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In-hand manipulation and grasp adjustment with dexterous robotic hands is a complex

problem that not only requires highly coordinated finger movements but also deals

with interaction variability. The control problem becomes even more complex when

introducing tactile information into the feedback loop. Traditional approaches do not

consider tactile feedback and attempt to solve the problem either by relying on complex

models that are not always readily available or by constraining the problem in order to

make it more tractable. In this paper, we propose a hierarchical control approach where

a higher level policy is learned through reinforcement learning, while low level controllers

ensure grip stability throughout the manipulation action. The low level controllers are

independent grip stabilization controllers based on tactile feedback. The independent

controllers allow reinforcement learning approaches to explore the manipulation tasks

state-action space in a more structured manner. We show that this structure allows

learning the unconstrained task with RL methods that cannot learn it in a non-hierarchical

setting. The low level controllers also provide an abstraction to the tactile sensors input,

allowing transfer to real robot platforms. We show preliminary results of the transfer of

policies trained in simulation to the real robot hand.

Keywords: tactile sensation and sensors, robotics, in-hand manipulation, hierarchical control, reinforcement

learning

1. INTRODUCTION

Dexterous in-hand manipulation is a long studied problem, involving precise movement,
inter-finger coordination, and contact management (Okamura et al., 2000). While manipulating
objects within a grip is possible with simple grippers, external forces such as gravity or interactions
with the environment are necessary to generate the manipulation movements (Dafle et al.,
2014; Chavan-Dafle and Rodriguez, 2015; Stork et al., 2015). When considering dexterous
hands, the problem complexity greatly increases (Ma and Dollar, 2011), as the additional fingers
allow for an increased number of possible solutions for each manipulation action and a larger
number of possible interactions with objects. Traditional in-handmanipulation control approaches
tackle simplifications of the general problem by attempting small movements or by relying on
several strong assumptions regarding contact and the precision of the available robot and object
models (Maekawa et al., 1995; Zheng et al., 2000; Bai and Liu, 2014). Even with such simplifications,
experiments on real robot platforms are prohibitively hard and thus frequently omitted in the
literature (Zheng et al., 2000; Bai and Liu, 2014). Seeing in-hand manipulation as a planning or
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optimization problem provides solutions for more general forms
of the problem but most of these solutions integrate very little to
no feedback (Cherif and Gupta, 1999; Saut et al., 2007; Mordatch
et al., 2012; Sundaralingam and Hermans, 2018). Considering
feedback during task execution is crucial to tackle the variability
introduced by objects, in the form of distinct shapes, surface
properties, target movements, or initial grasp configurations. To
achieve a sufficiently general solution to in-hand manipulation,
manipulation controllers not only have to generate suitable
trajectories that take into account task variability but also have
to adapt in accordance with the feedback signals observed during
task execution to compensate for unforeseen events, such as
object slip.

Tactile sensing is an attractive form of feedback for in-
hand manipulation, as it provides information directly from the
interaction points. It offers substantial advantages over other
forms of feedback such as vision and force, by disregarding
effects such as occlusion while providing rich information at high
frequencies (Yousef et al., 2011). Additionally, tactile information
has been shown to help with the interaction variability required
for in-hand manipulation, as it enabled objects to be grasped
robustly regardless of their shape or material properties (Veiga
et al., 2020). However, integrating high dimensional tactile
feedback signals in the control loop of an already complex in-
hand manipulation controller is non-trivial.

Reinforcement Learning (RL) has found great success in
solving control tasks with large input spaces on both simulated
(Mnih et al., 2015; Silver et al., 2016) and physical platforms
(Levine et al., 2016). Thus, several approaches based on
reinforcement learning (Van Hoof et al., 2015; Popov et al.,
2017; Akkaya et al., 2019; Zhu et al., 2019; Andrychowicz et al.,
2020), learning from demonstration (LfD) (Li et al., 2014),
combinations of RL and LfD (Gupta et al., 2016; Rajeswaran
et al., 2017), or optimal control with learned local models (Kumar
et al., 2016) have been proposed for in-hand manipulation.
Despite this, when considering complex tactile sensors such as
the BioTac (Wettels et al., 2014), the richness of the feedback
signals leads to considerably more complex state spaces and
transition functions, yielding significantly more challenging RL
problems. For example, pressure on different contact points

