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Timothy Patten*†, Kiru Park † and Markus Vincze

Vision for Robotics Laboratory, Automation and Control Institute, TU Wien, Vienna, Austria

This article presents a method for grasping novel objects by learning from experience.

Successful attempts are remembered and then used to guide future grasps such that

more reliable grasping is achieved over time. To transfer the learned experience to

unseen objects, we introduce the dense geometric correspondence matching network

(DGCM-Net). This applies metric learning to encode objects with similar geometry nearby

in feature space. Retrieving relevant experience for an unseen object is thus a nearest

neighbor search with the encoded feature maps. DGCM-Net also reconstructs 3D-3D

correspondences using the view-dependent normalized object coordinate space to

transform grasp configurations from retrieved samples to unseen objects. In comparison

to baseline methods, our approach achieves an equivalent grasp success rate. However,

the baselines are significantly improved when fusing the knowledge from experience with

their grasp proposal strategy. Offline experiments with a grasping dataset highlight the

capability to transfer grasps to new instances as well as to improve success rate over

time from increasing experience. Lastly, by learning task-relevant grasps, our approach

can prioritize grasp configurations that enable the functional use of objects.

Keywords: robotics, object grasping, incremental learning, dense correspondence matching, deep learning,

metric learning, machine vision

1. INTRODUCTION

Grasping is an essential capability for robots in a large variety of fields, from warehouse operations
to industrial assembly lines, applications in agriculture and many domestic service tasks. Grasping
leads to the subsequent manipulation of objects, which is the most direct way for robots to interact
with the world. Especially in human environments, where many man-made objects are designed to
be handled by people, grasping with a robotic gripper or hand is necessary.

A popular approach for robot grasping is to exploit known objects (Klank et al., 2009; Srinivasa
et al., 2010; Chitta et al., 2012a; Tremblay et al., 2018; Wang C. et al., 2019). However, this can only
be applied to a given set of objects and thus does not generalize to new objects, which reduces the
usability for real-world operation. It is possible to grasp unknown objects by learning classifiers,
predictive or generative models (Saxena et al., 2008; Jiang et al., 2011; Fischinger et al., 2015; Lenz
et al., 2015; Redmon and Angelova, 2015; Pinto and Gupta, 2016; Kumra and Kanan, 2017; Wang
et al., 2017; Morrison et al., 2018) but large amounts of labeled data are required and this is time
consuming when it is annotated by hand. The effort for annotating data is eased by restricting it to
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2D grasp poses (i.e., assuming top-down grasps), but this limits
the grasp configurations that are able to be applied. Training data
is often generated without human annotation either offline using
collections of object models (Mahler et al., 2016, 2017) or online
by exploiting real-world robot trials. However, many hundreds
or thousands of hours are required to generate a sufficient
amount of data (Pinto and Gupta, 2016; Jang et al., 2017).
Learning end-to-end strategies for grasping with reinforcement
learning (Boularias et al., 2015; Kalashnikov et al., 2018; Levine
et al., 2018; Zeng et al., 2018a) also suffers from substantial
training time, with some work reporting training times in
the order of months (Levine et al., 2018). While the burden
of learning can be alleviated by leveraging physics-enabled
simulation environments (e.g., James et al., 2017, 2019; Fang
et al., 2018; Iqbal et al., 2019), this introduces the challenge of
transferring from simulation to the real world.

An alternative approach is to transfer grasps for known objects
to familiar objects. This makes the assumption that when a
new object is similar to another object for which a grasp is
known, then the new object is likely to be successfully grasped
in a similar way (Bohg et al., 2014). Prior work on experience-
based grasping build a database of sensory observations with
associated grasp information such as a pose or contact points.
The experience is accumulated by trial and error with a robot
platform (Morales et al., 2004; Herzog et al., 2012; Detry and
Piater, 2013), kinesthetically taught (Kroemer et al., 2012; Detry
et al., 2013; Kopicki et al., 2016), or inferred by directly observing
human behavior (Liu et al., 2019). Grasping an unseen object
requires a strategy to map the current observation to the samples
in the database and execute (or extrapolate from) themost similar
experience. This is typically done using global shape (Morales
et al., 2004; Bohg and Kragic, 2009; Kopicki et al., 2016), local
descriptors (Liu et al., 2019), or object regions (Detry et al.,
2012, 2013; Herzog et al., 2012; Kroemer et al., 2012; Detry and
Piater, 2013). In contrast to end-to-end learning approaches,
experience-based grasping has the potential to learn from very
few exemplars. Only few methods have been demonstrated in an
end-to-end pipeline with a robotic platform and currently they
rely on hand-crafted features for retrieving similar experiences
and for transferring grasps to new objects.

In this work we present a new method for incremental
grasp learning from experience. The key to our approach is
to apply dense geometrical correspondence matching. Familiar
objects are identified through global geometric encoding and
associated grasps are transferred through local correspondence
matching. We introduce the dense geometrical correspondence
matching network (DGCM-Net) that uses metric learning to
encode the global geometry of objects in depth images such that
similar geometries are represented nearby in feature space to
allow accurate retrieval of experience. DGCM-Net additionally
reconstructs dense geometrical correspondences between pairs
of depth images using a variant of normalized object coordinate
(NOC) values. These values are used to compute the rigid
transformation between the local region around the grasp of a
stored experience and the corresponding region on an object in
a new scene. Precise 3D object models are not assumed, thus

we define the view-dependent normalized object coordinates
(VD-NOC) to extend NOC values to single views.

DGCM-Net is applied in an incremental grasp learning
pipeline, in which a robot self-supervises grasp learning from
its own experience. We show that a robot learns to repeatably
grasp the same object after one or two successful experiences
and also to grasp novel objects that have comparable geometry
to a known experience. As an extension, we show that the
predictions from DGCM-Net improve the performance of
baseline grasping methods by combining their quality measures
with our experience-based measure. The incremental learning
pipeline is also flexible in that grasp success is not the
only measure to constitute experience. Specific positions or
configurations of grasps can be preferred and therefore used in
future situations. In particular, semantic grasps, such as grasping
the handle of a mug, are prioritized as they are more relevant
for the subsequent manipulation of the object (Song et al., 2010;
Dang and Allen, 2012; Antonova et al., 2018; Fang et al., 2018).
As a result, task-oriented grasps are quickly learned, allowing a
robot to perform meaningful actions with objects.

