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Fabrication of soft pneumatic bending actuators typically involves multiple steps to

accommodate the formation of complex internal geometry and the alignment and

bonding between soft and inextensible materials. The complexity of these processes

intensifies when applied to multi-chamber and small-scale (∼10mm diameter) designs,

resulting in poor repeatability. Designs regularly rely on combining multiple prefabricated

single chamber actuators or are limited to simple (fixed cross-section) internal chamber

geometry, which can result in excessive ballooning and reduced bending efficiency,

compelling the addition of constraining materials. In this work, we address existing

limitations by presenting a single material molding technique that uses parallel cores with

helical features. We demonstrate that through specific orientation and alignment of these

internal structures, small diameter actuators may be fabricated with complex internal

geometry in a single material—without- additional design-critical steps. The helix design

produces wall profiles that restrict radial expansion while allowing compact designs

through chamber interlocking, and simplified demolding. We present and evaluate

three-chambered designs with varied helical features, demonstrating appreciable

bending angles (>180◦), three-dimensional workspace coverage, and three-times

bodyweight carrying capability. Through application and validation of the constant

curvature assumption, forward kinematic models are presented for the actuator and

calibrated to account for chamber-specific bending characteristics, resulting in a mean

model tip error of 4.1mm. This simple and inexpensive fabrication technique has potential

to be scaled in size and chamber numbers, allowing for application-specific designs for

soft, high-mobility actuators especially for surgical, or locomotion applications.

Keywords: soft robotics, soft materials, bending actuators, robot fabrication, kinematic model, soft robot

applications, monolithic actuators, inflatable actuators

INTRODUCTION

The compliant nature and large range of motion of soft robotic fluidic actuators engenders a
wide application scope with significant research interest (Rus and Tolley, 2015; Laschi et al., 2016;
Gorissen et al., 2017; Shintake et al., 2018; Chen et al., 2019; Gifari et al., 2019; Runciman et al.,
2019). Actuator designs typically comprise one or more elastomeric materials with the optional
addition of strain limiting material, with single and multi-chamber configurations being selected
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based on application requirements. Desirable motions, such as
extension, contraction, bending, or twisting, are achieved with
pressure or vacuum supply in combination with common design
architectures including: (i) eccentric geometry between fluid
chambers and walls (Gorissen et al., 2018); (ii) fabrication with
multiple materials of dissimilar properties (Martinez et al., 2013);
or (iii) implementation of corrugated internal and/or external
geometries (Gorissen et al., 2017). Indeed, many actuator designs
have successfully combined these approaches to further enhance
their capabilities (Martinez et al., 2013; Matteo et al., 2014;
Mosadegh et al., 2014; Ming et al., 2017; Yi et al., 2017).

To exaggerate desirable pressure-strain profiles in single
chamber actuators, the elastomeric bodies are often augmented
with strain-limiting fiber, mesh, or sheet layers. Fiber
reinforcement involves wrapping a pre-molded hollow core
with inextensible material (e.g., cotton or Kevlar) before sealing
with a second layer of pre-polymer. Inextensible fibers constrain
radial expansion of the internal chamber and direct the resultant
strain profile of the actuator. Through variation of the winding
geometry, precise control over the actuator’s behavior is possible
(Krishnan et al., 2012), and by combining actuators with differing
fiber geometry in series, configurable trajectory matching may be
achieved (Bishop-Moser and Kota, 2015; Connolly et al., 2015,
2017; Polygerinos et al., 2015; Kurumaya et al., 2018; Singh and
Krishnan, 2020). Though effective, fabricating these actuators
is complicated by the need for precision control of fiber path,
tension, and adhesion (Agarwal et al., 2016), and resultant
devices typically have reduced extensibility and flexibility relative
to purely elastomeric structures (Rus and Tolley, 2015). To
improve fabrication repeatability and design flexibility, Agarwal
et al. (2016) presented a molding approach with pre-formed,
integrated reinforcement shells for single-step molding of
bending and linear actuators, although this approach does not
readily extend to multi-chamber designs.

An alternative fabrication approach, normally allowing
greater strain at lower pressures, is to create a network of
corrugated chambers within the actuator’s body (PnueNets)
(Ilievski et al., 2011; Mosadegh et al., 2014; Wang et al., 2018).
Conventionally, complex internal and external geometry is first
cast in a planar mold followed by bonding of a strain-limiting
layer and sealing of the fluid chamber (Schmitt et al., 2018).
Large strains may be attained rapidly with this actuator type at
relatively low pressures (Mosadegh et al., 2014), and geometric
variation again allows modulation of bending behavior (Hu et al.,
2018; Wang et al., 2018; Hu and Alici, 2019). These actuators
can, however, be susceptible to leakage or failure at the bonded
joint (Marchese et al., 2015; Gorissen et al., 2017), and single-
step fabrication of chamber geometry is precluded as demolding
of ridged cores is often not possible without inducing damage
(Galloway et al., 2016). Attempts to mitigate this issue have been
presented through the use of soft cores with vacuum extraction
(Galloway et al., 2016), rotational casting (Zhao et al., 2015),
and sacrificial cores (Marchese et al., 2015; Morley-Drabble and
Singh, 2018).

The aforementioned fabrication approaches are typically
associated with individual chamber actuators; however, they are
also relevant to actuator designs with higher chamber numbers.