FIGURE 1 | The real (left) and simulated (right) Allegro hands that were used in our experiments. The tactile information provided by the sensors on the real platform

is abstracted in simulation by using our proposed hierarchical control decomposition.

of the BioTac sensors is measured from the displacement of
fluid within the fingertip which results from the deformation
of its malleable skin. Such a complex physical process is
currently impossible to simulate accurately and efficiently.
Hence any RL policy learned in simulation using a model
of the tactile sensor would not transfer to a physical robot.
On the other hand, learning the task directly on the robot
is hardly feasible because (i) in-hand manipulation tasks are
contact-rich, which creates non-linearities in the state transitions
and precludes the learning of a forward dynamics model in
a model-based RL setting and (ii) the high dimensionality
of the tactile sensors precludes the use of model-free RL
directly on the robot due to a prohibitively high sample
complexity. Accordingly, only Van Hoof et al. (2015) use RL
with integrated tactile information by training the policy directly
on a real robot and using very simple tactile information.
Additionally, the task is constrained during training by having
the object supported by an external surface that prevents it
from falling.

Constraining the manipulation task to a position where the
object is in a supported position (either by the palm of the
robot or by an external support surface), such that the object is
less likely to be dropped during exploration, is common among
several proposed approaches (Van Hoof et al., 2015; Kumar et al.,
2016; Rajeswaran et al., 2017; Akkaya et al., 2019; Andrychowicz
et al., 2020). The use of such a constrain is justified by the complex
nature of the transition function of in-hand manipulation tasks,
even in simulated environments. Indeed, if the robot is holding
an object as in Figure 1, any exploratory action (a random
perturbation to the current joint position) is likely to make the
object fall and thus terminates the trajectory after only a few
number of steps. We observed that such exploratory behavior
could lead to premature convergence of RL to poor local optima
where the robot reinforces behaviors that throw the object toward
the target. This results in a short term accumulation of rewards
at the detriment of the longer term rewards. In addition, we
observed that methods such as the ones used in Andrychowicz
et al. (2020) to produce impressive results on a real robot with the
object supported by the palm, are unable to learn the task when
the support is removed.
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To address both the learning of in-hand manipulation tasks
with rich tactile feedback and the relaxing of the support
constraint, we propose a hierarchical control decomposition
that relies on a low-level control scheme, composed by a set
of independent stabilization controllers, to keep the object
firmly gripped during the manipulation actions. These low level
stabilization controllers have the benefits of (i) enabling the
efficient learning of complex in-hand movements in simulation
by maintaining the object in the robot’s hand for a longer
period of time, simplifying the transition function and (ii)
potentially allowing transfer of policies learned in simulation
to physical environments by abstracting tactile information
and letting the upper level policy be solely defined on joint
information. The stabilization controllers are highly inspired
by neurophysiological studies (Johansson, 1996; Flanagan et al.,
2006) and have been extensively studied in prior work (Veiga
et al., 2020). We show that with the proposed hierarchical
decomposition RL methods are able to learn complex and
generalizable manipulation actions.

2. HIERARCHICAL CONTROL
DECOMPOSITION FOR IN-HAND
MANIPULATION

In order to learn general manipulation policies in simulation,
that can transfer to a physical robot, we propose a hierarchical
control decomposition composed of two control levels: a set
of grip stabilization controllers running independently on each
finger and a manipulation movement policy that produces
the movement trajectory in joint space and trades-off between
manipulation and stabilization. We begin by defining the
RL problem in a non-hierarchical fashion, followed by a
description of the stabilizers that compose the low-level of
our proposed hierarchical decomposition and showcase the
differences between the non-hierarchical and the hierarchical
learning problems.

