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This paper demonstrates how tactile and proximity sensing can be used to perform

automatic mechanical fractures detection (surface cracks). For this purpose, a

custom-designed integrated tactile and proximity sensor has been implemented. With

the help of fiber optics, the sensor measures the deformation of its body, when interacting

with the physical environment, and the distance to the environment’s objects. This

sensor slides across different surfaces and records data which are then analyzed to

detect and classify fractures and other mechanical features. The proposed method

implements machine learning techniques (handcrafted features, and state of the art

classification algorithms). An average crack detection accuracy of ∼94% and width

classification accuracy of ∼80% is achieved. Kruskal-Wallis results (p < 0.001) indicate

statistically significant differences among results obtained when analysing only integrated

deformation measurements, only proximity measurements and both deformation and

proximity data. A real-time classification method has been implemented for online

classification of explored surfaces. In contrast to previous techniques, which mainly

rely on visual modality, the proposed approach based on optical fibers might be more

suitable for operation in extreme environments (such as nuclear facilities) where radiation

may damage electronic components of commonly employed sensing devices, such as

standard force sensors based on strain gauges and video cameras.

Keywords: sensing, haptic exploration, crack recognition, extreme environment, optical sensing, fiber-optics

1. INTRODUCTION

An important task often performed in remote hazardous environments is the detection of
mechanical fractures on the objects, such as containers, tanks, pipes, and other technical systems
used for keeping chemical and radioactive waste. A crack may be caused by physical damage or
material degradation over time or environment changes (e.g., temperature or pressure). The effects
of non-detected fractures may lead to larger macro-scale catastrophic failures making the cracked
surface mechanically weak to perform its function.

Conventional automatic crack detectionmethods applied in industry to inspect largemechanical
structures rely on acoustic methods (Chakraborty et al., 2019), use X-ray scanning (Barhli et al.,
2017; Naragani et al., 2017), apply eddy currents techniques (Yao et al., 2014), or explore changes
in a system’s motion dynamics (Lu and Chu, 2011; Nicoletti et al., 2018). Such techniques require
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specialized and costly equipment and well-trained technical
staff making their usage in extreme environments (i.e.,
decommissioning of radioactive waste) less beneficial or
even impossible.

Rapid development of computer vision and machine learning
led to the introduction of multiple vision-based tools for
mechanical fracture detection that we briefly review below.
Chen and Jahanshahi (2017) proposes a fusion between a
convolutional neural network and a Naive Bayes to analyse video
frames for crack detection in nuclear reactors. The framework
achieves a 98.3% hit rate against 0.1 false positives per frame.
Schmugge et al. (2016) suggested a crack detection method for
nuclear power plant inspection videos by fine-tuning a deep
neural network for detecting local patches containing cracks
which are then grouped in spatial-temporal space for group-
level classification which obtains an increase of 40% in the
F1-Score with respect to the compared methods. Iliopoulos
et al. (2015) analyzed the evolution of a cracked concrete
structure obtained by applying Digital Image Correlation,
Acoustic Emission, and Ultrasonic Pulse Velocity techniques.
The results highlight the time of onset and location that the
crack started to form as well as the width and depth of
the cracks.

Vision based methods demonstrate high detection accuracy
and they are easy to implement in telerobotics applications as
cameras are essential parts of the remote inspection robots.
However, vision-based methods can fail in remote environments
with limited luminosity and video-cameras cannot operate in
presence of strong radiation. Furthermore, vision-based methods
are not capable of acquiring material properties, such as texture
and hardness.

Our work proposes to use tactile and proximity sensing
for mechanical cracks detection. In contrast to the visual
modality, tactile, and proximity sensing can provide important
information on material properties, such as shape, texture,
and hardness (Huet et al., 2017; Yuan et al., 2017; Kaboli
and Cheng, 2018). Tactile sensors were efficiently used to
characterize different materials in robotic teleoperation. Liu
et al. (2012, 2015) implemented a 6-axis force/torque finger-
shaped sensor capable of estimating the instantaneous friction
force and normal force to recognize physical properties of the
surface of unknown objects. Average classification accuracy of
88.5% is obtained when implementing a naïve Bayes classifier
on 12 different texture surfaces. Feng et al. (2018) proposed
a new method, called Active Prior Tactile Knowledge Transfer
(APTKT) to re-implement tactile knowledge of previously
explored objects which improves the discrimination accuracy
by over 20%. A multi-modal tactile sensor (BioTac, developed
by SynTouch1) was used by Wong et al. (2014) to estimate
the order of curvature and footprint dimensions explored
with various movements (distal-proximal stroke, radial-ulnar
stroke, etc.) of the robotic finger. Fishel and Loeb (2012)
proposed a Bayesian exploration which selects the optimal
movements based on previous experience to recognize 117

