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The quality of crossmodal perception hinges on two factors: The accuracy of the

independent unimodal perception and the ability to integrate information from different

sensory systems. In humans, the ability for cognitively demanding crossmodal perception

diminishes from young to old age. Here, we propose a new approach to research

to which degree the different factors contribute to crossmodal processing and the

age-related decline by replicating a medical study on visuo-tactile crossmodal pattern

discrimination utilizing state-of-the-art tactile sensing technology and artificial neural

networks (ANN). We implemented two ANNmodels to specifically focus on the relevance

of early integration of sensory information during the crossmodal processing stream as a

mechanism proposed for efficient processing in the human brain. Applying an adaptive

staircase procedure, we approached comparable unimodal classification performance

for both modalities in the human participants as well as the ANN. This allowed us

to compare crossmodal performance between and within the systems, independent

of the underlying unimodal processes. Our data show that unimodal classification

accuracies of the tactile sensing technology are comparable to humans. For crossmodal

discrimination of the ANN the integration of high-level unimodal features on earlier

stages of the crossmodal processing stream shows higher accuracies compared to

the late integration of independent unimodal classifications. In comparison to humans,

the ANN show higher accuracies than older participants in the unimodal as well as the

crossmodal condition, but lower accuracies than younger participants in the crossmodal

task. Taken together, we can show that state-of-the-art tactile sensing technology is

able to perform a complex tactile recognition task at levels comparable to humans.

For crossmodal processing, human inspired early sensory integration seems to improve

the performance of artificial neural networks. Still, younger participants seem to employ

more efficient crossmodal integration mechanisms than modeled in the proposed ANN.

Our work demonstrates how collaborative research in neuroscience and embodied

artificial neurocognitive models can help to derive models to inform the design of future

neurocomputational architectures.
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INTRODUCTION

Human behavior in the natural environment crucially depends
on the continuous processing of simultaneous input to different
sensory systems. Integration of these sensory streams creates

meaningful percepts and allows for fast adaption to changes in
our surrounding (Calvert, 2001). The success of this crossmodal

integration depends on two factors: The accuracy of the
independent unimodal perception and the ability to integrate
information from different sensory systems (Calvert et al., 2004).

In a recent human behavioral study (Higgen et al., 2020),
we found that older participants show significant difficulties in
a well-established visuo-tactile crossmodal discrimination task
compared to younger participants (Hummel and Gerloff, 2006;
Göschl et al., 2015; Wang et al., 2019). In this task, tactile
and visual stimuli are presented simultaneously, representing
either the same or different geometrical dot patterns. Participants
have to decide whether the patterns were congruent or
incongruent. We applied an adaptive staircase procedure prior
to the crossmodal task, to determine unimodal classification
thresholds. This approach allowed us to investigate crossmodal
performances at stimulus intensities with comparable unimodal
classification accuracies.

With aging, performance decreases in several cognitive
processes (Gazzaley et al., 2005; Anguera and Gazzaley, 2012;
Heise et al., 2013; Guerreiro et al., 2014). The processing of
unimodal sensory stimuli constitutes one major domain of
this deterioration (Freiherr et al., 2013). However, our data
revealed that difficulties of older participants go beyond a simple
decline in unimodal stimulus classification, i.e., the identification
of a stimulus presented in one modality. The data suggest
that the crossmodal integration of information from different
sensory systems in higher-order neural networks might be one
of the key reasons of poor performance of older participants.
As the percentage of older people in the overall population
increases, age-related declines gain more and more importance.
Understanding the mechanisms of these declines is vital to
develop adequate support approaches (see for example Krawinkel
et al., 2015). However, age-related alterations in human neural
networks and their effects on local computing and long-range
communication in the brain, which are needed for crossmodal
integration, are not well understood (Hong and Rebec, 2012;
Schulz et al., 2014; Quandt et al., 2016). It has been suggested
to understand the aging of the brain as a network level
phenomenon, leading for example to decreased structural and
functional connectivity in whole-brain networks (Geerligs et al.,
2015; Sala-Llonch et al., 2015; Damoiseaux, 2017; Zonneveld
et al., 2019). However, causal assignment of altered neural
function or network properties to behavioral changes is one of
the great challenges in neuroscience.

In the current study, we propose a new approach to research
the relevance of different network properties in crossmodal
integration by adapting our recent human behavioral study
to an artificial neural network (ANN) scenario. On the one
hand, network models might help to understand the reasons
for poor performance in older humans. One the other hand,
the design of high-performing artificial neural networks for

crossmodal integration is likewise one of the most significant
challenges in robotics (see for example Ngiam et al., 2011; Feng
et al., 2015; Guo et al., 2019; Müller-Eberstein and van Noord,
2019; Wang et al., 2020). We suggest, that adaption of human
inspired mechanisms and comparison to human performance
will allow for an evaluation of the performance of artificial
systems compared to humans with different abilities and help
to develop more biologically plausible and performant artificial
neural network models (Barros and Wermter, 2016; Deistler
et al., 2019; Fu et al., 2020).

Specifically, we replicated our human behavioral study on
visuo-tactile crossmodal pattern discrimination utilizing state-of-
the-art tactile sensing technology and artificial neural networks.
We employed embodied neurocognitive models to evaluate a
specific hypothesis of the contribution of unimodal processing
and crossmodal integration to the visuo-tactile discrimination
task. Classical studies have postulated crossmodal integration
to be achieved by hierarchical convergence of unimodal
information onto specialized multisensory brain regions (Stein
and Meredith, 1993; Meredith, 2002). More recent work,
however, highlights the importance of distributed multisensory
processing and the integration of information already on earlier
stages of the processing stream such as primary sensory cortices
(Zhou and Fuster, 2000; Ghazanfar and Schroeder, 2006; Kayser
and Logothetis, 2007; Senkowski et al., 2008). To evaluate
whether this early integration of crossmodal information might
be one mechanism relevant for high performance in the visuo-
tactile discrimination task we implemented two ANN models.
The first artificial network (V-architecture) implements a model
for the late integration of fully processed results of the unimodal
sensory streams. In contrast, the second network (Y-architecture)
implements a model with an emphasis on the early integration of
information during crossmodal processing, integrating complex
higher-level features from the unimodal streams. Importantly,
the unimodal processing streams of both networks were identical
in terms of architecture.