2.1. Reinforcement Learning Problem
Definition
Given an initial grasp on an object, we consider the in-hand
manipulation task of translating and/or rotating the object to
a target pose. We phrase this problem as a Markov Decision
Process (MDP), defined by the quintuple (S,A,R, P, γ ), where S
represents the state space, A the action space, P(st+1|st , at) the
transition probability, R(st , at) its associated reward, and γ is the
discount factor. In a non-hierarchical RL setting (NH-RL), the
state space is comprised of joint positions q, joint velocities q̇
and target pose T. The action space is the set of perturbations
to the current joint position umov, constrained by a maximum
tolerated velocity. The structure of the non-hierarchical neural
network policies is depicted in Figure 2. The reward R(st , at) is
inversely proportional to the distance between the current and
target object coordinates.

Let π be a stochastic policy giving the probability π(a|s) of
executing action a ∈ A in state s ∈ S. Let the Q-function
be Qπ (s, a) = E

[
∑∞

t=0 γ tR(st , at) | s0 = s, a0 = a
]

, where the
expectation is taken w.r.t. all random variables st and at for t > 0.
Let Vπ (s) = Ea∼π

[

Qπ (s, a)
]

. The goal of RL is to find the policy
maximizing the policy return J(π) = Vπ (s0) where s0 denotes
some initial state (an initial grasp in our case).

2.2. Independent Grip Stabilization Control
The stabilization controllers that compose the base control level
where introduced in Veiga et al. (2020), and are deployed on each
finger independently. By interpreting the tactile signals provided
by the BioTac sensors (Wettels et al., 2014), these independent
finger stabilizers (IFS) locally avoid predicted slip events. This
allows them to keep objects stable within multi fingered grips
while not being constrained to a particular grasp configuration
or a particular distribution of force between the fingers. In a
hierarchical setting, the main task of the stabilizers is to ensure
grip stability throughout the manipulation action. Formally,
provided with a label ct+τf ∈ [slip,¬contact, contact] from a

FIGURE 2 | Overview of an non-hierarchical policy network. The network takes joint positions q, joint velocities q̇, and the target pose T as inputs, outputting a set of

perturbations to the current joint position umov.
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learned tactile based slip predictor, where τf is the prediction
window of the predictors, the level of a leaky integrator at time
t, denoted yt , is adjusted as follows

yt = βyt−1 + (1− β)L (1)

where β is the leakage at each time step and

L =

{

1 if ct+τf = slip,

0 otherwise
(2)

is the integrator input. The integrator value is then used by the
stabilizer to regulate the desired task-space velocity in the contact
normal direction, i.e.,

vstab = Ntyt , (3)

where Nt is a unit vector pointing in the contact normal
direction. In short, the integrator changes with the predicted
contact state, accumulating its response when slip is predicted
and leaking if contact. Finally, the stabilization disturbances to
the joint positions of the i-th finger ui

stab
are calculated using

inverse kinematics.
There are three differences in implementation pertaining

to these controllers between the simulated and real robot
environments. The first, is the manner in which the normal
contact direction is acquired. In simulation, the contact normal is
acquired via the simulator’s collision engine while the real robot
estimates it via the weighted average of the normal directions of
the electrodes. The weights are the activations of each electrode as
described inWettels et al. (2009). The second difference concerns
the intensity of the stabilizer response. Due to fluctuations of
the fluid of the real sensors, pressure values might indicate that
there is no longer contact for one time step, creating jerky
responses. As in Veiga et al. (2020), the controllers of the real
robot do not immediately stop whenever contact is lost, but have
their response smoothly reduced over a period of 200 ms. The
final difference concerns the slip signals used by the stabilizers.
In simulation, slip signals are provided by a heuristic based
slip detector, that observes the changes in relative position and
orientation between the fingertip and the object to detect slip.
In the real robot, slip is predicted from learned tactile based slip
predictors, as described in Veiga et al. (2020), and a prediction
window τf of ten is used.

The stabilization controllers are independent of the nature of
the manipulation task (e.g., nature of the manipulated object,
target coordinates, or type of initial grasp) and do not need to
be learned. Most importantly, they provide an abstraction to the
tactile information provided by the sensors, allowing the high
level movement policy to not depend on tactile information while
the overall system still reacts to tactile feedback. Being able to
learnmovement policies with information that is readily available
to both the simulated and the real robot facilitates the transfer of
policies between the two.