1https://www.syntouchinc.com/en/sensor-technology/

different textures. Kaboli et al. (2016) propose an online
tactile transfer learning method to re-use previously learned
tactile models to discriminate new textures with limited
numbers of training samples. An expanded tactile sensors
module was implemented for recognizing the alphanumeric
characters inscribed on rubber stamps in Lee et al. (2006). The
stiffness of objects was investigated by Konstantinova et al.
(2017) implementing a hybrid force and proximity finger-
shaped sensor achieving 87% classification accuracy on a set
of household objects with different stiffness values. Drimus
et al. (2014) proposed a method to classify objects into rigid
and deformable using dynamic time warping to compare the
distance between time series of signals. An optical sensor was
implemented by Huang et al. (2018) to detect target objects in
dynamic environments prior to contact allowing the teleoperator
to feel the object without an actual contact improving the
benefits of touch interaction to the operator, without negative
consequences of the robot contacting unknown geometric
structures. Tomo et al. (2017, 2018) introduced uSkin, a soft-
skin based sensor, which measures the applied force based on
changes in the magnetic field for object shape recognition. Not
many approaches use tactile sensing for crack detection and
characterization. For additional research on tactile sensing and
texture recognition, please refer to Kappassov et al. (2015) and
Luo et al. (2017).

In this work, we propose a novel tactile sensing-based
technique for mechanical fractures detection with the potential
application to nuclear-decommissioning tasks performed by
remotely operated robots. The nuclear power industry has been
among the slowest to adopt advanced technologies (Wood,
2004; Bogue, 2011). Any instrumentation to be used in the
nuclear environment must show robustness under the influence
of nuclear radiation, match safety requirements and satisfy the
highest industrial standards. The effects of radiation greatly
vary and depend on several parameters, including the type
of radiation and the total dose (Bogue, 2013). Our approach
relies on optical fibers for data transmission from the sensor’s
measurement elements to the remotely located electronic unit.
Optical fibers are among the devices that are less influenced in a
nuclear environment since gamma radiation does not interfere
with their basic sensing mechanism (Berghmans et al., 1999;
Inaudi et al., 2001; Phéron et al., 2012). Berghmans and Decreton
(1998) compared the gamma radiation response of three types of
optical fiber temperature sensors. For the three sensor types, the
transducer mechanism does not seem to be affected by gamma
radiation. Fiber optic cables are expected to see greater use in
the nuclear power industry, replacing electrical cables (Berthold,
1994; Hashemian, 2009). Several applications implementing fiber
optic cables are already been realized. Kim et al. (2017) developed
a fiber-optic based monitoring system for water temperature,
water level and radiation level of spent nuclear fuel pool (SNFP)
at a nuclear power plant. The performance test results show that
individual sensors can measure the changes in real-time. Ball
et al. (2012) described several measurement technologies with
potential application to gas reactors. Among these, an optical-
based pressure sensor based on the trajectory of the light in
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FIGURE 1 | Hybrid Fiber Optical Force/Proximity fingertip sensor: (A) Visualization of the three different components of the sensor; (B) Close up visualization of the

fiber optics operating principles. D1, D2, D3 indicates the three deformation optical fibers. P the proximity optical fiber. (C) The complete setup for the data

acquisition. From left to right: Laptop, Keyence sensors, Touch Haptic device with 3d printed end effector, and Hybrid Fiber Optical Force/Proximity Sensor, Arduino

board, and Power Supply.

FIGURE 2 | Visualization of the set of objects explored during the experiments. The set for the Crack Recognition Analysis is formed by no crack, crack, bump, and

wavy pattern surfaces. The series for the Crack Width classification experiment is made up of the same fractured surface with distinct widths of 0, 1, 2, 5, 8,

and 10 mm.

glass is analyzed. The polarization of light crossing the glass is
created through stress-induced in the glass as a result of pressure.
Through the fiber optic sensor, the pressure measurement can be
found through the polarized light intensity.

