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Tactile sensing is an essential capability for a robot to perform manipulation tasks in

cluttered environments. While larger areas can be assessed instantly with cameras,

Lidars, and other remote sensors, tactile sensors can reduce their measurement

uncertainties and gain information of the physical interactions between the objects and

the robot end-effector that is not accessible via remote sensors. In this paper, we

introduce the novel tactile sensor GelTip that has the shape of a finger and can sense

contacts on any location of its surface. This contrasts to other camera-based tactile

sensors that either only have a flat sensing surface, or a compliant tip of a limited

sensing area, and our proposed GelTip sensor is able to detect contacts from all the

directions, like a human finger. The sensor uses a camera located at its base to track

the deformations of the opaque elastomer that covers its hollow, rigid, and transparent

body. Because of this design, a gripper equipped with GelTip sensors is capable of

simultaneously monitoring contacts happening inside and outside its grasp closure. Our

extensive experiments show that the GelTip sensor can effectively localize these contacts

at different locations of the finger body, with a small localization error of approximately

5 mm on average, and under 1 mm in the best cases. Furthermore, our experiments in

a Blocks World environment demonstrate the advantages, and possibly a necessity, of

leveraging all-around touch sensing in manipulation tasks. In particular, the experiments

show that the contacts at different moments of the reach-to-grasp movements can be

sensed using our novel GelTip sensor.

Keywords: sensor, robotics, robotic manipulation, optical tactile sensors, tactile sensing

1. INTRODUCTION

For both humans and robots, tactile sensing is an essential capability to be exploited when
performingmanipulation tasks in cluttered environments. In such environments, the positions and
shapes of objects are uncertain, and it is therefore of critical importance to sense and adapt to the
scene. With cameras, Lidars, and other remote sensors, large areas can be assessed instantly (Peel
et al., 2018). However, measurements obtained using such sensors often suffer from large
inaccuracies, occlusions, and a variance of factors like light conditions. In contrast, because of the
direct contact with the object, tactile sensing can reduce the measurement uncertainties of remote
sensors, as it does not suffer from the aforementioned surrounding conditions. Furthermore,
tactile sensing gains information of the physical interactions between the objects and the robot
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FIGURE 1 | The figure depicts two distinct moments, during the execution of

a manipulation task. Two distinct areas of contact are highlighted in the robot

gripper: outside contacts and inside contacts in the grasp closure. (A) Outside

contacts can be used to probe the object to be grasped, or to steer the

gripper pose. (B) Inside contacts can be used to know when the object is

within the grasp closure, and when the gripper should stop being closed.

end-effector, for example, incipient slip, collisions, geometry, and
so on—characteristics that are often not accessible via remote
sensors. It is crucial to attain these accurate measurements
provided by tactile sensing, as errors are less tolerable inmoments
of contact or near-contact. For instance, failing to grasp an object
by 1 mm is more critical than failing to estimate the size of
an object existing at a distance of 1 cm. To this end, camera
vision and other remote sensors can be used to produce initial
measurements and plan the grasp, whereas tactile sensing refines
themeasurement and facilitates in-handmanipulation (Luo et al.,
2017).

The information provided by touch about the surfaces under
contact can be leveraged for two main purposes: to perceive the
properties of the contacted objects such as texture and softness,
and to guide the control of motions for manipulation tasks, like
detecting incipient slip while an object being grasped. While
these contacts can happen over the entire robot body, in this
work we focus on contacts that happen around the fingers of
the gripper, as they are more actively exposed to contacts during
manipulation. We can group these contacts into ones happening
outside or inside of the grasp closure. As shown in Figure 1, it
can be noticed that the former set of contacts is essential to detect
collisions of the gripper and to probe the object to be grasped,
while the latter is essential to assess the properties of the object
already being, or close to be, grasped. For these reasons, the
development of a tactile sensor (or a sensor suite) that is capable
of covering the entire finger surface is of high importance to
address robotic manipulation.

