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This paper tackles the problem of formation reconstruction for a team of vehicles based

on the knowledge of the range between agents of a subset of the participants. One main

peculiarity of the proposed approach is that the relative velocity between agents, which is

a fundamental data to solve the problem, is not assumed to be known in advance neither

directly communicated. For the purpose of estimating this quantity, a collaborative control

protocol is designed in order to mount the velocity data in the motion of each vehicle as

a parameter through a dedicated control protocol, so that it can be inferred from the

motion of the neighbor agents. Moreover, some suitable geometrical constraints related

to the agents’ relative positions are built and explicitly taken into account in the estimation

framework providing a more accurate estimate. The issue of the presence of delays in

the transmitted signals is also studied and two possible solutions are provided explaining

how it is possible to get a reasonable range data exchange to get the solution both

in a centralized fashion and in a decentralized one. Numerical examples are presented

corroborating the validity of the proposed approach.

Keywords: autonomous underwater vehicles, multi-agent system, relative localization, active estimation, range-

based navigation

1. INTRODUCTION

Localization is one of the most important basic abilities for an autonomous vehicle to perform
autonomously a wide number of tasks (Ferri et al., 2017; Simetti et al., 2017; Antonelli et al., 2018),
so that an accurate and reliable localization algorithm is a key practical tool for the success of
mission in many applications of underwater robotics.

In essence, the localization problem is often addressed exploiting geometrical relations between
the pose of the vehicle and the sensors, so that the issue of solving the localization problem
may be strongly related to the environment of the given application. Sensor technology strongly
depends on the environment, e.g., the Global Navigation Satellite System (GNSS), AttitudeHeading
Reference Systems (AHRS), radar-based tracking systems, accelerometers, gyros, and compass
devices. This makes the issue of the underwater localization problem more challenging, and it
has been considerably studied in the past years. Underwater acoustic-based trilateration solutions
as long base line (LBL) systems have been studied as well, but they require complex deployment
operations (Scherbatyuk, 1995).

Localization is a long-time debated research area in robotics and beyond, and different aspects
have been studied over time. In this paper, we consider the relative localization problem for a team
of agents, that is, the formation reconstruction problem in a multi-vehicle framework. This is a
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peculiar problem in the research area of localization, which
has been recently considered by several authors for its
importance in various applications. In the paper by Soares
et al. (2013), the authors propose a formation keeping under
severe communication and localization constraints, which is
a typical condition of the underwater environment. In Sarras
et al. (2017), the authors adopt an observer-based approach to
treat the problem ofmulti-vehicle collaborative localization using
time-varying range and relative velocity measurements, while in
Halsted and Schwager (2017) a method of estimating the shape of
an indoor environment using the echos of acoustic pulses among
the robots is studied. Indeed, when an underwater mission is
performed by a team of robots, it is often fundamental to know
the relative positions and orientations in order to be able to
correctly merge the data of the environment (e.g., merging pieces
of map) collected by each individual robot (see, e.g., Roumeliotis
and Bekey, 2000).

From a theoretic standpoint, the range-based estimation
problems have been recently considered also in a single vehicle
framework (Bayat et al., 2016). The challenges of dealing with
single range measurements come from the fact that they are
a non-linear algebraic map of the vehicles’ positions hence the
observability analysis requires the tools of local and weakly local
observability (Hermann and Krener, 1977), but this approach
suffers from several difficulties (Gadre and Stilwell, 2004; Ross
and Jouffroy, 2005; Jouffroy and Reger, 2006). However, an
alternative approach has been recently investigated recurring to
a reformulation of the problem, which requires the observability
of a linear time varying system (see, e.g., Batista et al., 2011;
De Palma et al., 2017) so that a number of useless drawbacks of
the local approach are avoided.

In this paper, we afford the relative positions reconstruction
problem for a team of collaborative robots using local data.
Collaborative navigation based on single-range data has been
studied in the underwater environment (Fallon et al., 2010; Soares
et al., 2013; Webster et al., 2013) as well as in more general
settings (Cao et al., 2011). Indeed, since the milestone paper
by Sanderson (1997), the area of cooperative navigation and
localization has been significantly explored. One first significant
attempt to the decentralized collective localization problem is
explained in Roumeliotis and Bekey (2002); to achieve this goal,
data processed during each collective localization session are
propagated among all the robots in the group. This approach
is further investigated in Mourikis and Roumeliotis (2006),
where the Relative Position Measurement Graph (RPMG),
i.e., the weighted directed graph representing the network of
robot-to-robot exteroceptive measurements, is introduced and
used as a key tool for the analysis of cooperative localization.
The distributed acoustic navigation problem for Autonomous
Underwater Vehicles (AUVs) is explored in Bahr et al. (2009),
where the authors use acoustic ranging and data exchange based
on dead-reckoning and range-only measurements provided by
acoustic modems that are mounted on each vehicle to achieve
cooperative positioning. In the paper by Allotta et al. (2014),
the use of AUVs with low-cost instrumentation is explored
(namely, each of them is equipped with a low-cost IMU, a
compass and depth sensor, but only one of them, the master,
has a high accuracy navigation sensor such as the DVL), and

acoustic modems for communication are used as sensors of
relative distance to achieve an innovative cooperative localization
algorithm. In Soares et al. (2017), the authors optimize the non-
convex maximum-likelihood estimator in the presence of range
measurements contaminated with Gaussian noise, and obtain
a convergent, accurate, and distributed positioning algorithm
that outperforms the extended Kalman filter. However, this topic
has been largely explored by several authors, and the interested
reader may refer to Arai et al. (2002) (section V).