Present work demonstrates how tactile and proximity
sensing can be efficiently used to perform automatic crack
detection. The proposed method uses machine learning
techniques to detect cracks and bumps based on the deformation
and proximity signals which are recorded during physical
interaction between a custom-designed robotic finger and
the remote environment, Konstantinova et al. (2017). In
case a crack is detected, the proposed automated technique

classifies its width. Both offline and online classifications are
performed. A fiber optic sensor has been implemented for
data acquisition because of the reduced dimensions (∼55
mm), weight (∼200 g), low cost, the strong immunity to
electromagnetic interference and the improved environmental
resistance. This approach may be implemented also in extreme
environments (e.g., in nuclear plants), since gamma radiation
does not interfere with the basic sensing mechanism of fiber
optic-based sensors (Berghmans et al., 1999). In addition,
the nylon component of the implemented sensor can be
used in irradiation conditions with limitations as Morita
and Seguchi (1983) presented. To the best of the authors’
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FIGURE 3 | (Top) Raw measurements from the four sensing elements of the sensor (deformations D1, D2, D3, and proximity P) for the set of surface patterns: “no

crack,” “crack,” “bump,” and “wavy pattern.” Each column shows a different optical fiber signal. In red, the results of the left deformation (D1). In green, the data of the

right deformation (D2). In blue, the normal deformation (D3). In yellow, the proximity data (P). (Bottom) The movement of the sensor is shown together with the

corresponding proximity data.

knowledge, this is one of the first works on fracture recognition
based on hybrid fiber optical force/proximity sensors. The
Present work is based on our previous results (Palermo
et al., 2020) demonstrating the feasibility of a tactile
sensor for cracks detection. The novelty of this work is

the implementation of more accurate mechanical fracture
detection and classification methods, and a corresponding
comparative study. Additionally, this paper provides a detailed
description of the tactile data collection, processing and real-time
classification implementation.
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FIGURE 4 | Example of correct segment extraction. The complete

measurement trial is displayed in blue. In green, the data points corresponding

to the changes in the sensor-sample interaction mechanics. In red

discrete-time derivative for proximity measurement.

2. EXPERIMENTAL METHODOLOGY

2.1. Tactile and Proximity Sensor
In this work, the integrated force and proximity finger-
shaped sensor described by Konstantinova et al. (2017) is
used. The sensor is made of 3D printed rigid (VeroClear
Glossy) and soft (Nylon—PA2200) components allowing it to
bend during interaction with the environment, as shown in
Figures 1A,B. All the components are printed with an SLS
printer EOS P100. The sensor employs three pairs of optical
fiber cables (D1, D2, D3) to measure the deformation of the
flexible middle part based on the changes of the reflected
light intensity. The fourth pair of optical fiber cables (P) is
used to measure proximity, i.e., the distance between the tip
of the finger sensor and nearby objects. The implemented
proximity permits the shape recreation in 2D of the explored
surface. The sensor is capable of measuring bending torque
and normal contact force during physical interaction with the
environment. As described in Konstantinova et al. (2017), the
implemented sensor is able to detect three-axis force/torque
signals and measure the distance to the explored object.
The sensor measures normal force up to 4.5 N. The lateral
torque values (around the x- and y-axes) reach a maximum
of ±18 N/mm. The usage of nylon to print the flexible
structure led to low hysteresis and high robustness. The
proximity sensor (P) can measure distances up to 30 mm.
The calibration method has been described in Konstantinova
et al. (2016). Each pair of the sensor’s fiber optic cables is
attached to a Keyence FS-N11MN light-to-voltage transducer.
Thus, the change of light intensity modulation is measured
and, using a calibration matrix, converted to force, torque, and
distance measurements.

2.2. Experimental Setup
To collect data and test the proposed crack detection algorithm,
the tactile and proximity sensor, described in section 2.1, has
been attached to the end-effector of a Touch desktop haptic
interface (formerly known as Phantom Omni Geomagic) as
shown in Figure 1C. The Phantom Omni was programmed to
slide the tactile sensor along a static sample surface following
a programmed periodic movement. Data from tactile and
proximity sensors were recorded through an ArduinoMega ADK
micro-controller, connected via a USB port, at 400Hz. These data
were later synchronized with the absolute position of the tip of
the tactile sensor calculated through the encoder readings of the
Phantom Omni. Data acquisition and control were implemented
through dedicated software libraries (OpenHaptics and Robotic
Operating System) running on an Ubuntu desktop computer.
The material samples, as well as the Phantom Omni interface,
were fixed to a laboratory desk to minimize any vibration and
unwanted displacements.

