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Visual reasoning is a critical stage in visual question answering (Antol et al., 2015),

but most of the state-of-the-art methods categorized the VQA tasks as a classification

problem without taking the reasoning process into account. Various approaches are

proposed to solve this multi-modal task that requires both abilities of comprehension and

reasoning. The recently proposed neural module network (Andreas et al., 2016b), which

assembles the model with a few primitive modules, is capable of performing a spatial

or arithmetical reasoning over the input image to answer the questions. Nevertheless,

its performance is not satisfying especially in the real-world datasets (e.g., VQA 1.0&

2.0) due to its limited primitive modules and suboptimal layout. To address these issues,

we propose a novel method of Dual-Path Neural Module Network which can implement

complex visual reasoning by forming a more flexible layout regularized by the pairwise

loss. Specifically, we first use the region proposal network to generate both visual and

spatial information, which helps it perform spatial reasoning. Then, we advocate to

process a pair of different images along with the same question simultaneously, named

as a “complementary pair,” which encourages the model to learn a more reasonable

layout by suppressing the overfitting to the language priors. The model can jointly learn

the parameters in the primitive module and the layout generation policy, which is further

boosted by introducing a novel pairwise reward. Extensive experiments show that our

approach significantly improves the performance of neural module networks especially

on the real-world datasets.

Keywords: machine learning, visual reasoning, visual question answering, neural module networks,

complementary pairs

1. INTRODUCTION

Visual Reasoning tasks require both abilities of scene understanding and semantic reasoning of AI
models to perform well. Among various visual reasoning tasks, visual question answering (VQA) is
such an excellent testbed to evaluate the reasoning capability of an AI model so that it attracts
more and more attention from the whole AI community for its complexity and practicability.
The VQA task targets to answer language questions based on given images, so that it binds both
natural language processing and visual scene understanding. Consequently, cross-modal learning
ability is of vital importance for AI models to perform well on VQA tasks, where precise answers
cannot be produced without a combined comprehension of both visual and semantic inputs. Some
challenging questions even require human-level reasoning intelligence for answer prediction. For
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instance, in order to correctly answer the question “What is
sitting beside the chair?” as in Figure 1, a model has to not only
detect chair in the input image, but also seek for objects that lie
beside the detected chair. Such capability to fully comprehend
the image and question and subsequently perform complicated
reasoning process is key to answer questions precisely.

Currently, VQA models apply deep neural networks to
generate a combined feature representation of both visual and
textual inputs. The VQA task is thereafter formalized as a
classification problem where an optimized classifier is able to
select for each combined feature representation a best answer
from a set of candidates. Those data-drivenmodels have achieved
reasonable performances on various VQA datasets. However,
as is known, VQA datasets are biased for the unavoidable
correlation between questions and answers (Goyal et al., 2017),
so that data-driven methods may easily overfit to language
priors, and encourages VQA models to ignore input images
and predict answers merely based on input questions. This
flaw severely damages the learning quality of multi-modal
joint embedding, which is supposed to be essential for VQA
models. The problem of data bias is widely discovered and
studied, as in Hudson and Manning (2019), Agrawal et al.
(2016), Kafle and Kanan (2017), and Agrawal et al. (2018).
To address this problem, the VQA v2.0 dataset is designed to
contain complementary pairs that contain a same question and
two similar images that have different answers to the assigned
question. As a consequence, any VQA model that digs deep into
the language bias will naturally fail on at least 50% samples in
VQA v2.0 as it can’t distinguish the two paired samples from
each other.

FIGURE 1 | A brief illustration of our Dual-Path Neural Module Network. We input a pair of complementary images to the network along with the same question

simultaneously. We propose to generate more flexible layout by regularizing the loss function with the pairwise reward. Our approach can therefore conduct more

complex visual reasoning by composing the linguistic structure along with the visual and spatial information provided by the attached region proposal network (RPN).

Most state-of-the-art VQA methods are formulated as answer
classification problem based on the joint embedding of textual
and visual features. There is little relationship modeling between
the question modality and image modality, so that it looks more
like a black box without interpretable process. Some recent works
(Fukui et al., 2016; Lu et al., 2016; Noh et al., 2016; Xu and Saenko,
2016; Ben-Younes et al., 2017; Kazemi and Elqursh, 2017; Yu
et al., 2017; Anderson et al., 2018; Kim et al., 2018; Patro and
Namboodiri, 2018) introduce the attentionmechanism into VQA
models to attend questions to salient regions of input images,
so that the joint embedding of attended regions and questions
carries more accurate information for question answering. With
model ensemble, attention based VQA models can achieve over
72% prediction accuracy (Jiang et al., 2018) on the test set of
the VQA v2.0 dataset (Goyal et al., 2017). Performance keeps
rising yet an important problem remains unsolved. The lack of
reasoning capability prevents human-level understanding of the
decision process, and restricts the applications which require
reasoning process. Besides, attention-based methods form a joint
feature representation by simply fusing visual and semantic
features, without considering their different roles in this multi-
modal task.