Studies with a dataset showcase the ability of the presented
grasp prediction method to transfer between objects. In addition,
our analysis confirms the intuition that the quality of grasp
prediction improves with increasing experience. Real-world
experiments with a mobile manipulator are performed to
compare our grasping strategy against various other approaches.
The experiments show that we achieve a comparable grasp
success rate with the baselines and improve the baselines when
integrating our predictions to achieve superior performance
overall. Demonstrations of the full system show the continuous
learning capability for completely novel objects from classes
never before seen. Finally, the usability of our approach for
semantic or task-oriented grasping is illustrated to grasp objects
with handles.

In summary, this article makes the following contributions:

• The dense geometrical correspondence matching network to
encode object geometry for nearest neighbor retrieval and
to densely reconstruct 3D-3D correspondences in order to
transfer grasps from stored experiences to unseen objects.

• An experience-based 6D grasp learning pipeline that
incrementally grows a database of exemplars to guide grasp
selection for the same object or novel unseen objects.

• Offline experiments with a new annotated dataset showing
the capability of DGCM-Net to transfer grasps to unseen
objects as well as to steadily improve over time with increasing
accumulation of data.

• Online grasping experiments showing that the grasp success
of our approach is competitive with common baselines and
improves the baselines when combining their predictions with
our experience-based grasp predictions.

• Demonstrations showing the extension of our method for
semantic grasping by guiding grasp selection to the parts of
objects that are relevant to the object’s functional use.

The remainder of the paper is organized as follows. Section 2
discusses related work. In section 3, we present the dense
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geometrical correspondence matching network and describe the
incremental grasp learning pipeline. The results of the offline
and robotic experiments are reported in sections 4, 5. Finally,
section 6 concludes and discusses future work.

2. RELATED WORK

The significant amount of attention given to robotic grasping
has resulted in a large number and high diversity of techniques.
A common strategy uses known object instances, which are
provided as CAD models or are captured by a modeling process
(e.g., Prankl et al., 2015;Wang and Hauser, 2019). Given a known
grasp configuration for an object in its local coordinate system,
the task of grasping is simplified to estimating the pose of the
object such that the grasp pose is transformed into the new scene.
Traditional methods identify hand-crafted features to localize
an object model within a scene (Klank et al., 2009; Srinivasa
et al., 2010; Chitta et al., 2012a) but more recently advances
for pose estimation have been made by the application of deep
learning (Xiang et al., 2018; Li et al., 2019; Park et al., 2019b;
Zakharov et al., 2019) and grasping pipelines achieve high success
rate (Tremblay et al., 2018; Wang C. et al., 2019). The main
limitation of this direction of research, however, is the closed-
world assumption. The approach is restricted to only the objects
for which a model is provided and thus cannot generalize to
unknown objects.

To address the problem of grasping unknown objects, local
geometry can serve as a strong cue. For example, fitting primitives
and estimating grasps based on the geometrical structure of
the primitives (Rusu et al., 2009) or fitting superquadratics
and synthesizing grasp poses at the points of minimum
curvature (Makhal et al., 2018) have been shown to work in
certain cases. More often though, unknown object grasping is
addressed by learning from data (Bohg et al., 2014). Along this
line, methods predict the success of a proposed grasp by training
a traditional classifier (Jiang et al., 2011; Fischinger et al., 2015)
or deep neural network (Saxena et al., 2008; Lenz et al., 2015;
Redmon and Angelova, 2015; Pinto and Gupta, 2016; Kumra and
Kanan, 2017; Wang et al., 2017). Alternatively, grasp simulation
or analytical grasp metrics are computed for objects in model
databases to generate training data (Johns et al., 2016; Mahler
et al., 2016, 2017; ten Pas et al., 2017; Cai et al., 2019; Liang
et al., 2019; Mousavian et al., 2019). The task is then to learn
a model that can predict the value of the grasp metric given
a proposal and then select the grasp that is most likely to
succeed. There is also work that avoids the sampling and scoring
procedure by directly predicting a grasp pose with a quality
measure (Morrison et al., 2018). The generative method has
proven to be computationally superior and sufficiently fast to be
integrated in a closed-loop system. While the work for unknown
object grasping has made considerable achievements, they are
limited by the diversity of the training data. Out of distribution
objects may not receive accurate grasp quality predictions and
may fail. Thus, it is necessary to continuously learn and add
new examples to the training set. Unfortunately, the deep neural
networks that are applied do not have the capacity to be updated

online. Our approach, on the other hand, does not need to retrain
for grasp prediction. By abstracting the learning component
to correspondence matching, we simply add experience to a
database and use the network to predict the closest matches for
grasp transfer.

Another approach to grasping is to leverage real robot
experience and learn end-to-end strategies. One direction
is to employ reinforcement learning (Boularias et al., 2015;
Kalashnikov et al., 2018; Levine et al., 2018; Zeng et al., 2018a).
The advantage of an end-to-end approach is that complete
grasping policies can be learned directly from visual input,
which removes the need for a dedicated perception pipeline with
an additional motion planner for execution. A disadvantage,
however, is that the policies can only be applied to scenarios
that are perceptually similar, and thus generalization to novel
environments is limited. Unsupervised methods, such as Jang
et al. (2018), better generalize to unseen scenarios and objects.
They are more general to the task and less sensitive to the training
scenes. These methods learn an embedding that can be used to
retrieve manipulation policies for online execution. Despite these
advances, the major drawback of both self- and unsupervised
learning is that many attempts are needed for training. Our
approach, in contrast, only needs a handful of experiences to
reliably repeat past successes. Although physics simulation is now
a popular alternative for training learning algorithms, the transfer
from simulation to the real world requires additional attention
(James et al., 2017, 2019; Fang et al., 2018; Iqbal et al., 2019).