The research activity reported in this paper stems from the
above considerations and is strongly inspired by the experience
gained within a European project (Antonelli et al., 2018). The
goal is to extend the preliminary results achieved by the same
authors in De Palma et al. (2015) and De Palma et al. (2019) as
follows. One of the main novelties with respect to De Palma et al.
(2015) is relative to the following fact. Based on the consideration
that communications networks in the underwater environment
do not perform well, we want to avoid the direct communication
between vehicles of the relative velocity by setting a suitable
agreed control protocol in which it is possible to encapsulate the
data which one vehicle wishes to communicate as a parameter
that can be easily estimated using the relative motion by any
of its neighbors. As opposed to the approach in Mourikis and
Roumeliotis (2006), in this paper the solution proposed relies on
intra-vehicle ranges only rather than relative positions of vehicles.
As a further peculiar feature of the approach proposed by the
authors of this paper, we further use topology-based relations
among the unknown variables as an additional constraint and
this results in reduction of the overall estimate uncertainty.
Further, in this paper we explicitly account for delays in range
measurements acquisition. Indeed, the technology underneath
underwater networks is typically acoustic and communication
delays may be significant and their impact may not be neglected.
The solution provided in this paper exploits the intuitive idea
of a neat time-division protocol to prevent any delay-related
issue in the localization solution provided that an upper bound
is available.

The paper is structured as follows: after a brief summary of
notation and terminology in section 2, we provide the general
problem statement in section 3, where section 4 is dedicated
to the localization-oriented control protocol. In section 5, the
observer design is performed, and section 5.1 is fully dedicated
to the projection approach, which allows to improve the estimate
precision. In section 6, the issue of delays in measurements is
faced, and in section 7, two possible communication protocols are
provided both in the case of a single “leader” agent performing
the elaboration (thus only one agent collecting all the estimates)
or any agent of the network. In section 8, a wide simulation
activity is reported and discussed, showing the effectiveness of the
proposed approach. Section 9 closes the paper summarizing the
results achieved in the paper.

2. NOTATION AND GRAPH THEORY
TERMINOLOGY

In the following, we introduce the notation adopted in the paper
and some tools from graph theory (Godsil and Royle, 2001),
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which are useful for a mathematical treatment of the problem.
We use the symbol ⊗ to denote the Kronecker product between
two matrices, which is defined as follows. For a pair of matrices
A ∈ R

n×m and B ∈ R
p×q:

A⊗ B =







a11B · · · a1mB
...

. . .
...

an1B · · · anmB






. (1)

We use diag(A1, . . . ,An) to denote a block-diagonal matrix with
matrix diagonal entries Ai. A graph G is the collection of a set
V = {1, . . . , n} called set of nodes and another set E ⊆ V × V ,
which is called the set of edges. For a given i ∈ V , the set Ni =

{j ∈ V :(j, i) ∈ E} is called the set of its neighbors. A path P

between node i and node j is a collection of nodes and edges of G
connecting i and j; a graph G = (V , E) is connected if there exists
a path connecting each h, g ∈ V . A cycle is analogously defined
with the additional condition that i = j. A cycle C̄ is linearly
independent from a preassigned set of cycles if at least one edge
in C̄ is not present in the union of the edge sets of the cycles.

3. PROBLEM FORMULATION

Let xi ∈ R
3 for i = 1, 2, . . . , n denote the position of n agents and

vi ∈ R
3 their velocity. Each agent is able to know its own velocity

with reference to the common frame I so that, unless specified,
we assume that the velocity is expressed in this common frame
I . We assume that if two agents are able to measure the range
between themselves, they are connected, so that it is possible
to define a connection graph. Inspired by the work of Mourikis
and Roumeliotis (2006), we refer to it as to an RPMG, which we
assume to be a simple graph G with node set V = {1, . . . , n} and
the edges set E . We further assume that if two agents are able
to measure the range between themselves, they can establish a
communication link to exchange data, so that it is possible to
consider G also a communication graph.

The evolution of the agents can be computed using simple
kinematic equations:

ẋi(t) = vi(t) : i ∈ V (2)

zij(t) : = xi(t)− xj(t) : (i, j) ∈ E (3)

vij(t) : = vi(t)− vj(t) : (i, j) ∈ E (4)

so that

żij(t) = vij(t) : (i, j) ∈ E (5)

yij(t) = ‖zij(t)‖
2

: (i, j) ∈ E , (6)

where zij in Equation (3) denotes the relative positions among
those agents able to exchange information. All agents are
assumed to be able to acquire measurements of their relative
Euclidean distance yij in Equation (6), with the goal of estimating
zij performing an elaboration of the relative range measurements
yij and local data. A fundamental difference between this problem
statement and the one afforded in the paper by De Palma et al.
(2015) is that here we do not assume to exchange the velocity data

through a dedicated underwater network, but we encapsulate this
information as parameters of an agreed control protocol and infer
the velocity value using a range-based Kalman filter as detailed in
the following. We consider this choice of the problem statement
a significant step forward for all those applications where only
range information exchange is possible.