Recently, Neural Module Networks (Andreas et al., 2016b; Hu
et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018)
address the incapability of visual reasoning for traditional VQA
models, and leap ahead by automatically assembling a collection
of composable neural modules into an end-to-end learnable
framework. To achieve this, a network layout is generated for
each input question that represents the inner reasoning process
from input to output. Primal neural modules are subsequently
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composed together according to the layout, forming a neural
module network that takes input images as input and produce
answer predictions as output. Neural module networks treat
the two fundamental modes of the VQA task differently, where
visual features provide sufficient information for predicting the
answer, and semantic features define the specific transformation
procedure from input attributes to output answer predictions.
Considering the different roles of different modes of input data
is of vital importance for cross-modal learning tasks that only in
this way can the human understanding of multi-modal data be
added naturally into the AI model. The neural module network
framework provides answer explanations for human users in the
form of the network layout, and achieves reasonable performance
on synthetic VQA datasets like SHAPES (Andreas et al., 2016b)
and CLEVR (Johnson et al., 2017a), while suffers from unsatisfied
performance on large-scale real-world datasets like the VQA
v2.0 dataset.

This imbalanced performance is due to three major reasons.
First, computer rendered images has extremely limited number
of objects compared with real-world photos. Incremental
difficulty in detecting objects naturally adds difficulty in
answering questions. Second, objects in real-world datasets
have more complicated relationships with each other compared
with generated images, where only spatial relationships are
considered. Third, questions in real-world datasets represent
more complicated reasoning process since they are annotated
by human users aiming at challenging intelligence systems,
while questions generated by a rule-based system have limited
variations. Consequently, it’s much harder to comprehend images
in real-world datasets than in computer generated datasets.
Specially, when integrating with attention mechanism, neural
module networks should be further improved for the ability to
generate precise network layouts representing input questions to
achieve better performance.

To address above flaws of neural module networks, this paper
proposes Dual-Path Neural Module Network (DP-NMN), which
applies a novel pairwise learning schema to boost its visual
reasoning capability on real-world datasets. A brief overview
of our model is given in Figure 1. The basic insight is that
complementary pairs in the VQA v2.0 dataset not only balance
the dataset for language priors, but also have the potential to
regularize and guide the training of VQAmodels. To achieve this
goal, we introduce two novel components into the neural module
networks. First, we reformulate the network layout generation
process as a reinforcement learning problem where a policy
network builds up the layout sequence step-by-step and receives
a reward after the network has been assembled according to the
generated layout. We make full use of the complementary pairs
annotation by giving an additional pairwise reward to the policy
network if the generated layout applies well for both images. This
fits human intuition that layouts generated by a robust neural
module network shall represent reasoning processes determined
by input questions well and work on any input image. Second,
we apply a region proposal network (RPN) on the input image to
obtain salient object regions in the image, which carries sufficient
visual and spatial features of detected candidate objects. This
approach makes it possible for primitive modules to take both

visual and spatial features as input, which naturally helps answer
space related questions. We re-implemented the structures of
primitive modules to ensure that the encoded information are
sufficiently adopted to help perform reasoning. With the help
of the region proposal network, our DP-NMN model deals with
the two subtasks of low-level feature extraction and high-level
reasoning separately to seek for better performance while still
being interpretable. Our main contributions are three points:

• We propose a novel Dual-Path Neural Module Network (DP-
NMN) model that processes input images with a region
proposal network and applies a policy network to generate
reasoning layout sequences;

• We present a novel pairwise learning schema that makes full
use of the complementary pairs available or easily getatable in
datasets to further improve performance;

• We demonstrate significant performance improvement for
visual question reasoning on VQA datasets with the
proposed DP-NMN.