Experience-based grasping is much more efficient than
reinforcement learning methods since far fewer examples are
needed to learn grasps. The common approach is to accumulate
samples of past success or failure to guide the grasp selection
in new scenarios, under the assumption that objects with
similar shape (or appearance) can be grasped in a similar
way. Some work define global shape descriptors and train
a discriminative classifier to identify the similarity between
object shapes to transfer grasps to familiar objects (Morales
et al., 2004; Bohg and Kragic, 2009; Kopicki et al., 2016).
Other work leverage local feature descriptors to identify the
relevant local regions associated with contact points to transfer
grasps between objects within the same class (Liu et al., 2019).
Another approach is to analyze object regions and to maintain
a library of prototypical grasps for recurring object parts. This
is accomplished by measuring the similarity between regions
on the surface of objects such as with height maps (Herzog
et al., 2012) or by surface distributions or densities (Detry
et al., 2012, 2013; Kroemer et al., 2012; Detry and Piater,
2013). A major assumption is that the observed parts are
equivalent, which means grasp transfer is the application of
a transformation from the prototype to the scene. They do
not deal with the possibility of scale change or deformation.
Such geometry variation would have to be stored as a new
experience. Our approach deals with this challenge by aligning
shapes through dense 3D-3D correspondences and thus also
modifies the shape of the grasp to fit the new geometry.
Another drawback of prior work is that they use hand-crafted
features to encode shape information. We instead generate
descriptive features through metric learning, which has been
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shown to be powerful for similar geometric matching tasks
(Zeng et al., 2017).

Our approach for grasping relies on first finding the nearest
observation in a database and second predicting dense geometric
correspondences to transform a successful grasp pose to a new
observation. Retrieving similar samples has been addressed using
learned feature descriptors from RGB-D images (Wohlhart and
Lepetit, 2015; Balntas et al., 2017; Park et al., 2019a). These
employ the triplet loss to train a network to produce smaller
feature distances for pairs of images with similar viewpoints
while producing larger feature distances for pairs of images
with different viewpoints or those that contain different object
classes. However, retrieving a similar viewpoint is insufficient
when samples do not cover the entire object pose or when
target objects are not constrained to a fixed set of a classes. This
motivates our method that predicts geometric correspondences
between images to match local areas regardless of different
scales or detailed shapes. A simple approach is to encode and
match local feature descriptors that represent local shapes in
3D point clouds or depth images (Zeng et al., 2017; Zeng
et al., 2018b). Leveraging this idea, determining pixel-wise
correspondences has been demonstrated in a pipeline to predict
local correspondences or key-points while considering the global
contexts of objects (Florence et al., 2018; Manuelli et al., 2019).
The task of this line of research is to find the corresponding points
between an input and a known reference object, therefore, they
are not applicable when the reference image has to be selected
from various objects and viewpoints based only on global shape.

In order to make this extension, we employ the normalized
object coordinate space that has been used to estimate the
6D pose of instances (Li et al., 2019; Park et al., 2019b) and
classes (Wang H. et al., 2019). Since NOC values represent
coordinate values in the object’s local frame and correspondences
between the object model and the scene, predicting NOC values
is sufficient for computing the transformation between local
points from one observation to another. However, it is difficult
to define NOC values without knowing the full 3D shape of an
object or a common representation for a class. For our work, it
is necessary to predict dense correspondences between pairs of
images that have similar geometry. To that end, we represent
NOC values in the reference frame of the camera viewpoint
instead of the object. This alteration to the NOC representation is
referred to as the view-dependent normalized object coordinate
space. The prediction of VD-NOC values is used to compute the
transformation of local areas that are relevant for grasps in order
to transform stored grasp poses to the object in the input image.

3. METHODS

This section describes our methodology for incremental
experience-based grasp learning. We begin with an overview
of the framework. We then describe the dense geometrical
correspondence matching network for retrieving experience
samples and for generating dense 3D-3D correspondences.
Lastly, we outline how grasps are transferred between local
regions using the predicted correspondences.

3.1. Incremental Grasp Learning
Framework
Themain components of the incremental experience-based grasp
learning framework are shown in Figure 1. The input is a depth
image Di ∈ R

W×H and a segmentation mask Mi ∈ R
W×H

that has entries 1 for pixels belonging to the target object and 0
otherwise. The goal of the framework is to generate a pose for the
gripper that will result in a successful grasp. This is represented
as a rigid transformation T ∈ SE(3) of the gripper pose in the
camera coordinate frame.

The first step is to match the target object to samples stored
in an experience database E . Matching is done using the global
geometric encoding from DGCM-Net, where the feature map
fi of the input image is compared to the feature maps of the
database samples. Feature maps are the output of a geometry
encoder that takes as input a surface normal image derived
from the initial depth image. The set of samples with high
matching score are used to propose a candidate grasp. For each
database match in E , the output of the VD-NOC encoder ce
and the geometry feature encoding fe as well as fi from the
input are passed to the decoder of DGCM-Net to reconstruct
the VD-NOC values Vi ∈ R

W×H×3. This represents a dense
mapping between the pixels of the sample and the input and
thus a transformation of the points in the 3D coordinates can
be computed. Each experience has an associated grasp pose,
therefore, the transformation between the images is applied to
transform the experience grasp to the target object. Sensitivity
to the difference in geometry between the input and sample
is reduced by confining the alignment to the region around
the grasp pose. The region of interest (ROI) on the sample
Re is determined from the overlap of the gripper with the 3D
coordinates of the segmented object in the depth image. The
corresponding ROI on the target objectRi is derived through the
matches between the VD-NOC values. The ROIs are aligned by
finding the optimal rotation and translation. The outcome is a
proposal for a full 6D grasp pose for the target object.

Incremental learning operates by executing a selected grasp
proposal and updating the database online with a new exemplar
if the grasp is successful. Specifically, the depth image, surface
normal image, VD-NOC values, ROI, and transformation of
the grasp pose are stored. Unsuccessful grasp attempts do
not provide any information for replicating past experience,
therefore, no data is stored for failed grasps. As more successful
experience is accumulated, the likelihood of finding a nearby
match for a new input increases. The method is not restricted
to only finding samples of exact object instances, but can match
to new or unseen objects if they have geometry resembling those
from experience.

3.2. Dense Geometrical Correspondence
Matching
3.2.1. View-Dependent Normalized Object

Coordinate Space
Predicting dense correspondences between two depth images
(i.e., the depth image of the object to grasp and an experience in
the database) is done by predicting a variant of NOC values. The
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FIGURE 1 | Overview of storing and retrieving experience with the incremental grasp learning framework.

traditional NOC values represent the correspondence between
the target object and another one in the target object’s local frame.
Typically this has been applied for object pose estimation where
the target object is a reference model and the other object is an
observation of the reference model in a scene.

