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Are You Still With Me? Continuous
Engagement Assessment From a
Robot’s Point of View
Francesco Del Duchetto*, Paul Baxter and Marc Hanheide

Lincoln Centre for Autonomous Systems, School of Computer Science, University of Lincoln, Lincoln, United Kingdom

Continuously measuring the engagement of users with a robot in a Human-Robot

Interaction (HRI) setting paves the way toward in-situ reinforcement learning, improve

metrics of interaction quality, and can guide interaction design and behavior optimization.

However, engagement is often considered very multi-faceted and difficult to capture

in a workable and generic computational model that can serve as an overall measure

of engagement. Building upon the intuitive ways humans successfully can assess

situation for a degree of engagement when they see it, we propose a novel regression

model (utilizing CNN and LSTM networks) enabling robots to compute a single scalar

engagement during interactions with humans from standard video streams, obtained

from the point of view of an interacting robot. The model is based on a long-term dataset

from an autonomous tour guide robot deployed in a public museum, with continuous

annotation of a numeric engagement assessment by three independent coders. We

show that this model not only can predict engagement very well in our own application

domain but show its successful transfer to an entirely different dataset (with different

tasks, environment, camera, robot and people). The trained model and the software is

available to the HRI community, at https://github.com/LCAS/engagement_detector, as

a tool to measure engagement in a variety of settings.

Keywords: user engagement, machine learning, tools for HRI, service robotics, robot autonomy

1. INTRODUCTION

One of the key challenges for long-term interaction in human-robot interaction (HRI) is to
maintain user engagement, and, in particular, to make a robot aware of the level of engagement
humans display as part of an interactive act. With engagement being an inherently internal mental
state of the human(s) interacting with the robot, robots (and observing humans for that matter)
have to resort to the analysis of external cues (vision, speech, audio).

In the research program that informed the aims of this paper, we are working to close the loop
between the user perception of the robot as well as their engagement with it, and our robot’s
behavior during real-world interactions, i.e., to improve the robot’s planning and action over
time using the responses of the interacting humans. The estimation of users’ engagement is hence
considered an important step in the direction of automatic assessment of the robot’s behaviors in
terms of its social and communicative abilities, in order to facilitate in-situ adaptation and learning.
In the context of reinforcement learning, a scalarmeasure of engagement can directly be interpreted
as a reinforcement signal that can eventually be used to govern the learning of suitable actions in
the robot’s operational situation and environment. As a guiding principle (and indeed a working
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hypothesis), we anticipate that higher and sustained engagement
with a robot can be interpreted as a positive reinforcement of
the robot’s action, allowing it to improve its behavior in the
long term.

Previous work on robot deployment in museum
contexts (Del Duchetto et al., 2019) provide evidence on
how user engagement during robot-guided tours easily degrades
with time when employing an open-loop interactive behavior
that does not take into account the engagement state of the other
(human) parties.

However, we argue that the usefulness of a scalar measure
of engagement as presented in the paper stretches far beyond
our primary aim to use it to guide learning. Work in many
application domains of HRI (Baxter et al., 2014; Ben-Youssef
et al., 2017; Rudovic et al., 2017) has focused on a measure of
engagement to inform the assessment of the implementation
for a specific use-case or to guide a robot’s behavior. However,
how engagement is measured and represented varies greatly (see
section 2) and there is yet to be found a generally applicable
measure of engagement that readily lends itself to guide the
online selection of appropriate behavior, learning, adaptation,
and analysis. Based on the observation that engagement as a
concept is implicitly often quite intuitive for humans to assess,
but inherently difficult to formalize into a simple and universal
computational model, we propose to employ a data-driven
machine learning approach, to exploit the implicit awareness
of humans in assessing an interaction situation. Consequently,
instead of aiming to comprehensively model and describe
engagement as a multi-factored analysis, we use end-to-end
machine learning to directly learn a regression model from video
frames onto a scalar in the range of 0 to 100%, and use a rich
annotated dataset obtained from a long-term deployment of a
robot tour guide in a museum to train said model.

For a scalar engagement measure to be useful in actual HRI
scenarios, we postulate that a few requirements have to be
fulfilled. In particular, the proposed solution should

• Demonstrably generalize to new unseen people, environments,
and situations;

• Operate from a robot’s point of view, forgoing any additional
sensors in the environment;

• Employ a sensing modality that is readily available on a variety
of robot platforms;

• Have few additional software dependencies to maximize
community uptake; and

• Operate with modest computational resources at
soft real-time.

Consequently, we present our novel engagement model, solely
operating on first-person (robot-centric) point of view video of a
robot and prove its applicability not only in our own scenario but
also on a publicly available dataset (UE-HRI) without any transfer
learning or adaptation necessary. Figure 1 shows our model’s
predictions for a brief video sequence of interactions from our
dataset and how it compares with the ground truth annotations.
We demonstrate that the model can operate at a 5 Hz frame rate
on average GPU hardware typically found on robots. Hence, the
core contributions of this paper can be summarized as

1. The appraisal of a scalar engagement score for the purpose of
in-situ learning, adaptation, and behavior generation in HRI;

2. A proposed end-to-end deep learning architecture for the
regression of first-person view video stream onto scalar
engagement factors in real-time;

3. The comprehensive assessment of the proposed model on our
own long-term dataset, and a publicly available HRI dataset
proving the generalizing capabilities of the learned model; and

4. The availability of implementation and trained model to
provide the community with an easy to use, out of the box
methodology to quantify engagement from the first-person
view video of an interactive robot.

