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A Framework for Sensorimotor
Cross-Perception and
Cross-Behavior Knowledge Transfer
for Object Categorization
Gyan Tatiya*, Ramtin Hosseini, Michael C. Hughes and Jivko Sinapov

Department of Computer Science, Tufts University, Medford, MA, United States

From an early age, humans learn to develop an intuition for the physical nature of

the objects around them by using exploratory behaviors. Such exploration provides

observations of how objects feel, sound, look, and move as a result of actions applied on

them. Previous works in robotics have shown that robots can also use such behaviors

(e.g., lifting, pressing, shaking) to infer object properties that camera input alone cannot

detect. Such learned representations are specific to each individual robot and cannot

currently be transferred directly to another robot with different sensors and actions.

Moreover, sensor failure can cause a robot to lose a specific sensory modality which

may prevent it from using perceptual models that require it as input. To address these

limitations, we propose a framework for knowledge transfer across behaviors and

sensory modalities such that: (1) knowledge can be transferred from one or more robots

to another, and, (2) knowledge can be transferred from one or more sensory modalities to

another. We propose two different models for transfer based on variational auto-encoders

and encoder-decoder networks. The main hypothesis behind our approach is that if two

or more robots share multi-sensory object observations of a shared set of objects, then

those observations can be used to establishmappings betweenmultiple features spaces,

each corresponding to a combination of an exploratory behavior and a sensory modality.

We evaluate our approach on a category recognition task using a dataset in which a

robot used 9 behaviors, coupled with 4 sensory modalities, performed multiple times

on 100 objects. The results indicate that sensorimotor knowledge about objects can

be transferred both across behaviors and across sensory modalities, such that a new

robot (or the same robot, but with a different set of sensors) can bootstrap its category

recognition models without having to exhaustively explore the full set of objects.

Keywords: multimodal perception and integration, haptic and tactile perception, category learning and

recognition, grounding of knowledge, development of representations

1. INTRODUCTION

From an early stage in cognitive development, humans, as well as other species, use exploratory
behaviors (e.g., shaking, lifting, pushing) to learn about the objects around them (Power, 1999).
Such behaviors produce visual, auditory, haptic, and tactile sensory feedback (Shams and Seitz,
2008), which is fundamental for learning object properties and grounding the meaning of linguistic
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categories and descriptors that cannot be represented using static
visual input alone (Lynott and Connell, 2009). For example, to
detect whether a container is full or empty, a human may lift it;
to perceive whether a ball is soft or hard, a human may squeeze
it (Gibson, 1988). In other words, the behavior acts as a medium
to find the answer, in the form of a sensory signal, to a question
about object properties.

Recent research in robotics has demonstrated that robots can
also use multisensory feedback from interaction with objects
(e.g., vision, proprioceptive, haptic, auditory, and/or tactile) to
perform several tasks, including language grounding (Thomason
et al., 2016), object recognition (Sinapov et al., 2011a), and object
category acquisition (Araki et al., 2012). One of the challenges
in interactive multisensory object perception is that there is
no general purpose multisensory knowledge representations for
non-visual features such as haptic, proprioceptive, auditory,
and tactile perceptions, as different robots have different
embodiments, sensors, and exploratory behaviors. Because each
robot has a unique embodiment and sensor suite, it is not easy
to transfer knowledge of non-visual object properties from one
robot to another. In existing work, each robot must learn its task-
specific multisensory object models from scratch. Even if there
are two physically identical robots, it is still not easy to transfer
multisensory object knowledge as the two robots’ exploratory
behaviors may be implemented differently. Furthermore, sensors
may fail over the course of operation and thus, an object classifier
that relies on the failed sensor’s input would become unusable
until the sensor is fixed.

To address these limitations, this paper proposes a framework
for sensoirmotor knowledge transfer across different behaviors
and different sensory modalities. The framework is designed to
allow a robot to recover a failed sensor’s input given sensor
data from one or more of the robot’s other sensory modalities.
The framework also affords transfer from one robot to another
across behaviors such that a source robot can transfer knowledge
obtained during object exploration to a target robot that may
have different actions and sensory modalities. This means that
if the source robot and the target robot had observations of
what the same objects feel like when lifted and pressed, the pair
of observations could be used to learn a function that maps
observations from the source robot’s feature space to that of the
target robot. Such generated observations (i.e., features) can be
used to train task-specific recognition models for the target robot
to identify novel objects that only the source robot has interacted
with. The advantage of this method is that the target robot does
not need to learn the perceptual recognition task from scratch as
it can use the generated observations obtained from the source
robot. Similarly, knowledge can be mapped from one sensory
modality to another, such that if a sensor fails, modules that
require its input can still operate, or if a new sensor is added,
the robot would not have to exhaustively explore all objects
in its domain from scratch to learn models that use the new
sensor’s output.

We evaluated the proposed framework on a publicly available
dataset in which a robot explored 100 objects, corresponding
to 20 categories using 9 exploratory behaviors coupled with
auditory, haptic, vibrotactile, and visual data. We consider the

object category recognition task in which the robot has to
recognize the category of a novel object given labeled examples
on a training set of objects. The task is closely related to grounded
language learning and other applications where a robot may need
to identify object properties that cannot be inferred based on
static visual input alone.We evaluate two different approaches for
knowledge transfer, (1) variational encoder-decoder networks,
which allows one or more source feature spaces to be mapped
into a target feature space; and (2) variational auto-encoder
networks, which are trained to reconstruct their input features
and can be used to recover features from a missing sensor or
new behavior-modality combination. The results show that both
approaches are able to effectively map data from one or more
sensory modalities to another, such that a target robot with a
different morphology or a different set of sensors can achieve
recognition accuracy using the mapped features almost as good
as if it had learned though actual interaction with the objects.

2. RELATED WORK

2.1. Object Exploration in Cognitive
Science
Previous cognitive science studies show that it is fundamental for
humans to interactively explore objects in order to learn their
auditory, haptic, proprioceptive, and tactile properties (Gibson,
1988; Power, 1999; Calvert et al., 2004). For example, in Sapp et al.
(2000) the effect of perception was put into a test by presenting
kids with a sponge painted to adapt the visual characteristics
of a rock. The kids perceived the sponge as a rock until they
came in contact with it by touch, at which point they recognized
that it was not a rock, but rather, a sponge. The case illustrates
an example of how haptic and tactile data can supplement
visual perception in inferring objects’ characteristics (Heller,
1992). Studies have also demonstrated that infants commonly
use tactile exploratory behaviors when exploring a novel object
(Ruff, 1984). For example, Stack and Tsonis (1999) found that
7-month-old infants can perform tactile surface recognition
using tactile exploratory strategies in the absence of visual
information. In early stages of development, object exploration
is less goal driven and serves the primary purpose of learning
how objects feel, sound, and move; as we get older, we apply this
learned knowledge by performing specific exploratory behaviors
to identify the properties of interest, e.g., lift an object to perceive
its weight, touch it to perceive its temperature, etc. (Gibson, 1988;
Stack and Tsonis, 1999).

Studies have also shown that humans are capable of
integrating multiple sensory modalities to detect objects and
each modality contribute toward the final decision (Ernst
and Bülthoff, 2004). Wilcox et al. (2007) have reported that
combiningmultiple sensory signals such as visual and tactile with
exploratory behaviors on objects produces more accurate object
representation than using only a single sensory signal. Moreover,
several lines of research in psychology have shown that object
exploration, when performed in a natural setting, is a multi-
modal process. For example, consider a simple action of touching
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an object. In Chapter 4 of “Tactual Perception: A Sourcebook”,
Lederman writes:

“Perceiving the texture of a surface by touch is a multi-
modal task in which information from several different sensory
channels is available. In addition to cutaneous and thermal
input, kinesthetic, auditory, and visual cues may be used when
texture is perceived by touching a surface. Texture perception
by touch, therefore, offers an excellent opportunity to study
both the integrated and the independent actions of sensory
systems. Furthermore, it can be used to investigate many other
traditional perceptual functions, such as lateralization, sensory
dominance, and integration masking, figural aftereffects, and
pattern recognition (Schiff and Foulke, 1982).”