To establish comparability between the human participants
and the ANN and to account for confounding factors such as
visual acuity of the human participants or hardware specifics
of the ANN, we made the effort to adapt the staircase
procedure from the human behavioral study to the artificial
scenario. After training of the unimodal pattern classification,
we estimated stimulus intensities at which the performance
of the unimodal processing streams matched the performance
of the human participants at their unimodal classification
thresholds. Thus, we achieved comparable unimodal pattern
classification performance for both modalities in the human
participants as well as the ANN. This allowed us to compare
the crossmodal performance of the different artificial neural
networks and the human participants, independent of the
underlying unimodal processes.

Due to the limited complexity of the artificial neural networks,
we hypothesize that the younger human participants will
show best crossmodal discrimination performance. Furthermore,
we hypothesize that the human inspired early integration of
crossmodal information will outperform the late integration
artificial neural network model.
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MATERIALS AND METHODS

Visuo-Tactile Discrimination Task in
Humans
In our human behavioral experiment, 20 younger (11 female,
M = 24.05 years, SD = 2.50) and 20 healthy older volunteers
(11 female, M = 72.14 years, SD = 4.48) performed an adapted
version of a well-established visuo-tactile pattern discrimination
task (Hummel and Gerloff, 2006; Göschl et al., 2015; Wang
et al., 2019; Higgen et al., 2020). In this task, participants had
to compare Braille patterns presented tactilely to the right index
fingertip with visual patterns presented on a computer screen
(Figure 1). Patterns appeared simultaneously with synchronous
onset and offset and were either congruent (i.e., represented
the same geometrical pattern) or incongruent (i.e., represented
different geometrical patterns). Participants had to indicate
whether patterns were congruent or incongruent. Importantly,
the task did not explicitly require a classification of the
presented patterns. Tactile stimulation was delivered via a Braille
stimulator (QuaeroSys Medical Devices, Schotten, Germany, see
Figure 1A), consisting of eight pins arranged in a four-by-two
matrix, each 1mm in diameter with a spacing of 2.5mm. Each
pin is controlled separately. Pins can be elevated (maximum
amplitude 1.5mm) for a specific duration to form different
patterns. Visual patterns were designed analogously to the Braille
patterns and presented left of a central fixation point on a noisy
background (Perlin noise; see Figure 1B). The visual patterns
subtended 3.5◦ × 2.5◦ of visual angle. A set of four clearly
distinct patterns was used in the study (see Figure 1B) to account
for the diminished unimodal tactile perception of the older
participants. None of the participants had prior experience with
reading Braille.

To be able to compare crossmodal performance of the
human younger and older participants, we aimed to achieve a
comparable performance of around 80% correct answers for both
unimodal classification tasks. To this end, prior to the crossmodal
task, each participant performed a unimodal adaptive staircase
procedure with a target classification accuracy of approximately
80% to individually adjust stimulus intensities in the visual and
tactile modalities (Wetherill and Levitt, 1965; Kaernbach, 1991;
Treutwein, 1995; García-Pérez, 1998). The adaptive-staircase
procedure was performed in both modalities separately, to
ensure comparable unimodal classification performance across
modalities and between older and younger participants. Tactile
stimulus intensity was adjusted by changing the height of the
braille pattern (pin height). Visual stimulus intensity was adjusted
by changing the patterns’ contrast against the background (gray
level in % of black). Pilot data showed that a gray intensity of 47%
of black was hardest to detect on the Perlin noise background.
Therefore, this contrast was the lower boundary of the staircase,
with the upper boundary being 100% of black.

Finally, participants performed the visuo-tactile
discrimination task at the afore-defined unimodal thresholds.
Furthermore, the same group of younger participants performed
the task at thresholds comparable to the older group (=younger
controls). These thresholds were estimated based on piloting
and did not differ significantly from the mean of the individual

FIGURE 1 | Experimental setup. (A) Braille stimulator and setup of the human

behavioral experiment. For tactile stimulation, the participants’ right hand was

(Continued)
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FIGURE 1 | resting on a custom-made board containing the Braille stimulator

(QuaeroSys Medical Devices, Schotten, Germany), with the fingertip of the

right index finger placed above the stimulating unit. Visual patterns were

presented on a monitor and the participants indicated whether both patterns

were congruent or incongruent. The task was rendered more difficult by

blending the visual pattern in the background noise and by reducing the

actuated pin height. (B) One example input for visual patterns with 100%

intensity (i.e., full black). In both experiments, stimuli consisted of the same

four patterns (1–4). (C) Setup of robot experiment using a Shadow C6

Dexterous Hand. The BioTac tactile fingertip of the first finger of the hand is

placed on the Braille stimulator.

thresholds of the older group. The control group allowed us
to compare crossmodal performance of younger and older
participants at the same stimulus intensities.

The study was conducted in accordance with the Declaration
of Helsinki and was approved by the local ethics committee of the
Medical Association of Hamburg. All participants gave written
informed consent. For a detailed description of the experiment,
please see Higgen et al. (2020).

Robotic Adaption
The setup described above was implemented in a robotic
experiment (Figure 1C).

For tactile stimulation, the same Braille stimulator (QuaeroSys
Medical Devices, Schotten, Germany, see Figure 1A) and the
same set of Braille patterns were used (Figure 1). The tactile
stimuli were applied to the fingertips of a Shadow C6 Dexterous
Hand1 equipped with BioTac tactile sensors.2 The sensor surface
of the BioTac closely matches the size and shape of a human
finger, and it was possible to align and center the sensor onto
the Braille stimulator without modifying the setup. To perceive
the tactile stimuli of the Braille stimulator, the sensor can
detect multiple contacts through indirect measurement. The
turquoise rubber shell is filled with a conductive liquid and
held in place around an inner rigid “bone.” When contacting
an object, the rubber deforms, changing the overall pressure
of the liquid (1 channel) and also the impedance between a
set of electrodes patterned on the bone (19 channels). At the
same time, the liquid temperature changes due to the contact
(2 channels). Raw data from the sensor combines the measured
pressure, temperature and impedances but it is difficult to
interpret this raw data (Chia-Hsien et al., 2009; Wettels, 2011;
Lin and Loeb, 2013). Because the temperature only changes
slowly and does not immediately react to stimulation from
the Braille simulator, we omitted the respective sensor readings
and fed the remaining 20 channels into an artificial neural
network (ANN) to learn the mapping from raw data to applied
Braille pattern. The sensor produces a continuous stream of
tactile data. For each stimulation, we fed a sequence of 150
samples from shortly before, during and after the stimulation
into the network. The number of samples collected during each

1(online: www.shadowrobot.com).
2SynTouch LLC, BioTac Product Manual (V21), SynTouch LLC, California,

August 2018. https://www.syntouchinc.com/wp-content/uploads/2018/08/

BioTac-Manual-V.21.pdf (29).

stimulus is roughly equal to the numbers before and after the
stimulus. In line with our human behavioral experiment, tactile
stimulus intensity was adjusted by changing the height of the
braille pattern (pin height), with the maximum amplitude being
1.5 mm.