2. ASSESSMENT OF ENGAGEMENT

Recognizing the level of engagement of humans during the
interactions is an important capability for social robots. In the
first place, we want to recognize the level of engagement as
a way to assess the robot behavior. Feeding this information
to a learning system we can improve the robot behavior to
maximize the level of engagement. In an education scenario,
such as a museum, being able to engage the users is a
crucial factor. It is known that a higher level of engagement
generates better learning outcomes (Ponitz et al., 2009), while
engagement with a robot during a learning activity has also been
shown to have a similar effect (Gleason and Greenhow, 2017).
While there is evidence that the presence of a robot,
particularly when novel, is sufficient in itself for higher
engagement in educational STEM activities, e.g., Baxter et al.,
2018, the focus in the present work is on engagement
between individuals and the robot within a direct (social)
interaction, for which there is not a universally agreed definition
(Glas and Pelachaud, 2015).

2.1. Definitions of Engagement
Regarding the conceptual definition of engagement, in the
attempt to define what engagement is, the literature has taken
two different approaches: the first, that views engagement as a
process that takes place during the interactions and, the second,
that defines it as a metric of the interaction quality, which value
can be estimated from observations. Within the first group of
works (Sidner et al., 2004, 2005) describe engagement as “the
process by which individuals in an interaction start, maintain
and end their perceived connection to one another” and “it
combines verbal communication and non-verbal behaviors, all
of which support the perception of connectedness between
interactors.” O’Brien and Toms (2008) define engagement with
technology as “a process comprised of four distinct stages: point
of engagement, period of sustained engagement, disengagement,
and reengagement”; with the process being characterized “by the
presence of multiple attributes that vary in intensity depending
on a combination of user and system attributes that emerge
during the interaction”. The attributes considered are “challenge,
aesthetic and sensory appeal, feedback, novelty, interactivity,
perceived control and time, awareness, motivation, interest,
and affect.”
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FIGURE 1 | Engagement annotated values and our model’s predictions over a guided tour interaction sequence recorded from our robot’s head camera. Faces from

original dataset blurred for anonymisation.

Between the works that have taken the assumption that
engagement is a metric of the interaction, we find (Peters et al.,
2005) which defines engagement as “the value that a participant
in an interaction attributes to the goal of being together with
the other participant(s) and of continuing the interaction”.
They propose that it is relevant to assess engagement during
two different moments of the interaction: at the moment of
starting a communicative interaction (to assess the possibility of
engagement in interaction) and when the interaction is going on
(to check if engagement is lasting and sustaining conversation).
According to (Salam and Chetouani, 2015b) the engagement
is a social dimension that can be seen as “the measure of
the intention-to and the quality-of interaction as perceived
by the user.”

In our work, we pursue the latter idea, i.e., that engagement is
a measure of the interaction quality that can be evaluated during
social interactions, rather than attempting to detect the different
phases that compose the engagement process.

2.2. Characterization of Engagement
Peters et al. (2005) identifies engagement and interest as causal
factors of attention and, therefore, devise an algorithm based on
gaze for detecting engagement in interactions. Additionally to
interest and attention, an affective component (e.g., valence) can
be integrated into the characterization of engagement from the
perception of the user’s facial features (Castellano et al., 2014)
and from the robot’s own affective expressions (Castellano et al.,

2009). In both human-human and human-robot interactions
human gaze has been identified as of particular significance when
determining engagement levels in an interaction, e.g., Rich et al.,
2010; Holroyd, 2011. Gaze thus forms an important behavioral
cue when assessing engagement, e.g., Sidner et al., 2004; Baxter
et al., 2014. For example, Lemaignan et al. (2016) do not try to
directly define and detect engagement, recognizing that it is a
complex and broad concept. Instead, the concept of “with-me-
ness” is introduced, which is the extent to which the human is
“with” the robot during the interactions, and which is based on
the human gaze behavior.

Beyond only non-verbal behaviors (Foster et al., 2017),

attempt at estimating the engagement state of customers from the

audio-visual sensors data of a robot bartender. Sidner et al. (2004,

2005) also combines verbal communication (user utterances
and sound location) with non-verbal behaviors, to “support the

perception of connectedness between interactors.”
Context has also been identified as being of importance,

in terms of the task and environment, as well as the social
context (Castellano et al., 2012). For example, Michalowski
et al. (2006) proposes a simple model to infer engagement
for a robot receptionist based on the person spatial position
within some predefined areas around the robot, and Salam
and Chetouani (2015a) attempts to predict the engagement
of one entity in a multiparty interaction relying only on the
features of rest of the group, showing that engagement, and the
features needed to detect it, changes with the context of the
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interaction (Salam and Chetouani, 2015b). Similar results from
Leite et al. (2015) show that the prediction of disengagement
in a one-person interaction vs. a multi-party interaction relies
on different features. These examples furthermore suggest that
there are multiple, overlapping, and likely interacting timescales
involved in the characterization of engagement, from the longer-
term context to short interaction-orientated behaviors that
nevertheless impact social dynamics, and which humans are
particularly receptive to Durantin et al. (2017).