Unfortunately, this adds significant procedural complexity that
is amplified as the device scale is reduced. Generally, multi-
chamber actuators employ three chambers distributed with their
centers 120◦ apart (Suzumori et al., 1991a,b; Benjamin et al.,
2012; Cianchetti et al., 2013; Martinez et al., 2013; Yahya et al.,
2014; Sun et al., 2016; Yan et al., 2016; Drotman et al., 2017;
Nguyen et al., 2017; Robertson and Paik, 2017) and may be
fabricated in a number of ways; for example: (i) molding
with constant axial cross-sectional cores (Suzumori et al., 1997;
Martinez et al., 2013; Yahya et al., 2014; Fu et al., 2020); (ii)
assembly of pre-formed individual chambers (Cianchetti et al.,
2013; Matteo et al., 2014; Ranzani et al., 2015; Nguyen et al.,
2017; Garbin et al., 2018, 2019; Peng et al., 2019); and (iii) 3D-
printing of integrated designs (Peele et al., 2015; Wallin et al.,
2018; Yirmibesoglu et al., 2018; Drotman et al., 2019). Although
promising, these methods carry trade-offs between achievable
internal chamber geometry, complexity, resilience of assembly,
material selection, and practicable actuator scale and feature
resolution (Schmitt et al., 2018). Currently, molding-based
fabrication offers the most extensive selection of elastomeric
materials and is restricted in resolution primarily by the mold
manufacturing techniques employed. However, repeatable and
simple manufacture of multi-chamber soft actuators, particularly
at small scales, remains a challenge and is typically hindered by
the necessity for numerous fabrication steps, each reducing the
repeatability of the final actuator design.

In this paper we introduce, for the first time, the design
concept of “Parallel Helix Actuators” (PHAs). The associated
fabrication process we describe allows for the simple production
of single elastomer actuators that are capable of three-
dimensional mobility at scales <1 cm in diameter. The PHA
design overcomes some of the limitations of existing fabrication
techniques, particularly those associated with multi-chamber
designs. Specific benefits associated with PHAs are (1) integrated
multi-chamber designs scalable to small size (< 1 cm diameter
for three-chamber design); (2) the potential for single-step,
single-material molding, reducing reliance on sealing and layer
bonding, and avoiding the need for assembly; (3) simple
“unscrewing” of mold cores to reduce the risk of damage
to the internal features of the actuator during demolding;
(4) design flexibility allowing adjustment to PHA geometry
and scale for application specific optimization; and (5) 3D
motion description through kinematic models based on the
constant-curvature assumption. We envisage PHAs having
utility in medical robotics for example in minimally invasive
surgery (Abidi et al., 2018) or endoscopy (Garbin et al.,
2019); or providing a generic actuator platform for soft
robotic applications.

Within the following sections we introduce the PHA concept
and describe the associated fabrication technique. Through
validated adoption of the constant-curvature assumption, we
present a kinematic model for PHAs that accounts for the
influence of non-linear material properties and inter-chamber
variations. Experimental evaluation is reported for varied helix
geometries, and 3D workspace characterization with model
comparison also presented. Finally, we experimentally investigate
the influence of tip loading on achievable workspace and discuss
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FIGURE 1 | A three-chambered monolithic soft actuator design using parallel cores with helical features, showing (A) the completed actuator with chamber and axial

cross-sections and dimensional properties for the PHA design associated with (B) the axial cross-section and (C) the longitudinal features within a sectional view of a

plane bisecting the centers of any pair of chambers.

the merits and limitations of PHA in the context of the presented
study and alternative approaches.

PRINCIPLE OF DESIGN

In contrast to many multi-chamber soft actuator designs,
PHAs employ helical chamber geometry to form undercuts
and corrugations within their internal structure. Figure 1A

presents an example PHA design for three chambers aligned
in parallel with an even distribution around the actuator’s
centerline. Helical chambers are produced in an interlocking
pattern, requiring them to be of equal axial rotation for all
chambers. PHA designs therefore benefit from an anisotropic
stiffness distribution produced using only a single elastomeric
material, allowing higher strains at low pressure and simplified
fabrication. The cross-sectional and longitudinal dimensional
parameters of the interlocking helical features are presented in
Figures 1B,C respectively, and are described within Table 1.

Although higher chamber number designs are possible, the
minimum required for achieving effective three-dimensional
mobility is three. When considering three chamber cores, each
of maximum diameter d, the overall diameter D of the smallest
circle that will circumscribe them occurs when they are in a

hexagonal packing configuration (i.e., each cotangent with the
other two) as given by Kravitz (1967):

D =
(

1+
2
√
3

)

d (1)

Through inspection of the helical core geometry presented in
Figure 1B, Equation (1) may be expanded to give the effective
overall diameter for a three-chamber PHA, taking account of the
core shaft diameter c, thread width b, core overlap σ , and external
wall thickness a, to give:

DPHA =
((

1+
2
√
3

)

(c+ 2b− σ )

)

+ 2a+ σ (2)

It is evident from evaluation of Equation (2) that the geometric
design variables have differing influence on the overall diameter
realized. The relative influence on D for each of the variables
as it is independently increased is presented in Table 1; with
unit changes in thread width b and thread overlap σ inducing
the largest (4.31 mm/mm) and smallest (−1.15 mm/mm)
changes in D, respectively. In selection of appropriate geometric
values, consideration must also be taken to (1) ensure sufficient
elastomeric material thickness to avoid excessive ballooning or
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TABLE 1 | Geometric properties of the three-chamber PHA design.

Variable Definition Influence on

overall

diameter (D)

Values for

study

a Wall thickness 1D
1a

= 2 1 mm

b Thread width 1D
1b

= 4.31 1 mm

c Core shaft diameter 1D
1c

= 2.15 1.5 mm

σ Thread overlap 1D
1σ

= −1.15 0 mm

d = c+ 2b Core overall diameter – 3.5 mm

i = d − σ Core center spacing – 3.5 mm

e Thread vertical edge height – 1 mm

g PHA center to core center

distance

– 2.02 mm

h Pitch – 4 mm

α Thread horizontal edge angle – −25◦, 0◦, +25◦,

+50◦

Maximum overall diameter – 9.54 mm

H =
(Nh+ e+
2btan(α))

Height of the threaded internal

structure

–

N Number of turns - 10 (no unit)

L Overall length - 50 mm

rupture; (2) achieve suitable structural rigidity of internal mold
parts for maintaining accurate alignment during molding and
for removal without fracture; and (3) accommodate alignment
features beyond the helical geometry of the insert. Design
variables must therefore be selected with consideration of the
material properties of the actuator andmold components and the
mold manufacturing process available.