2. RELATED WORKS

2.1. Visual Question Answering
Visual question answering requires comprehensive
understanding both input questions and images for answer
prediction. Recent few years have seen many newly formed
datasets including hand-crafted datasets with computer
generated images, like SHAPES (Andreas et al., 2016b), CLEVR
(Johnson et al., 2017a), and large-scale real-world datasets like
VQA (Antol et al., 2015) and VQA v2.0 (Goyal et al., 2017).
Visual reasoning is of vital importance to perform this task well,
for questions are designed to contain complicated reasoning
process. For example, questions in CLEVR tend to query about
relationships between objects, which require VQA models to
comprehend the complex relationships between detected objects.
The visual attention mechanism has been widely applied to
form joint representations of input questions and images, which
are subsequently handled by a classifier to produce answer
predictions. Recent years have seen significant improvement in
terms of performance, by either enhancing the visual attention
module (Xu and Saenko, 2016; Yang et al., 2016; Kazemi and
Elqursh, 2017; Anderson et al., 2018; Patro and Namboodiri,
2018), or improving quality of the joint embedding (Fukui et al.,
2016; Lu et al., 2016; Noh et al., 2016; Ben-Younes et al., 2017; Yu
et al., 2017). With model ensemble, the current state-of-the-art
model has achieved over 72% accuracy (Jiang et al., 2018) on the
VQA v2.0 test set.

However, VQA models based on the visual attention
mechanism are not able to provide a thorough explanation of the
reasoning process from input to output. Consequently, it remains
unclear whether the model truly has the ability to understand
the multi-modal input to make complicated reasoning, or the
model just simply overfits the dataset. The language bias problem
is discovered and discussed in Goyal et al. (2017), which reveals
that data-driven models may easily overfit to the unavoidable
language priors between questions and answers. In contrast,
the neural module network architecture takes a step ahead in
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visual reasoning that the generated network layout for each
input question is by itself a well defined explanation of the
inner reasoning process. But the performance of neural module
networks on real-world VQA datasets is unsatisfied, which
severely damages its practicability.

3. NEURAL MODULE NETWORKS

Neural module networks (NMN) (Andreas et al., 2016b; Hu
et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018;
Vedantam et al., 2019) provide a general idea of composing a
new deep network with neural modules for each given input.
Specifically for the VQA task, a structure layout for neural
modules is generated based on semantic analysis on the input
question, which represents the reasoning process from input
image-question pair to output question answers. Subsequently,
composable modules that each represents a unit step of visual
reasoning are assembled together according to the generated
layout, yielding a neural module network that is able to process
images and predict answers. Those primitive modules have hand-
crafted structures designed by human experts.

Recently, Hu et al. (2017) present the End-to-End Module
Network which seeks for optimal layouts by predicting coarse
functional expressions given input questions which describe
desired network layouts. The layout generation problem is
formulated as a sequence-to-sequence learning problem, and
can be trained end-to-end with gradient backpropagation. This
framework achieved reasonable results on simple VQA datasets
like the SHAPES dataset, but suffered from relatively low
accuracy on large-scale real-world VQA v2.0 dataset. Yet neural
module networks still have demonstrated the advantages in
interpretability of the visual reasoning process. Therefore, it
remains an important direction to boost the performance for
neural module networks and close the performance gap to state-
of-the-art VQA methods.

4. METHODS

In this paper, we propose Dual-Path Neural Module Network
which processes pairwise data samples in parallel, and is trained
with a novel pairwise learning schema. An overview of our
model is provided in section 3.1. The implementation details of
our model are described in section 3.2. Optimization methods
applied for training our model are described in section 3.3. Our
model contains several types of composable primitive modules,
which are introduced in section 3.4.

4.1. Overview
VQA datasets contain triplet samples si = (Q, I,A) where Q
denotes the input question, I denotes the input image and A
denotes the ground truth answer to the question. Like previous
neural module networks, our model first generates a network
layout Lq based on the input question Q, and assembles a
neural module network with primitive modules according to
Lq. Those primitive modules are parameterized by θN . Then the
assembled network is capable of making answer predictions given
input images.

However, VQAmodels that works merely on singular samples
tend to easily overfit to the language priors in the dataset,
focusing on the strong relationship between questions and
images. The VQA v2.0 dataset contains complementary pairs to
address this problem, where two paired samples have a same
question but different images and answers, which can be denoted
as si and sj, where sj = (Q, I′,A′) has the same question Q as si.

In order to minimize the impact of language priors in VQA
datasets and generate comprehensive network layouts, our Dual-
Path Neural Module Network applies a novel pairwise learning
schema that makes full use of complementary pairs. Input to our
model are paired samples si and sj instead of singular samples.
Since the relationship between network layout and answer
prediction is non-differentiable, we apply a policy network to
produce layouts given input questions, which is trained under a
reinforcement learning environment. During training, a reward
R(Lq, θN |s) is given to the policy network if the predicted answers
fits the ground truth answers for each sample s.