From now on we work under the assumption that the
communication graph is time invariant. This choice is
instrumental to keep the problem simple and the associated
solution clear. The authors believe that it is a mild assumption
considering that the resulting localization procedure requires a
bounded amount of time. It is equivalent to assume that nodes
that are neighbors at the initial time t̄ keep this communication
alive during the whole time span, while other nodes that may
fall in the communication range after t̄ are not included in
the elaboration. Furthermore, from a practical point of view, it
should be emphasized that acoustic underwater communications
degrades drastically after certain threshold distances. If a group
of underwater vehicles keeps its formation during a mission
within such a threshold distance (most common case), the
quality of the communications can be assumed to remain good
and the communication links can be considered constant.
Finally, even if a communication link (i,j) was lost, the proposed
strategy could still be adopted by deleting the corresponding
state variable zij.

We now describe a strategy to improve the estimation when
cycles are present in the communication graph. Indeed, the
relative positions may be not independent, but they can be
subject to geometric constraints if they belong to the same
cycle. Based on the consideration that the sum of all the vectors
representing the relative positions of agents belonging to a
cycle must necessarily be zero, each set of independent cycles
corresponds to a set of independent geometric constraints on the
relative positions. Considering a connected graph with n nodes
andm edges, any cycle basis can be mapped into a set ofm−n+1
additional relations. A team of n = 4 agents withm = 5 links is
depicted in Figure 1. It is possible to setm−n+1 = 2 additional
relations, namely

z12 + z23 + z31 = 03×1 (7)

−z23 + z24 + z43 = 03×1 (8)

FIGURE 1 | Example of Relative Position Measurement Graph (RPMG) with 4

agents and 5 links.
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that can be rewritten as Dz∗ = 03×1 with

D =

[

I3×3 03×3 03×3 I3×3 03×3
03×3 I3×3 I3×3 03×3 −I3×3

]

∈ R
6×15 (9)

z∗ = (z⊤12 z⊤24 z⊤43 z⊤31 z⊤23)
⊤ ∈ R

15 (10)

The above example can be easily generalized, and it is possible
to write a general setting as follows. For a team of n nodes and
RPMG edge set E , the additional relations can be expressed as:

D z∗ = 03(m−n+1)×1 (11)

being

z∗ = (· · · z⊤ij · · · )
⊤ ∈ R

3m with (i, j) ∈ E , (12)

D = A⊗ I3×3, (13)

A = (alk) (l = 1, . . . ,m− n+ 1; k = 1, . . . ,m) (14)

where D ∈ R
3(m−n+1)×3m,A ∈ R

(m−n+1)×m and A is a
signed structured (0, 1) matrix, namely alk ∈ {−1, 0,+1}. Each
geometrical relation associated with (11) can be encapsulated
in the state estimation procedure in order to improve the
estimation quality.

4. LOCALIZATION-ORIENTED CONTROL
LAW

In this section, a motion control scheme for range-based relative
localization is proposed. Using this strategy, it is possible to infer
the relative velocity of agents from the motion measurements.
Consider the following control law for each vehicle:

vi(t) =
∑

j∈Ni

K (xi(t)− xj(t)) : K > 0, i ∈ V (15)

where K ∈ R is a positive constant. According to such schema,
themotion of each vehicle i depends only on the relative positions
with its neighbors, namely zij with j ∈ Ni.

It is worth noting that in our framework Equation (15) cannot
be directly implemented (as the actual relative positions zij are
not known to vehicle i), but we replace the estimated relative
positions ẑij instead:

vi(t) = K
∑

j∈Ni

ẑij(t), i ∈ V , (16)

leading to the following relative velocities:

vij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 : (i, j) ∈ E (17)

Details about the specific computation of the estimated relative
positions ẑij to be used in (16) are provided in the next section.

When agents adopt this control law, the system (5–
6) becomes:

żij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 , (i, j) ∈ E (18)

yij(t) = ‖zij(t)‖
2. (19)

As a final remark, it is interesting to note that the control
law in Equation (15) has the same structure of a consensus
protocol as those described in Olfati-Saber and Murray (2004)
and Ren and Beard (2007). Control strategies based on such kind
of protocols have been widely studied for the coordination or
formation control of a team of agents (Leonard et al., 2007; Ren
and Cao, 2010). In this paper, we do not seek control objectives
but we rather use Equation (16) as a localization-oriented control
protocol that each vehicle must follow at each t = kTs, being Ts

a fixed time interval. Therefore, within each interval the agents
keep their velocity constant. Indeed, in this paper such control
law is adopted to make the motion informative of each agent’s
position and velocity, and hence make the range-based relative
localization of a networked group of underwater vehicles solvable
in finite time so that it can be executed as a routine inside a
mission when localization is needed. This is useful when, during
a cooperative mission, the relative localization accuracy of the
agents decreases; in this case, the proposed localization-oriented
control law can be activated so as to improve the accuracy of the
relative localization.

The advantage of such solution with respect to the work
presented in De Palma et al. (2015) is that by adopting the motion
control scheme for range-based relative localization in (16), there
is no need for the agents to share their velocity information in
the communication channel. Indeed, an agent is able to derive
the velocity of the other agents from the knowledge of the
adopted control law and the estimated relative positions. This
result in a significant reduction of the communication load over
the network. The results achieved in this paper are particularly
relevant in underwater applications where the bandwidth is often
limited due to the acoustic communications.