As visual stimuli, we used the same visual stimuli employed
in the human experiment (Figure 1). These stimuli were
directly fed into the neural architecture without an intermediate
sensor like a camera. As detailed below, the comparison
with the human experiments relies on the exact gray values
used in the stimuli; direct input of the images to the ANN
avoids any level-shifts due to inconsistent camera exposure
control. The noisy visual input images are generated by
placing one of four target Braille patterns (43 × 104px)
randomly on one of 48 randomly generated background
images (1024 × 768px, see Figure 2 left). The background
consists of a Perlin noise pattern with a gray range of
between 40 and 60% of black (mean 53.7%). In line with
our human behavioral experiment, the stimulus intensity (i.e.,
gray level in % of black) of the pattern was selected to be
between 47 and 100%. Samples were dynamically generated for
each episode.

As the classification of the tactile and visual stimuli require
offline learning, the adaptive staircase procedure used in the
human behavioral experiment could not be adapted to our
machine learning approach. However, to ensure comparability,
we employed a methodology that mimics the adaptive staircase
procedure. In the visual as well as in the tactile modality we
recorded datasets with different stimulus intensities, i.e., datasets
for all gray levels in the visual modality and datasets over the
whole range of pin heights in the tactile modality. To this end, we
recorded several hours of raw sensor data from the robot, labeled
with the presented tactile or visual patterns, respectively. In total,
3,000 tactile samples were collected to obtain a sufficient number
of haptic samples with different pin heights. Each of the datasets
was used to train a unimodal neural classifier. The training for
each classifier was optimized with regard to the dataset. For
example, the duration of the training and the number of training
iterations was empirically determined for each dataset to yield
the highest possible classification accuracy. Depending on the
stimulus intensity (pin height or gray level) and the unimodal
network different classification results can be achieved for the
unimodal classification tasks.

Based on these results in the unimodal condition, in the
crossmodal task we could present visual and tactile stimulus
intensities to the trained ANN that achieved a unimodal
classification accuracy of about 80% correct, in correspondence
with the human behavioral approach. In the crossmodal task,
again in line with our human behavioral experiment, visual and
tactile stimuli were paired so that the probability of both stimuli
within a crossmodal sample pair representing the same pattern
was 50%, equal to the probability of both stimuli representing
different patterns. All test results for the ANN in the crossmodal
task were obtained through 10-fold cross validation. Two-
sampled t-tests were used to compare performance of the Y- and
V-architecture in the crossmodal task over the whole range of
stimulus intensities as well as for selected stimulus pairs.
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FIGURE 2 | Structure of the neural architectures. (A) Structure of the V-architecture. Visual (left column) and tactile data (right column) are processed separately and

statically compared in the end. (B) Structure of the Y-architecture. Both columns are first trained separately on visual and tactile data. Afterwards, a number of densely

connected layers and a sigmoid output layer are added, and the network is trained again on the combined visual and tactile data.

Computational Models
The tactile and the visual information are input into ANN
that output if the patterns in both modalities are congruent
or incongruent, corresponding to the task demands in
the human behavioral study. To evaluate the influence of
the integration of high-level unimodal features on earlier
stages of the crossmodal processing stream in contrast to
just comparing unimodal classifications, we propose two
neural architectures: (a) the V-architecture (see Figure 2A)
performs two separate unimodal pattern classifications that
determine which of the four Braille patterns was input
to the tactile and the visual modality before these results
are compared; and (b) the Y-architecture (see Figure 2B)
performs an early integration of the crossmodal information by
integrating high-level feature representations of both modalities.

Importantly, unimodal processing streams of both networks
are identical in terms of architecture. The development of both
architectures was informed by previous work. Due to the high
computational cost of the training process, we restricted the
automated hyperparameter search to a small set of promising
candidate architectures.

The V-architecture can be seen as consisting of two separate
networks that perform unimodal classification of the tactile and
visual input pattern. For the tactile modality, we use a one-
dimensional convolutional neural network with 16 channels
in each layer, a kernel size of 3 and TanH activation. After
each convolutional layer, we add 50% dropout and average
pooling. Local average pooling with a width of 2 is used
between the convolutional layers and global average pooling is
used after the last convolutional layer. For the visual modality,
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we use two 16-channel convolutional layers with a size of
3 × 3 in the input layer and 8 × 8 in the hidden layer.
Between both convolutional layers, we add 8 × 8 max pooling
and after the second convolutional layer, we apply global
max pooling. The final layer of each of these subnetworks
is a soft-max layer with 4 units, corresponding to the 4
Braille patterns. The two outputs of both soft-max-layers are
compared for equality in the final layer by a static (non-
learned) operation.

In contrast, the Y-architecture integrates high-level feature
representations of both modalities. Like the V-architecture it
has two separate columns for unimodal feature extraction from
the visual and tactile data that are identical in design and
hyperparameters to the arms of the V-architecture. However,
instead of individual softmax-layers the features extracted
by the unimodal arms of the network are concatenated
and further integrated in the stem of the Y-architecture
by two dense layers with 16 neurons each followed by a
sigmoid layer that outputs an answer to the question if the
crossmodal inputs represent the same pattern, i.e., if they
are congruent.

Unimodal and Crossmodal Training
The training for both networks was supervised and followed the
same pattern: First, each unimodal column of the network was
pre-trained. The tactile branch was pre-trained for 500 episodes
and the visual network for 10 episodes using the above described
dataset with a randomized 90/10 split into training and test
data with a ten-fold cross validation. Due to the relatively small
size of the dataset, no validation set for early stopping was
employed, instead the number of training epochs was determined
empirically. For the V-architecture, the static comparator
required no further training. For the crossmodally integrating
Y-architecture, a second training phase followed where the
crossmodal layers of the Y-architecture were trained: The weighs
of the pre-trained unimodal network arms were frozen and the
stem of the Y-network was trained for 5 epochs with randomly
combined visuo-tactile data consisting of 5 times more samples
than the original tactile dataset. The method of pretraining
the unimodal arms of the architecture and then freezing their
weights before training the complete crossmodal architecture
was chosen to prevent destructive interference between the
different modalities (Zhao et al., 2018). For all training phases,
the Adam optimizer with a learning rate of 0.001 was used.
Categorial crossentropy was used as a loss function. The images
were not preprocessed before training or testing. They were
fed as raw RGB images (1024 × 768 pixels) into the network.
Likewise, the tactile data were fed as 150× 20 matrices into their
respective network. The hyperparameters of the architecture in
terms of layer sizes and activation functions are depicted in more
detail in Figure 2. For training the crossmodal Y-architecture
and for pre-training the visual column, a batch size of 16 was
used. The tactile column was pre-trained with a batch size of
1,024. Again, these hyperparameters, including the choice of
the optimization algorithm, were determined based on previous
work and empirical exploration of candidate parameters.