2.3. Data Acquisition Protocol
In this work, machine learning techniques are employed for crack
detection and crack width classification. A set of 10 objects with
different surfaces (no crack, cracks of different widths, a bump
and a wavy pattern) were manufactured with PLA plastic using
3D printing technology (Ultimaker III, 0.2 mm layer height,
0.4 mm nozzle diameter). The wavy pattern consists of a repeated
pattern of sine waves of 1mm amplitude and 5mm magnitude.
The samples are shown in Figure 2. The types of these sample
objects correspond to the classes implemented for training and
testing the classifier. The PhantomOmnimoved the tactile sensor
across the sample objects: the periodic sliding has a magnitude of
1.6 cm and a frequency of 1,000 Hz. The average sliding velocity
was 3.89 mm/s. The initial position of the tactile sensors was not
controlled and varied from trial to trial and was set at∼5–10 mm
from the crack edge. No normal force was applied by the sensor
to the sampled surfaces except the force caused by the sensor
weight (∼200 g). Tactile and proximity signals were recorded
for 12 repeated continuous sliding movements. This continuous
recording was repeated five times. Figure 3 shows an example
of raw data acquired on “no crack,” “crack,” “bump,” and “wavy
pattern” for a continuous recording. For brevity, only the data
acquired during sliding on different surfaces are shown.

2.4. Experimental Dataset
The data-set generated and used in this study is publicly available
on the figshare repository “Automatic Fracture Database”2. The
data is organized in a nine column format, corresponding to
the following chronological measurements: sensor displacement,
sensing elements signals (D1, D2, D3, P), the identification
number of the current experiment, the number of the
measurement trials (single sensors movement), the type of the
surface explored (0 = no crack, 1 = crack, 2 = bump, and 3
= wavy pattern), and the direction of movement (0 = right,
1= left).

2https://figshare.com/s/14deb00d874400e34d67
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FIGURE 5 | Comparison of classification accuracy of different moving window size to compute the derivatives for the automatic preprocessing step. Time window of

n = 10 data samples achieves better classification accuracy.

3. DATA ANALYSIS FOR CRACK
DETECTION

The goal of the proposed algorithm is to detect and characterize
mechanical fractures, such as cracks, based on the deformation
and proximity data recorded from the sensors. The time history
of the deformation and proximity data is recorded. Preprocessing
step and features extraction are performed. The resultant output
is used as an input for the classification algorithm.

3.1. Pre-processing
The goal of preprocessing was to prepare datasets containing
information for the mechanical features, such as crack, bump,
and wavy pattern and exclude not relevant datapoints (i.e.,
recording of the sensors sliding on a flat surface before and after
interacting with the bump or crack). The preprocessed labelled
datasets were then used for training process and cross-validation
test. The preprocessing was fully automatic and was performed
on the data collected from the haptic manipulator (sensor
displacement) and optical sensing elements integrated in the
sensor (deformations D1, D2, D3 and proximity P). The sensor’s
position data (obtained from the Geomagic haptic device)
and the sensing elements data (D1–D3, P) were synchronized

and sampled at 400 Hz. Prior the prepossessing stage the
measurements of each trial (single sensor movement along the
explored surface) were arranged in the following matrix:

M
m×5

= [x⊤ d⊤1 d⊤2 d⊤3 p⊤], (1)

with x, d1, d2, d3, and p vectors of sizem× 1 representing single
trial recordings (time history) of the sensor’s displacement, three
deformation signals and proximity signal, correspondingly, and
m the number of data points in a specific trial. The proximity
data (p) of each measurement trial was used to extract the data
points corresponding directly to a specific mechanical feature
(crack, bump, wavy pattern). This allowed to create a subset of
data containing only the information specific to the mechanical
feature, and to exclude the data points at the start and the
end of the recording. This process was performed automatically,
based on the analysis of the discrete-time derivative of proximity
sensing for a given time window, and extracting the data for
which the derivative exceeded a pre-defined threshold. The
average discrete-time derivative for proximity measurement was
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FIGURE 6 | Decision surface of random forest classifier with four classes (no crack, crack, bump, and wavy pattern) for paired features: D1, D2, D3, and Proximity.
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FIGURE 7 | Feature importance analysis for the random forest classifier.