In addition to these explicitly cue-centered approaches, more
recently, attempts have been made to leverage the power of
machine learning to discover the important overtly visible
features with minimal (or at least sparse) explicit guidance
from humans (through cue identification for example). For
example, Won Park et al. (2019) uses an active learning approach
with Deep RL to automatically (and interactively) learn the
engagement level of children interacting with a robot from raw
video sequences. The learning is incremental and allows for
the real-time update of the estimates so that the results can be
adapted to different users or situations. The DQN is initially
trained with videos labeled with engagement values. In other
work, Rudovic et al. (2018) investigate the performance of a
deep learning model, called CultureNet, to specifically estimate
the engagement of children with autism coming from different
cultural backgrounds and study the performance across the
multicultural data, although this is based on a dataset of images
of the children’s faces rather than real-time data.

These deep learning methods have the advantage that the
constituent features of interest do not have to be explicitly
defined a priori by the system designer, rather, only the (hidden)
phenomenon needs to be annotated; engagement in this case.
Since social engagement within interactions is readily recognized
by humans based on visible information (see discussion above),
human coding of engagement provides a promising source
of ground-truth information. Indeed, in this context, Tanaka
et al. (2007) employed human coders to assess the “quality” of
observed interactions, demonstrating good agreement between
coders on what was a subjective metric.

Taken together, the literature indicates that while a precise
operational definition of engagement may not be universally
agreed, it seems that more holistic perspectives may be more
insightful. It is likely that while gaze is an important cue involved
in making this assessment, there are other contextual factors that
influence the interpretation of engagement. Given that humans
are naturally able to accurately assess engagement in interactions,
it seems that one promising possibility would be to leverage this
to directly inform automated systems.

3. PRELIMINARIES

This work is embedded in a research program that seeks to
employ online learning and adaptation of an autonomous mobile
robot to deliver tours at The Collectionmuseum in Lincoln, UK1.
The robotic platform, described below and shown in Figure 2,
has been operating autonomously in this environment for an

1https://www.thecollectionmuseum.com/robot-at-the-collection

FIGURE 2 | Lindsey, the tour guide robot deployed at The Collection museum.

extended period of time, with the goal to facilitate the visitor’s
engagement with the museum’s display of art and archaeology.
This project provides an opportunity to study methodologies
to equip the robot with the ability to interact socially with the
visitors. In particular, the research aims to find a good model to
allow the robot to do the correct thing at the right moment, in
terms of social interaction. The first step in doing so is endowing
the robot with a means of assessing its own performance at
any given moment to allow adaptation, learning, and to avoid
repeating the same errors.

In this section, we briefly report the architecture of the robot
system, a description of the robot behaviors and an up-to-date
analysis of the deployment. For a more detailed description
of these aspects of the project, the reader is redirected to our
previous work (Del Duchetto et al., 2019).

3.1. Robotic Platform
The robot is a Scitos G5 robot manufactured by MetraLabs
GmbH. It is equipped with a laser scanner with 270◦ scan angle
on its base and two depth cameras. An Asus xtion depth camera
is mounted on a pan-tilt unit above his head and a Realsense
D415 is mounted above the touchscreen with an angle of 50◦

with respect to the horizontal plane in order to face the people
standing in front of the robot. The interactions with the visitors
aremediated through a touch screen, two speakers, a microphone
array and a head with two eyes that can move with five degrees
of freedom to provide human-like expressions. To ensure safe
operations in public environments the robot is equipped with an
array of bumpers around the circular base with sensors to detect
collisions and two easily reachable emergency buttons that, when
activated, cuts the power to the motors. The software framework
is based on ROS and uses the STRANDS project (Hawes et al.,
2017) core modules for topological navigation, people tracking,
task scheduling, and data collection.

3.2. Robot Behaviors
During the deployment, the robot actively tries to engage
with those people that are detected in its surrounding by
gazing toward them and saying “Hi there! Do you want
some information about this museum? Interact with my screen

Frontiers in Robotics and AI | www.frontiersin.org 4 September 2020 | Volume 7 | Article 116

https://www.thecollectionmuseum.com/robot-at-the-collection
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Del Duchetto et al. Users Engagement Assessment Robot POV

interface!”. If the users approach the robot, they can interact
through the robot’s touchscreen to browse the museum map and
to start one of the tasks that the robot makes available. During the
execution of such tasks, every information is pronounced verbally
by the robot and replicated with text on the upper part of the
screen. The users can communicate verbally with the robot only
in specific moments of the tasks to answer yes/no questions from
the robot. In parts of the task the robot also shows images, related
to the exhibits it is showing, and information about the task in
execution (e.g., where the robot is navigating to or if the robot
is listening to the user utterances). We describe below the three
different tasks that the users can initiate with the robot.

3.2.1. Guided Tour
Each tour is centered around a theme (chosen by the user) and is
made of a predefined set of exhibits to be traversed in the same
order all the time. The robot initially gives a description of the
tour providing some context for the exhibits. Then it guides the
visitors through the stops of the tour sequentially, for each giving
some brief information and successively asking the visitors if they
want to know more. The visitors can reply with the touchscreen
through a yes/nomodal window or by verbally pronouncing their
answer. The robot guides the visitors to the next stop in case of a
negative answer.

3.2.2. Go to Exhibit and Describe
The robot guides the visitors to an exhibit of their choice and then
describes it, with a short description initially and, optionally, a
more detailed one.