To apply the same methodology without object models,
we introduce the view-dependent normalized object coordinate
values. The depth images for a reference and an input are
converted to surface normal images. The VD-NOC values for the
input Vi are computed using the 3D coordinates of each pixel
I3Di from the input segmentation mask in the camera coordinate
frame. Normalization is performed by setting the origin to the
mean coordinate between the maximum and minimum values of
I3Di according to,

Vi =
I3Di − I

3D
i

max |I3Di − I
3D
i |

, where Ī3Di =
max(I3Di )+min(I3Di )

2
.

(1)
Normalization is performed separately for each dimension
resulting in different normalization factors for each axis. The
direction of the z-axis is flipped to produce positive values for
points that are nearer.

For grasping, the VD-NOC values are used to estimate the
similarity between points on the target object in the input
image and the points on the object in the experience database.
A smaller distance between values in the VD-NOC values
represents closer geometrical correspondence. These can be used
to estimate the transformation of a set of points in the grasp
pose ROI in order to transfer the grasp experience to the
target object.

3.2.2. DGCM-Net Architecture
An overview of the dense geometric correspondence network is
shown in Figure 2. DGCM-Net consists of a geometry encoder,
VD-NOC encoder, and VD-NOC decoder. The purpose of the
geometry encoder is to learn a representation that places images
with similar geometry closer in feature space than images with
dissimilar geometry. The purpose of the VD-NOC encoder-
decoder is to reconstruct the VD-NOC values between a pair
of images.

The input to the geometry encoder is a cropped surface
normal image derived from the input depth image and
segmentation mask. The cropped image is created from a 2D
bounding box that is centered at the 2D projected point of the
segmentation mask’s centroid. The height and width of the image
are adjusted to correspond to 30 cm spatial size in 3D space. The
cropped image is then resized to 128× 128 pixels. The first three
blocks of the Resnet-50 (He et al., 2016) architecture is employed
and initialized with the pre-trained weights using the ImageNet
dataset (Deng et al., 2009). The output of the third block is passed
to three convolution layers, kernel sizes = [3, 3, 2] and filter sizes
= [256, 256, 128] with strides 2 for all, and two fully connected
layers with 256 outputs. The LeakyReLU activation is applied to
every layer output except the last layer that uses the tanh as an
activation to transform feature descriptors to 256 dimensions.

The input to the VD-NOC encoder is a cropped VD-NOC
image. The input is passed to five convolution layers, kernel sizes
= [5, 3, 3, 3, 3] and filter sizes = [128, 256, 256, 256, 256] with
strides 2 for all, and one fully connected layer with 256 outputs.
The activation of each layer is the same for the geometry encoder.
The VD-NOC decoder reconstructs the VD-NOC values for the
input image with respect to the camera frame. The input to
the decoder is the concatenated features from both geometry
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FIGURE 2 | Overview of the DGCM-Net architecture and training objectives.

encodings of the images and the output of the VD-NOC encoder
for the reference. Skip connections (Ronneberger et al., 2015) are
added by concatenating one half of the output channels of each
intermediate layer of the encoders with corresponding layers in
the decoder. This helps to predict fine details in local areas. The
decoder ends with a fully connected layer with 2,048 outputs
followed by five blocks of deconvolution and convolution layers.
The output of the last convolution layer is the same size as the
input image with three channels that represent the x, y, and z
components of the VD-NOC values.

3.2.3. Training Objective
DGCM-Net has two tasks and therefore consists of two objectives
in the training process. The first is the metric learning of
feature descriptors to perform matching and the second is for
reconstructing the VD-NOC values of an input image. For metric
learning, the contrastive loss (Hadsell et al., 2006) is employed
to minimize the Euclidean distance between features of similar
geometry (a positive pair) while increasing the distance for a pair
of different geometry (a negative pair) as formulated by,

Lmetric =
1

N

N
∑

i=1

(1− ωi)d
2
i + ωimax(10− di, 0)

2, (2)

where ω denotes labels for pairs that are set to 0 for positive
pairs and 1 for negative pairs. d denotes the Euclidean distance
between encoded feature vectors (fi, fe ∈ R

256) of the target
and experience images from the geometry encoder. The loss
is computed for a mini-batch that consists of N pairs of
training images.

For the reconstruction of VD-NOC values, the standard L1
loss is applied for each pixel p. Since background pixels are
masked out, their values are easy to predict. Hence, the loss values
for pixels on the object masks Mi ∈ R

W×H are weighted by a

factor of 3 to more precisely predict the values of pixels in the
object masks (Park et al., 2019b). The reconstruction loss is thus
given by,

L3D =
1

N ×W ×H

N
∑

i=1



3
∑

p∈Mi

||V
p
i − V

p
gt||1

+
∑

p/∈Mi

||V
p
i − V

p
gt||1



 . (3)

The reconstruction loss is computed only if the pair of samples is
positive. Finally, the objective of the training is the weighted sum
of two loss functions,

L = Lmetric + λL3D, (4)

where λ is a weight balancing the two objectives. We set λ to 1 in
our experiments.

3.2.4. Training Using Synthetic Images
Synthetic depth images are created to train the network. 3D
models are sampled such that no two models are the same
even after a scale change1. Objects are selected from the YCB
object and model set (Calli et al., 2017) and listed in Figure 3

(left). Depth images are rendered in OpenGL2 for each object
model by uniformly sampling a pose and randomly selecting
scale factors for each axis. Five scenes are rendered with different
scales for each sampled object pose. To avoid ambiguous views
of symmetric objects, view angles are limited between 0 and 45
degrees on each axis. For cylindrical objects, no variation around

1The set of 3D models only contains one box because any other box can be

constructed just by manipulating the scale in the different dimensions.
2https://www.opengl.org
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FIGURE 3 | (Left) Object models from the YCB dataset used to train DGCM-Net. (Middle) Examples of positive pairs with online augmentation, Gaussian noise and

partial occlusion. (Right) Examples of negative pairs. The pairs are used to train feature vectors to have smaller distance for similar geometries.

TABLE 1 | Overview of the parameters used to generate the training data and for the online data augmentation.