5. OBSERVER DESIGN

The estimation of the relative positions zij(t) in Equations (18),
(19) is tackled resorting to themethods presented in Indiveri et al.
(2016). Let us integrate Equation (18)

zij(t) = zij(t0)+

∫ t

t0

K





∑

h∈Ni

ẑih(τ )−
∑

ρ∈Nj

ẑjρ(τ )



 dτ

= zij(t0)+ dij(t), (20)

with dij(t) defined as

dij(t) : =

∫ t

t0

K





∑

h∈Ni

ẑih(τ )−
∑

ρ∈Nj

ẑjρ(τ )



 dτ ∈ R
3×1. (21)
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Equation (20) allows to compute

z⊤ij (t0) zij(t0) = yij(t0) = (22)

= yij(t)+ ‖dij(t)‖
2 − 2d⊤ij (t)zij(t)

yielding

ȳij(t) : =
1

2
[yij(t)− yij(t0)+ ‖dij(t)‖

2] (23)

ȳij(t) = d⊤ij (t)zij(t). (24)

The term ȳij(t) defined in Equation (23) as well as the term
dij(t) defined in (21) are both known quantities, so that the
new linear output equation in Equation (24) can be considered.
Consequently, the original non-linear model (Equations 5 and 6)
can be expressed as a Linear Time-Varying (LTV) model

żij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 (25)

ȳij(t) = d⊤ij (t)zij(t). (26)

Thus, the estimation of zij(t) in (25, 26) can be addressed
exploiting the standard linear system theory. It should be noticed
that the output matrix d⊤ij (t) of the LTV model depends on the
control input, hence the observability depends on the agents’
relative velocity vij. It can be proven that a sufficient condition
for the observability of the original system (5–6) on [t0, t] is the
invertibility of the observability Gramian of the LTV system (25,
26) defined as:

G(t0, t) =

∫ t

t0

dij(τ ) d
⊤
ij (τ ) dτ . (27)

The reader should refer to Indiveri et al. (2016) for a detailed
analysis of the observability properties of such a system. Let
us consider the discrete time formulation of the LTV system
given by:

zij(k+ 1) = zij(k)+ K





∑

h∈Ni

ẑih(k)−
∑

ρ∈Nj

ẑjρ(k)



Ts + ω(k)

(28)

ȳij(k) = d⊤ij (k− 1)zij(k)+ ǫ(k) (29)

with

ȳij(k) =
1

2

[

yij(k)− yij(0)+ ‖dij(k− 1)‖2
]

, (30)

dij(k− 1) =

k−1
∑

l=0

K





∑

h∈Ni

ẑih(l)−
∑

ρ∈Nj

ẑjρ(l)



Ts, (31)

where ω(k) and ǫ(k) are assumed to be zero mean, Gaussian,
white, and uncorrelated process and measurements noises with
covariances Q(k) and R(k), respectively, and Ts represents

the sampling time. A standard Kalman filter can be applied
to the model in Equations (28) and (29), leading to the
following equations:

ẑij(k+ 1|k) = ẑij(k|k)+ K





∑

h∈Ni

ẑih(k)−
∑

ρ∈Nj

ẑjρ(k)



Ts

(32)

Pij(k+ 1|k) = Pij(k|k)+ Q(k) (33)

K = (P−1ij (k+ 1|k)

+dij(k)R(k+ 1)−1d⊤ij (k))
−1dij(k)R(k+ 1)−1 (34)

ẑij(k+ 1|k+ 1) = ẑij(k+ 1|k)+ K(ȳ(k+ 1) (35)

−d⊤ij (k)zij(k+ 1|k))

Pij(k+ 1|k+ 1) = (P−1ij (k+ 1|k)

+dij(k)R(k+ 1)−1d⊤ij (k))
−1. (36)

In the considered scenario, thanks to the intra-vehicles acoustic
communications, each agent is able to know the estimations ẑij
and their covariances Pij. Therefore, each agent can improve
the estimation accuracy exploiting the additional geometric
constraints (11). To this aim, we can benefit from the projection
approach described in the following subsection.

5.1. Constraint Exploitation for the
Estimate Improvement
Assuming to know them Kalman filter estimates ẑij, it is possible
to incorporate the constraint (11) in the estimation framework
resorting to the approach described in Simon (2006). Let us
define the Kalman filter estimate ẑ∗ as

ẑ∗(k) = (· · · ẑ⊤ij (k) · · · )
⊤ ∈ R

3m
: (i, j) ∈ E , (37)

and its posterior covariance as

P∗(k) = diag(· · · Pij(k) · · · ) ∈ R
3m×3m

: (i, j) ∈ E . (38)

An estimate ẑ∗p satisfying the constraint (11) can be derived
projecting the Kalman filter estimate onto the constraint surface;
this would lead to the following solution:

ẑ∗p(k) = U ẑ∗(k) (39)

where U is the projection operator

U : = I3m×3m −

[

W−1D⊤
(

DW−1D⊤
)−1

]

D (40)

such that U2 = U , DU = 03(m−n+1)×3m, and W ∈ R
3m×3m is

any positive definite weighting matrix. As proven in Simon and
Chia (2002), if the weight matrix W in Equation (40) is chosen
asW = P∗−1, then the estimate ẑ∗p in Equation (39) is minimum
variance, namely