3.2.3. Describe Exhibit
The robot gives a short verbal description of the exhibit
demanded by the visitor.

3.3. Long Term Deployment Analysis
The robot’s deployment at the museum has started in October
2018 and is continuing to date, with minimal periods of
interruption for robot maintenance or the museum being closed.
In total the robot has been operative, and available to the public
for interactions, for 278 days and has traveled 556 km in the
museum. In order to analyse the number of interactions with the
users, we report the amount and duration for each task category
in Table 1. In the analysis we filter out those tasks during which
one of the following failures occurred: (1) the robot localization
accuracy is low, (2) some areas of the museum are blocked
for the robot to navigate into, (3) the robot’s emergency stop
button is pressed, (4) the robot’s bumper detects a collision, or
(5) system failure. Whenever the robot is executing a task, the
user has the ability to stop it by pressing a button on the robot’s
touchscreen. The event is detected by the robot system which
stops the task. The users can go away from the interaction while
a task is executing without explicitly stopping it, in which case
the task is classified as abandoned. The robot classifies a task as
abandoned whenever it does not receive an answer by 1 min time
after asking a question to the users. Figure 3 reports the duration
distribution of the tasks comparing those that ended normally
with those tasks that were either stopped or abandoned. For

TABLE 1 | Number of user demanded tasks with their duration.

Task Tot. demanded Average

duration

Shortest Longest

Guided tour 2691 (5365) 4 (4.4) [min] 11 (11) [s] 16.1 (23.4) [min]

Go to exhibit and

describe

3246 (4824) 1.7 (1.8)[min] 8.4 (7.5) [s] 11.5 (30.8) [min]

Describe exhibit 1048 (1111) 21.6 (24) [s] 7.3 (7.3) [s] 41 [s] (5.8 [min])

Between parenthesis are reported the values obtained before filtering out the tasks in

which a failure has occurred.

abandoned tasks, the duration includes the 1 min of waiting for
the user’s feedback. This data taken together evidences the long
term autonomy abilities of the robot in the current deployment,
but also the need for amechanism to assess and increase the users’
engagement during the interactions.

Data collection has been in place during almost the entire
period of the deployment, in particular, we collected data
about the robot internal state and from its sensors during
the interactions with the museum visitors. The work and data
recording exercise have been approved by the University of
Lincoln’s Ethics Board, under approval ID “COSREC509.” The
ethical approval does not allow the public release of any data that
can feature identifiable persons, in particular video data. The data
utilized in the analysis reported in this section span the date range
between the 24th January 2019 (the day on which we started
recording data of the robot operations) and the 17th March 2020,
with data collection remaining ongoing.

4. THE TOGURO DATASET

4.1. Dataset Collection
The TOur GUide RObot (TOGURO) dataset was collected from
the two cameras mounted on the robot’s body and head, each
providing a stream of RGB and depth frames. Each video stream
is recorder from the moment the user starts a guided tour or a
go to exhibit and describe task until its termination, therefore it
does not include the initiation of engagement phase. We have
excluded from the dataset collection the describe exhibit tasks
considering their generally short duration time. Considering the
large number of videos to be stored, each frame coming from
the cameras is collected, compressed and stored as MPEG videos
while the interaction is taking place. To be able to reconstruct the
frame-by-frame alignment between the different video streams,
we store, parallelly to the frames, the ROS timestamp at the time
each frame is received by the video recorder node.

The participants were aware that the robot was recording data
during the interactions (by means of visible signs and leaflets),
although they were not informed that the purpose of this data
was for engagement analysis, thus not biasing their behaviors.
In total, we collected 3,106 distinct videos for a total duration of
about 10 days and 16 h of recorded interactions for each camera
stream. Note, however, that only a small subset of this total data
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FIGURE 3 | Duration distribution (in log scale) of the interactive tasks performed by the robot. The different colors green, orange and red represent respectively the

tasks that were completed to the end, were abandoned by the users or were stopped by the users. The light blue bars sums up the three task groups.

was coded and used for training/evaluating the proposed model,
as described below (section 4.2).

Given that the museum in which the robot is deployed is
a public space openly accessible to anyone, the interactions
between the robot and the museum’s visitors are completely
unstructured. People walking in the gallery are allowed to roam
around the collection or to interact with the robot. When they
choose to do so they do not receive any instruction about how to
interact with it explicitly and are not observed by experimenters
when doing so.

4.2. Dataset Coding
In order to address the primary research goal—the assessment
of robot-centric group engagement—the dataset was manually
coded in order to establish a ground truth. As noted
previously, given that there is not a universally accepted
operationalized definition of engagement, a human observer
response method is employed in the present work, following
the prior application of a continuous audience response
method (Tanaka et al., 2007).