TABLE 1 | Performance of older and younger participants in the visuo-tactile

discrimination task.

Unimodal tactile

threshold (pin

height

in µm)

Unimodal visual

threshold (gray

level in %)

Accuracy in the

crossmodal task

at unimodal

thresholds (%)

Older participants 1,143.0 53.65 66.2

Younger participants 576.8 49 78.31

Younger controls 1,355.3 57 96.2

Unimodal tactile (Braille pin height in µm) and visual threshold (gray level in % of black) for

80% classification accuracy, and performance on the visuo-tactile discrimination task at

the unimodal thresholds, for younger and older human participants. Younger participants

show a stable crossmodal performance of around 80% classification accuracy at their

individual unimodal thresholds. Classification accuracy < 80% in the older group implies

a degradation of crossmodal integration.

RESULTS

Human Behavior
In our human behavioral study, unimodal tactile and visual
thresholds for a pattern classification accuracy of around 80%
were estimated by implementing an adaptive staircase procedure
(see Table 1). Older participants showed higher thresholds for
unimodal tactile and visual pattern classification compared to
younger participants. In the crossmodal task older participants
showed a significantly weaker performance compared to the
unimodal condition when using the individual unimodal
perception thresholds. In contrast, younger participants showed
a stable performance of around 80% (see Table 1).

In a control experiment, the same group of younger
participants (=younger controls) showed a performance of
96.2% in the visuo-tactile discrimination task at thresholds
comparable to the older group.

Artificial Neural Networks
To test the individual classification accuracy of both unimodal
channels, and to compare them to the performance of the human
participants in the original experiment, both models were fed
inputs of varying difficulty (gray level for the visual channel, pin
height for the haptic channel). A 10-fold cross-validation was
performed by splitting the 3,000 samples into 90% training and
10% test data. The results for the unimodal visual and tactile
channel can be seen in Figure 3.

In the unimodal tactile condition, we were able successfully
classify the Braille patterns from the raw BioTac sensor data. The
artificial network showed a sigmoid learning curve, comparable
to the human participants. At pin heights of 1,445µm and above
a classification accuracy of 98% was reached. A classification
accuracy of 80% was reached around 895µm (81% accuracy).
In the unimodal visual condition, the classification accuracy was
high (on average 92.31%). The classification accuracy was at 100%
correct for a wide range of gray values and started dropping once
the gray value of the pattern also appeared in the background
image (values between 40 and 60%). A classification accuracy of
80% was reached at a gray level of 53 (83.4% accuracy).
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FIGURE 3 | Unimodal performance of the artificial neural network. (A) Unimodal performance of the visual pattern classification network which is also used as the

visual branch in the V- and Y-architectures by gray level (% of black). (B) Unimodal performance of the tactile pattern classification network which is also used as the

tactile branch in the V- and Y- architectures by pin height (in µm).

The results for the crossmodal visuo-tactile discrimination
task are shown in Figure 4. Figure 4 depicts the discrimination
accuracies (i.e., correct discrimination whether the presented
patterns were congruent or incongruent) of the two ANN for
different combinations of stimulus intensities. Figure 4A shows
the results for the V-architecture. As expected, the performance
of the network degraded when the channels were too noisy,
but accuracy improved quickly as the signal quality (gray
level, pin height) became better. The corresponding results for
the Y-architecture (Figure 4B) showed a similar structure, but
with higher discrimination accuracies over the whole range of
stimulus intensity pairs (t = 4.69, p < 0.001).

When comparing the performance of the two ANN in the
crossmodal task at the 80% classification thresholds determined
for the unimodal branches, both ANN showed a decrease in
performance compared to the unimodal condition (see Table 2).
However, the Y-architecture showed higher accuracies at these
stimulus intensities (75.3%) compared to the V-architecture
(69.2%). In comparison, younger human participants showed
best performance close to 80% correct (78.31%) at their
individual unimodal thresholds, while older participants showed
an even larger decrease in accuracies in the crossmodal task
(66.2%; see Table 1).

Evaluation of the crossmodal performance of the ANN at
the unimodal thresholds determined for the human participants,
showed that both networks perform better than the older
participants (66.2%) at the unimodal thresholds of the older
group (V-architecture: 73.7%; Y-architecture: 79.1%). Compared
to the younger group (78.31%) both networks showed poorer
performances at the unimodal thresholds of the younger group
(V-architecture: 48.8%; Y-architecture: 55.0%).

When comparing the performances of the two ANN at these
selected stimulus intensity pairs (unimodal thresholds of the
older and younger participants as well as thresholds determined
for the unimodal ANN branches) the Y-architecture shows
numerically higher performance for all stimulus pairs, even
though the differences are not significant (all p-values > 0.05; see
Figure 5).

DISCUSSION

In this study, we propose a novel approach for collaborative
neuroscientific and robotic research to better understand and
apply mechanisms of crossmodal integration. We aimed to
investigate the transfer of a human behavioral experiment on
crossmodal visuo-tactile pattern discrimination to an artificial
neural network scenario and to compare the performance of
different embodied neurocognitive models to the performance of
younger and older humans.

For unimodal tactile pattern classification, we used state-of-
the-art sensing technology to learn the mapping from raw data to
applied Braille patterns. For visuo-tactile pattern discrimination
we implemented two artificial neural network models to evaluate
the relevance of early integration of sensory information as a
mechanism for crossmodal processing. The first artificial network
(V-architecture) implements a model for the late integration
of fully processed results of the unimodal sensory streams.
In contrast, the second network (Y-architecture) implements a
model with an emphasis on the integration of information during
earlier stages of the crossmodal processing stream, integrating
complex higher-level features from the unimodal streams. We
made use of an adaptive staircase procedure, to approach
comparable unimodal pattern classification accuracies for both
modalities in the human participants as well as the ANN. This
allowed us to compare crossmodal performances, independent of
the respective unimodal classification capabilities.