computed as

1pi =
pi+n − pi

n
,

1p =
1

m− n

m−n∑

i=1

1pi

(2)

with 1pi a local discrete derivative of ith proximity signal at

measurement based on n data points, pi representing ith element

of proximity measurement vector, and 1p representing

the averaged discrete-time derivative of the proximity

measurements. Then, the data points of all measurement

signals for which 1pi > |1p| are extracted from each trial as
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FIGURE 8 | Measurements distribution for sensing elements D1, D2, D3, and P for “crack,” “no crack,” “bump,” and “wavy pattern” samples. Each plot shows

distribution collected from six measurement trials.

they represent the changes in the sensor-sample interaction
mechanics. Additional 10% of the original measurement data
is added before and after the extracted points to ensure that
the data is complete and represents the explored mechanical
feature well. Figure 4 shows an example of the data extraction
for one sliding movement on a crack object. The complete
measurement trial is displayed in blue. In green, the data points
corresponding to the changes in the sensor-sample interaction
mechanics. In red, these represent the discrete-time derivative
for proximity measurement. To determine the appropriate
moving window size for computing the derivatives we performed
sample classification tests with different sliding window sizes.
Figure 5 shows the results of this test which demonstrated that
a time window of 25 ms (containing n = 10 data samples), is
sufficient to achieve better good classification accuracy.

3.2. Feature Extraction
Feature extraction was performed on each successive 25 ms time
window with an increment of 5 ms. The size of the time window
was selected based on the sampling frequency. Feature extraction

is executed on windows of 10 data points with a window shift
of 2 data points. The window length was empirically chosen
through a grid search analysis. Time-domain features, including
MeanAbsolute Value (MAV) and RootMean Square (RMS), were
computed. The advantage of time-domain features is that they
are fast to calculate since they do not require any mathematical
transformation, e.g., into the frequency domain. On the other
hand, they are sensitive to noise. These feature demonstrated
high performance in previous surface Electromyography (sEMG)
works of (Hakonen et al., 2015; Palermo et al., 2017).

3.3. Classification Algorithm
A set of classifiers was employed for the classification step:
Random Forest with 100 trees, K-Nearest Neighbors (KNN) with
five neighbors, and Quadratic Discriminant Analysis (QDA).
Random Forest classifier (Breiman, 2001) can successfully handle
high data dimensionality since it is both fast and insensitive
to over-fitting. In addition, it was evaluated for remote sensing
Belgiu and Drăguţ (2016). First, Random Forest with 1,000 trees
was tested but it resulted in non-statistical relevant differences
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FIGURE 9 | (A) Comparison of the three implemented classifiers (Random Forest, QDA, and KNN) for fracture recognition classification. (B) Comparison of the three

implemented classifiers (Random Forest, QDA, KNN) for crack width classification.
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FIGURE 10 | (A) Classification accuracy results for the crack recognition. (B) Classification accuracy results for the crack width classification analysis.
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TABLE 1 | Complete classification accuracy for crack recognition experiment with Random Forest classifier.

Implemented

feature

Mean (%) Standard

deviation

Precision score (%) Recall score (%)