Three annotators took part in the coding process: each was
familiar with the robot being used and the interaction context.
The annotators are students at the University of Lincoln, knew
each other before the study and were not remunerated for the
activity. They were instructed to provide engagement scores as
scalar values in the range [0, 1] to reflect the following measure:
“Situate yourself as the guide (i.e., the robot) carrying out the
interaction and looking through the cameras. How much (do you
feel) the people are being engaged by the interaction with you?”. A
set of exemplary cases was also provided:

• Whenever the person is looking at the screen or at the robot
head: engagement is HIGH;

• When the person is looking at the exhibit (the exhibit is
typically behind the robot): engagement is HIGH;

• When the person is attending the tour but annoyed,
continuously looking around, or looking at the phone: the
engagement is MEDIUM;

• When the person is not attending the tour (e.g., far from the
robot, oriented with the back toward the robot, talking to other
people): engagement is LOW;

• When the person is not in the camera field of view:
engagement is LOW;

• When the face of the people are not completely visible, do not
immediately classify engagement as if the people were outside
the FOV but try to guess their engagement value;

where HIGH, MEDIUM, and LOW do not identify a precise
discrete value but they are an indicator of the scalar value range.
Reflecting on the nature of the interactions in the museum, the
score provided by the coders takes into account the situations
where a user diverts its attention from the robot but remains
essentially engaged in the task by looking at the exhibits.

The annotations were performed over only the RGB stream
of the robot’s head camera, and not taking into account all the
four video streams available from the collected data. Similarly to
(Tanaka et al., 2007), the annotators were asked to indicate in
real-time how engaged people interacting with a robot appeared
to be in a video captured by the robot (e.g., Figure 4). They
operated a dial using a game-pad joystick while watching the
interaction videos using the NOVA annotation tool2 (Baur
et al., 2015). This procedure allowed the generation of per-
frame annotations of the provided videos, with very little time
spent on software training (around 20 min per annotator) and
on the annotation process itself (not more than the duration
of the videos).

Three subsets of the overall dataset were randomly drawn and
assigned to the annotators. The subsets were partially overlapping
in order to enable an analysis of the inter-rater agreement for
assessing the reliability of the essentially subjective metric, but
also to maximize annotation coverage of the dataset. As indicated
in Table 2, the total length of the annotated data was over 9 h,
with 3 h 27 min of overlap between the annotators (resulting in 5
h 50 min of unique videos annotated). The amount of annotated

2https://github.com/hcmlab/nova
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FIGURE 4 | One frame from a video in the TOGURO dataset recorded from

the robot’s head camera during a guided tour. The red, green, and blue plots

at the bottom of the frame represent each a distinct annotation sequence.

Face from original dataset blurred for anonymisation.

TABLE 2 | Video annotations by annotator (coder): unique indicates length of

video coded by a single coder.

Coder # Videos Tot. duration

Coder1 66 3 h 59 min

Coder2 40 2 h 55 min

Coder3 40 2 h 23 min

Unique 94 5 h 50 min

Total 146 9 h 17 min

data is depicted in Table 2. 96 unique videos were coded by the
three annotators with a total of 146 videos (including repeated
annotations) for a total duration of 9 h and 17 min. In total the
annotated video set features 227 people [53.74% (122) females
and 46.26% (105) males, 60.79% (138) adults, and 39.21% (89)
minors]. The composition of each group of people interacting
with the robot is very diverse; on average each videos features
2.41 people (min = 0,max = 9, σ = 1.56), 1.32 females
(min = 0,max = 6, σ = 0.89), 1.14 males (min = 0,max =

5, σ = 1.26), 1.5 adults (min = 0,max = 5, σ = 0.97), and 0.96
minors (min = 0,max = 6, σ = 1.14).

4.2.1. Coding Evaluation
The annotated engagement rating is a continuous scalar for
every frame of video data. As such, Spearman’s rank correlation
(ρ) is employed to assess inter-rater agreement. Table 3 shows
the correlation values for each pair of annotators. Since
every frame is annotated (with a frame-rate of 10 frames-
per-second), the continuous values were smoothed over time,
using different smoothing constant values, in the range [0.1s, 40s]
(Figure 5A). Table 3 provides a summary of these, with overall
mean agreement rates at selected representative values of the

TABLE 3 | Spearman’s Correlation ρ at different smoothing constant values S.

Coders pair S [s] ρ

Coder1 ↔ Coder2

1 0.71

5 0.77

10 0.79

26 0.78

Coder1 ↔ Coder3

1 0.49

5 0.5

10 0.52

26 0.65

Coder2 ↔ Coder3

1 0.48

5 0.5

10 0.53

26 0.72

Average

1 0.56

5 0.59

10 0.62

26 0.72

The significance p < 0.001 and sample size n ≥ 89 for all coder pairs and smoothing

constants.

smoothing constant. While there is some variability in the
between-coder agreement, mean values of ρ vary in strength
from moderate to strong (0.56 to 0.72). In this regard, there
is a trade-off to be made between the smoothing constant size
and the apparent agreement between the coders: the larger time
window size reduces the real-time relevance of the engagement
assessment, even though the agreement over the extended
periods of time is greater than in comparatively shorter windows.
Overall, these results indicate that the use of the independently
coded data can be considered reliable in terms of the highly
variable and subjective metric of engagement.

Additionally, we perform an analysis targeted at an
understanding of how well the annotations performed are
for different interaction conditions. We separate the dataset in
the 4 subsets below:

• Single-party interactions, i.e., with less than 2 people (22
unique videos);

• Multi-party interactions, i.e., with at least 2 people (72
unique videos);

• Adults-only interactions, i.e., where all the users are adults (38
unique videos);

• Adults-and-minors interactions, i.e., where there is at least 1
minor (54 unique videos).