P∗p ≤ P∗ (41)
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being P∗p the error covariance of ẑ∗p ; however, if the weight
matrix W is chosen as W = I, then the constrained estimate
ẑ∗p in Equation (39) is always closer to the true state than the
unconstrained estimate, namely

||ẑ∗ − ẑ∗p|| ≤ ||ẑ
∗ − ẑ∗||. (42)

Choosing the weight matrix W = P∗−1(k), the estimate ẑ∗p(k)
becomes:

ẑ∗p(k) = ẑ∗(k)−

[

P∗(k)D⊤
(

DP∗(k)D⊤
)−1

]

D ẑ∗(k), (43)

and resulting posterior covariance is given by

P∗p(k) = P∗(k)− P∗(k)D⊤(DP∗(k)D⊤)
−1

DP∗(k). (44)

From the ẑ∗p resulting from (39), it is possible to extract the single

ẑij that appears in the control and estimation equations (16, 17,
18, 20, 21, 28, 25, 31, 32). Hence, the minimum variance estimate
ẑ∗p is actually used by each agent to set its velocity according to
the control law (Equation 16). Therefore, we assume that this
velocity is kept constant for the fixed time interval Ts, namely it
does not change until a new estimation is available.

5.2. Remark
It is worth noting that the output ȳij(t) defined in Equation
(23) depends on the first measurement yij(t0). This dependency
may affect the robustness of the solution as a single erroneous
measurement (e.g., an outlier or a fault signal) at t = t0 would
jeopardize the output. This issue can be overcome by periodically
resetting the measurement y(t0) with y(t). This would also
prevent possible uncertainties in the knowledge of vij(t) from
causing an unbounded bias in the displacement dij(t) in Equation
(21) used to compute ȳij(t). In the discrete time case, this would
correspond to periodically mapping yij(0) → yij(k

∗) as if the
measurement had started at step k∗ while the state estimate ẑij(k+
1|k + 1) follows its update dynamics. The results presented in
the following section refer to the discrete time case with periodic
mapping of the initial measurement yij(0) with yij(k − 1) (i.e.,
k∗ = k − 1). Consequently, the displacement in Equation (31)

becomes dij(k− 1) =
∑k−1

l=k∗ vij(l)Ts = vij(k− 1)Ts.

6. DELAYS IN RANGE MEASUREMENTS
ACQUISITION

One key point to have in mind when dealing with underwater
networks is that acoustic communications may be subject to
relatively large delays. In particular, communication latency is
due to the physics of the communication channel as well as to the
specific networking protocol employed. This latter component
of the delay may be eventually reduced accepting higher packet
loss probabilities. While details about the assessment of the
communication latency are not addressed in this work, it should
be noted that delays may be significant for larger distances and
should be accounted for in the estimation framework. Indeed,

this is the case within the approach described in this work where
the delay needs to be known.

In this framework, the range measurements available during
each step of the estimation process will be yij(t − τij), rather than
yij(t), having denoted with τij the time delay in the measurement
acquisition due to the acoustic communication network. This
arises the problem of how it is possible to obtain the actual
range yij(t) from the knowledge of the delayed measurement
yij(t − τij), and the time delay τij, in order to properly perform
the observer for the relative position estimation zij. Let consider
the intra-vehicle range yij(t):

yij(t) = zij(t)
⊤zij(t) (45)

and its time derivative:

ẏij(t) = 2 ż(t)⊤ij zij(t) = 2 vij(t)
⊤ zij(t) (46)

Equation (46) allows computing yij(t) from the knowledge of
yij(t − τij) and τij as:

yij(t) = yij(t − τij)+

∫ t

t−τij

2 vij(τ )
⊤ zij(τ ) dτ (47)

Exploiting Equation (47), time delays in the measurements
are taken into account mitigating their effects on the estimation
process. It is worth highlighting that the sampling time Ts of the
Kalman filter should be properly chosen.

As a final remark, it is worth noting that it is not possible
to implement Equation (47) as it is because the actual relative
positions zij are not known, and we use the current estimations
ẑij instead:

yij(t) = yij(t − τij)+

∫ t

t−τij

2 vij(τ )
⊤ ẑij(τ ) dτ . (48)

The numerical integration of Equation (48) leads to the following
discrete-time equation:

yij(k) ≈ yij(kTs − τij)

+

(τij/dT)
∑

l=0

2 vij(kTs − τij + l dT)⊤ ẑij(kTs − τij + l dT) dT.

(49)

where dT denotes the integration time. Notice that in spite of
the lack of an analytical proof of convergence of Equation (49)
to the true measurement yij, all the numerical results confirm the
effectiveness of this approach.

The overall control and estimation procedure is illustrated in
Algorithm 1. Summarizing, at each time step the last available
constrained estimates of zij are used by the control law of each
vehicle using Equation (16). Then, the measurements yij are
acquired: in case of delays, the current yij is estimated through
Equation (49). Finally, the observer updates the estimates of the
variables zij using the constrained Kalman filter solution.
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Algorithm 1 Control and estimation algorithm

Require: ẑij(k|k),Pij(k|k), ẑpij(k|k),Q(k),R(k), yij(0),
yij((k+ 1)Ts − τij), τij :(i, j) ∈ E

Ensure: ẑij(k+1|k+1),Pij(k+1|k+1), ẑp(k+1|k+1),Ppij(k+
1|k+ 1)

1: vi(k)← K
∑

h∈Ni
ẑpih(k|k)