FABRICATION

Fabrication of PHA designs, in accordance with the dimensions
presented in Table 1, was achieved using a molding process
as presented in Figure 2. An external five-piece mold design
and three helical inserts of desired geometry were printed
in resin material (Clear Resin v4; Formlabs, USA) using
stereolithography (Form 2 SLA printer; Formlabs, USA).
Figure 2A shows the exploded assembly of the mold parts,
including the diamond-shaped alignment features added to mold
cores and the top and bottom caps allowing precise alignment
of internal and external parts. A three-piece split body mold
was employed to allow simple assembly and part removal while
limiting the influence of seams induced by material flashing at
mold joints. A port at the base of the mold was included to allow
silicone injection via a standard Luer Lock syringe (Figure 2B).

Silicone prepolymer (Dragon Skin 10; Smooth-On, Inc.)
was mixed in equal quantities and degassed under vacuum
for 5min before being injected into the mold using a 1ml
syringe. The silicone was left to cure at room temperature
for a minimum of 4 h before demolding from the external
mold. Once extracted, the helical cores were removed by first
severing the diamond-shaped key from one end and then

twisting to unscrew from the actuator body from the opposing
end (Figure 2C, Supplementary Video 1). Using helical cores
reduces the likelihood of inducing damage to the delicate internal
features (or the mold cores themselves) during demolding.

Silicone caps were added to either end of the actuator using
the same prepolymer and, once cured, 1mm diameter holes
were punched into the proximal end in line with each chamber.
Three tube-to-tube barbed connectors (2808K101, McMaster-
Carr, USA) were located into each hole to allow reversible
attachment of 1.59mm (1/16”) internal diameter connecting
tubes (Figure 2D) to the actuators. An example resulting PHA
actuator for an α = 0◦ configuration can be seen in Figure 2E.
Typical motion behavior achieved under volumetrically
controlled pneumatic actuation of individual chambers is also
depicted in Figure 3 and in Supplementary Video 1. As seen, the
parallel corrugated chambers of PHAs enable simple fabrication
of single material actuators with effective in-plane bending
performance (>> 180◦) and three-dimensional mobility.

Design Variation
For the current study, dimensional parameters were selected
to produce a < 1 cm diameter design while delivering suitable
structural integrity, alignment, and precision of mold cores.
Variation of the internal chamber volume for a fixed minimum
external wall thickness and overall diameter is possible through
adjustment of the horizontal edge angle (α). This parameter
was therefore selected to examine its effect on the bending
performance of PHA designs. As observed from Table 1, α was
chosen to take values from −25 to 50◦ in 25◦ increments.
Schematic representation of these values and the corresponding
thread geometry, mold-core design, and resultant actuator
sectional geometry are shown for each in Figure 4.

Cores were constructed from the addition of the spiraling
feature at fixed pitch h to a central shaft of diameter c. To facilitate
practicable molding, cores were supplemented with an additional
blank length (with no helical feature) of diameter c at both ends.
The length of this feature was adjusted to achieve a consistent
overall length across actuator designs. Diamond-shaped key
elements were added to either end of each insert to mate
cores with the external mold while ensuring correct orientation,
spacing and vertical alignment, as shown in Figure 2A. The
resultant PHAs, produced from the parameters inTable 1, deliver
overall diameters of 9.54mm and overall lengths of 50 mm.

KINEMATIC MODEL

Actuation of PHAs is achieved through inflation of the helical
chambers, with the center of each being located at a distance
g from the central axis of the actuator, as shown in Figure 1B.
The negative of the core’s helical features imprints a spiral of
material that runs through each chamber, reinforcing the outer
wall and connecting it continuously to the central column of the
actuator. It is this feature that, as with fiber-reinforced actuators
(Bishop-Moser and Kota, 2015; Connolly et al., 2015, 2017;
Polygerinos et al., 2015), acts to constrain expansion radially and
thus preferentially promotes elongation of each chamber with
applied pressure.
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FIGURE 2 | Fabrication steps for producing a three-chamber PHA, showing (A) assembly of helical cores and external mold components; including diamond shaped

alignment features, (B) injection of silicone prepolymer into the assembled mold, (C) “unscrewing” of helical cores after curing, (D) sealing and attachment of tubing,

and (E) an example final produced actuator.

FIGURE 3 | A three-chambered actuator design cast using parallel cores with helical features, showing: (A–D) single chamber actuation under varied input volume;

and (E–G) individual chamber actuation and associated target bending plane direction.
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FIGURE 4 | Geometric variation of mold-core thread horizontal edge angle α and corresponding core design and internal cavity of the resultant actuator for α values

of (A) −25◦, (B) 0◦, (C) +25◦, (D) +50◦, units in mm unless otherwise stated.

Assuming idealized chamber behavior of this nature allows
kinematic relationships between the actuator’s base frame and
tip frame to be derived using the constant curvature approach
(Webster and Jones, 2010). For the forward case, the ultimate
goal is to have a direct mapping of the inputs to PHA and the
position and orientation of the PHA’s tip. This typically relies
on use of an intermediate configuration space (Simaan et al.,
2009;Webster and Jones, 2010), which for the constant curvature
assumption, completely describes a circular arc (representing the
PHA centerline) using three parameters: bending angle θ , angle
of the bending plane ϕ, and the arc length l, as depicted in
Figure 5. Two mappings may then be used to describe transition
to and from the configuration space, thus completing the forward
kinematic chain.