Lynott and Connell (2009) have demonstrated that humans rely
on multiple sensory modalities to learn and detect many object
properties (e.g., roughness, hardness, slippery, and smooth). In
their studies, that over half of the most common adjectives
and nouns have a strong non-visual component in terms of
how humans represent each word. Inspired by these findings,
this paper proposes a knowledge transfer framework so that
the robots in our factories and workplaces can appropriately
learn from and reason about multi-modal sensory information
produced during physical interaction with objects.

2.2. Multisensory Object Perception in
Robotics
Vision-based recognition of an object is the commonly adopted
approach; however, several research studies show incorporating
a variety of sensory modalities is the key to further enhance
the robotic capabilities in recognizing the multisensory object
properties (see Bohg et al., 2017; Li et al., 2020 for a review).
Previous work has shown that robots can recognize objects
using non-visual sensory modalities such as the auditory (Torres-
Jara et al., 2005; Sinapov et al., 2009; Luo et al., 2017; Eppe
et al., 2018; Jin et al., 2019; Gandhi et al., 2020), the tactile
(Sinapov et al., 2011b; Bhattacharjee et al., 2012; Fishel and Loeb,
2012; Kerzel et al., 2019), and the haptic sensory modalities
(Natale et al., 2004; Bergquist et al., 2009; Braud et al., 2020).
In addition to recognizing objects, multisensory feedback has
also proven useful for learning object categories (Sinapov et al.,
2014a; Högman et al., 2016; Taniguchi et al., 2018; Tatiya and
Sinapov, 2019), material properties (Erickson et al., 2017, 2019;
Eguíluz et al., 2018), object relations (Sinapov et al., 2014b, 2016),
and more generally, grounding linguistic descriptors (e.g., nouns
and adjectives) that humans use to describe objects (Thomason
et al., 2016; Richardson and Kuchenbecker, 2019; Arkin et al.,
2020).

A major limitation of these methodologies is that they
need large amounts of object exploration data, which may be
prohibitively expensive to collect. In other words, the robot
must perform a potentially large number of behaviors on a large
number of objects, multiple times, to collect enough data to learn
accurate models. To address this, some work has focused on
learning to optimize the exploratory behavior as to minimize
the number of explorations needed to identify the object (Fishel
and Loeb, 2012). Other research has proposed learning object

exploration policies when attempting to identify whether a set
of categories apply to an object (Amiri et al., 2018). In addition,
methods have also been proposed to select which behaviors to
be performed when learning a model for a given category based
on its semantic relationship to the categories that are already
known (Thomason et al., 2018).

In spite of all of these advances in robotics, a major
outstanding challenge is that multisensory information, as
perceived by one robot, is not directly useful to another robot that
has a different body, different behaviors and possibly different
sensory modalities. In other words, if a robot learns a classifier
for the word “soft” based on haptic input produced when
pressing an object, that classifier cannot directly be deployed
on another robot that may have a different body, different
number or type of haptic sensors, or a different encoding of
the behavior. Furthermore, existing methodologies rarely try to
learn the relationships between different sensory modalities in
a way that can handle sensor failure. This paper addresses these
limitations by expanding a preliminary framework (Tatiya et al.,
2019) as to afford sensorimotor knowledge transfer between
multiple sensory modalities and exploratory behaviors.

2.3. Domain Adaptation
Mostmachine learningmodels assume that both training and test
data are drawn from the same distribution and are in the same
feature space. However, in many cases, the training and the test
distributions could be different, making it crucial to adapt the
examples from different distributions. The process of adapting
one or more source domains to transfer knowledge for the goal
of improving the performance of a target learner is called domain
adaptation (Mansour et al., 2009; Ben-David et al., 2010). In
domain adaptation, the training examples are obtained from the
source domain with labels, while the test examples are obtained
from the target domain with no labels or only a few labels. In
these settings, while the source and target domains are different,
they are in a semantically similar feature space. Our goal is to
train a model for the target robot using one or more semantically
similar source robot feature spaces.

Encoder-decoder networks have recently shown promising
results in facilitating domain adaptation (Murez et al., 2018; Gu
et al., 2019). Encoder-decoder networks are composed of two
feed-forward neural networks: an encoder and a decoder (Hinton
and Zemel, 1993; Hinton and Salakhutdinov, 2006). The encoder
maps an input feature vector (the source robot sensory input)
into a fixed-length code vector. Give a code vector as input, the
decoder produces a target feature vector as output, such that it
minimizes the reconstruction loss between the produced output
and a ground truth observation. Frequently, such architectures
are used for dimensionality reduction, i.e., the intermediate code
vector size is much smaller than the size of either input or
output. If the input and output data points are identical, they
are referred to as “autoencoder” networks (Liu et al., 2017).
Autoencoders have been successfully applied to vision domains,
such as image reconstruction (Mehta and Majumdar, 2017) and
image super-resolution (Zeng et al., 2015). The term “encoder-
decoder” applies when the input and output are different.
Encoder-decoder approaches have been shown successful in
applications such as language translation, in which the input
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language is different than the output language (Sutskever et al.,
2014), as well as in extracting multi-scale features for image
representation tasks (Kavukcuoglu et al., 2010). As tactile signals
can complement visual information, both modalities have been
used to learn shared features for texture recognition problems
(Luo et al., 2018), and encoder-decoder networks have been
proposed for predicting visual data from touch (and vice versa)
(Lee et al., 2019). We hypothesize that encoder-decoder networks
can be used to generate the sensory features the would be
produced by one robot (the target robot) when it interacts
with an object given features produced by another robot (the
source robot) that has already explored the object. This mapping
would enable multisensory object knowledge learned by the
source robot to be transferred to the target robot, which would
reduce the need for exhaustive object exploration necessary for
producing multisensory observations of objects.

3. LEARNING METHODOLOGY

3.1. Notation and Problem Formulation
Consider the case where two or more robots are tasked with
recognizing object properties using sensory data produced when
performing a behavior on an object. For a given robot r, let Br be
its set of exploratory behaviors (e.g., grasp, lift, press, etc.). Let
Mr be its set of sensory modalities (e.g., audio, tactile, vision,
etc.) and let Cr be the set of sensorimotor contexts where each
context denotes a combination of a behavior and modality (e.g.,
grasp-tactile, lift-haptic).

Let O denote the set of objects in the domain and let Y

denote the discrete set of categories such that each object maps
to particular category y ∈ Y . When performing an action on an
object o ∈ O, the robot records sensory features for all contexts
associated with the behavior, i.e., during the ith exploration trial,
the robot observes features from context c ∈ Cr represented as
xci ∈ R

nc where nc is the dimensionality of the features space
associated with context c. For a given context c ∈ Cr , let Xc be
the nc-dimensional feature space associated with that context.
For the category recognition problem, the robot needs to learn
a classifier decision function dc :Xc → Y that maps the sensory
feature vector to one of the discrete set of categories y ∈ Y . In our
framework the robot learns a classifier dc for each sensorimotor
context c using supervised learning with labeled examples.

Consider the case where one robot, the source robot, has
explored all objects in O multiple times such that it can learn
accurate classifiers for the category recognition task. Another
robot, the target robot, however, has only explored a subset of the
objects from categories Yshared ⊂ Y and needs to learn a category
recognition model for a different set of categories Ytarget ⊂ Y

whereYshared

⋂
Ytarget = ∅. In other words, the target robotmust

learn to categorize objects according to the labels Ytarget without
having interacted with any objects from those categories. Below,
we describe our knowledge transfer model that enables the target
robot to solve this task.