2: vij(k)← K
(

∑

h∈Ni
ẑpih(k|k)−

∑

ρ∈Nj
ẑpjρ(k|k)

)

3: dij(k)←
∑k

l=0 vij(l)Ts

4: if τij 6= 0
5: compute yij(k+ 1) from (49)
6: end

7: ȳij(k+ 1)← 1
2

[

yij(k+ 1)− yij(0)+ ‖dij(k)‖
2
]

8: compute the KF estimation using (32-36):
ẑij(k+ 1|k+ 1),Pij(k+ 1|k+ 1) :(i, j) ∈ E

9: identify independent geometric constraints in terms of D
10: project KF estimation on constraint equations using (43-44)
11: return ẑij(k+1|k+1),Pij(k+1|k+1), ẑp(k+1|k+1),Ppij(k+

1|k+ 1) :(i, j) ∈ E

7. COMMUNICATION PROTOCOLS

In this section, we describe the communication policy that we
adopted to perform the range data exchange among the agents
during the intersampling period. This step is instrumental to
make the computation of Equations (32), (36) possible at each
sampling time, and in turn the projection (Equations 43, 44).

Several approaches are possible; we propose two alternative
solutions, which we refer to as centralized approach and
decentralized approach. In the centralized approach, only one
agent, a leader agent, is expected to perform the computation of
Equations (32)–(36) and (43), (44) so that the communication
policy is organized in order to make the data flow to the leader
for the twofold task of reconstructing the topology of the RPMG
established and collecting a complete set of range measurement
to perform the estimation of Equations (32)–(36). If necessary
or useful, the leader agent sends back the resulting estimated
positions among the agents using the same scheme reversed.
In the decentralized approach, all agents have the capability of
performing the computation of (32)–(36) and (43), (44) and
hence the communication policy is oriented to spread the range
data among agents to distribute them to all, so that each agent
performs the computation of the positions estimation. It is worth
noting that the term centralized/decentralized is related to the
computation of Equations (32)–(36), and hence to the fact that
the “holder” of the estimated value is only one agent or any one
of the network.

Regardless of the strategy adopted, an issue to consider
is that the RPMG cannot be known in advance, and the
topology identification of it is instrumental to the computation of
Equations (32)–(36). In this respect, we assume that the number
of the vehicles n and a preassigned labeling of the agents is known
in advance, while the connection topology is unknown to any
vehicle and it must be reconstructed as well using any approach.

We assume that all agents involved are equipped with
synchronized clocks so as to use One-Way Travel Time
(OWTT) range measurement schemas. Then, a Time-Division
Multiple Access (TDMA) scheme can be employed to access
the communication channel. Under this hypothesis, the
communication among agents is unidirectional; this choice is
conservative in order to avoid the chance of packet collisions
and the management of the resulting loss of data. It should
be noted that the duration of the time slots depends on the
available bit rate and on the specific communication protocol.
Examples of acoustic sensors commonly used in underwater
environment are the middle frequency (MF) modems (18–34
kHz) by Evologics (Kebkal et al., 2017). They have been recently
used for underwater positioning purposes during geotechnical
survey experiments performed within a European project (Abreu
et al., 2016). Such modems are characterized by a nominal bit
rate in the range 3.10–3.85 kbps, hence compatible with the
application at hand.

It is now worth mentioning that the amount of time needed
for two agents to communicate using acoustic signals may be
significant for large distances and in this paper it is accounted
for as described in section 6. Indeed, sound speed underwater is
approximately 1500 m/s, namely about six orders of magnitude
lower than the speed of electromagnetic signals in air.

According to all the previous considerations, we established
our communication policy under the following assumptions. We
refer to Figure 2 as to a description of the idea in the case of
n = 4 and RPMG as in Figure 3. The two strategies are put in
a pseudo-algorithm form (in the form of a flowchart) depicted
in Figures 4, 5.

We assume that vehicles are organized to send packets one by
one. The agents are labeled from the beginning and they follow
their labeling in order to send broadcast packets according to the
agreed protocol (which depends on the type of approach, this is
detailed in the following). Each packet is received only by the
neighboring agents and it takes a non-zero travel time to reach
the receiver, so we set equal to δt themaximum travel time (which
depends on the sensor range and environmental parameters). All
agent are aware of the starting time of the estimation procedure,
say t̄. Agent i sends its packet at time t̄ + (i − 1) · δt and
this packet reaches the agent j, j ∈ Ni within the time span
(t̄ + (i − 1) · δt, t̄ + i · δt). This is periodically repeated at each
t̄ + κTs.

In the centralized approach, the range data that are needed
to run the filter can be distributed in the team of n members
as illustrated in Figure 4: agents sequentially (one in each time
slot) broadcast a data packet containing their identifying label, a
time stamp, all the edges it is aware of, and all the corresponding
range data and measurements delays. After all agents but one
(i.e., after n − 1 time slots) execute the protocol, the leader
agent collects knowledge about the whole connection topology.
Hence, the leader agent knows all the information, i.e., relative
distances (6), required to solve the estimation problem taking
into account the additional geometric constraints (11) associated
with the connection topology. Once computed the estimates ẑ∗p
of the m relative positions using the collected information, the
leader agent broadcasts to all agents a data packet containing
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FIGURE 2 | Example of acoustic interrogation schema for acquiring range measurements and identify the connection topology for Relative Position Measurement

Graph (RPMG) in Figure 3.