The mapping from configuration space to tip pose (position
and orientation in task space) is actuator independent (Webster
and Jones, 2010), and may be presented as the homogeneous
transformation T from the base frame to any frame along the
centerline s, where s ∈ [0, l] and θ = κs as:

T =









cos ϕ cos κs − sin ϕ cos ϕ (1− cos κs) cosϕ(1−cos κs
κ

sinϕ cos κs cos φ sinφ sin κs sinφ(1−cos κs)
κ

− sin κs 0 cos κs sin κs
κ

0 0 0 1









(3)

where κ is the curvature associated with radius of curvature r
as κ = 1/r. In order to describe the pose of the actuator
as a function of the chamber inputs, a device-specific mapping
from actuation inputs to configuration space is required. When
considering the inputs as the chamber lengths directly, this can

be described based on the chamber’s geometry relative to the
actuator’s centerline. Specifically, the centerline length l can be
related to the individual chamber length as:

l = li + θg cosϕi (4)

where li represents the length of chamber i (i ∈ [1, 2, 3]), g is the
distance from the chamber center to the center of the actuator
(equal for all chambers), and ϕi the angle between the bending
plane and chamber i. For the specific case shown in Figure 5,
Chambers 1, 2, and 3 (C1, C2, andC3) are located at angles of 180,
60, and 300 measured counterclockwise from the x-axis around
the z-axis, respectively, resulting in ϕi values of ϕ1 = 180 − ϕ,
ϕ2 = 60− ϕ, and ϕ3 = 300− ϕ. Consequently,

∑3
i=1 cosϕi = 0

which when combined with Equation (4) leads to:

l =
l1 + l2 + l3

3
(5)

As detailed byWebster and Jones (2010), expressions may also be
developed for determining the bending plane ϕ and the curvature
κ , as shown in Equation (6) and (7), respectively.

ϕ = tan−1

(√
3(l2 + l3 − 2l1)

3(l2 − l3)

)

(6)

κ =
2
√

l21 + l22 + l23 − l1l2 − l1l3 − l2l3

g(l1 + l2 + l3)
(7)

For the presented device-specific mapping, this only extends to
the consideration of chamber lengths, which may be used only
directly to describe the actuator kinematics when the inputs
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FIGURE 5 | Depiction of bending kinematics for PHAs, showing PHA

representation as a circular arc in configuration space (described by bending

angle θ , angle of the bending plane ϕ, and the arc length l. Chamber spacing

identified within the presented section view, as used in developing the

actuator-specific mapping.

to the chambers are considered proportional to their length
(Suzumori et al., 1991b; Abidi et al., 2018). PHA elongation is
achieved through the development of appreciable strain within
the thin walled regions of the external face (Figure 3A) and,
as such, the elongation is subject to the non-linear stress-strain
relationship associated with the elastomeric material (Moseley
et al., 2016). Additionally, the actuation presented is achieved
through pneumatic volumetric control that introduces the
influence of air compressibility into the system. In combination,
these aspects render a directly proportional input-to-elongation
assumption invalid for the PHA. Alternatively, we propose that
the chamber length be described as a function of the chamber i
input volumes vi, as:

li = f (vi).

Rearranging Equation (4), assuming an invariant centerline
length l, and considering uniaxial bending cases only, i.e.,
cosφi = −1, gives:

li(vi) = l+ θ(vi)g
∗ (8)

As g represents the distance from the centerline of the PHA to the
chamber center under the assumption of no radial deformation,
it represents a potential source of error within the kinematic
model. To account for this, a new variable, g∗, is introduced in
Equation (8), which represents an approximation of the mean
distance from PHA centerline to chamber centers over the full
actuation range.

With the chamber lengths li described as a function of the
input volume vi, Equations (3–6) may be used to describe the
forward kinematics for the PHA. However, due to the helical
shape of the chamber walls, an additional twist factor must
be accounted for in the kinematic model. This may be simply
applied as an additional rotation around the base z-axis by an
angle ϕ∗, as

TPHA =









cosϕ∗ − sinϕ∗ 0 0
sinϕ∗ cosϕ∗ 0 0
0 0 1 0
0 0 0 1









T (9)

where TPHA represents the transformation specific to the
PHA design. As the presented kinematic model is based on
the constant-curvature assumption, we first experimentally
investigate its suitability when applied to PHAs. Subsequently,
we present strategies for determination of a bending-volume
function and rotation offset ϕ∗.

EXPERIMENTAL EVALUATION

Once fabricated, the single chamber bending performance of
the four PHA design variations presented in Figure 4 was
evaluated for comparison under volumetric control. Based on
the superior bending performance demonstrated for the PHA
with α = 0, further investigation of this design was performed
to determine suitability of the constant curvature model and
to calibrate the chamber length functions for application in
a full 3D kinematic model. Furthermore, open-loop bending
performance was assessed across a range of speed (volume
rates) and control scenarios. Coupled multi-chamber control
was subsequently performed to understand the achievable 3D
workspace and for comparison with the kinematicmodel. Finally,
the carrying capability of the design was subsequently assessed
through investigation of the impact of tip loading on the
achievable workspace.

Uniaxial Characterization
Primary evaluation of actuation performance was conducted by
supplying air to each of the three chambers independently, while
monitoring the position and orientation of the actuator tip.
Bending tests were performed independently under volumetric
control, using an experimental setup as illustrated in Figure 6.
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FIGURE 6 | Experimental setup used for bending and workspace performance assessment, showing frames Fbm , Fbv , Ft representing measured base, virtual base,

and tip frames, respectively; scale adjusted for clarity.