3.2. Knowledge Transfer Model
To transfer sensory object representations learned by one robot
to another, we need a function that predicts what the target robot

would observe in a particular feature space when interacting with
an object, given what the source robot has observed with that
object in one of its own feature spaces. More specifically, let
cs ∈ Cs and ct ∈ Ct be two sensorimotor contexts, one from
the source robot s and the other from the target robot t. Thus,
the task is to learn a function mapcs ,ct :Xcs → Xct which takes
as input an observed feature vector x

cs
i from the source context

and produces x̂
ct
i , the estimated sensorimotor features in context

ct that the target robot would have observed if it interacted with
the object that produced sensorimotor features x

cs
i for the source

robot. We considered two knowledge transfer scenarios:
Cross-perception transfer: A knowledge transfer model that

maps the feature spaces across different modalities of the robot
performing the same behavior is referred as cross-perception
transfer. This transfer can be useful in a scenario where one of the
robot’s sensors fails and its signal is recovered from the available
set of sensors. Another application is the situation where a new
sensor is added to the robot at a time after the robot has explored
an initial set of objects for a recognition problem.

Cross-behavior transfer: A knowledge transfer model that
maps the feature spaces across different exploratory behaviors
performed by the robot is referred as cross-behavior transfer. This
transfer can be useful in a scenario where a new robot with
less experience with objects is required to learn from a more
experienced robot that has thoroughly explored the objects in the
recognition domain. Note that such a mapping can also be cross-
perceptual as not only the behaviors, but the sensors as well, may
be different across the source and the target robots.

We can further extend this model to take input from multiple
contexts (e.g., tactile and visual data) and output a reconstruction
for some other context (e.g., haptic data). Further, we also
consider mappings which take inputs from a fixed set of
sensorimotor contexts and simply reconstruct the observations
in the same feature spaces. We refer to mappings whose input
and output contexts are identical as autoencoders. Mappings for
which the output contexts are distinct from the input ones are
referred to as encoder-decoders. We propose that such mappings
can be learned via two probabilistic approaches, the β-variational
encoder-decoder (β-VED) and β-variational autoencoder (β-
VAE), which we describe below. While the core ideas behind the
VAE (Kingma and Welling, 2013) and its extension to the β-
VAE (Higgins et al., 2017) have been widely-used across machine
learning, we specialize them to encoder-decoder architectures to
solve transfer learning problems across robot contexts.

3.2.1. β-Variational Encoder-Decoder Network
Our proposed β-VED approach (shown in Figure 1) is designed
to transfer knowledge from the source robot to the target
robot. This β-VED learns a non-linear probabilistic mapping
to construct the target robot features x

ct
i from the input source

features x
cs
i while compressing the data in the process to discover

an efficient representation in a “learned” latent code space. We
denote the lower-dimensional, fixed-size encoding of the data for
example i by the code vector zi ∈ R

Dz of size Dz .
The β-VED is defined by two related probabilistic models,

fully described below. The first model is fully generative,
producing latent codes and target features. The second model is
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FIGURE 1 | The proposed β-VED network architecture. In this example, an input data point from the shake-haptic context is projected to the hold-haptic context.

conditional, producing latent codes giving source features. These
are trained together, related by the fact that the second model
should be an accurate approximation of the posterior over latent
codes given target data for the first model. We will describe how
to coherently fit the model to observed data using the same
well-motivated training objective as Higgins et al. (2017), but
specialized to our robot context.

First, the generative model defines a joint distribution over
latent codes and target features:

p(zi) = MultivariateNormal(zi|0, IDz ) (1)

pθ (x
ct
i |zi) = MultivariateNormal(x

ct
i |decode(zi, θ), σ

2 · Inct )

(2)

Here, the standard Normal prior distribution on code vectors
p(zi) is designed to encourage mild independence among its
entries, while the likelihood pθ (x

ct
i |zi) is designed so its mean is

the output of a flexible “decoder” neural network with weight
parameters θ . Given each distinct latent code, the decoder will
map to a distinct mean in target feature space.

Second, the conditional model of our proposed β-VED
defines a probability distribution qφ(zi|x

cs
i ), which allows

probabilistic mapping from the source features to a latent
code vector:

qφ(zi|x
cs
i ) = MultivariateNormal(encode(x

cs
i ,φ), σ̂

2 · IDz ) (3)

Again, we use a flexible “encoder” neural network with weight
parameters φ to define a non-linear mapping from any source
features to a mean vector in latent code space. A specific code
vector is then drawn from a Normal distribution with that mean
and a diagonal covariance with learned scale. For both encoder
and decoder neural networks, we use multi-layer perceptron
architectures with non-linear activation functions.

Training the β-VED for a context pair cs, ct amounts to
learning the weight parameters of the two neural networks, θ

and φ, as well as the variance parameters σ 2 and σ̂ 2. Henceforth,
we will use notation θ and φ to represent all parameters we
need to learn (both the weights and the variances), for compact

notation. This requires observing features from both source and
target robot across a set of N total objects where both robots
interact with each object M times. The objects used to train the
β-VED come from the set of shared categories Yshared. Given a
dataset of source-target feature pairs {x

cs
i , x

ct
i }

N×M
i=1 , where each

pair comes from the same object, we find the parameters (θ , φ)
thatmaximize the following objective function:

L(θ ,φ; xcs , xct , z,β) =

N×M∑

i=1

Eqφ (zi|x
cs
i )
[log pθ (xi

ct |zi)]

− βDKL(qφ(zi|x
cs
i )||p(zi)) (4)

This objective, which comes from Higgins et al. (2017), is
based on well-known lower bounds on marginal likelihood
used to motivate variational inference in general (Kingma and
Welling, 2013). We can interpret the two terms here in justifiable
ways. The first term seeks to maximize the likelihood that
the real observed target features x

ct
i are similar to the model’s

“reconstructed” target features x̂
ct
i . Recall that reconstruction

occurs in two steps: first sampling a code vector from the
conditional model (“encoder”), then sampling the target features
from the generative likelihood (“decoder”) given that code vector.
The second term in Equation (4) is a Kullback-Leibler (KL)
divergence used to quantify the distance between our learned
conditional distribution q over latent code vectors zi given source
features x

cs
i , and the prior distribution over codes, denoted p(zi).

The KL-divergence acts as a regularizer on the learned code space,
encouraging the approximate posterior distribution to be close
to the prior distribution, which is a Normal with mean zero and
identity covariance. Here, the coefficient β > 0 was introduced
to the objective by Higgins et al. (2017) to control the model’s
emphasis on the information capacity of the latent code space.
Large β > 1 lead to low capacity (but highly interpretable
representations), while low β < 1 value demphasizes the KL
divergence and allows higher fidelity reconstructions (at the
expense of the interpretability of the latent space). Note that β =

1 with target and source domains the same recovers the standard
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FIGURE 2 | The proposed β-VAE network architecture. In this example, the network is trained to reconstruct data points from the hold-haptic context given data

points from the shake-haptic and lift-haptic contexts.

variational inference objective used by Kingma and Welling
(2013). For implementation details, readers can refer section 4.2.

3.2.2. β-Variational Autoencoder Network
The major difference between β-VED and β-VAE is that in β-
VED the input is different than the output, and in β-VAE the
input is same as the output. Because our goal is to generate the
target robot’s features using the source robot’s features, we used
both source and target robot’s data as the input as well as the
output for β-VAE. The benefit of using β-VAE over β-VED is
that we can have more than one source robot projecting into the
target robot’s feature space rather than just one source robot.

Our proposed β-VAE is shown in Figure 2. First, the features
of each robot go through their private encoder and project into a
common latent distribution between all the robots. Then a code
is sampled from the latent distribution, and passed through the
private decoder for each robot. The latent distribution is learned
to reflect the categorical information of the input, and the private
encoder and decoder is learned to compress and generate robot
specific features. The objective function of β-VAE is same as for
the β-VED discussed in section 3.2.1.