Our goal is to find optimal Lq and θN that not only
make most accurate answer predictions, but also produce more
comprehensive layouts. Intuitively, comprehensive network
layouts shall work well on both complementary samples si and
sj, making precise answer predictions for both images. Therefore,
a pairwise reward�(Lq, θN |si, sj) is defined on each pair that gives
the model additional reward if the predictions are correct on
both paired images to encourage robust layouts. During training,
we jointly optimize the task reward for answer accuracy and
the pairwise reward for regularization. Hence the optimization
objective of our model can be formalized as:

(Lq, θN) = argmax
Lq ,θN

(

∑

s=si ,sj

R(Lq, θN |s)+ λ�(Lq, θN |si, sj)
)

, (1)

where network layout Lq and module parameters θN are jointly
optimized to achieve highest reward. The network layout Lq
is determined by two factors: types of primitive modules and
connections between those modules. In practice, Lq is generated
via the layout generator, which is optimized jointly with module
parameters θN using this equation. Suppose that function g
builds a network structure with a sequence l containing type
information of all modules and a matrix 9 that describes
connections between them:

Lq = g(l,9). (2)

Hence given a sequence l of all type information of modules and
matrix 9 denoting the connections between them, a network
layout Lq can be determined by function g. An overview of our
model is shown in Figure 2. Details of the model architecture and
the training method will be discussed in later sections.

4.2. Model Architecture
Our model composes a neural module network and predicts an
answer (Â) out of a set of candidate answers for each given input
pair of image (I) and question (Q):

Â = F(rI; Lq, θN), (3)
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FIGURE 2 | An overview of our model. The input question is fed into the layout generation module which selects one module from all possible primitive modules at

each time step to assemble a neural module network, and the paired input images are fed into the dual-path neural module network which processes them in parallel.

A pairwise reward is calculated for each pair and given to the layout generation module to encourage layouts that work for both images.

where rI are region proposals that consist of visual features and
corresponding bounding boxes of all candidate objects detected
in the input image I. In this paper, we detect top 36 salient
regions in I as candidate objects, each corresponds with a 2, 048
dimension visual feature vector and a 6 dimension spatial feature
vector. Hence dimension for rI is (36 ∗ 2048+ 6). Textual feature
of input question is also extracted, denoted as fq which is a 2, 048
dimension vector:

rI = RPN(I), and fq = RNN(Q), (4)

where RPN denotes the pre-trained region proposal network that
extracts visual and spatial features of salient regions and RNN
denotes a recurrent neural network (Bahdanau et al., 2014) that
extracts textual features from the input question. The probability
of any candidate answer given input question and image is
divided into two parts. Firstly, a network layout Lq is generated
based on the input question. Then composable primitivemodules
can be assembled together to form a neural module network,
which is able to output answer predictions given input images.

Recall that in order to determine a layout Lq, the type
information of all modules l and the connections between those
modules 9 shall be settled. The layout sequence l = l1, l2, . . . , lT
is generated based on textual feature of the input question, fq.
For each t, the corresponding element lt in the layout sequence
represents a module type among all types of primitive modules.
Ourmodel generates the layout sequence l step-by-step according
to a policy network πθ , where θ denotes its parameters. At each
time step t, the policy network produces a probability distribution
πθ (lt

∣

∣l1, . . . , lt−1, fq) for all possible types of neural modules based
on textual feature of the input question and previous generated
modules. The most possible module is selected to be the t-th
neural module lt to form the whole layout sequence l, where each
lt is generated by the policy network:

lt = argmax
lt

πθ (lt
∣

∣l1, . . . , lt−1, fq), t = 1, 2, . . . ,T. (5)

This makes it possible to apply beam search during both training
and testing to form an optimal l with highest probability. As in
Hu et al. (2017), the layout sequence is mapped into a network
layout with possible tree structure using Reverse Polish Notation,
which is equivalent to 9 . Hence after the layout sequence l is
confirmed, we are able to apply Equation (2) to form a network
layout Lq and subsequently assemble neural modules according
to Lq. Each neural module is a function that takes 0, 1, or 2
attention maps and optional visual and textual feature as input,
and outputs either an attention map or a probability distribution
for all candidate answers. It’s safe to assume that the first T − 1
neural modules work together to output an attention map a,
which is taken as input by the last module to form the final answer
prediction. The overall function of the first T − 1 modules may
be summed up as one function m1...T−1, and the last module as
mT . Then the answer prediction process can be formalized as:

a = m1...T−1(rI; θN), (6)

F(rI; Lq, θN) = softmax(mT(a ◦ rI; θN)), (7)

where θN denotes parameters of primitive modules, and ◦

denotes element-wise multiplication between attention weights
and visual features. In conclusion, upon each input pair of
question and image, our model first assembles a neural module
network step-by-step conditioned on the question. Subsequently,
the assembled neural module network is able to take images as
input and predict answer probabilities.