Each candidate PHA was mounted securely using a custom
3D-printed fixture (Gray Pro; Formlabs, USA) that conforms
to the external geometry of the actuator base. A small hole
(Ø1mm) was punched centrally into the cap of the actuator
and an electromagnetic sensor (Aurora Micro 6DOF Sensor
Tool, NDI, Canada) was inserted into the cavity. Motions of
the tip were subsequently recorded relative to a base frame
sensor (Aurora 6DOF Reference disc, NDI, Canada) using an
electromagnetic tracking system (Aurora Planar 20-20 V2, NDI,
Canada) sampling at 40 Hz.

To control the volume of air delivered to each chamber,
custom syringe driver units were developed based on a lead screw
linear actuator (V-Slot R© NEMA 23 Linear Actuator, Openbuilds,
USA) and laser-cut acrylic components. Stepper motors were
controlled via driver boards (uStepper S-lite, uStepper Aps,
Denmark), embedded software, and digital signal interface
(NI 9401, National Instruments, USA) controlled via software
(LabVIEW, National Instruments, USA). Acrylic components
(5mm thick RS PRO, RS Components, UK) were attached to the
actuation frame and tray to accommodate control of a standard
10ml syringe. The assembled syringe driver units are presented
in Figure 6.

Each syringe displaces 0.153ml.mm−1 and when coupled

to the 400 step.mm−1 linear actuator produces a theoretical

volumetric resolution of 0.38 µl. Initial bending tests were
performed through linear injection of air into the chamber
under test at a rate of 1.6ml.s−1 up to a total volume of

8ml, predetermined to achieve bending angles of >180◦ for
the specific actuator-chamber combinations. The tip position
and orientation of each actuator-chamber combination was
recorded for three repeats along with the chamber pressure;
measured using a pressure transducer (40PC100G2A, Honeywell
International Inc., USA) through a data acquisition board (USB-
6211, National Instruments, USA).

The measured base frame Fbm was translated virtually to
account for the geometric offset at its mounted location relative
to the actuator holder, resulting in a virtual reference frame Fbv
at the base of the actuator. The tip frame Ft was corrected for
misalignment of the inserted electromagnetic sensor at the tip
and oriented to the base frame using:

Qtip (t) = Q∗
tip (t) ∗

(

Q∗
tip(0)

−1 ∗ Qbase (0)
)

where Qtip(t) and Q∗
tip(t) represent the aligned and measured tip

frame quaternions at time t, respectively; Q∗
tip

−1 (0) and Qbase (0)

represent the inverse of the measured tip and base quaternions
at ambient pressure (i.e., t = 0), respectively; and ∗ represents
the quaternion product. The bending angle of the tip θ was
determined through a global rotation of the z vector of the
tip (Ftz(i) = Qtip (i)Ftz(0)Qtip (i)−1) to align closely with the
positive x-axis of the base frame Fbvx, followed by taking its
projection in the x-z plane and determining the angle relative to
the global z-axis.
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FIGURE 7 | Independent chamber actuation testing under volumetric control for varied actuator designs, showing (left) actuator tip position (including x-y plane view

insert), and (right) bending angle θ as a function of applied volume (shaded regions represent the bounding range from three repetitions); design values for α of:

(A,B) −25◦, (C,D) 0◦, (E,F) +25◦, and (G,H) +50◦.
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Figures 7A,C,E,G show the Cartesian coordinates of the tip
frame for each PHA under test, also indicating the achieved
bending planes and bending angles corresponding to each
chamber. Figures 7B,D,F,H show bending angle vs. increasing
and decreasing volume for three repeats of each chamber. It
is evident that for small added volumes, the bending angle
increases moderately and in an approximately linear fashion.
Above bending angles of ∼15◦, a rapid increase in θ occurs
with subsequent addition of air. The identified transition volume
of air and corresponding pressure both increase as the value
of α reduces.

To allow more direct comparison between the internal
geometries tested, the maximum bending angle and peak
pressures have been summarized in Table 2. It is evident that
there is a consistent trend in maximum bending angle and
peak pressure as a function of chamber number. For increasing
chamber number, the maximum angle decreases for all PHAs;
however, for the α = 0 design variability is less prominent,
and the maximum bending angle is highest for each chamber
relative to other designs. In general, the reducing internal volume
associated with a reduction in α results in an increase in peak
chamber pressures.

Chamber Modeling
Utilizing the tip frame transformation T,Equation (3), a
predicted tip position p∗(θ , l,ϕ) may be determined. To
understand the efficacy of the constant-curvature model for
describing the behavior of the PHA’s chambers, a least-squares
optimization approach was taken using the measured tip position
data. The input values of bending angle θ and Cartesian position
p were used along with the Levenburg–Marquardt method
(Moré, 1978) to minimize the sum of the squares of the
deviations S(β), where:

S (β) = argminβ

∑m

j=1

[

pj − p∗j (θj,β)
]2

. (10)

In this case pj and p∗j represent the measured and predicted

tip positions at measurement point j, respectively, and β the
vector of the optimization variables arc length l and bending
plane ϕ. Model fitting was repeated with an increasing range of
θ values, up to the maximum recorded bending angle, i.e., m ∈
[1,m(θmax)]. Figure 8 shows the achieved constant curvature
fit in cylindrical coordinates as determined from the full range
of bending angles (i.e., m = m(θmax). It is evident that the
constant curvature approximation at maximum bending yields
strong conformation with measured data. To assess performance
as a function of bending, the Root Mean Square (RMS) error
between themeasured andmodeled tip position for fitting results,
determined as a function of the bending angle, is overlaid as
a color map onto the model fit for each chamber in Figure 8,
showing a maximum deviation of 2mm within Chamber 1 at
maximum bending angle.

Fitting in accordance with Equation (10) also allows optimal
identification of the plane of bending ϕ and effective arc length
l. Table 3 presents the average (mean ± SD) values from
the optimization for both parameters and for each chamber,
indicating small variability in arc length with volume in all cases,

TABLE 2 | Comparison of mean ± SD (n = 3) values for varied PHA internal

geometry.