3.3. Using Transferred Features for
Category Recognition
Once we have a trained knowledge transfer model (e.g., β-
VED, β-VAE) for one or more source context cs (e.g., push-
haptic or drop-audio), we can then train the target robot to
recognize novel object categories it has never experienced before,
as long as examples of these categories are experienced by
the source robot under context cs. We refer to this novel set
of categories as Ytarget. We assume that the source robot has
experienced a total of J feature-label pairs from these categories:

{x
cs
j , yj}

J
j=1, where yj ∈ Ytarget. We project this labeled dataset

to the target robot by producing a “reconstructed” training

set: {x̂
ct
j , yj}

J
j=1, which is then used for supervised training of

a multi-class classifier appropriate for the target context. We

produce reconstructed features by sampling from our pre-trained
probabilistic knowledge transfer models. This involves two steps
of sampling: a sample from the encoder followed by a sample
from the decoder. The resulting reconstructed target feature
vector (and its associated known label) can then be used to train
a classifier. In the experiments below, we generally found that a
single sample of the target feature vector worked reasonably well
in terms of downstream classification performance, so we use that
throughout. Future work could explore how multiple samples
might improve robustness. Subsequently, at test time when the
target robot interacts with novel objects without category labels,
the target robot observes features xct and feeds these features to
its pre-trained classifier to predict which category within the set
Ytarget it has observed. While we assume that at test time, the
target robot encounters objects only from categories Ytarget, it
is straightforward to extend our approach for the combined set
of possible categories Ytarget and Yshared by combining the target
robot’s both real and reconstructed training sets.

4. EXPERIMENTS AND RESULTS

4.1. Dataset Description
We used the publicly available dataset introduced by Sinapov
et al. (2014a), in which an upper-torso humanoid robot used
a 7-DOF arm to explore 100 different objects belonging to 20
different categories using 9 behaviors: press, grasp, hold, lift, drop,
poke, push, shake, and tap (shown in Figure 3). During each
behavior the robot recorded audio, haptic, vibrotactile, and visual
feedback using four sensors: (1) an Audio-Technica U853AW
cardioid microphone that captures audio sampled at 44.1 KHz;
(2) joint-torque sensors that capture torques from all 7 joints
at 500 Hz, (3) vibrotactile sensor consisting an ABS plastic
artificial fingernail with an attached ADXL345 3-axis digital
accelerometer, and (4) a Logitech webcam that captures 320 x
240 RGB images. Thus, there are 36 sensorimotor contexts, i.e.,
each combination of a behavior and sensory modality serves as a

Frontiers in Robotics and AI | www.frontiersin.org 6 October 2020 | Volume 7 | Article 522141

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Tatiya et al. Cross-Perception and Cross-Behavior Knowledge Transfer

FIGURE 3 | (Left) 100 objects, grouped in 20 object categories. (Right) The interactive behaviors that the robot performed on the objects. From top to bottom and

from left to right: (1) press, (2) grasp, (3) hold, (4) lift, (5) drop, (6) poke, (7) push, (8) shake, and (9) tap.

FIGURE 4 | Audio features using shake behavior performed on an object from the medicine bottles category.

context. The robot performed each behavior 5 times on each of
the 100 objects, thus there were 4,500 interactions (9 behaviors x
5 trials x 100 objects). We used the auditory, haptic, and visual
features as described by Sinapov et al. (2014a). The parameters
regarding the feature extraction routines (e.g., the number of
frequency bins) were left identical to those in the original dataset
as to be consistent with other papers that use the same dataset.
Next, we briefly discuss the feature extraction methodology used
by Sinapov et al. (2014a) to compute features from the raw
sensory signal.

For audio, first, the spectrogram was computed by Discrete
Fourier Transformation using 129 log-spaced frequency
bins. Then, a spectro-temporal histogram was produced by
discretizing both time and frequencies into 10 equally spaced
bins, thus producing a 100-dimensional feature vector. An
example spectrogram of a detected sound, and the resulting
low-dimensional feature representation are shown in Figure 4.

Similar to audio, haptic data was discretized into 10 equally
spaced temporal bins, resulting in a 70-dimensional feature

vector (the arm had 7 joints). Figure 5 shows an example
raw joint-torque data and the resulting feature representation.
Vibrotactile features were computed from the raw data using
frequency-domain analysis as described by Sinapov et al. (2011b).
The 3-axis accelerometer time series were converted into a
univariate magnitude deviation series, on which the Discrete
Fourier Transform was performed, resulting in a spectrogram
with 129 frequency bins denoting intensities of different
frequencies over time. This spectrogram was discretized into 5
temporal bins, and 20 frequency bins (an example representation
is shown in Figure 6).

The robot also recorded the raw RGB images from its
camera as it performed a behavior on an object. For each
interaction, the Speeded-Up Robust Features (SURF) features
were computed on each image (a sample set of SURF features
detected over an image are shown in Figure 7). SURF consisted
of 128-dimensional feature vector representing the distribution
of the first order Haar wavelet responses within the interest
point neighborhood.
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FIGURE 5 | Haptic features produced when the robot performed the shake behavior on an object from the medicine bottles category.

FIGURE 6 | Vibrotactile features produced when the robot performed the shake behavior on an object from the medicine bottles category.

FIGURE 7 | Visual (SURF) features detected when the tap behavior was performed on an object from the large stuffed animals category. The feature descriptors of the

detected interest points over the entire interaction were represented using bag-of-words.

4.2. Knowledge Transfer Model
Implementation
The β-VED network consisted of a multilayer perceptron (MLP)
architecture with three hidden layers for both the encoder and
the decoder, with 1,000, 500, 250 hidden units respectively,
Exponential Linear Units (ELU) (Clevert et al., 2016) as an
activation function, and a 125-dimensional latent code vector
as shown in Figure 1. The latent layer and the output layer
used a linear activation function. The network parameters are

initialized using Glorot uniform initializer (Glorot and Bengio,
2010) and updated for 1,000 training epochs using the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 10−4,

implemented using TensorFlow 1.12 (Abadi et al., 2016). The

prior distribution of the latent representation used a normal

distribution with a mean of zero and a standard deviation set

to one. The β value was set to 10−4. We performed network
hyper-parameter tuning by trying different numbers of layers in
the network within the range of 1 to 5 and different numbers
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of units in each layer within the range of 100 to 1,000. Then,
we choose the minimum number of layers and units after
which increasing them did not improve the performance. We
performed this network hyper-parameter tuning experiments
on 10 randomly selected projections (e.g. shake-haptic to hold-
haptic, poke-vision to poke-haptic) and then used the selected
hyper-parameters for the entire set of projections. Note that the
hyper-parameters and the network architecture we used may not
be optimal for a different dataset that may have a much larger
input dimensionality and/or a larger set of datapoints.

For β-VAE (shown in Figure 2), we used the same network
architecture for all the private encoders and decoders as of
β-VED discussed above. The output of all the encoders were
concatenated and connected to the mean and the standard
deviation vector. The sampled latent vector was used as an input
to the decoders. The rest of the implementation details and the
hyper-parameters of β-VAE are same as of β-VED.

4.3. Category Recognition Model
Implementation
At test time, we used multi-class Support Vector Machine (SVM)
(Burges, 1998) to classify objects into the categories from the
set Ytarget. SVM uses the kernel trick to map the training
examples to a high-dimensional feature space where the data
points from different classes may be linearly separable. We used
the SVM implementation in the open-source scikit-learn package
(Pedregosa et al., 2011), with the Radial Basis Function (RBF)
kernel and default hyperparameters.

