results, the VNet benefits from its trainable
parameters and achieves better results than UNet variant in all
three datasets.

3.5. Performance Comparison
The proposed network architecture was benchmarked against the
winning submission of theMedical Decathlon Challenge (MDC),
namely nnUNet (Isensee et al., 2018) on two tasks: Task03-
Liver and Task07-Pancreas. Table 5 shows the mean dice scores
from five-fold cross-validation for the low and the full-resolution
variants of models as well as the best model presented in either
work. The winning results from nnUNet consist of the combined
prediction from three different models (2D UNet, 3D UNet, and
3DUNet cascade) assembled together. Therefore, we have chosen
to compare also the results from 3D UNet model, whose model
architecture is close to our network to highlight the difference
gained by the network architecture changes, namely attention
gates and deep supervision.

The full- and the low-resolution models with attention
gates (VNet-AG-DSV) achieved higher dice scores for both
labels on the pancreas dataset, of particular interest is that
the tumor dice scores were substantially increased, by three
and seven points in low and full-resolution, respectively. In
the case of the liver dataset, we could see a significant
improvement in the low-resolution case. Attention gates
improved the tumor dice score by seven points while the liver
segmentation precision was comparable. The decrease in dice
score happened only on the tumor class in the full-resolution
case. Finally, if we compare the best models presented in both
papers, our model with attention gates and deep supervision
(VNet-AG-DSV) wins on both datasets, adding nearly three
score points on the liver-tumor class and two points in
pancreas label.

The performance of the model with and without the attention
gates is quantitatively compared in Table 6. We could see that
both the number of parameters and the training and evaluation
time increased just slightly, while the performance improvement
was considerable. We should mention that the decrease in the
number of parameters in the work of Isensee et al. (2018) was
compensated by training the network with larger patch size:
128× 128× 128 pixels versus 96× 128× 128 pixels for the Liver
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TABLE 2 | Kidney Tumor Challenge 2019.

Architecture Kidney label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low Res. 94.96 ± 0.02 96.22 ± 0.08 95.50 ± 0.01 81.51 ± 2.30 82.62 ± 3.85 79.27 ± 0.30

Full res. 95.55 ± 0.75 97.08 ± 1.21 96.21 ± 0.62 78.83 ± 5.21 81.44 ± 4.63 76.70 ± 2.46

Assembly 96.22 ± 1.32 97.11 ± 1.87 96.25 ± 1.12 83.88 ± 3.01 81.50 ± 6.23 78.68 ± 5.93

VNet Low res. 94.79 ± 0.78 95.07 ± 1.42 94.63 ± 0.88 77.85 ± 3.43 78.51 ± 2.79 74.12 ± 2.66

Full res. 96.01 ± 0.71 96.15 ± 1.19 95.93 ± 0.54 78.77 ± 3.60 79.72 ± 2.57 75.43 ± 1.59

Assembly 96.54 ± 1.06 96.63 ± 1.35 96.43 ± 1.06 82.71 ± 2.80 83.39 ± 8.21 79.94 ± 5.33

Metrics scores from five-fold cross validation.

TABLE 3 | Medical Decathlon Challenge 2018—Task03-Liver.

Architecture Liver label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low res. 95.01 ± 0.92 95.52 ± 1.38 94.91 ± 1.57 63.65 ± 4.92 58.13 ± 7.66 53.27 ± 4.57

Full res. 95.39 ± 1.03 96.28 ± 1.09 95.80 ± 1.16 58.24 ± 7.23 76.39 ± 9.51 58.87 ± 3.01

Assembly 95.95 ± 0.70 96.66 ± 1.68 96.28 ± 1.01 63.74 ± 9.51 72.86 ± 10.1 60.29 ± 3.85

VNet Low res. 94.96 ± 0.87 95.19 ± 1.75 94.54 ± 1.97 65.17 ± 5.69 59.13 ± 11.5 54.72 ± 6.11

Full res. 94.39 ± 1.23 95.59 ± 1.03 94.86 ± 1.25 61.12 ± 8.33 70.34 ± 9.36 57.74 ± 2.20

Assembly 95.57 ± 0.65 95.80 ± 1.36 95.74 ± 0.89 73.42 ± 5.76 67.41 ± 13.0 64.70 ± 3.08

Metrics scores from five-fold cross validation.