FIGURE 3 | Example of Relative Position Measurement Graph (RPMG) with 4

nodes and 4 edges.

such estimates. Overall, 2n − 2 time slots are required to
complete one estimation step. This kind of scaling appears to be
most likely acceptable for most applications involving a limited
number of vehicles.

In the decentralized approach, considering that the
communication graph is unknown to the agents, the
communication policy is implemented with the aim of
retrieving the graph topology and spreading the range data
to all agents. Each agent during its time slot broadcasts a data
packet containing its label, a time stamp, the set of links already
identified, and the corresponding range data and measurements

delays. All agents receiving the ping, decode the data packet, and
identify the link between itself and the transmitter agent. This
is repeated until all agents collect knowledge about the whole
connection topology. In the worst case, 2n − 2 communications
slots are required to ensure that all agents have identified the
connection topology. At this point, each agent can perform the
estimation ẑ∗p of the relative positions.

The main differences between the two approaches can be
deduced by the schemes in Figures 4, 5, and we briefly comment
them in the following. In the centralized approach, only one agent
perform the elaboration, and it can be useful when the team
is heterogeneous and some agents have higher computational
capacity than others. However, the centralized approach requires
a larger amount of communicated data when the estimated state
is transmitted to all agents.

8. SIMULATIONS

The proposed range-based mutual localization for a team of
underwater vehicles is here tested on the RPMG in Figure 3

relative to a group of n = 4 agents and m = 4 communication
links. The corresponding geometric constraints are as follows:

Dz∗ =
[

I3×3 I3×3 I3×3 −I3×3
]









z12
z24
z43
z13









= 03×1. (50)
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FIGURE 4 | Flow chart of centralized approach for range measurements

acquisition and relative positions estimation.

The velocity inputs of each agent are assigned according to the
localization-oriented control law in Equation (16) with K = 0.1:

v1(k) = −K(z12(k)+ z31(k));
v2(k) = −K(z12(k)+ z24(k));
v3(k) = −K(z31(k)+ z43(k));
v4(k) = −K(z24(k)+ z43(k)).

The agents are located in the following initial positions: x1(0) =
(0, 0, 1)⊤m; x2(0) = (10, 0, 2)⊤m; x3(0) = (0, 10, 3)⊤m;
x4(0) = (10, 10, 4)⊤m. Without loss of generality, the range
measurements are assumed to be acquired with different time
delays τij, namely τ12 = 0.1 s, τ24 = 0.2 s, τ31 = 0.3 s, andτ43 =
0.4 s, whereas a sampling time Ts = 0.4 s has been considered.
At each sampling time Ts, the actual range yij(t) is derived
from the knowledge of the delayed measurement yij(t − τij),
and the time delay τij according to Equation (49). The resulting
trajectories are shown in Figure 6. It is worth remarking that
the proposed agents velocities vi guarantee the observability of
the system (Equations 25 and 26). Indeed, it can be verified,
by direct calculation, that the motion generated by the control

FIGURE 5 | Flow chart of decentralized approach for range measurements

acquisition and relative positions estimation.

FIGURE 6 | Trajectories of the agents for the simulation based on Relative

Position Measurement Graph (RPMG) in Figure 3.

law (16) verifies the full rank condition on the observability
Gramian (27) of the system, i.e., rank(G) = 3m = 12. Figure 7
shows the rank of the Gramian along the trajectory, and a few
range acquisitions are needed to get a full rank Gramian matrix.
Therefore, given the observability of the system, the states zij
can be estimated using the Kalman observer in Equations (32)–
(36), with covariance Q = 0.9 10−5 · diag(1, 1, 1)m2, covariance
R = 0.25m2, and initial condition given by

ẑij(0) ∼ N (zij(0),Pij(0)), Pij(0) = 4 · diag(1, 1, 1)m2. (51)
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The estimate ẑ∗ = (ẑ⊤12 ẑ⊤24 ẑ⊤43 ẑ⊤13)
⊤ ∈ R

12

obtained using the Kalman filter is reported in Figure 8A. This
estimate violates the equality constraint (50). A constrained

FIGURE 7 | Rank of the observability Gramian for the simulation based on

Relative Position Measurement Graph (RPMG) in Figure 3.

state estimate can be obtained projecting the standard Kalman
filter estimate ẑ∗ onto the constraint surface through Equations
(43), (44). This leads to the projected estimation illustrated in
Figure 8B. Figure 9 reports the norm of the equality constraints,

FIGURE 9 | Equality constraint ‖Dẑ
∗
‖

‖z∗‖ = 0.
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FIGURE 8 | (A) Estimation of the relative motions in 3D (top) and 2D (bottom). (B) Constrained estimation of the relative motions in 3D (top) and 2D (bottom).
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‖Dẑ∗‖
‖z∗‖ . It is worth noting that the unconstrained Kalman

estimate (red line) does not satisfy exactly the constraint,
whereas the constrained Kalman estimate (blue line) satisfies

the equality constraint, namely ‖Dẑ
∗
‖

‖z∗‖ = 0. Moreover, as

expected, the constrained estimate is also characterized by a
reduced covariance, i.e., P∗p − P∗ < 0. Indeed, the maximum
eigenvalue of the matrix P∗p − P∗, shown in Figure 10, is
always negative (not positive), confirming the improvement
obtained by exploiting the additional information provided by
the geometric constraints.