4.4. Evaluation
We consider the setting where the source robot interacts with
all 20 object categories, while the target robot interacts with 15
randomly selected object categories. The objects of the shared
15 categories experienced by both robots are used to train the
knowledge transfer model that projects the sensory signals of the
source robot to that of the target robot. Subsequently, the trained
knowledge transfer model is used to generate “reconstructed”
sensory signals of the other 5 object categories in Ytarget that
the target robot never interacted with. Each sensory signal
experienced by the source robot from objects in these categories
is thus “transferred” to a target feature vector. Since the dataset
we used has only one robot, we evaluated our framework in two
scenarios: cross-perception knowledge transfer, in which one of
the robot’s sensors fail and its signal is recovered from the set of
available sensors, and cross-behavior knowledge transfer, in which
the source and the target robots are physically identical, but they
perform different behaviors on shared objects1.

We consider three possible category recognition training
cases: (1) our proposed transfer-learning framework using the
generated data from the source context (i.e., how well the target
robot performs if it uses transferred knowledge from the source
robot), (2) a domain adaption method, KEMA (kernel manifold

1Note that the proposed transfer learning methodology does not make

this assumption and is applicable in situations where the two robots are

morphologically different and/or use different sensors and feature representations

for a given modality.

alignment) (Tuia and Camps-Valls, 2016; Tatiya et al., 2020)
that aligns two different robots’ feature space into a common
space and train the target robot using the aligned features, and
(3) a non-transfer baseline using the target robot’s ground truth
features produced by actual interaction (i.e., the best the target
robot could perform if it had experienced all the objects itself
during the training phase). In all three cases, ground truth
features detected by the target robot are used as inputs to the
category recognition model when testing. We used 5-fold object-
based cross-validation, where each training fold consisted of 4
objects from each of the 5 object categories in Ytarget that the
target robot never interacted with, while the test fold consisted of
the remaining objects. Since the robot interacted with each object
for a total of 5 times, there were 100 (5 categories x 4 objects x
5 trials) data points in the training set, and 25 (5 categories x
1 objects x 5 trials) data points in the test set. This process was
repeated 5 times, such that each object occurred 4 times in the
training set and once in the test set.

The performance of the target robot at recognizing novel
categories of objects it never explored was evaluated using two
metrics. The first, accuracy, is defined as:

% Recognition Accuracy =
Correct predictions

Total predictions
.

The process of selecting the 15 random categories to train
the knowledge transfer model, generating the features of
the remaining 5 categories, training the two classifiers using
generated and ground truth features, and calculating accuracy for
both classifiers on ground truth observations by 5-fold object-
based cross validation was repeated for a total of 10 times to
produce an accuracy estimate.

The second metric that we used was accuracy delta (%), which
measures the loss in recognition accuracy as a result of using
the generated features for training when compared to using the
ground-truth features. We define this loss as:

Accuracy Delta = Accuracytruth − Accuracygenerated

where Accuracytruth and Accuracyprojected are the accuracies
obtained when using ground truth and generated features,
respectively. Smaller accuracy delta suggests that the features
generated by the learned mapping are similar to the target
robot’s real features, and that the target robot can use these
generated features to learn a classifier that achieves comparable
performance as if the target robot learned by actually exploring
the objects.

4.5. Results
4.5.1. Cross-Perception Sensorimotor Transfer
First, we consider the case where a robot is tasked with learning
a mapping from one of its sensory modalities (e.g., vision) to
another (e.g., haptic) for the same behavior. Such a mapping
would be needed if the modality sensor associated with the target
context ct fails at test time, or if a new sensor is added such that
there is limited data produced with objects with that sensor.
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FIGURE 8 | Visualizations of: (A) the source robot’s features; (B) the target robot’s projected features using β-VED, and (C) the corresponding ground truth features

captures by performing tap behavior on an object from the bottles category.

FIGURE 9 | Accuracy achieved by the projected features of the robot for different number of shared objects classifier for β-VAE push-audio and push-vision to

push-haptic projection, β-VED push-vision to push-haptic projection, and β-VED push-audio to push-haptic projection.

4.5.1.1. Illustrative example
Consider the case where the robot performs poke behavior while
the haptic sensor is not working. Projecting haptic features from
vision, enables the robot to achieve 42.5% recognition accuracy
using β-VED and 35.6% using β-VAE, compared with 49.6%
when using features from real interactions (shown in Figure 10).
In other words, the robot’s category recognition model trained
on the reconstructed signal of a failed sensor performs very
close to the model that been trained on real signal. Chance
recognition accuracy for 5 categories is 20% and the accuracies
of individual sensorimotor contexts are typically in the 40–
60% range. Note that the overall recognition accuracy can be
boosted to nearly 100% by using multiple behaviors and sensory
modalities (Sinapov and Stoytchev, 2010) but this is out of scope
for this paper.

To visualize how the projected features look as compared to
the ground truth features, we plotted an example of tap-vibro
to tap-haptic projection using β-VED. Figure 8 shows a feature
vector from the source feature space, the projected observation
in the target features, and a ground truth feature vector captured
by performing the tap behavior on the same object. The projected
and the ground truth features are very similar. Note that this is a
special case and there are certainly pairs of source-target contexts
which do not produce accurate projections.

Now, consider a case where the robot performs push behavior
while the haptic sensor is not working. Generating haptic features
using audio and vision by β-VAE as two sources, enables the
robot to achieve 38.6% recognition accuracy. This is a significant
boost in accuracy as projecting vision alone achieves 27.8%, and
projecting audio alone achieves 23.9%.

To find the effect of the amount of data used to train a
two sources β-VAE and corresponding two single source β-
VEDs on the recognition performance, we varied the number
of shared object categories for a projection. Figure 9 shows
the recognition performance for different number of number
of shared categories for β-VAE push-audio and push-vision
to push-haptic projection, β-VED push-vision to push-haptic
projection and β-VED push-audio to push-haptic projection. As
demonstrated combining vision and audio features improves
the generation of haptic features for most number of shared
categories, and the performance of two sources β-VAE reaches
very close to the baseline accuracy.

4.5.1.2. Accuracy results of category recognition
Since there are 4 modalities (audio, haptic, vibro,and vision), if
a sensor fails, there are 3 possible mappings that take a single
sensory modality as input, each from an available sensor to
a failed sensor, so there are 4 × 3 = 12 possible mappings
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FIGURE 10 | β-VED cross-perception projections where the Accuracy Delta is minimum and corresponding β-VAE projections and KEMA projections.

(e.g., if the haptic sensor fails, the 3 possible mapping would be
audio to haptic, vibro to haptic, vision to haptic). There are 9
behaviors, so there are 12×9 = 108 projections (e.g., poke-vision
to poke-haptic, tap-vision to vision-haptic). Figure 10 shows the
5 β-VED cross-perception projections with the least accuracy
delta and corresponding single source β-VAE projections and
KEMA projections. Recovering haptic features from vibrotactile
and vision was the easiest task indicating that knowing what
an object’s surface feels and looks like when interacting with
it can inform how much force would be felt when performing
that behavior. Figure 10 also shows that the single source β-VAE
produce comparable recognition rates as β-VED.

A statistical analysis of the projections shown in Figure 10

was performed using a two-sample t-test. The t-test produced
a p-value when a knowledge transfer method is compared
with another, and p-value < 0.05 was considered statistically
significant. For all the projections the p-value is less than 0.05
when KEMA is compared with β-VED and β-VAE except lift-
haptic to lift-audio, where the p-value is 0.94 for KEMA and
β-VED, and 0.11 for KEMA and β-VAE. This shows that the
performance of encoder-decode methods is significantly better
than KEMA in most cases.

For 2 sources β-VAE, we evaluated 3 mappings: audio and
vision to haptic, audio and vision to vibro, and haptic and vibro
to vision. Results in Figure 11 indicate that by knowing how an
object looks like and sounds like when performing a behavior
gives a good idea of how its surface would feel and how much
force would be felt performing that behavior. However, it is hard
to predict how an object looks like by knowing its haptic and vibro
signal, which is intuitive as objects in different category may have
similar weights, but look very different. For all projections shown
in Figure 11, the p-value is less than 0.05 when β-VAE (2 sources)
is compared with the better performing source robot among the
two corresponding source robots using β-VED method.