A wide range of tactile sensors have been developed in
the literature (Dahiya et al., 2013; Luo et al., 2017), ranging
from flexible electronic skins (Kaltenbrunner et al., 2013),
fiber optic–based sensors (Xie et al., 2013), capacitive tactile
sensors (Maiolino et al., 2013), to camera-based optical tactile
sensors (Yuan et al., 2017; Ward-Cherrier et al., 2018), many of
which have been employed to aid robotic grasping (Kappassov
et al., 2015). Electronic tactile skins and flexible capacitive tactile
sensors can adapt to different body parts of the robot that have
various curvatures and geometry shapes. However, due to the
use of dielectrics for each sensing element, they suffer from

complicated electronics, cross-talk problems and low resolution
of tactile signals, for example, a commercial Weiss WTS tactile
sensor of 14 × 6 taxels (tactile sensing elements) used in Luo
et al. (2015, 2016, 2019). Thanks to the use of cameras in the
sensor, the optical tactile sensors provide high-resolution images
of the deformation caused by contacts with objects in hand.
The optical tactile sensors usually consist of three main parts:
a soft elastomer that deforms to the shape of the object upon
contact; a webcam underneath this elastomer that views the
deformed elastomer; LEDs that illuminate the space between the
elastomer and the webcam. There are twomain families of optical
tactile sensors, TacTip sensors (Ward-Cherrier et al., 2018) and
GelSight sensors (Yuan et al., 2017). TacTip exploits the tracking
of markers printed on a soft domedmembrane, whereas GelSight
exploits colored illumination and photometric stereo analysis to
reconstruct the membrane deformations. Because of the different
working mechanisms, TacTip only measures the surface on a few
points, whereas GelSight sensors make use of the full resolution
provided by the camera. However, to the authors’ best knowledge,
only flat surfaced GelSight sensors have been proposed so far
that only have limited contact measurement areas on one side of
the sensor.

To leverage the full resolution of the camera as the Gelsight
sensor but also enable to detect contacts from all the directions,
we propose a novel optical tactile sensor GelTip that has a
fingertip shape and can measure contacts on any location of
the fingertip surface using a camera installed in its core. The
deformations of the elastomer that covers the hollow, rigid and
transparent body can be captured by tracking the changes in the
high-resolution outputs of the camera. In contrast with other
camera-based tactile sensors, our proposed GelTip sensor is
able to detect contacts from a variety of directions, including
the front and side surfaces, like our human fingertip. Our
extensive experiments show that our proposed GelTip sensor
can effectively localize the contacts at different locations of the
fingertip body, with a small localization error of 5 mm, on
average, and under 1 mm in the best cases. More importantly,
the results of the grasping experiments in a Blocks World
environment demonstrate that the GelTip can help to gain
additional information from collisions caused by inaccurate
assessments from remote sensing, resulting in improved grasping
policies. Such capability is only possible thanks to the all-around
sensing provided by the GelTip.

The remainder of this paper is organized as follows: related
works on the development of tactile sensors for robotic
manipulation are reviewed and compared in section 2. A detailed
introduction of our proposed GelTip sensor is presented in
section 3. The results of the carried experiments are reported
in section 4 and discussed in section 5. Conclusion and future
directions are given in section 6.

2. RELATED WORKS

In contrast with remote sensors like cameras, tactile sensors are
designed to assess properties of objects, for example, geometry,
texture, humidity, and temperature, via physical interactions. A
large range of working principles have been actively proposed in
the literature (Dahiya et al., 2013; Luo et al., 2017). In this section,
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we focus on the set of sensors that have been used to measure the
pressure/force distributions of the contact with objects in robotic
manipulation, from which geometry and texture of objects can
be predicted. More specifically, we compare the related works in
electronic tactile skins and camera-based optical tactile sensors
that have been widely used for robotic manipulation.

2.1. Electronic Tactile Skins
The electronic tactile skins can be grouped into five categories
based on their sensing principles (Yousef et al., 2011):
resistive, capacitive, piezoelectric, optical, and organic field-effect
transistors (OFETs). These families of tactile sensors measure
the pressure distribution of contact by the transduction of
a specific electrical characteristic in response to the applied
pressure on the surface of the tactile sensor. Apart from
sensing and transduction principles, such tactile sensors can also
be categorized by either their sensor structures (e.g., flexible
printed circuit boards, extended gate transistors, and silicon
transistors) (Dahiya et al., 2013) or spatial resolution and the
body parts they are designed for (single-point contact sensors,
high spatial resolution tactile arrays, and large-area tactile
sensors) (Luo et al., 2017). Compared to camera-based optical
tactile sensors, electronic tactile skins have lower thickness and
are less bulkier; they can adapt to different body parts of the robot
that have various curvatures and geometry shapes. However, each
sensing element of most of the tactile skins (e.g., a capacitive
transducer) has the size of a few square millimeters or even
centimeters, which results in a limited spatial resolution of the
tactile skins. For instance, a commercialWeissWTS tactile sensor
of a similar size to one adult human fingertip has only 14 ×

6 taxels (tactile sensing elements) (Luo et al., 2014, 2015). In
addition, they suffer from complicated electronics and cross-talk
problems between neighbor sensing elements.