Note that regarding the norm of the estimation error, even if
the weightW is chosen asW = P∗−1(k) rather thanW = I, the

FIGURE 10 | Maximum eigenvalue of the matrix P∗p(k)− P∗(k) (Top) and norm

of the estimation errors (Bottom).

FIGURE 11 | Estimation errors and uncertainty regions for the relative

positions estimations z∗.

projected estimates still provide better results with respect to the
corresponding unconstrained Kalman estimates. The norm of the
estimation error for both estimates is reported in Figure 10.

The benefits of including the geometric constraints into the
estimation framework are more evident in Figure 11, where the
estimation error and the corresponding uncertainty region of
each component of the state z∗ ∈ R

12 are shown for both
estimates, unconstrained and constrained. The estimation errors
and the uncertainty region for the first component of the state
z∗ ∈ R

12 are also depicted in Figure 12. It is interesting to
note that, as already highlighted, the uncertainty region of the
constrained estimates is smaller than the one related to the
standard Kalman estimate. As a final remark, it is worth noting
that the estimates in Figures 8, 11, 12, as well as the equality
constraint in Figure 9, have sharp leaps whenever a range update
is processed, i.e., every Ts seconds. Moreover, the management of
the delays in range measurements as described in section 6 allows
to correctly process the measurements without compromise the
convergence of the estimations.

A further simulation is undertaken on the more complex
RPMG illustrated in Figure 13 relative to a group of n = 4 agents

FIGURE 12 | Estimation errors and uncertainty regions for the relative

positions estimations of the first component of z∗.

FIGURE 13 | RPMG with n = 4 agents and m = 5 communication links.
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FIGURE 14 | Trajectories of the agents for the simulation based on Relative

Position Measurement Graph (RPMG) in Figure 13.

FIGURE 15 | Rank of the observability Gramian for the simulation based on

Relative Position Measurement Graph (RPMG) in Figure 13.

and m = 5 communication links. The velocity inputs of each
agent are assigned according to the localization-oriented control
law in Equation (16) with K = 0.1:

v1(k) = −K(z12(k)+ z31(k));
v2(k) = −K(z12(k)+ z24(k)+ z32(k));
v3(k) = −K(z31(k)+ z43(k)+ z32(k));
v4(k) = −K(z24(k)+ z43(k)).

The initial positions of the agents are x1(0) = (0, 0, 2)⊤m;
x2(0) = (5,−10, 4)⊤m; x3(0) = (5, 10, 1)⊤m; x4(0) =
(10, 0, 2)⊤m. The range measurements are assumed to be
acquired with different time delays τij, namely τ12 = 0.1 s, τ24 =

0.2 s, τ31 = 0.3 s, τ23 = 0.3 s, τ43 = 0.4 s, whereas a sampling
time Ts = 0.4 s has been considered. The resulting trajectories
are shown in Figure 14. Notice that the observability Gramian
(27) of the system is full rank along the trajectory of the vehicles,
indeed rank(G) = 3m = 15 as shown in Figure 15. Therefore,
given the observability of the system, the states zij can be
estimated using the Kalman observer in Equations (32)–(36). The
covariances of the state zij and the output ȳ employed in the
Kalman filter areQ = 0.9 10−5 ·diag(1, 1, 1)m2 and R = 0.25m2,
respectively. The initial Kalman filter state estimate is given by

ẑij(0) ∼ N (zij(0),Pij(0)), Pij(0) = 9 · diag(1, 1, 1)m2, (52)

namely, zij(0) is the initial true state and the initial condition
ẑij(0) of the filter is assigned randomly with covariance Pij(0).

Regardless of the specific approach adopted for the
acoustic communications among agents, i.e., centralized
or decentralized, the estimation of the relative positions
z∗ = (z⊤12 z⊤24 z⊤43 z⊤13; z

⊤
23)
⊤ ∈ R

15 is based on the Algorithm 1.
Figure 16 reports the ultimate constrained Kalman filter estimate
ẑ∗p of the relative motions. It is worth remarking that, given the
global observability of the motion, even if the estimations are
initialized with a value far from the real one (see Equation 52),
the resulting ẑpij converge to zij. This is an interesting feature
because the proposed localization-oriented control law can
actually be activated when the relative localization accuracy of
agents is poor. Indeed, adopting such control strategy the whole
agents network improves significantly its formation accuracy.

FIGURE 16 | Constrained Kalman filter estimation of the relative motions: (A) 3D and (B) 2D.
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9. CONCLUSIONS

In this paper, the relative localization estimation problem for
a team of vehicles is studied based on the knowledge of the
range between agents of a subset of the participants. One
main peculiarity of the proposed approach is that the relative
velocity between agents, which is a fundamental data to solve
the problem, is not assumed to be known in advance neither
directly communicated. For this reason, a collaborative control
protocol is designed in order to encapsulate the velocity data in
the motion of each vehicle as a parameter through a dedicated
control protocol, so that it can be inferred from the motion
of the neighbor agents. Moreover, some suitable geometrical
constraints associated with the agents’ (unknown) positions are
built and explicitly accounted for in the estimation schema
providing a more accurate estimate. The issue of possible delays
in the transmitted signals is also studied and two possible
solutions are provided explaining how it is possible to get a
reasonable range data exchange to get the solution both in
a centralized fashion and in a decentralized one. Finally, the

validity of the proposed approach is shown through numerical
simulations.
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