4.5.1.3. Accuracy delta results
Figure 12 shows the accuracy delta for all 9 behaviors for β-VED
model. Darker color indicates lower accuracy delta, and thus the
diagonal is black. If a particular sensor fails Figure 12 informs
which source sensor would be better to recover its sensory signal,
depending on the behavior. For example for the poke behavior,
if the haptic sensor fails, using the vision sensor to recover its
signal would be better than other source contexts as it achieves
the smallest accuracy delta. Similarity, for the hold behavior, if
the audio sensor fails, the vibrotactile sensor is a good source
context to recover its signal. These results also show that the
best source modality for reconstructing features from another
modality varies by behavior. The recognition accuracy of some
of these projections is shown in Figure 10.

4.5.2. Cross-Behavioral Sensorimotor Transfer
Next, we consider the case where a robot is tasked with learning
a mapping from one of its behaviors (e.g., shake) to another
(e.g., hold) for different or same modality. Such a mapping
would be useful if a new robot that has limited experience with
objects needs to learn from more experienced robots that have
thoroughly explored the objects in the domain.

4.5.2.1. Illustrative example
Suppose the source robot performs shake while the target robot
performs hold. Projecting the haptic features from shake to hold,
allows the target robot to attain 63.3% recognition accuracy
compared with 62.5% when using ground truth features from
real interactions (shown in Figure 13). In other words, the target
robot’s recognition model is as good as it could have been if it
were trained on real data.

To visualize the projection between the shake-haptic and
hold-haptic contexts, we reduced the dimensionality of the
generated and the ground truth features of the 5 categories the
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FIGURE 11 | Two sources β-VAE cross-perception projections where the recognition accuracy improves as compared with corresponding β-VED projections.

FIGURE 12 | Cross-perception Accuracy Delta for 9 behaviors using β-VED. From top to bottom and from left to right: (1) press, (2) grasp, (3) hold, (4) lift, (5) drop, (6)

poke, (7) push, (8) shake, and (9) tap. Darker color means lower Accuracy Delta (better) and lighter color means higher Accuracy Delta (worse).

target robot never interacted with to 2 (shown in Figure 14)
using Principal Component Analysis (Tipping and Bishop, 1999)
implemented in scikit-learn (Pedregosa et al., 2011). Figure 14
shows the clusters of the ground truth features (top-left) and
five plots that show β-VED projected features for different
β values (in increasing order from top to bottom and left
to right). The plots clearly show that, as the model was
less constrained, the model learned better representations of
the 5 categories indicated by the 5 clusters. The clusters of
projected features (β = 0.0001) look structurally very similar

to the ground truth data, indicating that the “reconstructed”
features generated by the source robot are realistic. In the
remaining experiments, we used 0.0001 as the β value for β-VED
and β-VAE.

Now, consider a case of two source robots: one performs lift
behavior and another performs press behavior, while the target
robot performs poke behavior. Projecting lift-haptic and press-
haptic features to poke-haptic by β-VAE as two sources, enables
the target robot to achieve 39.3% recognition accuracy. This is
a significant boost in accuracy as projecting lift-haptic alone to
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FIGURE 13 | β-VED cross-behavior projections where the Accuracy Delta is minimum and corresponding β-VAE projections and KEMA projections.

FIGURE 14 | 2D visualizations using Principal Component Analysis of the target robot’s hold-haptic ground truth features (top-left) and five β-VED projected features’

(from shake-haptic) clusters for different β values (in increasing order from top to bottom and left to right).

poke-haptic achieves 30.2%, and projecting press-haptic alone to
poke-haptic achieves 28.7% (shown in Figure 15).

To find the effect of the amount of data used to train a
two sources β-VAE and corresponding two β-VEDs on the
recognition performance, we varied the number of shared
categories used to learn a projection. Figure 16 shows the

recognition performance for different numbers of shared object
categories for β-VAE lift-haptic and press-haptic to poke-haptic
projection, β-VED lift-haptic to poke-haptic projection and β-
VED press-haptic to poke-haptic projection. Combining lift-
haptic and press-haptic features improves the generation of poke-
haptic features, especially with more shared categories, and the
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FIGURE 15 | Two sources β-VAE cross-behavior projections where the recognition accuracy improves as compared with corresponding β-VED projections.

FIGURE 16 | Accuracy achieved by the projected features of the target robot for different number of shared objects for β-VAE lift-haptic and press-haptic to poke-haptic

projection, β-VED lift-haptic to poke-haptic projection and β-VED press-haptic to poke-haptic projection.

performance of two sources β-VAE reaches very close to the
accuracy achieved when using ground truth features.

4.5.2.2. Accuracy results of category recognition
Since there are 4 modalities (audio, haptic, vibro, and vision)
there are 4 × 4 = 16 possible mappings from the
source to the target robot (e.g., audio to audio, audio to
haptic, audio to vibro, audio to vision, etc.). Each of the
9 behaviors are projected to all the other 8 behaviors, so
for each mapping, there are 9 × 8 = 72 projections.
Figure 13 shows the 5 projections where the accuracy delta
is minimum among all 16 × 72 = 1, 152 projections.

Generally, mappings within the same modality (e.g., haptic to
haptic, vision to vision) achieve higher accuracy than mappings
between different modalities. This indicates that knowing
what an object feels like when performing a behavior can
help to predict what it would feel like better than what it
would sound like or look like given another behavior. Similar
to cross-perception projection results, the single source β-
VAE achieves similar recognition rates as β-VED. For all
the projections shown in Figure 13, the p-value is less than
0.05 when KEMA is compared with β-VED and β-VAE
indicating that encoder-decode methods perform significantly
better than KEMA.
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FIGURE 17 | Two sources β-VAE cross-behavior projections trained with zeros for target robot where the Accuracy Delta is minimum and corresponding β-VAE

projections trained with target robot’s features.

FIGURE 18 | Accuracy Delta for 4 mappings using β-VED: haptic to haptic, vibro to haptic, vision to haptic, audio to haptic. Darker color means lower Accuracy Delta

(better) and lighter color means higher Accuracy Delta (worse).

The β-VAE architecture requires the target robot’s features as
input as well as output. Since we assume that the target robot
did not explore objects from the 5 novel categories, we cannot
provide its features as input. Therefore, while training with the
15 categories we compared feeding zero as target robot input
and feeding actual target robot’s features. We found that the
performance is better when we feed in zero (shown in Figure 17).
It may be due to the different training and test conditions that
causes feeding actual features as target robot’s input to perform
poor as compared to feeding it zero. Thus, while training as well
as testing we feed in zero as input for the target robot and the
β-VAE learns to generate the target robot’s features. For the first
four projections shown in Figure 17, the p-value is less than 0.05
when β-VAE trained using zero as features is compared with
β-VAE trained using actual features.

For 2 sources β-VAE, we evaluated haptic and haptic to haptic
mapping because haptic to haptic is the best performing mapping
for the single source robot scenario. Results in Figure 15 indicate
by knowing how an object feels like when performing two

different behaviors provides a better prediction of how it would
feel like when a third behavior is performed. In Figure 15,
for the first projection the p-value is less than 0.05 when β-
VAE (2 sources) is compared with the better performing source
robot among the two corresponding source robots using β-
VED method.