The data show that in an artificial system, early integration
of complex high-level unimodal features outperforms
the comparison of independent unimodal classifications.
Importantly, their unimodal processing columns were identical
in terms of architecture. In our corresponding human behavioral
experiment younger participants showed a stable performance
in the crossmodal task at the unimodal thresholds while older
participants showed a significantly weaker performance (Higgen
et al., 2020). In line with previous data, the results suggested
altered mechanisms of crossmodal integration in the aged
brain (Mozolic et al., 2012; Freiherr et al., 2013; de Dieuleveult
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FIGURE 4 | Crossmodal performance of the neural architectures. (A) Performance of the V-architecture. Discrimination accuracy of the V-architecture (in %) by pin

height and gray level. Parameters are the gray level (% of black) of the visual pattern and the active pin height (µm) of the Braille stimulator. (B) Performance of the

Y-architecture. Discrimination accuracy of the Y-architecture (in %) by pin height and gray level. Parameters are the gray level (% of black) of the visual pattern and the

active pin height (µm) of the Braille stimulator.

TABLE 2 | Performance of the artificial neural networks at signal levels comparable to the human participants.

Pin height

(µm)

Gray level

(%)

V-architecture: Accuracy

in the crossmodal

task (%)

Y-architecture: Accuracy

in the crossmodal

task (%)

Signal levels comparable to older participants 1,143 54 73.7 79.1

Signal levels comparable to younger participants 593 49 48.8 55.0

Unimodal thresholds of the ANN 895 53 69.2 75.3

Discrimination accuracy of the artificial networks at tactile (Braille pin height in µm) and visual (gray level in % of black) signal levels comparable to the thresholds determined in the

human experiments and thresholds determined for the unimodal artificial neural networks (ANN) branches.

et al., 2017). Intriguingly, both datasets indicate that not
only classification of unimodal stimuli but also mechanisms
of integration are crucial for performance in crossmodal
integration. The data of our two corresponding experiments
now allow for comparing performances of the artificial neural
networks and the human participants.

In both modalities, we reached a unimodal classification
accuracy of the ANN of around 100% (visual 100% tactile
98%) correct. This performance was reached with maximum
pin height in the tactile condition and a wide range of gray
intensities in the visual condition. For both modalities, we could
determine stimulus intensities with a classification accuracy
of the unimodal artificial neural network branches of around
80% correct. In the visual as well as in the tactile modality,
performance of the ANN lies between the human younger and
older participants. In the visual condition performance is closer
to the older participants. However, comparing this performance
to the human participants is difficult, as stimuli were directly
fed into the neural architecture without an intermediate sensor
like a camera. Real-world data collection with adaptive camera

exposure might lead to a weaker performance of the ANN in
visual pattern classification. In the unimodal tactile condition,
the experimental setup in the robotic adaption was exactly the
same as in the human behavioral experiment. The performance
in unimodal tactile pattern classification of the ANN lies just
in between the younger and the older participants. The results
show that state-of-the-art sensing technology can perform a
complex pattern classification task at a level almost comparable to
young humans (Dsouza, 2016). Moreover, the artificial networks
perform distinctively better than the older human participants.

In the crossmodal discrimination task, the Y-architecture
shows significantly better performance over the whole range of
stimulus intensity pairs compared to the V-architecture. The
performance of both networks is better compared the older
participants at the unimodal thresholds of the older group
and worse compared the younger participants at the unimodal
thresholds of the younger group. These performance differences
are most likely due to the differences in unimodal pattern
classification. The most interesting is the comparison of the
crossmodal performance at the individual unimodal thresholds
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FIGURE 5 | Performance comparison of the neural architectures. Results from a 10-fold cross validation to obtain average crossmodal discrimination accuracies with

standard error confidence measures for the V- and Y-architecture at unimodal thresholds of the older (top) and younger participants (bottom) as well as for the

thresholds determined for the unimodal artificial neural networks (ANN) branches (middle) are depicted.

between groups. At these stimulus intensities, unimodal
classification accuracies are comparable between human younger
and older participants as well as the ANN and should, therefore,
not account for any differences in crossmodal performance.
The performance at these stimulus intensities might be seen as
an indicator for the efficacy of the mechanisms of crossmodal
integration. The younger participants show a stable performance
in the crossmodal task at their individual unimodal thresholds
(78.31%), while older participants show a distinct decrease
in performance (66.2%). For the crossmodal performance of
the ANN at the thresholds determined for the unimodal
branches, we find that the V-architecture shows a decrease in
performance almost comparable to the older group (69.2%).
The Y- architecture shows a slight decrease in performance
as well, however, performance is still above 75% (75.3%). The
high performance of the Y-architecture is further corroborated
by reaching a discrimination accuracy of 94% correct for high
stimulus intensities, compared to an accuracy of 81% correct for
the V-architecture. Despite the numerically better performance
of the Y-architecture compared to the V-architecture, statistical
analysis did not reveal a significant difference. We find
a better performance of the Y-architecture for all selected
stimulus intensity pairs (see Figure 5), which reflects the overall
significantly better performance. However, comparison of the
performance for single stimulus pairs did not reveal significant
results. This is most likely due to the small sample size obtained
from the 10-fold cross validation. We do not attribute the better
performance of the early integrating architecture merely to the
additional model parameters introduced by the integration layer.
The unimodal architectures are optimized with regard to the
number of parameters (represented by the number of neurons
in the architecture). Empirical results have shown that more
parameters do not lead to better, but worse results, as the
architecture tends to overfit on the training data. In contrast,

we suggest an alternative explanation: If two monomodal
classifications are performed, and only the final results of the two
classifications are compared, any information on the distribution
over the possible classification outcomes except the winning
outcomes is lost.

Taken together, our data indicate that mechanisms of
crossmodal integration are most efficient in the younger
human participants compared to the older participants but
also the artificial neural networks. Younger participants show
best performance at their individual unimodal classification
thresholds. However, the Y-architecture seems to approach the
crossmodal performance of the younger participants. The Y-
architecture is more efficient compared to the V-architecture
in integrating crossmodal stimuli over the whole range of
stimulus intensity pairs and shows higher performance values at
the unimodal classification thresholds. Older participants show
weakest performance at their individual unimodal thresholds,
indicating a decline of mechanisms of crossmodal integration.