Thread horizontal

edge angle, α (◦)

Chamber no. Max θ (◦) Peak pressure

(kPa)

−25 1 222 ± 0.6 75.6 ± 1.4

2 202 ± 1.8 82.0 ± 3.2

3 176 ± 0.9 87.1 ± 2.4

0 1 227 ± 0.9 62.5 ± 2.5

2 222 ± 1.7 62.6 ± 2.2

3 204 ± 0.7 64.3 ± 2.3

25 1 209 ± 1.3 65.4 ± 2.2

2 202 ± 0.3 69.9 ± 1.9

3 168 ± 0.8 73.7 ± 1.8

50 1 210 ± 0.5 47.6 ± 0.3

2 191 ± 0.1 51.3 ± 0.3

3 181 ± 0.3 53.5 ± 0.2

thus justifying the assumption of invariant length required for
formulation of Equation (8). In addition, offsets are evident
between chamber positions and their realized bending planes,
although variability is again low. These values may be unitized
in generating suitable approximation of ϕ∗ to be applied in
Equation (9). For the presented 3D model in the following
section, ϕ∗ was taken as the mean bending plane offset across all
chambers (ϕ∗ = 18◦).

To determine suitable relation between bending angle and
volume for Equation (8), data from Figure 7D under positive
volume rate were fit with a two-term Gaussian Model (K = 2), in
the form:

θ =
K
∑

k=1

Ake
−
(

v−Bk
Ek

)2

(11)

where Ak, Bk, and Ek represent function coefficients for the
Gaussian term k. Table 3 presents the determined model
coefficients for the three chambers including the model fitting
accuracy, R-squared (R2). The applied model of Equation (11),
although generic, captures the volumetric dependence of the
bending angle to a high degree of accuracy for all chambers.

Open-Loop Performance
To further understand PHA performance under representative
conditions, additional individual chamber testing was
conducted. Specifically, the influence of volume-rate on
bending performance was first assessed through inflation of each
chamber up to and down from 7ml for 5 repeats at volume-rates
of 0.1, 0.5, 1.0, and 1.5ml.s−1. The resultant 5 bending angle
vs. volume loops for each condition are shown in Figure 9A.
It is evident that a high level of repeatability is present for all
test conditions, and an increased volume rate leads to greater
hysteresis in the chamber response.

To determine the influence of this behavior on PHA bending
under open-loop conditions, a set of demand volumes were
selected to correspond to bending angles from 0 to 180◦ in 10◦
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FIGURE 8 | Constant curvature model fitting performance for an α = 0 actuator for (A) Chamber 1 (C1), (B) Chamber 2 (C2), and (C) Chamber 3 (C3); grayscale

model fit color maps represent the RSME for the fit as a function of bending angle θ ; dashed lines show modeled shape for 0, 45, 90, 135, 180◦, and maximum

bending angle.

TABLE 3 | Model fit parameters for bending angle-volume relation for three PHA chambers.

Chamber no. l (mm) Mean ± SD ϕ (◦) Mean ± SD A1 B1 E1 A2 B2 E2 R2

1 49.9 ± 2.8 −14.5 ± 4.5 4.10 8.82 3.45 0.415 5.45 1.08 > 0.99

2 50.0 ± 0.9 231.2 ± 3.7 4.13 9.71 3.86 0.424 6.03 1.50 > 0.99

3 48.3 ± 2.4 116.5 ± 4.5 4.38 7.69 2.81 −0.960 7.01 1.28 > 0.99

FIGURE 9 | Independent chamber actuation testing for varied volume rates (0.1, 0.5, 1, 1.5ml.s−1); showing (A) bending-volume response for each

chamber-volume-rate combination (arrows denote volume-rate direction), (B) mean open loop performance (five repeats) for tests at 1.5 mls−1 under control

conditions of (i) sequential quasi-static, (ii) random quasi-static, and (iii) random with minimal (100ms) delay (diagonal black line representing ideal linear open-loop

performance), (C) the associate variability (standard deviation), and (D) summary of mean errors across all angles for each volume-rate and control condition

(5 repeats).
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increments angles; specifically associated with the 0.1ml.s−1 test
case under increasing volume. These demand angles were then
supplied to the drive system using three different open-loop
conditions: (i) sequential quasi-static, constituting a sequentially
increasing demand angle with a 5-s hold at each prior to
recording the bending angle; (ii) random quasi-static, same
conditions as in (i) with demand angles in a random input
order; and (iii) random dynamic, same demand sequence as
in (ii) with a minimal delay between angles (100ms). For
each chamber, volume rate, and control mode configuration, 5
repeats were performed. Figure 9B shows an example measured
angle vs. demand angle for the fastest volume rate (1.5ml.s−1,
representing the worst case volume rate condition) under the
three control conditions, the diagonal line illustrating the ideal
open loop response. The corresponding variability (standard
deviation) for this test is presented in Figure 9C. In combination,
it is apparent that quasi-static conditions—i.e., (i) and (ii)—offer
improved performance with respect to minimal delay between
demand angles, i.e., (iii). Figure 9D summarizes the mean errors
across all angles under each chamber and test condition, further
illustrating the improvement with quasi-static conditions and, to
a lesser extent, slower volume rates.

Multiaxial Characterization
Multi-axial testing was performed to understand the 3D
workspace of the PHA under combined chamber actuation.
Based on a linear three-chambered system (i.e., an actuator where
chamber lengths are direct inputs from the external actuation
system), control inputs of phase-separated sine waves with a
phase separation of 120◦ should produce a rotation around the
base frame z-axis, i.e., cyclic variation of ϕ and a constant bending
angle dependent on the amplitude of the sine wave. This input
signal, as shown in Figure 10A, was therefore set as a drive input
for the PHA. An offset and amplitude were set for independent
tests at maximum chamber volumes ranigng from 0.5 to 7.0ml
in 0.5ml increments. The experimental setup shown in Figure 6

was used for testing, with each cycle being discretized into 60
steps, and a total of 3 cycles were performed at each volume
(180 data points total). Each chamber-volume combination was
employed as a discrete control input to the syringe drivers, and a
settling time of 2 s was allowed prior to recording the associated
tip pose, representing a quasi-static situation comparable to
control case (ii) detailed above.