2.3. In-Hand Manipulation Movement
Policy
To generate the manipulation movements, a high-level policy πθ ,
parameterized by the weights of a neural network θ , is learned in

a simulation environment depicted in Figure 1. In contrast to the
NH-RL case, in the hierarchical RL (H-RL) setting, the new state
space S′ is not only comprised of joint positions q, joint velocities
q̇ and target pose T but also includes the state y = [y1, ..., y4]
and the state variations 1y = [y1t − y1t−1, ..., y

4
t − y4t−1] of all

the finger stabilizers. The action space is also different, with the
new action space A

′ = A × [0, 1]Nfing , now including a set of
Nfing uni-dimensional merging coefficients αi, where Nfing is the
total number of fingers, in addition to the movement commands
in the form of perturbations to the hand’s joint positions umov,
that were already included in the action space A. The merging
coefficients αi regulate the combination of both perturbations,
ui
stab

and umov, to compose the final action. Letting u∗i be the
combined response of each individual finger

u∗i = αiu
i
mov + (1− αi)u

i
stab. (4)

Figure 3 depicts the high-level movement policy of the H-RL
setting while Figure 4 provides an overview of the proposed
hierarchy. The latter also re-emphasizes the fact that low-level is
designed both in simulation and on the real robot, allowing the
high-level policy to rely solely on joint space information.

An important set of hyper-parameters in our hierarchical
decomposition is the initial distribution of each αi, in order
to obtain maximum variability in the trajectories of the initial
policy and facilitate the RL process. Low values of αi have
the desired effect of stabilizing the grip but dampen the
variability of the initial trajectories. Similarly, high values of αi

produce trajectories with low variability as the object falls almost
immediately. To find an appropriate trade-off we manually
tune the hyper-parameters governing the distribution of α by
visual inspection of the resulting initial policy in simulation.
The resulting distribution for each αi is a Gaussian with
mean 0.5 and a variance of 0.25. By centering the distribution
at the transition point between the stabilization and the
movement perturbations, we allow for exploration movements
with stabilizer compensation. The variance being relatively low
prevents sudden shifts from full movement to full stabilization
perturbation and vice-versa.

Any RL algorithm can be applied to this hierarchical
decomposition as the actions are not time-extended. Learning
proceeds as follow: at the start of an episode a random target
coordinate is sampled and the policy is executed until the object
falls or 3,000 time steps (10 s) have elapsed. Upon collection
of the trajectories we use TRPO (Schulman et al., 2015) to
update the neural network policy depicted in Figure 3. In our
experiments, the same implementation of TRPO (Dhariwal et al.,
2017) is used to compare both NH-RL, and the proposed H-RL
to in-hand manipulation.

3. EXPERIMENTAL EVALUATION

Using a simulated environment, we evaluate the efficiency of
our proposed H-RL when compared to NH-RL and present
preliminary results on transferring H-RL policies learned in
simulation to a real robot platform.
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FIGURE 3 | Overview of the high level policy network that produces the manipulation movements. As in the NH-RL case, the network takes joint positions q, joint

velocities q̇, and the target pose T as inputs but now also receives the state of the stabilizers y and its variations 1y. The movements are once again represented by a

set of perturbations to the current joint position umov. The network now also outputs the merging coefficients αi between the movement commands umov and each of

the stabilizers responses uistab.

3.1. Experimental Procedure, Testing
Platform, and Tactile Sensors
All experiments are performed either on a simulated or real
version of the AllegroHand that is equippedwith BioTac fingertip
sensors (SynTouch Inc., www.syntouchinc.com). The Allegro
Hand (Wonik Robotics GmbH, www.simlab.co.kr), is a four
fingered hand with four joints per finger, for a total of 16 actuated
degrees of freedom. With the exception of the thumb, all fingers
have two metacarpal joints (rotation and flexing), a proximal
joint and a distal joint. The thumb does not have a distal joint
having an abduction joint instead. A PD controller was used
to control the robot joint positions with a control loop that
runs at 300 Hz.