Figures 5B–E shows the correlation value at various timescales
for each of these conditions. We can observe that in the single-
party and adults-only conditions the correlation is higher than in
the two remaining conditions for some smoothing values. This
result indicates that the assessment of engagement for group
interactions and in the presence of children is affected more
heavily by the differences of the individual coders. It is important

Frontiers in Robotics and AI | www.frontiersin.org 7 September 2020 | Volume 7 | Article 116

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Del Duchetto et al. Users Engagement Assessment Robot POV

FIGURE 5 | Spearman correlation averaged over coder pairs and weighted by the overlap rate. Value reported over different smoothing constants S. (A) Entire

dataset. (B) Single-party interactions. (C) Multi-party interactions. (D) Adults-only interactions. (E) Adults-and-minors interactions.
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to notice that the coders were not instructed to use different
coding strategies for each interaction condition but to code the
overall group engagement as explained above.

5. THE ENGAGEMENT REGRESSION
MODEL

Given the ground-truth provided by the human-coded
engagement levels of user’s interactions with the robot, we
propose a deep learning approach for the estimation of human
engagement from video sequences. The model is trained end-to-
end from the raw images coming from the robot’s head camera
to predict a high-level engagement score of people interacting
with the robot. It should be noted that this model does not
model individual humans in the view of the robot but provides
an overall holistic engagement score.

The network architecture, depicted in Figure 6, is composed
of two main modules: a convolutional module which extracts
frame-wise image features and a recurrent module that
aggregates the frame features over a time to produce a temporal
feature vector of the scene. The convolutional module is a
ResNetXt-50 Convolutional Neural Network (CNN) (Xie et al.,
2017) pre-trained on the ImageNet dataset (Krizhevsky et al.,
2012).We obtain the frame features from the activation of the last
fully connected layer of the CNN, with dimension 2048, before
the softmax layer. The recurrent module is a single layer Long-
Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) with 2048 units followed by a Fully Connected (FC) layer
of size 2048× 1. The LSTM takes in input a sequence of w frame
features coming from the convolutional module and produces, in
turn, a feature vector that represents the entire frame sequence,
to capture the temporal behavior of humans within the time
windoww. The temporal features are passed through the FC layer
with a sigmoid activation function at the end to produce values
y′ ∈ [0, 1] The recurrent module is trained in our experiments to
predict engagement values from the provided annotation values,
while the CNN layer is fixed.

The proposed framework is implemented in Python using
the Keras library (Chollet, 2015) and is freely released as a
ready-to-use ROS package to the HRI community3.

6. EXPERIMENTS

We train and test the model presented in section (5) on our
own TOGURO dataset, and assess generalization of this model
(without modification) on the public UE-HRI dataset in the
following subsections.

6.1. TOGURO Dataset Processing
We used the entire annotated dataset presented in section (4.2),
composed of 94 videos, for a total duration of 5 h and 50 min of
interactions. For each video, we randomly choose an annotation
if multiple are available from the different coders (see Table 2),
in order to avoid repetitions in the data and biasing the model
toward those videos that have been annotated multiple times.

3https://github.com/LCAS/engagement_detector

Each video is then randomly assigned to either the training, test
or validation set with a corresponding probability of 50s, 30, and
20%, respectively, to prevent our model to train and test over data
that are closely correlated at the video frames level. Sampling for
the dataset split hence operates on full video level, rather than on
frame level. Each video Vk is composed of IVk

frames xi ∈ Vk

for i ∈ 0, . . . , IVk
and has an associated array of annotations

Ak = [y0, . . . , yIVk ], also of dimension IVk
. From all the videos

in each set (training/test/validation) we extract all the possible
sequences of w consecutive frames Xi = [xi, . . . , xi+w−1] to be
the input sample for our model. Therefore, each sample Xi has an
overlap of w − 1 frames with the consecutive sample Xi+1 from
the same video. For each sample Xi we assign the ground truth
value yi+w−1 ∈ Ak, in order to relate each sequence of frames
with the engagement value set at the end of the sequence.

After the pre-processing phase over our dataset, we obtain
93,271 training samples, 72,146 test samples and 44,581
validation samples. Each frame is reshaped to 224 × 224 pixel
frames, and normalized before being fed to the network.

6.2. Training and Evaluation
For training and evaluation, we decided to set the window
size w equal to 10 frames in order to have a model that gives
evaluations of the engagement in a relatively short time (i.e.,
after 1 s). Even though more temporally extended time windows
would provide more coherent ground truth values among the
different annotators, as discussed in section (4.2.1), we decide to
sacrifice some accuracy in favor of increase real timeless of our
mode predictions.

During training the weights of the Convolutional module,
which is already pre-trained, are kept frozen while the Recurrent
module is fully trained from scratch. The model is trained to
optimize the Mean Squared Error (MSE) regression loss between
the prediction values y′i and the corresponding ground truth
values yi using the Adagrad optimization algorithm (Duchi et al.,
2011) with an initial learning rate lr = 1e − 4. At each training
epoch, we sample uniformly 20% of the training set samples to be
used for training and we collect them in batches of size bs = 16.
The uniform data sampling of the training data is performed in
order to reduce training time and limiting overfitting (El Korchi
and Ghanou, 2019). The model has been trained for a total
of 22 epochs using early stopping after no improvement in
validation loss.