TABLE 4 | Medical Decathlon Challenge 2018—Task07-Pancreas.

Architecture Pancreas label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low res. 80.39 ± 1.83 83.70 ± 2.02 80.96 ± 2.33 62.18 ± 3.35 58.12 ± 6.12 54.66 ± 4.54

Full res. 80.88 ± 1.66 83.77 ± 0.59 81.15 ± 0.43 60.86 ± 1.41 54.36 ± 3.76 51.66 ± 4.70

Assembly 81.21 ± 0.62 84.51 ± 1.87 81.81 ± 0.98 62.98 ± 3.74 55.84 ± 1.42 52.68 ± 1.89

VNet Low res. 79.36 ± 2.14 82.24 ± 1.71 79.62 ± 1.22 60.53 ± 2.72 55.19 ± 2.85 52.56 ± 2.89

Full res. 79.92 ± 1.05 82.73 ± 1.37 80.09 ± 0.95 64.46 ± 5.23 51.30 ± 3.56 50.14 ± 4.14

Assembly 80.61 ± 0.37 84.10 ± 1.45 81.22 ± 0.64 64.62 ± 3.29 54.39 ± 1.26 52.99 ± 2.05

Metrics scores from five-fold cross validation.

dataset and 96 × 160 × 128 pixels versus 64 × 128 × 128 pixels
for the Pancreas dataset.

3.6. Comparison to the State-of-the-Art
The proposed architecture was evaluated on three publicly
available datasets: Task03-Liver, Task07-Pancreas from Medical
Decathlon Challenge and the Kidney Tumor Segmentation 2019
Challenge dataset to compare its performance with state-of-the-
art methods. Next three subsections summarize the results for
each dataset.

3.6.1. Kidney
Our VNet with attention gates and deep supervision (VNet-AG-
DSV) for the kidney-tumor task (Table 7) participated in the
Kidney Tumor Segmentation Challenge of 2019, achieving a dice
score 96.63 and 79.29 for kidney and tumor label, respectively,
similar to our five-fold cross-validation values of 96.43 ± 1.06

and 79.94 ± 5.33 for kidney and renal tumor, respectively. The
results show the stable transfer of values from validation to test
set, which supports the stability of the model results. Table 7
shows the test set results for three wining submissions compared
to our model. The winning solution by Isensee and Maier-Hein
(2019) uses residual 3DUNet. The major difference from our
solution (apart from architectural model changes) is in the loss
function, which was accommodated to fit the challenge scoring
system. The authors also excluded some cases from the training
set (this was allowed by organizers). Second (Hou et al., 2019)
and third (Mu et al., 2019) submission in KiTS challenge use
some variant of a multi-step solution, where the approximate
position of the kidneys is determined in the first step and only
then is produced the final precise segmentation map. Please note
that we performed nor manual tweaking of the training set nor
any accommodation to the challenge. We can then conclude that
our VNet-AG-DSV showed remarkable performance with the
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TABLE 5 | Comparison of the proposed VNet-AG-DSV to the state-of-the-art

network with similar parameters presented by Isensee et al. (2018).

MDC task03-liver MDC task07-pancreas

Model Liver Tumor Liver Tumor

label label label label

Isensee et al. (2018)—Low res. 94.69 47.01 79.45 49.65

Isensee et al. (2018)—Full res. 94.11 61.74 77.69 42.69

Isensee et al. (2018)—Best

model

95.43 61.82 79.30 52.12

VNet-AG-DSV—Low res. 94.54 54.72 79.58 52.43

VNet-AG-DSV—Full res. 95.95 57.65 80.09 50.14

VNet-AG-DSV—Best model 95.74 64.70 81.22 52.99

All the models were trained on the same dataset, released by Medical Decathlon

Challenge (MDC) and validated in five-fold cross-validation. Higher score from the

comparison of the two models is highlighted in bold.

TABLE 6 | Performance comparison.

UNet UNet-AG-DSV VNet VNet-AG-DSV

Num. parameters [M] 26.2453 26.2917 29.6873 29.7383

Train iteration* [ms] 224.8231 260.6527 297.2699 338.3336

Eval iteration* [ms] 189.7215 217.5776 268.6558 299.3836

*Measured as mean from 100 runs on GeForce GTX 1080 Ti.