4.5.2.3. Accuracy delta results
Comparatively, mappings with target modality as haptic achieve
smallest accuracy delta. The accuracy delta for β-VED of all the
four possible mappings with target modality as haptic are shown
in Figure 18. This result indicates that it is easier to predict what
an object would feel like when performing a behavior by knowing
what it looks like or what it sounds like when performing another
behavior. In addition, when both robots perform behaviors that
capture similar object properties, the generated features are more
realistic. For example, holding an object provides a good idea
about how it would feel like to lift that object as indicated by
smaller accuracy delta. Generating hold-audio features frommost
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FIGURE 19 | Two dimensional ISOMAP embedding of the accuracy delta matrix. Each point represents a sensorimotor context (i.e., a combination of a behavior and

sensory modality). Points close in this space represent contexts between which information can be transferred effectively.

of the source robot’s features is relatively easier possibly because
holding an object would not produce much sound. However,
when the target modality is vibro, the accuracy delta is relatively
higher, indicating that it is hardest to predict what an object’s
surface feels like when performing a behavior by knowing what
it sounds like or what it looks like when performing another
behavior. For example, grasp-audio to push-vibro and drop-vibro
to push-vibro are the two projections where the accuracy delta is
the highest.

There are 36 sensorimotor contexts (9 behaviors x 4
modalities). To find the combination of source and target
contexts that is good for knowledge transfer, we computed
accuracy delta matrix, which has an average of accuracy delta
values for each pair of contexts. For example, for the projection
lift-haptic to hold-haptic the accuracy delta is 3% and hold-haptic
to lift-haptic the accuracy delta is 5.5%, so the average accuracy
delta of this pair of context is 4.2%. The size of the accuracy delta
matrix is 36 x 36 and the accuracy delta value of identical contexts
is 0. Figure 19 shows a two dimensional ISOMAP (Tenenbaum
et al., 2000) embedding of the accuracy delta matrix. Each dot in
the plot corresponds to a context and the distance between a pair
of context indicate the efficiency of the transfer (i.e. a pair that is
closer to each other is better for knowledge transfer than a pair
that is farther). Contexts with the same modality appear closer to
each other suggesting that projections within the same modality
comparatively perform better. Some of the most efficient pair of
behaviors are hold and lift, shake and hold, and drop and lift. This
shows that behaviors that capture similar object properties are
better for knowledge transfer as each of these pairs of behavior
require the robot to keep the object between its grippers for some
moment and capture the force felt and images observed in a
similar manner by performing both behaviors.

A surprising result is that the hold-audio and lift-audio
contexts are clustered closely with the haptic contexts, far away
from other audio contexts. Upon closer examination, the volume

of the sounds produced by the robot’s motors when holding
or lifting an object was correlated with the object’s weight, and
thus, the audio data served as a proxy haptic sensor for those
two behaviors. The results can also be used to detect redundant
behaviors—e.g., the hold and lift behaviors are close to each other
in the haptic, audio, and vision modalities, suggesting that they
provide essentially the same information. It is important to note
that these findings are likely specific to the particular robot,
behaviors, and sensory modalities used in this dataset. We expect
that the relationships between such sensorimotor contexts will
vary depending on the robot and its means of perceiving and
interacting with objects in its domain.

4.5.2.4. Object selection for calibration
In many situations it is possible that the source and the target
robots have limited time to build the mapping function for
knowledge transfer. Therefore, it is important to efficiently select
the calibration set of objects explored by both robots to maximize
the quality of the learned mapping in a limited time. Here we
propose one such procedure.

Let D
cs
source be the dataset of observed features by the source

robot in context cs. These include features with objects from all
categories Y . The goal is to select a set of N objects Ocalibration

with category labels in Yshared which can then be explored by the
target robot in some context ct in order to learn the source to
target mapping function.

1. Cluster the data points in D
cs
source into J clusters

2. For each cluster vj, compute a weight wj according to:

wj =
# of vj data points with labels in Ytarget

Total # of data points in cluster vj

3. Sample a cluster vj with probability proportional to its weight,
and then uniformly sample an object with label in Yshared for
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FIGURE 20 | Comparison of three different methods of selecting 5 objects for training β-VED. Note that each method selects 25 data-points for training β-VED.

which a data point falls into vj in the clustering. RepeatN times
(without replacement).

We tested this procedure with K-means (Lloyd, 1982) to cluster
500 data-points (100 objects x 5 trials with each object) of the
source robot into J = 100 clusters, and select objects from
clusters that capture similar object properties that aremore useful
for calibration. We limited the size of Ocalibration to N = 5,
substantially less than in results reported so far.

Figure 20 compares the method to two naive baselines: (1)
randomly selecting a category in Yshared and then using data with
all 5 objects in that category; and (2) randomly sampling 5 objects
with labels Yshared. As demonstrated, selecting 5 objects using
the clustering method achieves higher accuracy than randomly
selecting 5 objects or a category. This means that the clustering
method selects objects that are similar to the 5 target categories,
and can be useful when there is a budget of the number of objects
both robots are allowed to interact with.

4.6. Validation on a Second Dataset
We validated our knowledge transfer framework on another
dataset, which is described below along with the evaluation
methodology and experimental results.

4.6.1. Dataset Description
We used another publicly available dataset collected by Sinapov
et al. (2016), in which a Kinova MICO arm with 6-DOF explored
32 objects using 8 behaviors: grasp, lift, hold, look, lower, drop,
push, and press. During the execution of each action (other
than look) the robot recorded the sensory perceptions from
the haptic and the auditory sensory modalities. The haptic
signals were recorded for the robot’s 6 joints at 15 Hz while
the auditory signals was represented as the Discrete Fourier
Transform computed with 65 frequency bins. Before grasping

the object, the look behavior was performed, which produced
three different types of visual sensory modalities: (1) an RGB
color histogram using 8 bins per channel; (2) Fast point feature
histogram (fpfh) shape features and (3) deep visual features
produced by feeding the image to the 16-layer VGG network. For
additional details on the visual feature extraction pipelines, please
consult (Thomason et al., 2016). Each behavior was executed 5
times on each of the 32 objects, resulting in 1,280 interactions (8
behaviors x 5 trials x 32 objects). For additional details regarding
the dataset, readers can refer to Sinapov et al. (2016).

4.6.2. Evaluation and Results
The evaluation procedure for this dataset was the same as that
for the previous dataset except that instead of recognizing object
categories, the robot had to recognize specific objects as the
objects in this dataset did not belong to any object categories.
We assume that the source robot interacts with all 32 objects,
while the target robot interacts with only 24 randomly selected
objects. The objects experienced by both robots are used to train
the knowledge transfer model and the trained knowledge transfer
model is used to generate “reconstructed” sensory signals of
the objects that the target robot never interacted with. To train
the object recognition model, we again consider three possible
training cases previously described with a difference that here we
performed 5-fold trial-based cross-validation, where the training
phase consisted of 4 trials from each of the object that the
target robot never interacted with and the test phase consisted of
the remaining trial. Since the robot interacted with each object
5 times, there were 32 (8 objects x 4 trials) examples in the
training set, and 8 (8 objects x 1 trials) examples in the test
set. This process was repeated 5 times, such that each trial was
included in the training set 4 times and once in the test set. The
entire procedure of training the knowledge transfer model and
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FIGURE 21 | 2D visualizations using Principal Component Analysis of the target robot’s lower-haptic ground truth features and β-VED projected features’ (from

lift-haptic) for the dataset in Sinapov et al. (2016).

object recognition model is repeated 10 times to get an accuracy
estimate. Note that the hyperparameters and the structure of
the network were kept identical to those that were used for the
previous dataset without any additional tuning. The results of
cross-perception and cross-behavioral sensorimotor transfer are
discussed as follows.

4.6.3. Illustrative Example
Consider a cross-behavioral sensorimotor transfer where the
source robot uses the lift behavior while the target robot uses
the lower behavior. Projecting haptic features from lift to lower,
allows the target robot to achieve a recognition accuracy of
68% compared with 52.2% when using ground truth features
(shown in Figure 23). In other words, the target robot’s object
recognition model performs better than if it were trained on
real data.