In conclusion, the results for the artificial neural networks
as well as the human participants emphasize the importance
of the mechanisms of integration for successful crossmodal
performance. Integration of incompletely processed sensory
information during early stages of the crossmodal processing
stream seems to be crucial for efficient crossmodal integration
(Molholm et al., 2002; Kayser and Logothetis, 2007; Kayser
et al., 2008; Stein and Stanford, 2008). One might argue, that
compared to the late integration model of the V-architecture the
Y-architecture represents a more biological plausible network,
approaching the efficient crossmodal processing in the young
human brain. Late convergence of unimodal information does
not seem to be suitable to depict the processes in the human
brain. Accordingly, a decline in crossmodal integration processes
is accompanied with poorer performance, as shown for the
older participants in the human behavioral study. Still, our
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results suggest a superior mechanism for crossmodal stimulus
processing in the young human brain compared to the artificial
neural networks. Further research is needed to answer the
question of how young brains successfully integrate crossmodal
information and which of these mechanisms can be adapted in
artificial systems. It has been suggested that efficient stimulus
processing in the human brain depends on recurrent neural
networks and sensory integration on even lower levels (Foxe and
Schroeder, 2005; Ghazanfar and Schroeder, 2006). Developing
such approaches in future work might, on the one hand, improve
the performance of artificial devices, but on the other hand, also
give insights into the question which disturbances of the system
lead to suboptimal functioning in the aged brain.

There are some limitations to the current study. Comparison
of the human and the robotic performance is complicated
as no statistical comparison between these groups is possible.
Still, our approach allows for indicative comparison between
the different systems and, consecutively, statistical within
group comparison of the different network models proposed.
Furthermore, comparability of the artificial neural network
models to mechanisms in the human brain is limited, as they
cannot replicate the complexity of human neural networks.
Likewise, biological systems (at the time of data collection)
are already exposed to many years of continuous and diverse
learning, while neuro robotic models are usually trained from
scratch with the limited number of samples that are collected
in a very specific setup. This difference in training samples has
to be reflected in the complexity of the neuro robotic models:
in comparison to biological architectures, the neurorobotic
architectures need to have a limited number of parameters to
prevent overfitting on the training data. In turn, this limitation
also limits the architectural complexity of the models. When
designing the architectures presented in this paper, best practices
in neurorobotics were followed, i.e., different architecture
variants were empirically optimized and evaluated with the
available training and test data. The resulting architectures reflect
the best setup for the data: complex enough to solve the problem
but simplistic enough to not overfit to the training data (and fail
on the test data). It can be assumed that the optimal architectures
would grow in complexity and parameter number with more and
more diverse training data.

However, despite the simplistic nature of the neuro robotic
architectures, we can show that integrating complex higher-level
features from the unimodal streams yields better results for the
crossmodal discrimination task than only comparing the fully
processed results of the unimodal streams, giving evidence for
the advantage of earlier integration. Finally, we were able to
demonstrate the adaption of a human neuroscientific experiment
to a robotic scenario and to address one specific question
regarding the processing of crossmodal information in neural

networks. We propose this collaborative approach to better
understand and apply mechanisms of crossmodal integration.
Likewise, this approach can be used in very different scenarios
to establish common grounds in human and robotic research for
the mutual exchange of theory (Brooks and Stein, 1995; Hinz
et al., 2018; Lanillos et al., 2020). Joint experiments in human
and robotic research might help to generate hypotheses for
further explorations and to address detailed research questions.
For instance, the effects of recurrent neural networks on the
performance in crossmodal integration could be compared to the
classically used feedforward artificial network models.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Medical Association of Hamburg, Weidestraße
122B, 22083Hamburg, Germany. The participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

FH, PR, and MG: study idea, study design, data acquisition,
data analyses, interpretation, and preparation of manuscript.
MK: study idea, interpretation, and preparation of manuscript.
NH: study idea, study design, interpretation, and preparation
of manuscript. JF: study design, interpretation, and revision
of manuscript. SW and JZ: interpretation and revision of
manuscript. CG: study idea, interpretation, and revision of
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was funded by the German Research Foundation
(DFG) and the National Science Foundation of China (NSFC) in
project Crossmodal Learning, SFB TRR169/A3/A4/B5/Z3.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at bioRxiv
(Higgen et al., 2019).

REFERENCES

Anguera, J. A., and Gazzaley, A. (2012). Dissociation of motor and sensory

inhibition processes in normal aging. Clin. Neurophysiol. 123, 730–740.

doi: 10.1016/j.clinph.2011.08.024

Barros, P., and Wermter, S. (2016). Developing crossmodal expression

recognition based on a deep neural model. Adapt. Behav. 24, 373–396.

doi: 10.1177/1059712316664017

Brooks, R. A., and Stein, L. A. (1995). Building brains for bodies. Auton. Robots 1,

7–25. doi: 10.1007/BF00735340

Frontiers in Robotics and AI | www.frontiersin.org 10 December 2020 | Volume 7 | Article 540565

https://doi.org/10.1016/j.clinph.2011.08.024
https://doi.org/10.1177/1059712316664017
https://doi.org/10.1007/BF00735340
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Higgen et al. Crossmodal Integration in Humans and Robots

Calvert, G. A. (2001). Crossmodal processing in the human brain: insights

from functional neuroimaging studies. Cereb. Cortex 11, 1110–1123.

doi: 10.1093/cercor/11.12.1110

Calvert, G. A., Spence, C., and Stein, B. E. (2004). The Handbook of

Multisensory Processing. Available online at: https://researchportal.bath.ac.uk/

en/publications/the-handbook-of-multisensory-processing (accessed January

29, 2020).

Chia-Hsien, L., Erickson, T. W., Fishel, J. A., Wettels, N., and Loeb, G. (2009).

“Signal processing and fabrication of a biomimetic tactile sensor array with

thermal, force and microvibration modalities,” in 2009 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 129–134.

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain

connectivity. Neuroimage 160, 32–40. doi: 10.1016/j.neuroimage.2017.01.077

de Dieuleveult, A. L., Siemonsma, P. C., van Erp, J. B., and Brouwer, A. M. (2017).

Effects of aging in multisensory integration: a systematic review. Front. Aging

Neurosci. 9:80. doi: 10.3389/fnagi.2017.00080

Deistler, M., Yener, Y., Bergner, F., Lanillos, P., and Cheng, G. (2019). “Tactile

hallucinations on artificial skin induced by homeostasis in a deep Boltzmann

machine,” in 2019 IEEE International Conference on Cyborg and Bionic Systems

(CBS), Munich, Germany, 48–53.