Stage Data generation Online augmentation

Parameters Scale (each axis) Distance to camera Frac. of occluded region Gaussian noise

Range U (0.8, 1.5) U (1m, 1.7m) U (0.0, 0.25) N (µ = 0,σ = 0.01)

the rotational axis is applied. Parameters used in the generation
process are summarized in Table 1. The result for every training
sample is a depth image, VD-NOC image, annotated pose,
annotated scale factors for each dimension and a look-up table
of visible vertices. Approximately 166 k images are created and
used for training.

Metric learning requires positive and negative pairs. Positive
pairs are obtained from samples of the same object in different
poses when a pair of images share more than half of the visible
vertices. Negative pairs are obtained from different objects or
different poses of the same object when images share less than
half of the visible vertices. Examples of training samples of both
types are given in Figure 3 (middle and right). For positive
pairs, the target VD-NOC values (i.e., the ground truth value) is
computed using the relative pose of the object, which is known
for the training samples. Thus, the VD-NOC values that are
defined in the camera frame of the first element of the pair are
transformed to the camera frame of the second element. For our
grasping framework, this amounts to transforming the VD-NOC
values from the object in the input image to the object in the
experience database.

Further augmentation is applied to the image samples to
improve robustness against occlusion and noise. Occlusion is
simulated by setting a partial area in the surface normal image
and the corresponding entries in the VD-NOC values to zero
(i.e., the value for the background). This enables the network to
learn features that still return goodmatches between an input and
samples in the database even when one is occluded. Gaussian
noise is also applied to both images to cope with the expected
noise from real sensors. Figure 3 (middle and right) presents
examples after applying the augmentation.More details about the
parameters used for augmentation are provided in Table 1.

We train the network for 35 epochs using the ADAM
optimizer (Kingma and Ba, 2015) while assigning 25 positive
pairs and 25 negative pairs for each batch. The learning rate is
initially set to 0.0001 and divided by a factor of 10 every 5 epochs.
After training the network once, the weights are fixed for all
experiments in this paper without any fine-tuning.

3.3. Generating Grasp Proposals
The overview in Figure 1 shows the process of retrieving and
generating grasps given an input depth image. First, the surface
normal image of the input is encoded to a feature map fi by
the geometry encoder. This is compared to all feature maps
{fe} ∀ e ∈ E to find a set of nearest neighborsNi ⊂ E . The stored
VD-NOC values Ve of a sample e ∈ Ni is loaded to compute
the VD-NOC feature map ce. Given ce, fe, and fi, the decoder
predicts the VD-NOC values of the input depth image Vi;e (VD-
NOC values of Di in the frame of De) as shown in Figure 4. The
ROI of the experience Re is used to compute the corresponding
ROI for the input Ri = {p ∈ Vi :min

e
|p − pe| < θc ∀ pe ∈ Re},

which is the subset of points whose distance to the nearest points
inRe is below a threshold θc. The predicted VD-NOCROI points
is denoted VR

i;e and are defined in the camera frame of De. Each

pixel of VR
i forms a 3D-3D correspondence from the VD-NOC

values VR
i;e and V

R
i;i that are defined in De and Di. Thus, an initial

rotation from the camera frame of the experience to the camera
frame of the input is derived by aligning the ROI VD-NOC
images. The grasp pose Te is then aligned to Di by computing
the rotation that minimizes the summation of distances of the
correspondences given by,

Rinit, tinit = argmin
R,t

∑

Ri

||(RVR
i;e + t)− VR

i;i ||2. (5)
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FIGURE 4 | Overview of the process for generating grasp proposals from the nearest neighbor experience.

The optimized solution for Equation (5) is obtained using
singular value decomposition. The unit of tinit does not
correspond to the scale of the 3D space because the VD-NOC
values are normalized. Therefore, the translation tinit is separately
computed using the difference between the mean coordinates
between the maximum and minimum values of the ROI points
as was applied in Equation (1). The computed rotation and
translation are used to transform all ROI points of the experience
Re to the scene and the alignment is refined by applying the
iterative closest point algorithm. The grasp pose in the experience
Te is transformed to create the grasp proposal Tg by applying
the same refined transformation. Finally, the gripper position is
moved a fixed distance from the object surface by translating
along the approach direction with respect to the closest point in
the input.

Each match in the database has an associated score in the
range [0, 1] that represents that similarity of the depth image to
the input, which is used as a pseudo-measure for the quality of
the grasp. This score is computed as,

S(i, e) = e−||fi−fe||2 . (6)

The final output is a set of grasps G = {(Tg , sg)} where each grasp
proposal is composed of a transformation of the gripper into the
scene Tg as well as a score value sg using Equation (6).

4. OFFLINE EXPERIMENTS

This section analyzes the grasp proposal method with a hand
annotated dataset. Experiments are performed to first investigate
the quality of grasp pose prediction with respect to the size of
the grasp experience database and secondly to evaluate the ability
to transfer grasps between observations of objects within the
same and to different classes. The threshold for matching ROI
correspondences θc is set to 0.3 for all experiments. This value
produces reasonable separation of ROI areas and other parts
of objects. Every stored experience is duplicated with in-plane
rotations at angles between −90 and +90 degrees with a step
size of 45 degrees. This enables grasp transfer to objects in new
poses. Code for DGCM-Net is publicly available at https://rgit.
acin.tuwien.ac.at/v4r/dgcm-net.

4.1. Dataset
A dataset is created to evaluate the quality of grasp prediction
comprising depth images of the objects shown in Figure 5.
These objects are organized into seven classes: can, mug,
cup, bottle, bowl, box, and clamp. Four instances
are used for each class and a number of these instances
are from the YCB object dataset (Calli et al., 2017), while
other instances are objects commonly found in homes. The
dataset is available at https://www.acin.tuwien.ac.at/en/vision-
for-robotics/software-tools/lfed-6d-dataset/.

Recordings are made by placing each object on a small table
and capturing a depth image with an ASUS XTion Pro Live
RGB-D camera. Each object is placed in various poses and
locations, and the camera is moved between two different heights.
The object is segmented in each depth image by detecting the
table surface with RANSAC and selecting all points that remain
above the table plane. The dataset does not require ground truth
segmentation, but instead should be segmented by the same
method that extracts the masks for the input images in order for
the entries in the experience database to best resemble the inputs.