To visualize the lift-haptic to lower-haptic projection, we
reduced the dimensionality of the generated and the ground truth
features of the 5 objects the target robot never interacted with
into 2D space by PCA (shown in Figure 21). Figure 21 shows
the clusters of both ground truth and projected features using
β-VED. The clusters of projected features not only look very
similar to the ground truth features, but also have less variance,
which may account for the higher recognition rate when using
reconstructed features.

4.6.4. Accuracy Results of Object Recognition

4.6.4.1. Cross-perception sensorimotor transfer
Since there are 2 modalities (audio and haptic), if a sensor fails,
there is 1 possible mapping from the available sensor to the
failed sensor, so there are 2 × 1 = 2 possible mappings (e.g.,
audio to haptic and haptic to audio). There are 7 interactive
behaviors, so there are 2 × 7 = 14 projections (e.g., hold-haptic
to hold-audio and lower-audio to lower-haptic, etc.). There are
also 3 vision based modalities (color, shape and vgg) only for
look behavior, so there 3 × 2 × 1 = 6 more projections (e.g.,
look-color to look-shape and look-vgg to look-color, etc.). Thus, in
total there are 20 cross-perception projections. Figure 22 shows

the 5 β-VED cross-perception projections with the least accuracy
delta and corresponding single source β-VAE projections and
KEMA projections. Note that the reconstructed features of these
5 projections achieve higher accuracy than the ground truth
features, however there are projections such as look-shape to look-
vgg and hold-audio to hold-haptic, where ground truth features
achieve higher accuracy. Recovering audio features from haptic
was the easiest task, indicating that knowing how forces felt when
performing a behavior can inform how the object would sound
when performing that behavior.

4.6.4.2. Cross-behavioral sensorimotor transfer
Since there are 2 sensory modalities (audio and haptic), there
are 2 × 2 = 4 possible mappings from the source to the
target robot (e.g., audio to haptic and haptic to audio, etc.).
Each of the 7 interactive behaviors are projected to each of
the other 6 behaviors, so for each mapping, there are 7 ×

6 = 42 projections (e.g., lift-haptic to lower-haptic and hold-
audio to lower-haptic, etc.). Thus, there are 4 × 42 = 168
projections without using vision modalities. Since there are
also 3 visual modalities (color, shape, and vgg) only for look
behavior, we projected visual modalities to non-visual modalities
3 × 2 = 6 mappings, and non-visual modalities to vision
modalities 2 × 3 = 6 mappings for look behavior to other
behaviors 1 × 7 = 7 projections and other behaviors to
look behavior 7 × 1 = 7 projections. Thus, there are
6 × 7 + 6 × 7 = 84 projections using vision modalities,
making 168 + 84 = 252 total cross-behavioral projections.
Figure 23 shows the 5 β-VED cross-behavioral projections
where the accuracy delta is minimum and corresponding
single source β-VAE projections and KEMA projections. While
the reconstructed features of these 5 projections achieve
higher accuracy than the ground truth features, there are
projections such as push-haptic to look-vgg and look-shape
to hold-haptic, where ground truth features achieve higher
accuracy. Similar to previous results, mappings within the
same modality (e.g., haptic to haptic) achieve higher accuracy
than mappings between different modalities. One interesting
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FIGURE 22 | β-VED cross-perception projections where the Accuracy Delta is minimum and corresponding β-VAE projections and KEMA projections for the dataset

in Sinapov et al. (2016).

FIGURE 23 | β-VED cross-behavior projections where the Accuracy Delta is minimum and corresponding β-VAE projections and KEMA projections for the dataset in

Sinapov et al. (2016).

similarity is haptic to haptic which is the best performing
mapping for the previous dataset and haptic to haptic is the
best performing mapping for this dataset. Moreover, the best
performing combination of the source and target behaviors are
also similar. For example, in the previous dataset lift-haptic to
hold-haptic projection generated very realistic features and in
this dataset lift-haptic to lower-haptic projection has a very low
accuracy delta. This shows that the source and target behavior

combination that generates realistic features can be applied to
different robots.

4.6.5. Accuracy Delta Results
There are 17 sensorimotor contexts (7 behaviors x 2 non-visual
modalities + 1 behavior x 3 visual modalities). To visualize the
combination of source and target contexts that are good for
knowledge transfer, we plotted the two dimensional ISOMAP
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FIGURE 24 | Two dimensional ISOMAP embedding of the accuracy delta matrix for the dataset in Sinapov et al. (2016). Each point represents a sensorimotor context

(i.e., a combination of a behavior and sensory modality). Points close in this space represent contexts between which information can be transferred effectively.

(Tenenbaum et al., 2000) embedding of the accuracy delta matrix
(shown in Figure 24) as we did for the previous dataset. Some
of the most efficient pairs of behaviors are lift and lower and
grasp and drop. Similar to previous results, contexts with the same
modality appear closer to each other indicating that projections
within the same modality perform better than projections within
different modalities. Moreover, pair of behaviors such as lift
and lower that capture similar object properties are better for
knowledge transfer similar to previous dataset. Some exceptions
include the look-shape context which lies close to several of the
contexts that use the audio modality. The press-haptic context
lies slightly outside the remaining haptic contexts as unlike
behaviors such as lift and lower, the press action does not give the
robot information about the object’s mass, but rather, it captures
its compliance.

5. CONCLUSION AND FUTURE WORK

Behavior-grounded sensory object knowledge is specific to each
robot’s embodiment, sensors, and actions which makes it difficult
to transfer multisensory representations from one robot to
another. We proposed and evaluated a framework for knowledge
transfer that uses variational auto-encoder and encoder-decoder
networks to project sensory feedback from one robot to another
robot across different behaviors and modalities. The framework
enables a target robot to use knowledge from a source robot
to classify objects into categories it has never interacted with
before. In addition, using the proposed knowledge transfer
method the target robot can recover the features of a failed
sensor from the available sensors. In this way, the target robot,
instead of learning a classifier from scratch, can start immediately
with a classifier that performs nearly as good as if the target
robot learned by collecting its own labeled training set through
exploration. We also proposed a method to select a set of

objects that would be better to transfer knowledge in a time
constrained situation where the robots cannot interact with a
large number of objects to train the knowledge transfer model.
Moreover, we successfully validated the proposed knowledge
transfer framework on another dataset without any additional
hyperparameter tuning. These results address some of the major
challenges in the deployment of interaction based multisensory
models, namely that they require a large amount of interaction
data to train and cannot be directly transferred across robots.

There are several closely-related research problems that can
be addressed in the future work. First, a limitation of the our
dataset is that the sensory features are dependent on the robot’s
environment, so the transferred features would not apply to the
robot in a different environment. For instance, a pencil box would
produce different auditory and visual features when dropped on
a wooden table than when dropped on a soft cushion. Thus,
there is a need to develop a framework to transfer knowledge
that can generalize across different environments. Moreover, the
dataset used in our experiments is relatively small (for each object
category there are only 25 examples), and thus, not large enough
to answer questions like “how much data is required to reach the
optimal performance?” Thus, in future work we would collect a
relatively larger dataset that can answer this question.

Another limitation of our experiment is that the dataset
we used contains only one robot, and thus we considered the
case where the source and target robots are morphologically
identical but differ in terms of behaviors and sensory modalities.
In future work, we plan to evaluate our framework on robots
that not only perform different behaviors, but also have
different embodiment and feature representations. In addition,
the run-time complexity of the β-VAE model we presented
increases linearly with the increase in the number of source
robots used. Having a model that can scale with the number of
robots without increasing run-time complexity could improve
the proposed method. A model that can incrementally improve
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performance by learning from new data-points acquired by
one of the robots is also a promising avenue for future
exploration. Finally, in our experiments, we addressed a category
recognition task. In future work, we plan to extend the
framework to handle sensorimotor knowledge transfer for
other tasks as well, such as manipulating objects, grounding
language, etc.
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