2.2. Camera-Based Optical Tactile Sensors
Camera-based optical tactile sensors make use of cameras to
capture touch information. These cameras are placed at the core
of an enclosed shell, pointing to an opaque window made of
a soft material. Such characteristics ensure that the captured
image is not affected by the external illumination variances. To
extract the elastomer deformations from the captured tactile
image, multiple working principles have been proposed. We
group such approaches into two categories: marker tracking and
raw image analysis.

One example of marker tracking-based tactile sensors is the
TacTip Family of sensors described in Chorley et al. (2009) and
Ward-Cherrier et al. (2018) including the TacTip, TacTip-GR2,
TacTip-M2, and TacCylinder. Each TacTip sensor introduces
novel manufacturing advancements or surface geometries;
however, the same working principle is shared: white pins are
imprinted onto a black membrane that can then be tracked using
computer vision methods. In Yamaguchi and Atkeson (2016), an
optical tactile sensor FingerVision is proposed to make use of a
transparent membrane, with the advantage of gaining proximity
sensing. However, the use of the transparent membrane makes
the sensor lack the robustness to external illumination variance
associated with touch sensing. Semi-opaque grids of magenta
and yellow makers, painted on the top and bottom surfaces of

a transparent membrane, are proposed in Lin and Wiertlewski
(2019), in which the mixture of the two colors is used to detect
horizontal displacements of the elastomer.

On the other side of the spectrum, the GelSight sensors,
initially proposed in Johnson and Adelson (2009), exploit the
entire resolution of the tactile images captured by the sensor
camera, instead of just tracking makers. Due to the soft opaque
tactile membrane, the captured images are robust to external
light variations, and capture information of the touched surface’s
geometry structure, unlike most conventional tactile sensors that
measure the touching force. Leveraging the high resolution of the
captured tactile images, high accuracy geometry reconstructions
are produced in Li et al. (2014), Luo et al. (2018), and Lee et al.
(2019). In Li et al. (2014), this sensor is set as the fingers of
a robotic gripper to insert a USB cable into the correspondent
port effectively; however, the sensor only measures a small flat
area oriented toward the grasp closure. Markers were also added
to the membrane of the GelSight sensor, enabling applying the
same set of methods that were explored in the TacTip sensors.
There are some other sensor designs and adaptations for robotic
fingers in Yuan et al. (2017), Donlon et al. (2018), and Lambeta
et al. (2020). In Yuan et al. (2017), matte aluminum powder
is used for improved surface reconstruction, together with the
LEDs being placed next to the elastomer, and the elastomer being
slightly curved on the top/external side. In Donlon et al. (2018),
a mirror placed at a shallow and oblique angle is proposed for a
slimmer design. The camera is placed on the side of the tactile
membrane, such that it captures the tactile image reflected onto
the mirror. A stretchy textured fabric is also placed on top of
the tactile membrane to prevent damages to the elastomer and
to improve tactile signal strength. In Lambeta et al. (2020), the
authors propose a compact design, with a USB “plug-and-play”
port and an easily replaceable elastomer, secured with a single
screw mount.

In these previous works on camera-based optical tactile
sensors, multiple designs and two distinct working principles
have been exploited; however, none of the introduced sensors
has the capability of assessing the entire surface of a robotic
finger, that is, both the sides and the tip of the finger. As a result,
these sensors are highly constrained in object manipulation tasks.
Contacts are only assessed when the manipulated object is within
the grasp closure (Li et al., 2014; Calandra et al., 2018; Dong
et al., 2019). To address this gap, we propose the GelTip fingertip-
shaped sensor. This sensor outputs tactile images captured by a
camera placed in the center of a finger-shaped tactile membrane.
It has a large assessed area of approximately 75 cm2 (vs. 4 cm2

of the GelSight sensor) and a high resolution of 2.1 megapixels
over both the sides and the tip of the finger, with a small diameter
of 3 cm (vs. 4 cm of the TacTip sensor). More details on the main
differences between the GelSight sensors, TacTip sensors, and our
GelTip sensor are given in Table 1.