Dsouza, R. (2016). The art of tactile sensing: a state of art survey. Int. J. Sci. Basic

Appl. Res. 26, 252–266. Available online at: https://www.gssrr.org/index.php/

JournalOfBasicAndApplied/article/view/5643

Feng, F., Wang, X., Li, R., and Ahmad, I. (2015). Correspondence autoencoders

for cross-modal retrieval. ACM Trans. Multimed. Comput. Commun. Appl. 12,

26:1–26:22. doi: 10.1145/2808205

Foxe, J. J., and Schroeder, C. E. (2005). The case for feedforward multisensory

convergence during early cortical processing. Neuroreport 16, 419–423.

doi: 10.1097/00001756-200504040-00001

Freiherr, J., Lundström, J. N., Habel, U., and Reetz, K. (2013). Multisensory

integration mechanisms during aging. Front. Hum. Neurosci. 7:863.

doi: 10.3389/fnhum.2013.00863

Fu, D., Weber, C., Yang, G., Kerzel, M., Nan, W., Barros, P., et al. (2020). What can

computational models learn from human selective attention? A review from

an audiovisual unimodal and crossmodal perspective. Front. Integr. Neurosci.

14:10. doi: 10.3389/fnint.2020.00010

García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes:

asymptotic and small-sample properties. Vis. Res. 38, 1861–1881.

doi: 10.1016/S0042-6989(97)00340-4

Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., and D’Esposito, M. (2005).

Top-down enhancement and suppression of the magnitude and speed of neural

activity. J. Cogn. Neurosci. 17, 507–517. doi: 10.1162/0898929053279522

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., and Lorist, M. M. (2015).

A Brain-wide study of age-related changes in functional connectivity. Cereb.

Cortex 251, 987–999. doi: 10.1093/cercor/bhu012

Ghazanfar, A. A., and Schroeder, C. E. (2006). Is neocortex essentially

multisensory? Trends Cogn. Sci. 10, 278–285. doi: 10.1016/j.tics.2006.04.008

Göschl, F., Friese, U., Daume, J., König, P., and Engel, A. K. (2015).

Oscillatory signatures of crossmodal congruence effects: an EEG investigation

employing a visuotactile pattern matching paradigm. Neuroimage 116,

177–186. doi: 10.1016/j.neuroimage.2015.03.067

Guerreiro, M. J. S., Anguera, J. A., Mishra, J., Van Gerven, P. W. M., and

Gazzaley, A. (2014). Age-equivalent top-down modulation during cross-modal

selective attention. J. Cogn. Neurosci. 26, 2827–2839. doi: 10.1162/jocn_a_

00685

Guo,W.,Wang, J., andWang, S. (2019). Deepmultimodal representation learning:

a survey. IEEE Access 7, 63373–63394. doi: 10.1109/ACCESS.2019.2916887

Heise, K.-F., Zimerman, M., Hoppe, J., Gerloff, C., Wegscheider, K., and Hummel,

F. C. (2013). The aging motor system as a model for plastic changes of GABA-

mediated intracortical inhibition and their behavioral relevance. J. Neurosci. 33,

9039–9049. doi: 10.1523/JNEUROSCI.4094-12.2013

Higgen, F. L., Heine, C., Krawinkel, L., Göschl, F., Engel, A. K., Hummel, F.

C., et al. (2020). Crossmodal congruency enhances performance of healthy

older adults in visual-tactile pattern matching. Front. Aging Neurosci. 12:74.

doi: 10.3389/fnagi.2020.00074

Higgen, F. L., Ruppel, P., Görner, M., Kerzel, M., Hendrich, N., Feldheim, J.,

et al. (2019). Crossmodal pattern discrimination in humans and robots: a

visuo-tactile case study. bioRxiv 775403. doi: 10.1101/775403

Hinz, N., Lanillos, P., Mueller, H., and Cheng, G. (2018). “Drifting perceptual

patterns suggest prediction errors fusion rather than hypothesis selection:

replicating the rubber-hand illusion on a robot,” in 2018 Joint IEEE 8th

International Conference on Development and Learning and Epigenetic Robotics

(ICDL-EpiRob), 125–32.

Hong, S. L., and Rebec, G. V. (2012). A new perspective on behavioral

inconsistency and neural noise in aging: compensatory speeding of neural

communication. Front Aging Neurosci. 4:27. doi: 10.3389/fnagi.2012.00027

Hummel, F. C., and Gerloff, C. (2006). Interregional long-range and short-range

synchrony: a basis for complex sensorimotor processing. Prog. Brain Res. 159,

223–236. doi: 10.1016/S0079-6123(06)59015-6

Kaernbach, C. (1991). Simple adaptive testing with the weighted up-downmethod.

Percept. Psychophys. 49, 227–229. doi: 10.3758/BF03214307

Kayser, C., and Logothetis, N. K. (2007). Do early sensory cortices

integrate cross-modal information? Brain Struct. Funct. 212, 121–132.

doi: 10.1007/s00429-007-0154-0

Kayser, C., Petkov, C. I., and Logothetis, N. K. (2008). Visual modulation

of neurons in auditory cortex. Cereb. Cortex 18, 1560–1574.

doi: 10.1093/cercor/bhm187

Krawinkel, L. A., Engel, A. K., and Hummel, F. C. (2015). Modulating pathological

oscillations by rhythmic non-invasive brain stimulation-a therapeutic concept?

Front. Syst. Neurosci. 9:33. doi: 10.3389/fnsys.2015.00033

Lanillos, P., Oliva, D., Philippsen, A., Yamashita, Y., Nagai, Y.,

and Cheng, G. (2020). A review on neural network models of

schizophrenia and autism spectrum disorder. Neural Netw. 122, 338–363.

doi: 10.1016/j.neunet.2019.10.014

Lin, C.-H., Loeb, G. E. (2013). Estimating Point of Contact, Force and Torque in a

Biomimetic Tactile Sensor With Deformable Skin (Los Angeles, CA: SynTouch

LLC), 6.

Meredith, M. A. (2002). On the neuronal basis for multisensory

convergence: a brief overview. Cogn. Brain Res. 14, 31–40.

doi: 10.1016/S0926-6410(02)00059-9

Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., and

Foxe, J. J. (2002). Multisensory auditory-visual interactions during early

sensory processing in humans: a high-density electrical mapping study.

Brain Res. Cogn. Brain Res. 14, 115–128. doi: 10.1016/S0926-6410(02)

00066-6

Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., and Laurienti, P. J. (2012).

“Multisensory integration and aging,” in The Neural Bases of Multisensory

Processes, eds M. M. Murray and M. T. Wallace (Boca Raton, FL: CRC

Press/Taylor & Francis) Chapter 20.