RAW—Proximity 81.86 3.64 82.66 81.86

MAV—Proximity 77.70 4.10 79.25 77.70

RMS—Proximity 77.17 4.48 79.07 77.18

RAW—Deformation (D1, D2, D3) 80.16 9.34 81.97 80.16

MAV—Deformation (D1, D2, D3) 88.27 10.37 90.71 88.27

RMS—Deformation (D1, D2, D3) 87.96 10.23 90.43 87.96

RAW—Deformation + Proximity 92.75 5.17 93.83 92.75

MAV—Deformation + Proximity 94.64 6.79 95.93 94.64

RMS—Deformation + Proximity 94.48 7.21 95.88 94.48

RAW—Deformation (D1, D2) +

Proximity

91.88 4.44 92.76 91.88

MAV—Deformation (D1, D2) +

Proximity

95.17 5.99 96.10 95.17

RMS—Deformation (D1, D2) +

Proximity

94.90 6.42 95.93 94.90

in respect to a Random Forest with 100 trees. It was then
decided to discard it and use the Random Forest with 100
trees to increase the speed of the classification. The classification
classes are equal to the type of surface explored (no crack,
crack, bump and wavy pattern) for the surface crack recognition
experiment and the width of the crack (0, 1, 2, 5, 8, and 10
mm) for the crack width classification. The complete data-set
was then split 70% for training test and 30% for testing. Figure 6
shows an example of the decision surface of one of a decision
tree of the Random Forest for paired features of Proximity (P)
and Deformation data (D1, D2 and D3) with MAV feature.
First, raw, MAV and RMS data were classified using only the
proximity data (P) or the deformation signals (D1, D2, D3).
During the experiments, it was found that implementing the
four dimensionality features together (P, D1, D2, D3) over-fitted
the classifier. The features importance analysis was performed
to avoid over-fitting. Figure 7 shows the calculated feature
importance. Among the four features. D3 is the least decisive one
for the random forest classifier. Thus, the random forest was later
trained and tested on proximity data (P) together with D1 andD2
deformation signals. Each observation was trained on itself and
tested against the rest of the set one at a time (e.g., observation 2
was trained on itself and tested against observations 1, 3, 4, and 5)
for intersession investigation. In total, 20 results for each analyzed
feature were obtained. Kruskal-Wallis statistical analysis, which
indicates if the data samples come from the same distribution,
was performed on the whole set of results.

4. RESULTS

Figure 8 shows the distribution of data on the different surfaces
of 6 of the 12 repetitions, for brevity. The common response
among the repetitions permits to have no dependence on the
sensor starting position and movement.

4.1. Crack Recognition
The goal of the Crack Recognition experiment is to recognize
the presence of a crack in the object. Figure 9A shows the
results of the classification with the implemented classifiers.
Random Forest achieves the best classification accuracy using
the implemented feature of MAV and RMS and considering
the left and right displacement of the sensor (D1, D2) together
with the proximity data (P). The second best classifier is KNN,
which is expected, since the various class (nocrack, crack, bump,
wavy pattern) data are distributed in close proximity to each
other, as shown in Figure 6. For brevity, only the results of
the Random Forest classifier are shown in the following tables
and figures. Figure 10A shows the complete results for the
classification analysis. Table 1 shows that the lowest classification
accuracy of 77% is obtained when classifying MAV or RMS
data only considering the proximity data. Whereas, the best
classification accuracy of 94% is achieved when implementing the
MAV or RMS feature for the left and right displacement of the
sensor and the proximity data. Using only deformation or only
proximity data may be sufficient to train the classifier. However,
better results are obtained when increasing the dimensionality
of the classifier and considering proximity (P) together with
the left and right displacement of the sensor (D1, D2). Thus,
Implementing the whole deformation signals together with
the proximity data brings little or nothing improvement to
the classification accuracy in respect to using a feature with
one less dimensionality. Figure 11A shows the results for the
crack recognition. The most difficult surface to classify for the
algorithm is the bump surface since it is comparable to the
wavy pattern one. The Kruskal-Wallis test was performed on
the results of the classification analysis of the different features
and the value obtained (p < 0.001) indicates that the null
hypothesis of having all data samples from the same distribution
is rejected. Thus, there are significant differences between the
implemented features.
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FIGURE 11 | (A) Confusion matrix result for crack recognition with Random Forest classification with MAV feature and left and right displacements combined with

proximity data. (B) Confusion matrix result for crack width classification with Random Forest classification with MAV feature and left and right displacements combined

with proximity data.

FIGURE 12 | Real-time classification comparison for Random Forest, QDA, and KNN for the complete set of implemented features.
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TABLE 2 | Complete classification accuracy for crack width classification experiment with Random Forest classifier.

Implemented

feature

Mean (%) Standard

deviation

Precision score (%) Recall score (%)