The resulting tip positions for each volumetric test are
presented in Figures 10B–D. The traces indicate that increasing
the maximum chamber volume results in a greater mean
bending angle. However, the chamber-dependent length-volume
properties are also evident, resulting in asymmetrical motion.
Furthermore, with continued actuation a slight drift inward
(toward the non-actuated tip position) occurs (a maximum tip
deviation of 3.3mm across all cases was determined), resulting
from air losses within the system.

Chamber modeling, as presented in the previous section,
was employed to convert actuator space sinusoidal drive signals
into the equivalent chamber lengths using Equation (8) in
conjunction with model coefficients determined in Table 3.
The resulting, normalized chamber length variations for the

maximum volume test at 7.0ml are shown in Figure 10E. It is
apparent that the non-linear input volume to chamber length
relation and chamber variability impart a large influence on
the effective chamber lengths seen during equal amplitude (of
actuator drive) actuation. Through assessment of the absolute
error between measured (for cycle 1 only) and modeled data
points, an optimal value of g∗ was determined to be 3.5.
As detailed previously, this is considered as a correction
to relax the assumption of an invariant distance between
the effective chamber center and the actuator’s central axis;
necessary to account for small levels of radial expansion.
With the selected model parameters, the 3D workspace
prediction for the same experimental test condition is as shown
in Figures 10F–H.

The model shows a high level of agreement with the measured
data, capturing the workspace and chamber biases. To evaluate
the model performance quantitatively, the RMS tip error was
evaluated for each peak volume test along with its variability
(Table 4). Across all volumes tested, a mean RMS tip error of
4.1mm was determined. It is evident that with increased peak
volumes the variability increases as a result of the larger range of
effective bending angles during each cycle.

Influence of Tip Loading
Loading of the PHA design may be required for carrying
addition functional components (e.g., an endoscopic camera or
surgical tool); serially stacking PHAs for increased DoFs, or
manipulating payloads. To evaluate the change in performance
of the PHA when loaded, workspace characterization tests
were conducted with the inclusion of increasing tip loads.
Masses of 2.5, 5, and 7.5 g were formed from putty adhesive
(Blu-Tack, Bostik, USA) into even cylindrical geometries and
attached to the proximal end of the PHA in the non-
actuating region; masses selected represent ∼1-, 2-, and 3-
times bodyweight, respectively (actual bodyweight of tested
PHA was 2.47 g). Characterization was subsequently performed
using the experimental setup presented in Figure 6, with input
volumes of 7ml maximum in the relative sequence presented in
Figure 10A. The determined workspaces from the loads tested
are shown in Figure 11A and within Supplementary Video 2.
It is evident that the increased load reduces the bending
achieved for the same volume, as can be seen on the
overlay comparison in Figure 11B. However, the achievable
workspace follows a similar form as in the unloaded case and
maintains adequate 3D coverage, even at the largest load tested,
suggesting suitability of PHAs for loaded applications up to
3-times bodyweight.

DISCUSSION

The bending performance formonolithic designs, (e.g., Suzumori
et al., 1997; Cianchetti et al., 2013; Yahya et al., 2014), is
typically limited, suffering from ballooning effects resulting in
large radial expansion and an associated reduction in achievable
bending angles. To overcome these limitations, designs often
incorporate constraining mechanisms through the joining of
multiple materials; either circumferentially (Suzumori et al.,
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FIGURE 10 | Workspace characterization of an α = 0 PHA under sinusoidal volumetric input of the form (A); showing 3D tip position under three cycles for peak

volumes ranging from 0.5 to 7.0ml (B), with planar views in (C,D); and equivalent model predicted chamber lengths (E) and corresponding modeled tip positions

under the same actuation inputs in 3D (F), and planar views (G,H). Black dots indicate starting positions for successive maximum volume tests; with cycles

progressing in a clock-wise direction with respect to the x-y plot.

TABLE 4 | Root Mean Square tip error (Mean ± SD) for 3D model vs measured data recorded across volumetric range from 0.5 to 7.0ml.

Peak supplied volume (ml)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

4.57 ±
0.01

4.54 ±
0.04

4.41 ±
0.10

4.21 ±
0.15

4.00 ±
0.24

3.67 ±
0.38

3.26 ±
0.57

2.91 ±
0.84

3.09 ±
1.45

4.00 ±
2.20

4.60 ±
2.50

4.35 ±
2.55

4.51 ±
2.84

5.26 ±
3.68

1991a; Cianchetti et al., 2013; Yahya et al., 2014; Yan et al., 2016;
Abidi et al., 2018) or axially (Martinez et al., 2013). However,
to realize these designs a discontinuity in material properties

is necessary, the integrity of which depends on the bonding
compatibility and strength between the dissimilar materials,
and the inclusion of which can drastically increase fabrication
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FIGURE 11 | Workspace characterization of an α = 0 PHA under sinusoidal

volumetric input of maximum 7ml and varied tip loads showing (A) the 3D tip

motion data and (B) overlays of PHA with varied tip loads when bending in the

x-z plane.

complexity. In this article we avoid discontinuities and present a
concept, fabrication method, and kinematic modeling approach
for multi-chamber monolithic soft actuators based on parallel
alignment of helical cores. The use of helical cores has the benefits
of (1) producing wall profiles that restrict radial expansion
and thus promote chamber elongation and actuator bending
and (2) allowing compact layout and removal without damage.
The presented PHAs target a sub 1 cm diameter with three
parallel chambers, and demonstrate the possibility to achieve
large bending angles (> 180◦) that closely conform to a constant
curvature approximation, and the possibility to support loads
up to 3-times bodyweight. The level of bending and the 3D
workspace achieved are considerable, and is unmatched for
comparable single material designs.