Grasp poses for a parallel-jaw gripper are manually annotated
in the depth images. Each depth image consists of possibly
multiple grasp annotations according to their direction, for
example, from the top or from the side. The full dataset used for
testing consists of depth images, segmentation masks, and grasp
poses for 28 objects.

4.2. Measuring Grasp Pose Quality
Reporting quantitative statistics requires the quality of the
estimated grasp poses to be measured. It is possible to
execute physics simulation and to check for grasp success,
however, to isolate the grasp prediction itself, we measure
the difference in grasp pose for an input with respect to the
annotated pose. The experiments are simplified by selecting
only grasp annotations on the top of the objects when they are
placed in their upright canonical pose. Even though the grasp
proposals are limited to top down, multiple poses are available,
especially for objects that are symmetric or are elongated in
the x or y dimension such that translations of a top-down
grasp are equivalent. Consistency of top-down grasp poses is
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FIGURE 5 | Objects in the dataset used for the offline experiments and to supplement past experience during the online experiment.

ensured by testing with the subset of classes can, mug, cup,
and bottle.

A grasp pose is regarded as correct when the translation error
is less than 5 cm and the rotational error around the x- and y-axes
is less than 15 degrees. A rotation error around the z-axis in the
gripper frame, which is parallel to the rotational axis of an object,
is ignored since it should be a successful grasp regardless of the
rotation with respect to this axis.

4.3. Increasing Experience
The left plot of Figure 6 shows the ratio of correctly estimated
grasp poses with increasing number of experience per instance.
Solid lines show results when only the experience for the relevant
class is considered and the dotted lines show the results when
experience for all classes is considered. For each configuration
(class and number of experience per instance), we perform 10
iterations using randomly selected samples in the iteration. The
results with class specific experience demonstrate that the grasp
poses are often correctly estimated even if only one experience
is included per instance. For the can and bottle classes,
the correct estimation is approximately 90%, while the worst
performing class, cup, achieves 68%. However, as the number
of experiences increases per instance in each class, the grasp pose
estimation improves.

The dotted lines show the variation in performance when
including other classes for experience, which reflects more
practical scenarios in the real world. Except for the mug class, the
performance slightly drops because the retrieval of experiences
from different classes can cause inaccurate prediction of VD-
NOC values. However, the accuracy still achieves more than

79% when two experiences are included per instance. This
implies that the feature space encoded by the geometry encoder
is sufficient to distinguish different geometrical shapes. The
performance gap for the can class, which has the most simple
shape, is comparably larger than for the other classes. This is
because the mapping from more complex to simpler geometries
produces inaccurate estimations by transferring detailed shapes
into simpler geometries. We discuss more detail regarding this
relationship between classes in the following section.

Figure 7 shows qualitative results. The figure shows the three
nearest experiences and the best transformed pose for different
instances from different classes. The first and second rows are
obtained when the experience database contains samples from all
classes and include the exact instance in the test image. The third
and fourth rows are obtained after excluding the instance in the
test image so that different instances in the same class must be
retrieved to generate grasp proposals. The results reveal that the
grasp poses are transformed to similar locations and directions
even if object poses from experience are different (see the grasp
poses for the can in the third row).

4.4. Transfer Between Instances and
Classes
These experiments show that experience can be transferred
between instances and classes. The experiments are conducted
by using all experience from a single object instance while testing
on different instances. The evaluation metric and subset of target
grasp poses are the same as in the previous experiment. The
matrix on the right of Figure 6 shows that the experience of
instances transfer well to other instances within the same class.
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FIGURE 6 | Results of the offline experiments. (Left) Ratio of accurately estimated grasp pose with increasing number of experiences per instance. Solid lines show

results when class specific experience is used for each test class. Dotted lines show results when experience from all classes is used. (Right) Ratio of accurately

estimated grasp poses using experience from each instance in all classes.

FIGURE 7 | Examples of the three nearest experiences and estimated grasp poses for example input images. Top two rows show examples when the same instance

is included in the experience database. Bottom two rows show examples when the instance is not in the experience database.

Furthermore, experience also transfers beyond the class. For
example, many good grasps are found for bottle instances
when provided by experience from can instances (both types

of objects have a closed surface on the top) and that instances
of the cup class provide sufficient experience for grasping mug
instances (both types of objects have no surface on the top).
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However, the results show that it is difficult to transfer the
experience of a class to an instance in the same class when
the geometry and scale of the instance are different from the
other instances in the class (e.g., Can4 and Cup4). Thus, better
grasp poses are obtained when the experience is obtained from
geometrically similar objects regardless of explicit classes. It is
also observed that grasps for simpler geometries (e.g., from can
to bottle and cup to mug) are more accurately transferred,
while the other direction from complex geometry to simpler
geometry is more difficult. This is because the network tries
to predict VD-NOC values of detailed shapes of objects in
the experience set, such as handles of mug instances, which
potentially causes errors by predicting corresponding points even
if the shapes are missing in the new object.

5. ROBOT EXPERIMENTS

This section presents results of real-world grasping experiments
with a mobile manipulator. First, we describe the hardware set
up used for the experiments. Second, we compare our method
to baseline approaches. Third, we evaluate the full pipeline of
online incremental grasp learning. Finally, we demonstrate the
extension to semantic grasp learning.

5.1. Experimental Details
The robot experiments are performed with the Toyota Human
Support Robot (Yamamoto et al., 2019). The platform consists
of a 4-DOF arm but motions are computed including the
omni-directional base, which effectively offers seven degrees
of freedom. Motions for grasp execution are planned using
MoveIt (Chitta et al., 2012b)3. The end-effector is a parallel-jaw
gripper and grasp success is measured by checking the distance
between the tips of the gripper after the target object is lifted. If
the distance is non-zero, then the grasp is declared successful,
otherwise, it is a failure. Depth images are captured with the
onboard ASUS XTion Pro Live RGB-D sensor positioned on the
head of the robot.

For all grasping experiments, individual objects are placed
on a small table that has a height of 45 cm. The robot is
approximately positioned 30 cm from the table (edge of robot
base to edge of table). The head of the robot is tilted such that
the camera faces the center of the table. The torso of the robot
is raised to give an approximate distance from the camera to an
objects of 1 m to suit the optimal range of the sensor. Objects are
segmented from the table with the same procedure for generating
segmentation masks for the dataset.