4.3. Model Optimization
The prediction accuracy of neural module networks is directly
related to two separated parts of model: layout generation and
neural modules. Here we apply a E-M method to train the two
parts alternately. That is, we first initialize layouts with a rule-
based system as in Hu et al. (2017), and train the neural modules
with simple backpropagation, resulting in optimal parameters θN .
Then we fix the neural modules and train the layout generation
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module with policy gradient, leading to an optimal layout Lq.
This process can be repeated until we reach the joint optimum
of θN and Lq.

During training, we feed pairwise inputs si = (Q, I,A) and
sj = (Q, I′,A′) together into the Dual-Path Neural Module
Network, which processes the two data samples in parallel. The
network layout Lq has a non-differential relationship with the
prediction accuracy, therefore the policy network πθ cannot be
trained directly with back propagation. However, when the whole
layout is generated, which means the predicted answers Â and Â′

become accessible by feeding the input images I and I′ into the
assembled network, we are able to compare the predicted answers
with ground truth answers A and A′. We can define a reward
function representing the result of this comparison. Optimizing
this reward is thus beneficial to improving prediction accuracy.
The reward function on pairwise data samples can be defined as:

R(Lq, θN |si) = 1[Â = A], (8)

R(Lq, θN |sj) = 1[Â′ = A′], (9)

where Â and Â′ are predicted answers for I and I′

correspondingly. Note that here both answer predictions Â
and Â′ are generated by the neural module network that is
assembled according to layout Lq. 1[Â = A] is the indicator

function that equals 1 if and only if the condition Â = A is
satisfied. That is,

1[Â = A] =

{

1, Â = A,

0, Â 6= A.
(10)

And same equation stands for 1[Â′ = A′]. Those indicator
functions compare predicted answers with ground truth answers,
ensuring that optimizing this task reward is beneficial to the
prediction accuracy of the model. But as we have claimed,
models trained with merely task reward may easily overfit to
language priors in the dataset. For neural module networks, this
means that layouts generated for input questions may be under-
qualified to process visual reasoning on input images, but instead
fit the correlations between questions and answers. To address
this problem, our Dual-Path Neural Module Network applies a
novel pairwise reward �(Lq, θN |si, sj) for pairwise input samples
as additional regularization during the training process. The
pairwise reward is designed to encourage comprehensive layouts
that work well on both paired inputs:

�(Lq, θN |si, sj) = 1[Â = A ∧ Â′ = A′], (11)

where si and sj are paired inputs that share a same question.
It’s intuitive that this pairwise reward is given to the model
only when it’s capable of answering the question Q correctly
on both complementary images I and I′. Therefore, optimizing
this pairwise reward efficiently avoids overfitting to language
priors, for a VQA model must be able to distinguish the two
complementary samples si and sj to get this pairwise reward,
which is nearly impossible for overfitted models that predict

answers based on questions only. During training, we combine
task rewards and the pairwise reward to form a total reward:

R(Lq, θN) =
∑

s=si ,sj

R(Lq, θN |s)+ λ�(Lq, θN |si, sj)

= 1[Â = A]+ 1[Â′ = A′]+ λ1[Â = A ∧ Â′ = A′],

(12)

where λ serves as a weight factor, which is set to 0.1 in this
paper. Optimizing this total reward not only improves prediction
accuracies on singular data samples, but also avoids overfitting
to language priors. Note that at this step, θN is set to be fixed,
so that it can be omitted from the reward function. Therefore,
we optimize the total expected reward over θ to seek for optimal
parameters of the policy network:

θ∗ = argmax
θ

ELq [R(Lq))]. (13)

It’s clear that optimal layout Lq is equivalent to optimal θ .
However, there is no close-form solution for this optimization
problem since the reward is non-differentiable with regard to
the layout Lq. To simplify the optimization, we use Monte-
Carlo sampling to calculate an unbiased estimation of the
expected reward:

ELq [R(Lq)] ≈
1

N

N
∑

n=1

R(L(i)q ), (14)

where N denotes the number of samples drawn, and L
(i)
q denotes

the i-th sampled layout. Each sampling process requires the
policy networkπθ to produce all module types to form a complete

layout L
(i)
q . Then the gradients for training can be computed using

policy gradient method, where we sum up the gradients at each
time step:

∇ELq [R(Lq)] ≈
1

N

N
∑

i=1

T
∑

t=1

∇θ log(π(lt
∣

∣l1, . . . , lt−1, fq))R(L
(i)
q ).