The high number of design variables (Table 1) coupled with
the range of possible fabrication materials presents significant
opportunity for customization. We present design augmentation
in terms of helix fin angle α which introduces varied chamber
volumes for consistent external dimensions, resulting in varied
volume-, and pressure-bending angle responses. A distinction
associated with the use of a helical core profile (vs. a constant
cross-section core) is the introduction of torsional effects. For
the presented PHA designs, this presents a rotation of bending
planes with respect to chamber locations, and a chamber specific
volume-bending response. For the former, this effect is limited
by the solid central axis of the PHA produced using separated
helical cores, which acts to increase the torsional stiffness of the
actuator. Adequate mitigation in this case has been proposed
through a simple rotational offset, although this may be further
extended to be volume- and chamber-specific as required.
With more drastic modification of PHA design parameters, for
example, reducing material stiffness; increasing helix pitch, fin
width, or length; or more closely aligning cores may exaggerate
torsional effects. This property can be used to good effect, for
example, to improve grasping performance (Hu et al., 2018; Hu
and Alici, 2019); however, it would require adaptation of the
presented modeling approach to accommodate this behavior.
The second effect of using a helical core design is a consistent
trend between chamber number and bending angle at maximum
volume (Table 2). It is proposed that this is a result of the use
of identical threaded cores aligned in equal axial rotation. This
condition alters the effective area of thin walled regions along
the external face of each chamber and therefore its elongation
as a function of input volume. However, using the chamber
modeling approach presented, volume-length relationships were
determined for each chamber thereby accounting for this factor
along with the influence of non-linear elastic properties and
air compressibility.

Testing presented in Figure 9 demonstrates the influence
of volume-rate on bending performance, as well as its
effect on open-loop angle control for varied actuation
strategies. This highlights a limitation in using pneumatic
volumetric control as an appreciable volume-rate dependence.
However, for quasi-static conditions close adherence to
an ideal linear open-loop system is evident, with mean
angle errors remaining below 8◦ with high repeatability
(SD > 2◦), making this a suitable approach for certain
applications under open-loop control, while highlighting
the potential for improvement with a closed-loop pressure
control implementation.

Applying individual chamber models to the 3D case and
utilizing the constant curvature assumption, generates a
quasi-static approximation of the PHA’s 3D motion with a
maximum RMS tip error of 5.26mm. This maximum error
approximates the PHA radius, and as such may support
open-loop control application where this level of accuracy is
acceptable and disturbance is minimal. Importantly, repeatability
under cycled actuation remains higher (maximum of 3.3mm
across all cases), indicating that the dynamic effects, which
are not considered in the model, do not greatly influence
undisturbed quasi-static conditions, something notable
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from individual chamber testing in Figure 9. This chamber
characterization and modeling approach may also be applied
to alternative designs where consideration of the non-linear
chamber length response during pressure/volume actuation
is appreciable.

For the case presented, pneumatic volume control was
employed to deliver stable actuator positions. Direct pressure
control is problematic in this case due to the highly non-
linear pressure-volume response introduced by the high strain
levels of the body elastomer. This means that small pressure
changes can result in large volume changes (and resultant
bending), leading to risk of over inflation (ballooning), and
even rupture. Preforming volume control with air introduces
undesirable compressibility effects which require mitigation
(e.g., through the use of the presented model characterization
approach). For more practical implementation of PHAs
direct pressure control is desirable; however, it necessitates
the implementation of safety considerations and should
be ideally employed under closed-loop control. This may
be achieved through integration of onboard sensing and
may allow, for example, higher accuracy and precision
in tip positioning, contact detection, and autonomous
motion routines.

The load carrying capacity of the presented PHA of three
times bodyweight (7.5 g) (Figure 11 maybe useful for certain
applications at this design scale (e.g., <1 cm diameter). For
example, carrying a lightweight CMOS camera for endoscopic
tip articulation. Furthermore, using an assembly of PHAs to
produce soft robots for grasping or locomotion applications
may enhance carrying capacity. However, beyond this, the use
of stiffer materials, high-output-force, larger designs, and the
inclusion of additional strain limiting elements may be explored
to improve PHA force output. The PHA version presented also
requires a secondary sealing processes at its non-functional
ends due to the entry and exit of the threaded cores. This
is a consequence of the need for precision alignment and
the limited tolerance of the printed parts used. If parallel
alignment of cores may be maintained from a single-ended
constraint (e.g., for larger scale and/or shorter designs or with
improved tolerances of mold parts through better printing
or machining), then the need for secondary sealing can be
avoided, allowing a truly single-step mass-fabrication process to
be realized.

CONCLUSION

The PHA design aims to engender simple, repeatable fabrication
for small scale multi-chambered soft actuators. This generic type
of actuation unit has potential use across many soft-robotic
application areas, e.g., endoscopic devices, soft locomoting
robots, and compact gripper designs. The principle of the
design is compatible with the wide range of elastomeric
and mold materials. Further research may focus on the
scalability of PHAs, taking them in parallel and serially
stacked configurations for increased degrees of freedom, as
well as at larger and smaller diameters. In addition, the

potential for employing more chambers per actuation unit as
well as designing tapered and/or non-parallel implementations
will be investigated to deliver altered bending and torsional
kinematics and improved carrying capacity. Finally, partial
or complete automation of the fabrication processes will be
explored, potentially allowing rapid, high-volume production
of PHAs.
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