All code is written in C++ and Python, and is running
on the robot in Ubuntu 16.04. ROS (Quigley et al., 2009)4 is
used for process communication. DGCM-Net is implemented in
Tensorflow and is running on an external PC with an NVIDIA
GTX 1050 Ti.

3http://moveit.ros.org
4https://www.ros.org/

5.2. Comparison to Baselines
Experiments are conducted to measure the grasp performance of
our framework. For comparison, experiments are also performed
with a number of baselines. The full set of methods is as follows:

• HAF: The approach introduced in Fischinger et al. (2015),
where height accumulated features are extracted from point
clouds to abstract grasp-relevant structure. The features are
computed on different regions of the input and a support
vector machine is trained to predict the quality of the grasp
for each feature. Both top-down and forward-facing grasps are
enabled, and the output with highest score is executed. We use
the original code provided5.

• GPD: The approach introduced in ten Pas et al. (2017), where
grasps are sampled using the surface geometry of the input
point cloud. Grasp success for each sample is classified using a
convolutional neural network (CNN). This takes as input three
images: an averaged height map of occupied points, averaged
height map of the unobserved region, and averaged surface
normals. Given this input, the CNN generates a score value.
Finally, grasps are clustered and the highest scoring cluster is
selected. We use the original code provided6 and the full 15
channel version.

• DGCM-Net: The grasp proposals from DGCM-Net using
pre-collected experience for the relevant object classes in
the experiments. Similar to GPD, the set of proposals from
DGCM-Net are clustered and the highest scoring cluster
is executed. Clustering is performed by grouping all grasps
within 5 cm translation and 15 degrees rotation. The grasp
of the cluster is the mean pose of the proposals that make
up the cluster. The cluster with the highest summed score is
executed. The number of nearest neighbors to be retrieved by
DGCM-Net is set to 10.

• GPD + DGCM-Net: Grasps are proposed using GPD and the
scores are modified by the predictions from DGCM-Net. First,
the grasps from the GPDmethod are computed and the scores
are normalized to the range [0, 1]. Then DGCM-Net is run
on the same input and for each GPD candidate, we find all
DGCM-Net proposals within 5 cm translation and 15 degrees
rotation. The experience score is the average of the scores for
all DGCM-Net grasps deemed to be nearby. The final score
for each GPD candidate is the average of the normalized GPD
score and the summed experience score. The grasp with the
highest final score is executed.

Many robotic grasping approaches are successful for the bin-
picking task (e.g., Mahler et al., 2017). However, these are
focused on 2D grasping and therefore expect a top-down
view of the scene and only generate a grasp parallel to the
camera axis. This are unsuitable for our robot platform due
to the position of the arm on the front of the body that
occludes the scene when facing the camera directly downwards.
Additionally, bin-picking methods are at a disadvantage because
they only generate grasps for a single approach direction. It

5https://github.com/davidfischinger/haf_grasping
6https://github.com/atenpas/gpd
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FIGURE 8 | Test objects used for the online grasping experiments. Three instances in seven classes are used.

TABLE 2 | Grasp success rate of our framework and baseline methods for

different target object classes.

HAF GPD DGCM-Net GPD + DGCM-Net

Box 0.87 0.80 0.67 1.00

Can 0.87 0.67 0.93 0.73

Bottle 0.87 0.93 0.93 0.93

Mug 0.80 0.80 0.87 1.00

Cup 0.80 0.80 0.73 1.00

Bowl 0.40 0.87 0.80 0.87

Clamp 0.40 0.60 0.60 0.67

Average 0.71 0.79 0.79 0.89

The bottom row shows the average for all classes.

is left to future work to extend the evaluation to this type
of scenario.

The experiments are performed for objects from the classes
box, can, bottle, mug, cup, bowl, and clamp. Three
instances are chosen per class and five poses are considered per
instance. The five poses for each instance are kept constant for
the experiments with each grasping method. The objects selected
for the experiments are shown in Figure 8. These include one
object from the YCB dataset for each class from the objects
used in section 4, in particular, the sugar box, spam can,
mustard bottle, red mug, orange cup, red bowl,
and XL clamp. The other two objects for each class are a
mixture of YCB objects and common objects found in homes.

The experience used for our method is an extension of
the database from section 4 that includes instances from the
additional classes of box, bowl, and clamp. Since we are
interested in observing the grasp performance for unseen objects,
the YCB objects selected as target objects are removed from the
experience database.

Performance is measured by grasp success rate, which is the
number of successful grasps divided by the total number of
attempts. Table 2 reports the average grasp success rate for each
class and the average for all classes (bottom row). The results
show that our method performs equivalently to GPD and that

both methods outperform HAF (+8%). However, combining
experience with GPD achieves a much higher grasp success rate
overall. In comparison to the original GPD method, this is an
increase of 10%.

For most classes, the combined approach performs either the
same as the best performing individual method or better. The
only exception is the can class, which has 20% lower grasp
success rate than our direct method. Our observation during
the experiments is that GPD often proposed grasps on and
orthogonal to the rim of the can objects, which resulted in
failures. This exposes the flaw that if the initial candidates are
unfavorable, the combined approach cannot improve. For these
objects, when grasp experience on the top of the can are stored,
the grasps on the rim are still similar in position and orientation
to warrant their selection.

Surprisingly, the box class is the most difficult for our
approach despite having easy geometry to compute a grasp as
shown by the high success rate of HAF. This can be explained
by the fact that all objects of this type can be represented by a
single box by changing the scale in the different dimensions.
Thus, the network has to decide whether to regard a new
instance as a scaled version of an experience or as a transformed
(i.e., rotated) instance. The ambiguity causes noisy predictions
of VD-NOC values. Furthermore, since grasp proposals are
transformed from previous experiences and are ideally in a
similar grasp location, a scale change may cause the prediction
to exceed the range of the gripper, resulting in its rejection due to
the collision.

5.3. Incremental Learning
This set of experiments demonstrate the full incremental learning
framework. The test objects chosen are the gray clamp from
our dataset, the plastic drill from the YCB object dataset
and a gaming controller. Past experience is stored in
the database, however, not for the classes of the test objects.
Therefore, experience from the clamp class is removed. Since
good grasps may not be generated for the unseen objects, GPD
is used in the beginning until DGCM-Net makes reasonable
predictions. A threshold of 0.9 is set as the minimum feature
distance that must be achieved by the output of DGCM-Net,
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FIGURE 9 | Summary of results for the incremental learning experiment with the gray clamp.