BioTac tactile sensors (Wettels et al., 2014) were used as
fingertip sensors. The sensors provide multi-modal responses
composed of low and high frequency pressure (Pdc and Pac)
captured by a pressure transducer, local skin deformations (E)
acquired through local impedance changes measured by 19
electrodes scattered across the sensors core surface, as well as
temperature and thermal flow (Tdc and Tac) measured by a
thermometer. All data channels of the sensor are sampled at
a rate of 100 Hz. The high frequency pressure is sampled in
batches of 22 values at the same frequency. Considering all
channels and the Pac batch data, the sensors outputs a total of
44 values every 10 ms.

The PyBullet simulation environment (Coumans and Bai,
2018) is used to simulate the hand and the fingertip sensors. The
PD control gains of the hand were tuned in simulation to emulate
the behavior of the real hand. The BioTacs are not simulated.

Instead information of contact force and normal direction is
obtained directly from the collision engine. In addition to the
simulated slip stabilizers, a simplified version of the stabilizers,
that uses a constant desired velocity factor β , was implemented
and compared with the full stabilizers

uistab = βNi. (5)

After initial testing, it was found that the simple stabilizers
would either apply forces that are not sufficiently strong to keep
the object in hand or would apply excess force, hindering the
manipulation movements. This is due to the simple stabilizers
inability to regulate the applied velocity, and suggests that the
lower level of the hierarchy requires feedback in order to be
beneficial to the systems performance. These observations led us
to present all results using the full stabilizers.

All experiments are performed on a subset of objects from the
YCB object and model set (Calli et al., 2015), either simulated or
on the real robot, as shown in Figure 5.

The simulation experiments considered three possible initial
configurations: two fingered grasps for the green Lego brick, the
golf ball and the marker, three fingered grasps for the Rubik’s
cube, the baseball and the tuna can and finally four fingered
grasps for the screw-driver box, the small football, and the chips
can. Each of these state configurations served as the initial pose
for four different manipulation movements. These movements
were sampled at the beginning of each trial by setting different
target positions and target orientations, both with respect to the
initial object position. The position targets are sampled from a
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FIGURE 4 | The proposed hierarchical structure. The movement policy has access to joint positions q, joint velocities q̇ target pose T, and the internal state variables

of each of the individual stabilizers yi and 1yi . To each stabilizer, it transmits a set of joint perturbations uimov, that generate the necessary finger movements, in

addition to a coefficient αi used to merge movement and stabilizing perturbations uistab, and generate the final command u∗i .

FIGURE 5 | The real (left) and simulated (right) objects used in our experiments. The objects are a subset of the YCB object and model data set (Calli et al., 2015).

Since the stabilizers implemented here have a fixed response along the normal direction, the chips can of the data set was replaced by a similar but empty chips can

in order to avoid manipulating heavier objects.

set of two positions, attempting to move the object by 2 cm
to the edge of the work space with respect to the y axis. The
hand is oriented such that x is the axis moving away from the

palm, y the axis pointing from the palms to the fingers when the
fingers are in a stretched position, and z is the height. Rotation
targets are either positive or negative π/4 rotations around the
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initial position with the sign sampled uniformly at random.
The coordinate frames, position targets, and rotation targets are
depicted in Figure 6. Having four combinations at the edge of
the work space allows all target poses to be consistently observed
every episode, simplifying the learning process while potentially
allowing the policy to generalize to other intermediate poses.
Five learning trials were performed for each combination of
manipulation/object configuration and target movements with
50 million samples per trial.