The evaluation of themodel is performed on the entire test set,
which is composed of samples from videos never encountered in
the training set. Additionally, we evaluate the performances of the
model on the single-party, multi-party, adults-only and adults-
and-minors portions of the test set separately to understand how
this is affected by the differences in the group of users. In this last
experiment, we continue to use the model learned from the entire
training set and not from a different portion of the training set for
each condition.

6.3. Assessing Generalization
In order to assess the generalization capabilities of our trained
model over different scenarios featuring people interacting with
robots, we propose to test the performance of our trained model
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FIGURE 6 | Overview of the proposed model. The input is a video stream of interactions between the robot and humans collected in w size intervals. The frames xi
are passed through the pre-trained CNN (ResNet) producing a per-frame feature vector which is then passed sequentially to the LSTM network. After w steps the

LSTM produces a temporal feature vector which is passed to a FC layer with sigmoid activation to produce an engagement value y for the temporal window.

as a detector of the start and end of interactions over the UE-HRI
dataset (Ben-Youssef et al., 2017).

6.3.1. The UE-HRI Dataset
Similarly to our dataset, the UE-HRI dataset has been collected
during a public deployment of a social robot (i.e., SoftBank
Robotics’ Pepper) featuring interactions in-the-wild with groups
of users. Also, the human-robot interactions are mediated
through a touchscreen interface and speech. However, while our
robot moves around the museum together with the users as it
explains the various exhibits, the Pepper robot stands in a fixed
position in the room and interacts with people that enter its
own engagement zone by asking them questions and showing
applications from the touchscreen.

The dataset provides videos of the interactions from
the robot’s head cameras. Even though the cameras move
together with the Pepper’s head when the robot shifts its
gaze from one person to another, their position allows to
estimate the user’s engagement from the robot’s point of
view. The videos are accompanied by annotations of start/end
of interactions and various signs of engagement decrease
[Sign of Engagement Decrease (SED), Early sign of future
engagement BreakDown (EBD), engagement BreakDown (BD)
and Temporary Disengagement (TD)]. These annotated signals
are associated with cues of verbal/non-verbal behaviors of the
users and other various features, like the users’ position. In total,
the dataset features 54 interactions with 36 males and 18 females,
where 32 are mono-users and 22 are multiparty.

6.3.2. Evaluation Procedure
For a fair comparison with our proposed method, we evaluate
the ability of our model to distinguish between the moments
during which an interaction is taking place and those in which
there is a breakdown (TD or BD), the interaction is not yet

TABLE 4 | Model performance on our TOGURO Dataset.

Test loss (MSE) Correlation ρ Prediction time Memory usage

0.126 0.634 t <= 0.2 s 5.4 GB

ρ measures the correlation between the predictions and the ground truth values with

smoothing factor S = 1 [s]. Prediction time is relative to the GPU GeForce GTX 1060 we

have used to carry out the assessment.

TABLE 5 | Model performances on different conditions of users group

composition in terms of MSE test loss and Spearman’s Correlation ρ [with

smoothing factor S = 1 s] of predictions with the ground truth values.

Condition Test loss (MSE) Correlation ρ

Single-party 0.087 0.758

Multi-party 0.136 0.622

Adults-only 0.068 0.812

Adults-and-minors 0.149 0.563

started or it is already ended, in line with the UE-HRI coding
scheme. Consequently, we predict engagement values over the
RGB image streams from the Pepper robot’s front camera. By
setting a threshold value thr we convert the predictions y′ into a
binary classification of C = {⊤,⊥} (prediction above or below
thr) which indicates whether there is engagement or not. The
categorical predictions are then compared with values from the
annotations in the dataset. We consider the ground truth value
to be ytint = ⊤ if at time t there is an annotation of a Mono or
Multi interaction and there are no annotations of BD or TB in the
UE-HRI coding. The ground truth value is ytint = ⊥ otherwise.
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FIGURE 7 | ROC curve (left) and Precision-Recall curve (right) generated using our trained model as a classifier of the interaction sessions for the UE-HRI dataset.

7. RESULTS

With our evaluation, we set out to provide evidence that our
model can predict engagement through regression on our own
TOGURO dataset by assessing its accuracy in comparison to
the ground-truth annotation, and to assess the generalization
ability of the model on newly encountered situations through the
analysis of the UE-HRI data.

To show the ability of our framework to map short-
term human behavioral features from image sequences into
engagement scores, we compute the Mean Squared Error (MSE)
prediction loss on our test set as 0.126 (in the context of the
[0, 1] interval of output expected), also reported in Table 4.
Additionally, we report the Spearman’s rank correlation ρ

between our model’s predictions and the ground truth values
of our model showing that it is consistent with the inter-rater
agreement results reported in section (4.2.1). The results of
evaluating the trained model on the four different conditions
of the group of users shows that the model is able to predict
the engagement more accurately in the single-party and adult-
only conditions, reported in Table 5. This also is in line with the
inter-rater agreement results for the conditions in section (4.2.1).

Looking back at section (1), a soft real-time operation is seen
as a requirement for the applicability of our model. Hence, we
measured the duration of a forward pass on our GPU hardware
of 10 consecutive frames (1 sample) through the convolutional
module and the recurrent module taking at most 200ms, allowing
real-time estimation of engagement at 5 frames per second.