Müller-Eberstein, M., and van Noord, N. (2019). “Translating visual art into

music,” in IEEE/CVF International Conference on Computer Vision Workshop

(ICCVW), Seoul, Korea (South), 3117–3120.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). “Multimodal

deep learning,” in Proceedings of the 28th International Conference on Machine

Learning (ICML), Bellevue, Washington, USA, eds L. Getoor and T. Scheffer

(Omnipress), 689–696.

Quandt, F., Bönstrup, M., Schulz, R., Timmermann, J. E., Zimerman, M., Nolte,

G., et al. (2016). Spectral variability in the aged brain during fine motor control.

Front Aging Neurosci. 8:305. doi: 10.3389/fnagi.2016.00305

Sala-Llonch, R., Bartrés-Faz, D., and Junqué, C. (2015). Reorganization of brain

networks in aging: a review of functional connectivity studies. Front. Psychol.

6:663. doi: 10.3389/fpsyg.2015.00663

Schulz, R., Zimerman, M., Timmermann, J. E., Wessel, M. J., Gerloff, C.,

and Hummel, F. C. (2014). White matter integrity of motor connections

related to training gains in healthy aging. Neurobiol. Aging. 35, 1404–1411

doi: 10.1016/j.neurobiolaging.2013.11.024

Senkowski, D., Schneider, T. R., Foxe, J. J., and Engel, A. K. (2008). Crossmodal

binding through neural coherence: implications for multisensory processing.

Trends Neurosci. 31, 401–409. doi: 10.1016/j.tins.2008.05.002

Stein, B. E., and Meredith, M. A. (1993). The Merging of the Senses. Cambridge,

MA: MIT Press.

Stein, B. E., and Stanford, T. R. (2008). Multisensory integration: current issues

from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.

doi: 10.1038/nrn2331

Treutwein, B. (1995). Adaptive psychophysical procedures.Vis. Res. 35, 2503–2522.

doi: 10.1016/0042-6989(95)00016-X

Frontiers in Robotics and AI | www.frontiersin.org 11 December 2020 | Volume 7 | Article 540565

https://doi.org/10.1093/cercor/11.12.1110
https://researchportal.bath.ac.uk/en/publications/the-handbook-of-multisensory-processing
https://researchportal.bath.ac.uk/en/publications/the-handbook-of-multisensory-processing
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.3389/fnagi.2017.00080
https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5643
https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5643
https://doi.org/10.1145/2808205
https://doi.org/10.1097/00001756-200504040-00001
https://doi.org/10.3389/fnhum.2013.00863
https://doi.org/10.3389/fnint.2020.00010
https://doi.org/10.1016/S0042-6989(97)00340-4
https://doi.org/10.1162/0898929053279522
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1016/j.tics.2006.04.008
https://doi.org/10.1016/j.neuroimage.2015.03.067
https://doi.org/10.1162/jocn_a_00685
https://doi.org/10.1109/ACCESS.2019.2916887
https://doi.org/10.1523/JNEUROSCI.4094-12.2013
https://doi.org/10.3389/fnagi.2020.00074
https://doi.org/10.1101/775403
https://doi.org/10.3389/fnagi.2012.00027
https://doi.org/10.1016/S0079-6123(06)59015-6
https://doi.org/10.3758/BF03214307
https://doi.org/10.1007/s00429-007-0154-0
https://doi.org/10.1093/cercor/bhm187
https://doi.org/10.3389/fnsys.2015.00033
https://doi.org/10.1016/j.neunet.2019.10.014
https://doi.org/10.1016/S0926-6410(02)00059-9
https://doi.org/10.1016/S0926-6410(02)00066-6
https://doi.org/10.3389/fnagi.2016.00305
https://doi.org/10.3389/fpsyg.2015.00663
https://doi.org/10.1016/j.neurobiolaging.2013.11.024
https://doi.org/10.1016/j.tins.2008.05.002
https://doi.org/10.1038/nrn2331
https://doi.org/10.1016/0042-6989(95)00016-X
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Higgen et al. Crossmodal Integration in Humans and Robots

Wang, P., Göschl, F., Friese, U., König, P., and Engel, A. K. (2019).

Long-range functional coupling predicts performance: oscillatory

EEG networks in multisensory processing. Neuroimage 196, 114–125.

doi: 10.1016/j.neuroimage.2019.04.001

Wang, W., Tran, D., and Feiszli, M. (2020). “What makes training

multi-modal classification networks hard?,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

12695–12705.

Wetherill, G. B., and Levitt, H. (1965). Sequential estimation of points

on a psychometric function. Br. J. Math. Stat. Psychol. 18, 1–10.

doi: 10.1111/j.2044-8317.1965.tb00689.x

Wettels, N. B. (2011). Biomimetic Tactile Sensor for Object Identification

and Grasp Control. University of Southern California Dissertations

and Theses. Available online at: http://digitallibrary.usc.edu/

cdm/ref/collection/p15799coll127/id/475941 (accessed May 13,

2019).

Zhao, X., Li, H., Shen, X., Liang, X., and Wu, Y. (2018). A Modulation Module

for Multi-task Learning with Applications in Image Retrieval. arXiv:180706708

[cs]. Available online at: http://arxiv.org/abs/1807.06708 (accessed November 6,

2020).

Zhou, Y. D., and Fuster, J. M. (2000). Visuo-tactile cross-modal associations in

cortical somatosensory cells. Proc. Natl. Acad. Sci. U. S. A. 97, 9777–9782.

doi: 10.1073/pnas.97.17.9777

Zonneveld, H. I., Pruim, R. H., Bos, D., Vrooman, H. A., Muetzel, R.

L., Hofman, A., et al. (2019). Patterns of functional connectivity in

an aging population: The Rotterdam Study. Neuroimage 189, 432–444.

doi: 10.1016/j.neuroimage.2019.01.041

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Higgen, Ruppel, Görner, Kerzel, Hendrich, Feldheim, Wermter,

Zhang and Gerloff. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 12 December 2020 | Volume 7 | Article 540565

https://doi.org/10.1016/j.neuroimage.2019.04.001
https://doi.org/10.1111/j.2044-8317.1965.tb00689.x
http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll127/id/475941
http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll127/id/475941
http://arxiv.org/abs/1807.06708
https://doi.org/10.1073/pnas.97.17.9777
https://doi.org/10.1016/j.neuroimage.2019.01.041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Crossmodal Pattern Discrimination in Humans and Robots: A Visuo-Tactile Case Study
	Introduction
	Materials and Methods
	Visuo-Tactile Discrimination Task in Humans
	Robotic Adaption
	Computational Models
	Unimodal and Crossmodal Training

	Results
	Human Behavior
	Artificial Neural Networks

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