TABLE 7 | Test set results from the Kidney Tumor Challenge 2019 leaderboard.

Team Composite dice Kidney dice Tumor dice

Isensee and Maier-Hein (2019) 91.23 97.37 85.09

Hou et al. (2019) 90.64 96.74 84.54

Mu et al. (2019) 90.25 97.29 83.21

VNet-AG-DSV 87.96 96.63 79.29

same architecture that was used for the other two previous tasks,
namely detecting two other organs (pancreas and liver) along
with their tumors (of a different structure to the kidney).

3.6.2. Liver
The liver-tumor dataset was obtained from the Medical
Decathlon Challenge (MDC) happening at the MICCAI
conference in 2018. We analyze the results from various research
papers dealing with liver and liver-tumor segmentation. The Bilic
et al. (2019) in work Liver Tumor Segmentation Benchmark
(LiTS) presents a comparative study of two challenges dealing
with liver and liver-tumor segmentation. Authors note that
not a single algorithm performed best for liver and tumors
simultaneously. The winner of liver segmentation, Tian et al.
achieves the dice score 96.30 and 65.70 for liver and tumor
class, respectively. The winner of the lesion segmentation part,
Yuan et al. gained the dice score of 96.10 and 70.20 for the liver
and tumor classes, respectively. All winning methods in LiTS
benchmark utilized some post-processing steps, most commonly

TABLE 8 | Comprarison of the state-of-the-art methods for liver and liver-tumor

segmentation from CT scans.

Team Composite Dice Liver Dice Tumor Dice

Bilic et al. (2019) 83.15 96.10 70.20

Bilic et al. (2019) 81.00 96.30 65.70

Isensee et al. (2018) 78.63 95.43 61.82

VNet-AG-DSV 80.56 96.37 64.70

*The models were trained and tested on different dataset.

TABLE 9 | Comprarison of the state-of-the-art methods for pancreas and

pancreas-tumor segmentation from CT scans.

Team Composite Dice Liver Dice Tumor Dice

Roth et al. (2018)* - 81.27 -

Oktay et al. (2018)* - 84.00 -

Isensee et al. (2018) 65.71 79.30 52.12

VNet-AG-DSV 67.11 81.22 52.99

*The models were trained and tested on different dataset.

the connected component labeling but also other methods more
specific for the concrete task of liver lesion detection. As shown
in Table 8, our VNet-AG-DSV achieved the dice scores 96.37 and
64.70 for liver and tumor class, respectively. Our method, being
fully automatic and not using hand-tuned post-processing, not
only provides comparable results, it can also be easily transferred
and used on different organ segmentations task as shown next.

3.6.3. Pancreas
In comparison to other abdominal organs, the pancreas
segmentation is a challenging task, as shown by the lower dice
scores achieved in the literature. Roth et al. (2018) introduces
an application of holistically-nested convolutional networks
(HNNs) and achieves the dice score 81.27 ± 6.27. Oktay et al.
(2018) introduces the attention gates for pancreas segmentation
but compared to our solution does not include deep supervision
while differing in other architectural choices. Their network
achieves the dice score 84.00 ± 8.70 for the pancreas label. To
best of our knowledge, there exist no papers dealing with both,
pancreas and pancreas-tumor segmentation, except the ones
submitted for the Medical Decathlon Challenge. The best dice
score for the pancreas, and the pancreas-tumor segmentation,
achieved in this challenge by Isensee et al. (2018) is 79.30 and
52.12, respectively. As shown in Table 9, the dice scores from
our VNet-AG-DSV are 81.22 and 52.99 for pancreas and tumor
label, respectively. Our method beats the nnUNet by Isensee et al.
(2018) in both labels, and its pancreas segmentation result equals
to the methods dedicated only to pancreas detection.