Evaluating the power of our approach for binary classification
on the UE-HRI as detailed above in section (6.3), allows us to
capture the generalization capabilities. In Figure 7, we report
the Receiver Operating Characteristic (ROC) and the Precision-
Recall curves obtained by varying the threshold with values in
the range thr ∈ [0, 1] of the binary classification task on the
UE-HRI data. The Area Under the Curve (AUC = 0.89 in
our experiment) reports the probability that our classifier ranks

a randomly chosen positive instance ytint = ⊤ higher than a
randomly chosen negative one ytint = ⊥, i.e., provides a good
assessment of the performance of the model in this completely
different dataset.

Given these encouraging quantitative results, some qualitative
assessments of exemplary frames with the corresponding
computed engagement score are presented in Figures 8–10.
All figures show examples of the UE-HRI dataset, which
was completely absent from the training dataset (section 6.1).
Figure 8 presents two short sequences (roughly 2 s apart between
frames), showcasing short-term diversion of attention of subjects
resulting in a temporarily lower engagement score, but not
leading to a very low engagement level. Figure 9 exemplifies
that our model can cope well with perception challenges which
would forgo a correct assessment just using gaze or facial feature
analysis. While one could, in this context, argue that our model
has simply learned to detect people, Figure 10 is providing three
examples from different videos of the UE-HRI dataset with
people present in the vicinity of the robot, but not engaging
with it. The engagement scores in these examples are significantly
lower across all frames.

These qualitative reflections are evidently supported by
the quantitative analysis of both datasets, providing us with
confidence that the trained model is broadly applicable and
can serve as a very useful tool to the HRI community with its
modest computational requirements and high response speed in
assessing videos from a robot’s point of view.

8. DISCUSSION AND CONCLUSION

This paper has motivated, developed and validated a novel easy-
to-use computational model to assess engagement from a robot’s
perspective. The results presented in the previous sections lead us
to the conclusion that:
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FIGURE 8 | (A-F) UE-HRI dataset: two sequences of short timescale sequential frames showing how the temporal diverting of attention is reflected in the model

predicting a lower engagement value. The red plot shows the predicted engagement values over the frame sequences, with the prediction y′ at the frame shown in

the picture at time t being in the center, past predictions on the left and future predictions on the right. Faces from original dataset blurred for anonymisation; face

landmarks added in postprocessing to indicate face orientation. Permission for re-use of the images has been obtained from the copyright holder.

FIGURE 9 | (A-C) UE-HRI dataset: examples of correct prediction of high engagement (y′ >= 0.75) in situations difficult to understand using standard face

description features. The red plot shows the predicted engagement values over the frame sequences with the prediction y′ at the frame shown in the picture being in

the center, past predictions on the left and future predictions on the right. Faces from original dataset blurred for anonymisation. Permission for re-use of the images

has been obtained from the copyright holder.

1. A moderate to strong inter-rater agreement (see Table 3) in

measuring engagement on [0, 1] interval indicates that humans

can reasonably and reliably assess the holistic engagement from

a robot’s point of view solely from video;
2. A two-stage deep-learning architecture as presented in Figure 6

trained from our TOGURO dataset is a suitable computational

regression model to capture the inherent human interpretation
of engagement provided by the annotators; and that

3. The trained model is generic enough to be successfully

applied in a completely different scenario, here the UE-HRI

dataset, showing the applicability of the model also in different

environments, on a different robot with a different camera,
and with different tasks and people. The area under the
Receiver-Operator Curve (ROC) of 0.89 and the Precision-
Recall curve in Figure 7 provide evidence that indeed the
proposed regression model can serve as a strong discriminator
to identify situations of loss of engagement (TD or BD in the
UE-HRI coding scheme).

Our results confirm the idea that the human holistic assessment
of an abstract quantity, like the engagement, can be utilized as
a coherent metric for learning a prediction model of that same
quantity. While a cue-centric model based on specific perceptual
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FIGURE 10 | (A-C) UE-HRI dataset: examples of correct low/medium engagement prediction (y′ <= 0.6) in cases in which the people were not actually engaging

with the robot. The red plot shows the predicted engagement values over the frame sequences with the prediction y′ at the frame shown in the picture being in the

center, past predictions on the left and future predictions on the right. Faces from original dataset blurred for anonymisation. Permission for re-use of the images has

been obtained from the copyright holder.

features, such as gaze, can bemore easily interpretable, it canmiss
out on important events that are not explained by the chosen
features. Amodel learned from raw data, like the one presented in
this study, can instead learn to recognize what are the important
features to take into account for the assessment.

We hypothesize that the learned model does not solely
discriminate person and/or face presence, but that the temporal
aspects of the human behavior observable in the video are
captured by the LSTM layer in our architecture well enough to
successfully deal with these situations. The correlation values
between the model predictions and the ground truth value in
Tables 4, 5, suggest that the predictions are in line with the
coders’ assessment, even when averaging at a short timescale
like 1 s. This is important because it means that the model
can be used to immediately identify moments of decreased
engagement and plan to recover from it before the users
completely disengage with the robot. As the next step in that
direction, we plan to use reinforcement learning (RL) techniques
by integrating our engagement model predictions as part of
the reward function given to the robot. As typically done in
RL problems, the reward function provides only a scalar value
at each time step to the agent to learn from, even though
the function itself can be a combination of different objectives
we want the agent to optimize. Therefore, our engagement
scalar values can be seamlessly integrated into our robot
reward function.
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