Regarding the learning process, the reward function R is
given by

R(st , at) = F(Perr + Oerr)− acost − ȧcost − d (6)

where Perr and Oerr respectively correspond to the position and
orientation terms

Perr = e−(pcurr−pdes)
2

(7)

Oerr = e−(ocurr−odes)
2
. (8)

Using an exponential form for these terms guarantees that the
maximum instantaneous reward for each term is one when
the error is zero. In order to produce structured manipulation
movements, we enforce that the number of fingers in the initial
grasp is maintained throughout the manipulation action. This is
achieved via F, a ratio between the number of fingers initially in
contact with the object K and the current fingers in contact with
the object

F =
1

K

K
∑

k=0

fk (9)

where fk equals one if k-th finger is in contact and is zero
otherwise. Since both Perr and Oerr respectively increase as the

position and rotation errors decrease, multiplying the sum of
these terms by the ratio F effectively limits the instantaneous
reward, only providing a fraction of it if the number of fingers
is not maintained throughout the trajectory. We also wish to
enforce smooth movement during the manipulation action. We
do so by applying costs acost and ȧcost on the velocity and
acceleration respectively

acost =

J
∑

i=0

(ait)
2 (10)

ȧcost =

J
∑

i=0

(ait − ait−1)
2 (11)

where J is the number of joints. Finally, d is a negative penalty
given when the object is dropped.

In addition to the previous reward terms, a specific term is
added to the reward calculation in the H-RL setting. This term is
an additional cost

α̇cost =

Nfing
∑

i=0

(αi
t − αi

t−1)
2 (12)

applied on the variation of the αi. It serves to penalize
policies that shift very abruptly between stabilization and
movement commands.

3.2. Hierarchical-RL vs. Non
Hierarchical-RL
We compare the average accumulated reward (cumulative
reward) achieved by NH-RL and by our proposed hierarchical
decomposition H-RL, respectively represented by the blue and
orange curves in Figure 7. Results show that H-RL performs

FIGURE 6 | A lego block in the initial grasp position. The coordinate frames defined for the manipulation are shown, as well as the two position targets pos1 and pos2,

and the two rotation targets rot1 and rot2. The position targets represent object translations of 2 cm along the y axis. The rotation targets represent clockwise or

counter-clockwise rotations of π/4 radians with respect to the x axis.
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FIGURE 7 | Cumulative reward curves for H-RL and NH-RL, both trained with TRPO. H-RL outperforms NH-RL for smaller objects but the gap in accumulated

rewards significantly decreases with object size, with NH-RL showing similar or slightly higher accumulated reward values for larger objects.

better or on par with NH-RL for all objects. For larger objects
such as the football, the screwdriver box, and the chips can,
exploratory actions that cause the object to shift in-hand are
not as detrimental to the learning episode, as the size of the
object allows it to be re-grasped before being dropped. This
behavior is shown by a clear correlation between the difference
in performance of the two approaches and the size of the object
and/or the number of fingers involved in the manipulation
action. The impact of bad exploratory actions on the learning
process increases as the objects size decreases, rendering NH-
RL unable to learn movement policies for smaller objects, while
H-RL can learn movement policies for all objects. Moreover,
these results are additionally emphasized by the evolution of
the trajectory length during learning, shown in Figure 8. The
average trajectory length for NH-RL policies remains very close
to zero in all experiments with smaller objects, where exploratory
actions have a critical effect on the movement. In addition to
size, the initial grasp configurations can also greatly influence
the outcome of the learning. This is the case for the football
and the baseball, where one of the fingers is slightly underneath
the object as depicted in Figure 9, serving as support for the
exploration actions.

The effectiveness of the policies learned by both approaches
also substantially differs. While NH-RL is capable of learning

policies for the partially supported and for the larger objects,
the resulting policies are only capable of maintaining the objects
in-hand without any consistent movement toward the target
pose. In contrast, the H-RL policies are capable of consistently
reorienting the objects to the correct orientations, despite
maintaining the initial position error. This behavior, shown in
Figure 10 for the lego block, is observed for both the cubic
objects and the cylindrical objects. The spherical objects are
kept stable in-hand, with no consistent reduction of position or
orientation errors. This behavior results from all the contacts
being simulated as contacts between fully rigid objects. This
form of contact simulation is particularly relevant for spherical
objects where very fine contact management is necessary for
repositioning the object.