RAW—Proximity 63.09 4.20 61.89 63.09

MAV—Proximity 61.54 3.02 62.00 61.54

RMS–Proximity 60.11 3.82 61.35 60.11

RAW—Deformation (D1, D2, D3) 48.33 5.05 45.63 48.33

MAV—Deformation (D1, D2, D3) 58.02 5.67 56.68 58.02

RMS—Deformation (D1, D2, D3) 58.13 6.05 56.71 58.14

RAW—Deformation + Proximity 73.97 3.55 74.47 73.97

MAV–Deformation + Proximity 79.81 4.46 81.27 79.81

RMS—Deformation + Proximity 79.55 4.39 81.02 79.55

RAW—Deformation (D1, D2) +

Proximity

72.73 2.73 72.87 72.73

MAV—Deformation (D1, D2) +

Proximity

80.29 3.84 81.22 80.29

RMS—Deformation (D1, D2) +

Proximity

80.34 3.70 81.32 80.34

4.2. Crack Width Classification
The scope of the crack width classification experiment is to
classify the width in millimeters (mm) of the fracture of the
explored object. Figure 9B shows the comparison of accuracy,
recall score, and precision score of the implemented classifier.
Random Forest classifier achieves the best classification accuracy,
followed by KNN. As described in the previous section, class data
are close in proximity to each other, which is why KNN obtains
good results for this experiment. Figure 10B and Table 2 shows
the complete results for the classification analysis. The lowest
classification accuracy of 48.19% is obtained when classifying
raw data with only deformation signals. Whereas, the best
classification accuracy of ∼80% is achieved when implementing
MAV or RMS features with left and right deformation (D1 and
D2) together with the proximity data. In this case, using only
deformation or only proximity data is not sufficient to train the
classifier. Figure 11B shows that the most difficult label to classify
is the fracture of 1 mm width which can get mislabeled as a
flat surface. This may be due to the fact that the fracture is so
small that the left and right displacement are not big enough
to trigger the recognition of the crack. Kruskal-Wallis results
(p < 0.001) indicate statistically significant differences among
results obtained when analyzing only deformation signals, only
proximity data and both deformation and proximity data. In
this case, instead of using a classifier, a regressor may be more
appropriate to use since having a discrete class may not be the
best solution when predicting the width of a fracture.

4.3. Real-Time Implementation
To further test the result of the classifier an online application
was developed for the crack recognition analysis. During this
experiment, it was found that the fiber optic cables position
and their twisting influence the sensor data. Thus, an additional
acquisition was necessary to obtain a model to use for the real-
time classification. Offline models of Random Forest Classifier,
KNN, and QDA were generated implementing the newly

acquired data. The models were later used to predict the class
of the data acquired in real-time while sliding the sensor over
different surfaces. The software marks the start position of the
detected crack and end position in relation to the Geomagic
position. The same analysis, as the previously described offline
classifier, was applied. Three continuous sliding movements were
performed on each of the crack type surfaces as shown on
the first row of Figure 2. Each movement was performed in a
different section of the surface (top, center, bottom). The possible
proximity data (only proximity, only deformation, deformation +
proximity, and P +D1 +D2) and features (RawData,MAV, RMS)
combination were investigated for each classifier, for a total of 432
classifiedmovements. Figure 12 shows the results of the real time
classification accuracy. In this case, the KNN classifier achieves
better results than the Random Forest. Increasing the number
of classified sliding movements may reduce this difference.
Having 3D printing and of regular shape objects may limit the
training and testing but this will be addressed and improved in
future analysis.

5. CONCLUSION AND FUTURE WORK

This work demonstrates how tactile and proximity sensing can
be efficiently used to perform automatic crack detection. The
proposed method uses machine learning techniques to detect
the surface fractures and bumps of explored objects based on
fiber optical proximity signals which are recorded during physical
interaction between a custom-designed robotic finger and the
remote environment. Experimental validation of the proposed
method has shown that it is possible to achieve around 94% for
crack detection and 80% for crack width classification accuracy.
To achieve better results for the crack width classification, an
alternative regressor may be more appropriate to use with respect
to the implemented classifier. Real-time classification results, on
three sliding movements, shows that it is possible to correctly
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characterize the surface of the investigated object. During this
experiment, it was found that the fiber optic cables position and
their twisting influences the sensor data. Thus, additional analysis
will be required to compensate for the change of flow of the
data. In contrast to previous techniques, which rely on visual
modality, the proposed approach, based on optical fibers, which
may be more suitable for operation in extreme environments
(such as nuclear facilities) where radiation damages electronic
components of video cameras.

Future research will focus on integrating a multi-modal
approach with visual patches and implementation of the
proposed system on a teleoperated mobile manipulation system.
We plan to demonstrate how automatic fracture characterization
will be efficiently integrated with the mobile manipulator
controller (Farkhatdinov and Ryu, 2008) and how the obtained
tactile data can be visualized in a dedicated virtual reality-based
human-operator interface (Omarali et al., 2020). Further studies
will be performed on dimensionality reduction with principal
component analysis which may increase the classification
accuracy. Additional features, such as local min-max values,
which may give a better comprehension of the data, will be
analyzed. The implementation of an alternative bio-inspired
ciliary force sensor will be investigated for small crack detection
(Ribeiro et al., 2017).
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