4. DISCUSSION

Conventional artificial neural networks with fully connected
hidden layers take a very long time to be trained. Due to this,
the convolutional neural network (CNN) was introduced. It
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is specifically designed to work with the images by the use
of convolutional layers and pooling layers before ending with
fully connected layers. Nowadays, convolutional neural network
architectures are the primary choice for most of the computer
vision tasks. CNN takes inspiration in biological processes in
that the connectivity pattern between neurons corresponds to the
organization of the animal visual cortex (Hubel andWiesel, 1968;
Fukushima, 1980; Rodríguez-Sánchez et al., 2015). Similarly, as in
the eye, individual neurons respond to stimuli from a restricted
(bounded by the filter size) region of the visual field. These
restricted receptive fields of different neurons partially overlap,
and together they cover the entire visual field.

Image segmentation is one of the most laborious tasks in
computer vision since it requires the pixel-wise classification of
the input image. Long et al. (2015) presents a cully convolutional
neural network for image segmentation, firstly introducing
the skips between layers to fuse coarse, semantic and local,
appearance information. The work of Ronneberger et al. (2015)
extended the idea of skip connections and applied it favorably
in medical image segmentation. The possibility to examine the
image at different image scales proved to be crucial in successful
image segmentation. Due to a volume characteristic of medical
data, the 3D variant of fully convolutional networks with skip
connections was introduced byMilletari et al. (2016). This type of
architecture is the most used CNN in the field of medical image
segmentation since then, scoring best at most leading challenges
dealing with the medical image segmentation in the last years:
The Liver Tumor Segmentation Challenge in 2017 (Bilic et al.,
2019), the Medical Decathlon Challenge in 2018 (Simpson et al.,
2019), and the Kidney Tumor Segmentation Challenge in 2019
(Heller et al., 2019).

The deep supervision presented by Kayalibay et al. (2017)
takes the idea of skip connections and uses it differently. It is
a design where multiple segmentation maps are generated at
different resolutions levels of the network. The feature maps from
each network level are transposed by 1 × 1 × 1 convolutions to
create secondary segmentation maps. These secondary maps are
not intended for any further refinement of the final segmentation
map. Instead, it tries to correct the earlier layers of the network
and “encourage” them to produce better segmentation results,
thus speeding the convergence at training. The deep supervision
is especially useful in tackling the problem of the vanishing
gradient, which usually occurs during the training of very
deep CNN.

Apart from the skip connections, many researches tried to
incorporate the concept of attention into artificial CNN visual
models (Mnih et al., 2014; Xiao et al., 2015; Xu et al., 2015; Chen
et al., 2016). The presence of attention is one of the unique aspects
of the human visual system (Corbetta and Shulman, 2002), which
helps to selectively process the most relevant part of the incoming
information for the task at hand. (Chen et al., 2016) proposes
an attention model that softly weights the features from different
input scales when predicting the semantic label of a pixel. Oktay
et al. (2018) utilized a similar principle in their attention gates
and applied them in medical image segmentation. Attention is
especially helpful in the case of internal organ segmentation from
abdominal computed tomography (CT) scans because abdominal

organs are characteristically represented by similar intensity
voxels in CT scans. The model greatly benefits from the ability
to discard the activation from insignificant parts of the image
and focus on the organ of interest. Eventually, the human expert
would follow the samemethodology: first, find the rough position
of the organ of interest and only then analyze it in detail, as could
be found in the description of the segmentation maps annotating
process for the KiTS challenge (Heller et al., 2019).

5. CONCLUSIONS

This work presents a comprehensive study of medical image
segmentation via a deep convolutional neural network. We
propose a novel network architecture extended by attention gates
and deep supervision (VNet-AG-DSV) which achieves results
comparable to the state-of-the-art performance on several and
very different medical image datasets. We performed extensive
study which analyze the two most popular convolutional
neural networks in medical images (UNet and VNet) across
three different organ-tumor datasets and two training image
resolutions. Further, to understand how the model represents
the input image at the intermediate layers, the activation
maps from attention gates and secondary segmentation maps
from deep supervision layers are visualized. The visualizations
show an excellent correlation between the activation present
and the label of interest. The performance comparison shows
that the proposed network extension introduces a slight
computation burden, which is outweighed by considerable
improvement in performance. Finally, our architecture is
fully automatic and has shown its validity at detecting three
different organs and tumors, i.e., more general than the state
of the art, while providing similar performance to more
dedicated methods.
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