(15)
Then we are able to train the policy network with gradient
backpropagation. After the policy network is trained, which
indicates that we’ve already reached optimal Lq under current
module parameters θN , we can fix πθ and alternate the training
process to train the parameters of composable primitive modules:

θ∗N = argmax
θN

R(Lq, θN), (16)

where Lq is set to be fixed during this process, hence the
reward function is equivalent to a simple loss function that is
differentiable with regard to θN , and can be directly optimized
with backpropagation. In this paper, we apply one iteration of this
E-M process to search for the joint optimum of Lq and θN .
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TABLE 1 | Definitions of composable neural modules.

Module name Inputs Output Implementation

find fq, rI att ao = conv(WrrI ⊙Wqfq)

relocate a, fq, rI att ao = conv(Wvv⊙Wqfq)

and a1, a2 att ao = min(a1, a2 )

or a1, a2 att ao = max(a1, a2 )

describe a, fq, rI ans ans = WT
a (Wvv⊙Wqfq)

compare a1, a2, fq, rI ans ans = WT
a (Wv [v1; v2]⊙Wqfq)

Note that with the help of the region proposal network, we are able to provide rI as

input for primitive modules which encodes both visual and spatial features. Among

implementations, [p;q] denotes concatenation of two vectors p and q, and ⊙ denotes

element-wise multiplication. Vectors v, v1, and v2 are attended visual features that are

weighted sum of the region proposal rI, weighted by a1 and a2, respectively. That is,

v1 =
∑

i a
(i)
1 r

(i)
I , and v2 =

∑

i a
(i)
2 r

(i)
I , where a

(i)
1 denotes the i-th component of the input

attention map, and r
(i)
I denotes the i-th row of the visual feature encoded in rI. Note that

model parameters Wq,Wr ,Wv ,Wa are not shared among different modules, which are

parameters related to textual features, region proposals, visual features, and attention

maps, respectively.

4.4. Primitive Modules
As is claimed before, with the help of the region proposal
network, we are able to design several new types of neural
modules that take not only visual features as input, but also take
spatial features into consideration. We list all types of primitive
neural modules in Table 1. Note that some of those modules are
declared in previous works, but are not applied for VQA v2.0.

It’s also worth noting that since we adopt a region
proposal network to extract candidate objects and corresponding
bounding boxes of them, not only noisy redundant information
are filtered, but also additional information is provided to the
composed neural module network. Neural modules are now able
to take spatial information as input, in addition to visual and
textual features. For example, being able to take rI as input,
which encodes both visual and spatial information, directly helps
the relocate module to solve space-related questions like
“to the left of,” “inside,” and “bigger than,” which contributes
to the performance improvement. Previous works adopt rule-
based systems to parse each question sequence in the training
set to automatically generate layouts for initialization during
training. Since our model contains several new types of neural
modules, we modify the question parser to generate more
suitable layouts, especially for space related questions. As a
consequence, the neural module network will generate more
comprehensive layouts on those questions and achieve higher
accuracy during testing.

5. EXPERIMENTS

We evaluate the proposed method on the test sets of VQA
v2.0 (Goyal et al., 2017) and CLEVR (Johnson et al., 2017a).
Similarly to previous works, we pre-process the question
sentences using pre-trained GloVe (Pennington et al., 2014)
vectors with 300 dimensions. The GloVe representations are
fed into a bi-layer LSTM with hidden dimensions set as 1,000.
The input image is pre-processed with a ResNet (He et al.,

2016) which outputs 2,048-dimension feature representations
of input images. Our model is implemented using TensorFlow
(Abadi et al., 2016), and is trained with Adam Optimizer
(Kinga and Adam, 2015), with learning rate set as 1 × 10−4

and β set as 0.99. We compare performances of our DP-
NMN with the baseline model End-to-End Neural Module
Network (N2NMN) (Hu et al., 2017), and also several attention-
based models. We also give qualitative analyses of generated
network layouts. During training, batches of size 64 are fed
into the model for 80, 000 iterations. The training process will
terminate when the validation performance stays unimproved for
5, 000 iterations.

5.1. Datasets
5.1.1. VQA v2.0

VQAv2.0 is a VQAdataset thatminimizes the impact of language
bias with pairwise data samples, containing over 1.1 M human
annotated questions and 0.4M MSCOCO (Lin et al., 2014)
images. Faster-RCNN (Ren et al., 2015) is applied as the region
proposal network that detects candidate objects, which uses a
ResNet (He et al., 2016) CNN trained on ImageNet (Russakovsky
et al., 2015) as visual feature extractor. We directly adopt the
pre-trained Faster-RCNN available in Anderson et al. (2018). As
in Hu et al. (2017), the layouts are firstly initialized with pre-
generated layouts in Andreas et al. (2016a). Then we use the
policy gradient method described in section 3.3 to search for
better layouts. Accuracies on VQA v2.0 are reported by EvalAI
(VQA, 2016).