We attribute the inability of the H-RL policies to minimize the
position error to (i) these movements requiring a very explicit
reduction of the αi for the fingers for which the movement is in
the opposite direction to the contact normal and (ii) this explicit
coordination being harder to learn when using a model free
approach with opposite movements of the object (movements
along either the positive or negative direction along the y axis) in
the same batch. In addition, exploration where αi is substantially
skewed toward the upper level policy commands is heavily
penalized if the object falls. Despite this, we were able to learn
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FIGURE 8 | Evolution of the average trajectory lengths achieved (in terms of the number of time steps) by both NH-RL and H-RL with the number of learning episodes.

The critical effect of the RL’s exploratory actions is evident for smaller objects, where NH-RL is unable to increase the trajectory length, and hence unable to learn.

FIGURE 9 | Initial grasps for (left) the baseball and (right) the mini football. In both cases, one of the fingers is slightly under one of the spheres, acting as a

supporting surface and minimizing the effects of the exploratory actions.

policies where the position errors were minimized by training
only with a single position target in the target set. This suggests
that a more complex upper level policy is required to learn how
to move the object to arbitrary targets.

Finally, we show the effects of the F term enforcement, where
we wish to keep all fingers of the initial grasps involved in
the manipulation action. The evolution of the F term with the

learning process shown in Figure 11 indicates that the ratio
between initial and used fingers increases with the number
of episodes, converging to values near the maximum value
of one, where all fingers in the initial grasp take part in the
manipulation action. Another interesting aspect of the results
shown in Figure 11 are the large fluctuations in the F ratio in the
initial stages of the learning process. While exploring the state
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FIGURE 10 | The average behavior of the H-RL movement policies for the lego. The solid lines represent mean and the dashed lines the individual trials. While the

position error is maintained through the movement execution, the orientation error is consistently reduced.

FIGURE 11 | Evolution of the F enforcement term with the learning episodes. With F converging to one, all fingers that compose the initial grasp are maintained

throughout the duration of the movement trajectory.

action space, the initial policies constantly remove fingers from
the object, until a balance is reached between improving the error
terms and the F ratio simultaneously. This effect is also visible in
the cumulative reward curves shown in Figure 7.

3.3. Transfer to the Real Robot
Several policies were tested on the real robot in order to
assess their transfer capabilities. In Figure 12, the movements
produced by two policies for the lego block are depicted. These
policies were transferred with no further learning on the real
robot, displaying similar movements to the ones observed in the
simulation environment. While policies correctly transfer to the
real robot, the movements are hindered by inaccuracies in the
estimated contact normal and by noise on the slip predictors.
These estimations are fairly robust for small movements but
quickly diverge once contact positions considerably shift. These
errors in the contact normal are reduced during the execution of
the movement since the αi values are providing more control to
the upper level policy. Once the upper level policy finishes the

desired manipulation movement, and the values of αi begging to
be shift the control to the low level stabilizers, the contact normal
errors become more relevant, often resulting in the object being
dropped from the grasp. From the policies tested, the ones that
better transferred were the ones for the lego block and the Rubik’s
cube, which is consistent with the manipulation performances
observed in simulation.

4. CONCLUSION

We have proposed a hierarchical decomposition for the in-
hand manipulation problem in order to enable learning policies
for manipulating unsupported objects. The policies learned in
simulation are transferred to a real robot platform where similar
manipulation movements are observed. Our decomposition is
based on low-level per-digit stabilizing controllers that effectively
incorporate tactile feedback to ensure a stable grip during
object manipulation and a high-level policy that coordinates
digit movement and modulates the influence of the individual
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FIGURE 12 | The behavior of two policies trained on the simulator and transferred to the real robot with no additional training. The movements consist of a clockwise

(top two rows) or counter clockwise rotation of the object along the axis perpendicular to the palm (bottom two rows).

low-level controllers. Our decomposition allows for efficient
training of high-level policies for dexterous manipulation
in simulation on a range of different objects achieving
faster learning and higher rewards than its non-hierarchical
counterpart. By abstracting and encapsulating tactile feedback
in the lower-level controllers, the hierarchical decomposition
enables direct transfer of policies that were trained in simulation
to a physical system.

An interesting direction for future work is to explore the
possibility of learning a single policy that is able to perform
all achievable translations and rotations of the grasped object
by taking inspiration from recent developments in multi-task
reinforcement learning.
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