FIGURE 10 | Summary of results for the incremental learning experiment with the YCB plastic drill.
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FIGURE 11 | Summary of results for the incremental learning experiment with the gaming controller.

otherwise, the best grasp from GPD is executed. Typically it only
takes one or two successful attempts for the system to switch from
GPD to DGCM-Net. The objects are placed randomly on the
table at the beginning of each experiment and the system runs
autonomously, with the robot grasping the object from where
it lies after a successful or failed attempt. The object is only
handled by a person if it is unintentionally moved near the edge
of the table and presents a risk of falling. After successful grasps,
objects are placed on the table by the robot and receive a slight
variation in pose; failed grasps typically cause considerable object
movement. After any grasp attempt, the robot base returns to the
start position and the localization inaccuracy generates further
viewpoint variation.

Figures 9–11 show the evolution of grasp success for the three

objects. In these figures, the first row shows the surface normal

image of the input and the second to fourth rows show the nearest
three matches in the database. Below this we plot the minimum
feature distance of the nearest neighbor. Lastly, we show the best
grasp proposal from DGCM-Net and the actual gripper position
during the grasp captured by an external camera (red border
indicates failure and green border indicates success). A video of
the experiments is provided in the Supplementary Material and
is also available at https://youtu.be/iI_P1UVXfjo.

From these experiments, we make two observations. Firstly,
after the first successful attempt from GPD is recorded, the
robot typically continues to grasp the target objects successfully.

The predicted grasps for each attempt confirms that our
method reliably predicts the same successful experience so
long as the object and its shape is correctly identified. The
second observation is that the minimum feature distance drops
below the threshold after as many as one sample is in the
database. This is most apparent for the gray clamp in
which the minimum feature distance is very small for all
subsequent trials.

The grasping for the plastic drill and gaming
controller are less reliable than for the gray clamp. For
the plastic drill, the system still exhibits some failures
even after accumulating experience. In both cases, the nearest
feature distance does not converge to the same low value as was
observed for the gray clamp. The reason is that the plastic
drill and gaming controller have less distinct shape
and therefore are more difficult to match. This is especially
noticeable when the objects have rotated. The objects are often
confused as an instance from the box class and the grasps for
the matching object is executed. Fortunately for the gaming
controller, the execution still results in success. However, for
the plastic drill, the predicted grasp is not very good and
the grasp fails.

5.4. Semantic Grasping
A final set of experiments demonstrate the extension of our
method to generate semantic grasps for instances belonging to
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FIGURE 12 | Examples of semantic grasping for the YCB red mug and the YCB orange drill in four different poses. (First row) Surface normal image. (Second

row) Grasp pose executed by the robot. (Third row) Predicted grasp from DGCM-Net. (Fourth row) Predicted grasp from GPD. (Fifth row) Predicted grasp from

HAF.

the same functional class. For these experiments, we investigate
grasps on the handles of mug and drill objects. The
experience is hand annotated for test exemplars of instances
similar to the target object. It is possible for the robot to
self-learn semantic grasping by incorporating, for example,
affordance detection to indicate whether the location of the
grasp matches the affordance of the object part (Do et al.,
2018). This is out of scope for the present article and left for
future work.

Example grasp proposals generated by our method as well

as GPD and HAF for a mug and drill in various poses

are shown in Figure 12. Our method reliably generates grasp
poses on the relevant object part, while both GPD and HAF
fail to do so. Although the grasps from GPD and HAF may
result in success, they do not support the functional use of
the object. For the mug, it is understandable that the handle
is not grasped because the quality of the depth data on that
part of the object is very poor and does not characterize a
stable grasp. Our method, on the other hand, does not only
rely on the local structure to estimate the grasp. So long as
there is some cue about the handle, as is present in these
selected examples, the handle grasp is generated. The drill
offers more depth data on the handle but the baselines still
prefer to grasp the head. HAF is executed to find both top and
front grasps, and the best scoring grasp is shown. Nonetheless,
a top grasp or a front grasp on the head is preferred instead

of the handle. A video of the grasps executed by the robot is
provided in the Supplementary Material and at https://youtu.be/
iI_P1UVXfjo.

6. CONCLUSION

This article presented an approach for incrementally learning
grasps by leveraging past experience. In our system, every
successful grasp is stored in a database and retrieved to
guide future grasps. This is accomplished with the dense
geometric correspondence network that is trained to predict the
similarity between newly acquired input depth images and stored
experiences as well as to predict 3D-3D correspondences to
transform grasp poses. A descriptive feature space is constructed
for the retrieval task using metric learning and correspondences
are established by predicting view-dependent normalized object
coordinate values.

Offline studies with a dataset showed that our approach
precisely recovers grasps from experiences with the same object
and also transfers well to unseen objects from the same or
different class. Furthermore, results showed that more experience
leads to more reliable grasp proposals. Hardware experiments
with a mobile manipulator showed that our experience-based
grasping method performs equally successful as the baselines
and integration with the baselines shows overall superior
performance. Additional experiments demonstrated the full
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online capability to efficiently learn grasps for unseen objects,
often needing only one or two successful grasps to reliably re-
grasp the same object. Finally, an extension was demonstrated
whereby specific grasps, such as those on handles, can be desired
in order to achieve semantically meaningful grasps.

One direction for future work is to include more instances
per class when training DGCM-Net to better generalize over
varied shapes of a class instead of simply manipulating
scales of an object for each class. Furthermore, it has been
observed that points on the bottom of objects are missing
from the object masks since the points are regarded as table
or background. Thus, more detail about objects would be
extracted by applying a segmentation method that refines
the mask using color information. Another avenue of future
work is to include failed experience during the learning
phase. Particularly for objects that are difficult to grasp, it
may take a large number of attempts to finally succeed. By
also considering failures, it would be possible to reject grasp
candidates and thus more quickly guide grasping to successful
regions. Currently our method was only tested with a parallel-
jaw gripper. It would be interesting to extend this work to other
hardware, such as three-finger grippers or anthropomorphic
hands. It would be even more interesting to investigate how
to transfer grasps between grippers so that experience learned
by one platform can be exploited by another platform with
different hardware.
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