5.1.2. CLEVR

The CLEVR (Johnson et al., 2017a) dataset focuses on relational
reasoning, and contains 700K, 150K, and 150K automatically
generated questions for training, validation and testing. We fine-
tune a VGG-Net (Simonyan and Zisserman, 2014) to provide
visual features. No complementary annotations are directly
available to train our DP-NMN, which makes it impossible to
adopt our pairwise learning schema out of the box. Fortunately,
since questions in CLEVR have limited grammar structures,
we may pre-process questions in the training set such that
words representing a same concept are replaced with a same
placeholder. For example, all words describing colors are replaced
with placeholder “{color}.” Similar replacements are applied for
all words describing sizes, shapes, materials, and directions.

After pre-processing, we are able to extract complementary
pairs. Two identical questions after the replacement indicate
that they represent a same reasoning process, although specific
semantic meanings of the two questions may differ. For example,
“What color is the cube to the right of the yellow sphere?”
and “What color is the sphere to the left of the red cylinder?”
refer to different colors, directions and shapes, but the layout
structure generated by NMN shall be identical. Therefore these
two questions are assigned pair with each other. Practically, we
are able to extract 258,329 complementary pairs (516,658 data
samples) this way, covering 74% of the training set. After that,
all unpaired questions are assigned pair with themselves. We are
hereafter able to train our DP-NMN with pairwise learning.
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5.2. Layout Complexity Analysis
The ability to perform complex reasoning process of neural
module networks can be measured with the complexity of the
generated layouts. Table 2 shows the average size of generated
layouts of our model and N2NMN (Hu et al., 2017) on the test-
dev set of VQA v2.0. The size of a reasoning layout is measured by
the number of primitive modules it contains. For example, size of
the layout find→ describe is 2 for it contains two modules.
It’s shown that layouts generated by our model are 12% larger in
size than those generated by N2NMN. Longer layouts indicate
that when solving a same question, our model is able to perform
more complicated reasoning process on the input image, which
naturally leads to performance improvement.

We also give a few examples of network layouts generated by
our model together with the corresponding input questions and
images to further demonstrate that our model produces more
comprehensive layouts than former neural module networks
like N2NMN. The results are shown in Figure 3. The presented
questions and images are selected from the test set of VQA v2.0.
It can be seen that our model answers more accurately, either
by applying specific modules to solve particular questions, or by
assembling more complex layouts to get a better understanding
of the scene. In Figure 4, we give three more examples of the
generated layouts by ourDP-NMN.When given simple questions
requiring either spatial or logical reasoning, our DP-NMN is
capable of generate proper layouts of neural module networks
that precisely represent the inner reasoning process. However,

TABLE 2 | Average size of generated layouts, measured by number of modules,

on the test-dev set of the VQA v2.0 dataset.

Model Average size of layouts

N2NMN (Hu et al., 2017) 2.79

DP-NMN (Ours) 3.14

The bold values indicate the parameters or results that belong to our model DP-NMN.

there are also cases observed that when the input question seems
too complicated, the corresponding layout has complex structure
and no clear meaning can be obtained. This may indicate that
the reasoning capability of such neural module networks is
still limited.

5.3. Benchmark Results
We report benchmark performance of our model on the test
sets of VQA v2.0 and CLEVR in Table 3. Compared with the
baseline model End-to-End Neural Module Network (N2NMN),
it’s shown that our model outperforms it by a large margin
on both VQA v2.0 and CLEVR. We also compare single
model performances of our model with several attention based
models, including Bottom-Up and Top-DownAttention (BUTD)
(Anderson et al., 2018) which took the lead in VQA Challenge
2017 (VQA, 2016). Our model outperforms BUTD on VQA
v2.0, while providing better interpretability for human users.
With model ensemble, our DP-NMN is able to achieve over
70% prediction accuracy. The ensemble is done by independently
train 9 models at once, where they have same settings except
with different random seeds. The ensemble output is given by
major vote.

This reveals that the neural module network architecture
is fully capable of achieving reasonable performance on large-
scale real-world datasets. It can be seen that there still remains
performance gap between well-designed attention-based VQA
models [like BAN (Kim et al., 2018) and LXMERT (Tan and
Bansal, 2019)] and neural module networks, probably showing
the widely-discovered trade-off between interpretability and
performance. It’s also worth noting that neural module networks
have the advantage over attention based models that they provide
better explanations to human users when answering questions,
thus being more interpretable.

We also propose experiments where randomly assigned pairs
are used to train our DP-NMN, namely Random Pairs in Table 3,
aiming to validate the effectiveness of the pairwise learning
schema. It’s clearly shown that when complementary pairs are

FIGURE 3 | An qualitative comparison between our Dual-Path Neural Module Network and End-to-End Neural Module Network. Our policy network generates more

comprehensive layouts that represent the visual reasoning process more precisely.
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FIGURE 4 | Several examples of the generated layouts by our DP-NMN. First two examples show that our DP-NMN is capable of performing spatial reasoning with

the transform module, and logical reasoning with the or module. In the third example, our DP-NMN generates a complicated layout without clear meaning and

outputs a wrong answer, which may indicates that the question is beyond its capability.

randomly assigned, performance of DP-NMN drops by a small
margin, proving that the proposed pairwise learning schema only
works with well designed complementary pairs.

As shown in Table 3, the DP-NMN (λ = 0) model processes
pairwise data samples but without receiving the pairwise reward.
It’s clearly visible that its performance drops by a large margin
compared to the DP-NMN, which indicates that the pairwise
reward affects the model’s performance positively. Compared to

the Random Pairs setting, DP-NMN (λ = 0) achieves slightly
better performance. This performance gap may be related to the
structure of training batches, where pairwise samples are always
shown to the model simultaneously.

The selection of the parameter λ is find challenging for DP-
NMN. Big values of lambda affect the training loss too much that
negative influence on performance are discovered. Small values
of lambda make the benefits of the proposed pairwise learning
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TABLE 3 | Prediction accuracies on test sets of VQA v2.0 and CLEVR.

Model
VQA v2.0

CLEVR

Overall Yes/No Number Others

Attention based models:

MCB (Fukui et al., 2016) 62.27 78.82 38.28 53.36 51.4

BUTD (Anderson et al., 2018) 66.40 79.32 39.77 52.59 94.5

BAN-12 (Kim et al., 2018) 69.52 85.31 50.93 60.26 –

LXMERT (Tan and Bansal, 2019) 72.5 88.2 54.2 63.1 –

Neural module networks:

N2NMN (Hu et al., 2017) 63.30 80.89 39.82 53.50 83.7

DP-NMN (Ours, Random Pairs) 66.21 83.34 43.00 56.89 90.1

DP-NMN (Ours, λ = 0) 66.37 83.43 43.81 56.95 –

DP-NMN (Ours) 67.15 84.37 44.83 57.50 92.0

DP-NMN (Ours, 9 ensemble) 70.10 87.24 51.53 61.09 94.1

Our model significantly improves performance on VQA v2.0 compared with former neural module networks, and has comparable performance with attention based models. On CLEVR,

our pairwise learning schema also shows positive impact on accuracy.

The bold values indicate the parameters or results that belong to our model DP-NMN.

TABLE 4 | Sensitivity analysis results of λ.

λ 1 0.5 0.1 0.01 0.001 0

Valid accuracy (%) 57.27 64.39 65.21 63.84 63.42 63.40

Reported are validation accuracies on VQA v2.0 for different values of λ. The impact of λ

can be clearly shown in the table that the trade-off between optimizing task reward and

pairwise reward shall be balanced to achieve best performance on the validation split.

According to the sensitivity analysis, we finally set λ as 0.1.

The bold values indicate the parameters or results that belong to our model DP-NMN.

schema less viable. Therefore, we finally choose 0.1 as the most
proper value of lambda. The detailed sensitivity analysis results
of λ is shown in Table 4.

6. CONCLUSION

In this paper, we propose Dual-Path Neural Module Network
that aims at better visual question reasoning on large-scale
real-world datasets by introducing a novel pairwise learning
schema. Our model processes the complementary images in
parallel to produce a pairwise reward during the training process,
which encourages to generate more comprehensive layouts of
reasoning modules. Besides, we adopt a region proposal network
to detect visual and spatial features of candidate objects in
the input image, which provides useful spatial information
for the assembled neural module network. Experimental
results show that our model significantly outperforms previous
neural module networks on real-world datasets, and also
generalizes well on other datasets. The pairwise learning

schema can be applied only when proper annotations of
complementary samples are given along with the dataset, or
can be easily extracted, which becomes a limitation of the
framework. However, we believe that the idea of adopting
those kind of complementary information to serve as additional
guidance during the training process of neural networks is
promising, and we expect further studies from the deep learning
community.
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