Two recent works Romero et al. (2020) and Padmanabha
et al. (2020) also address the issue of the flat surface of previous
GelSight sensors. However, their designs have large differences
to ours. In Romero et al. (2020), the proposed design has a
tactile membrane with a surface geometry close to a quarter of a
sphere. As a consequence, a great portion of contacts happening
on the regions outside the grasp closure is undetectable. In

Frontiers in Robotics and AI | www.frontiersin.org 3 November 2020 | Volume 7 | Article 541661

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Gomes et al. Robotic Manipulation Using the GelTip Sensor

TABLE 1 | A summary of influential GelSight sensors, the TacTip family, and our GelTip sensor.

Sensor structure Illumination Tactile membrane

GelSight, Li et al. (2014) It has a cubic design with a flat square surface. A

Logitech C310 (1,280 × 720) camera is placed

at its base pointing at the top membrane.

Four LEDs (RGB and white) are placed at

the base. The emitted light is guided by

the transparent hard surfaces on the

sides, so that it enters the membrane

tangentially.

A soft elastomer layer is placed on top of a

rigid, flat, and transparent acrylic sheet. It is

painted using semi-specular aluminum

flake powder.

GelSight, Yuan et al.

(2017)

It has a close-to hexagonal prism shape. The

used webcam is also the Logitech C310.

Three sets of RGB LEDs are positioned

(close to) tangent to the elastomer, with a

120◦ angle from each other.

A matte aluminum powder is proposed for

improved surface reconstruction. Its

elastomer has a flat bottom and a curved

top.

GelSlim, Donlon et al.

(2018)

A mirror placed at a shallow oblique angle and a

Raspberry Pi Spy (640 × 480) camera is used to

capture the tactile image reflected by the mirror.

A single set of white LEDs is used. These

are pointed at the mirror, so that the light

is reflected directly onto the tactile

membrane.

A stretchy and textured fabric on the tactile

membrane prevents damages to the

elastomer and results in improved tactile

signal strength.

DIGIT, Lambeta et al.

(2020)

A prismatic design, with curved sides. An

OmniVision OVM7692 (640 × 480) camera is

embedded in the custom circuit board.

Three RGB LEDs are soldered directly

into the circuit board, illuminating directly

the tactile membrane.

The elastomer can be quickly replaced

using a single screw mount.

Round Fingertip,

Romero et al. (2020)

It has a round membrane, close to a quarter of

sphere. A single 160◦ FoV Raspberry Pi (640 ×

480) is installed on its base.

Two rings of LEDs are placed on the base

of the sensor, with the light being guided

through the elastomer.

Both rigid and soft parts of the membrane

are cast, using SLA 3D-printed molds.

OmniTact, Padmanabha

et al. (2020)

It has a domed shape. Five endoscope cameras

(400 × 400) are installed on a core mount, and

placed orthogonally to each other: pointing at the

tip and sides.

RGB LEDs are soldered both onto the

top and sides of the sensor.

The elastomer gel is directly poured onto

the core mount (and cameras) without any

rigid surface or empty space in between.

TacTip Family, The Tactip has a domed (finger) shape. It tracks

127 pins. More compact (TacTip-GR2) and

elongated (TacTip-M2) designs have also been

proposed. The TacCylinder uses catadioptric

mirror to track the 180 markers around its

cylindrical body.

In the TacTip sensors, a ring of white

LEDs is placed at the base, around the

camera sensor.

In the TacTip Family, the membrane is dark

with white pins. Perception is achieved by

tracking such pins. TacTip has a rounded

soft membrane with a flat bottom, placed

on top of a flat and rigid acrylic window.

GelTip, (Ours) It has a domed (finger) shape, similar to a human

finger. A Microsoft Lifecam Studio webcam

(1,920 × 1,080) is used.

Three sets of LEDs, with a 120◦ angle

from each other, are placed at the sensor

base, and the light is guided through the

elastomer.

An acrylic test tube is used as the rigid part

of the membrane. The deformable

elastomer is cast using a three-part

SLA/FFF 3D-printed mold.

Padmanabha et al. (2020), this issue is mitigated by the use of
five endoscope micro cameras looking at different regions of the
finger. However, this results in a significant increase in cost for
the sensor, according to the authors, approximately US$3200 (vs.
only around US$100 for ours).

3. THE GELTIP SENSOR

3.1. Overview
As illustrated in Figure 2A, the introduced GelTip optical tactile
sensor has a fingertip shape. The sensor body consists of three
layers, from the inside to the outer surface: a rigid transparent
body, a soft transparent membrane, and a layer of opaque elastic
paint. A camera is placed at the base of the sensor, looking from
the inside of the tube. When an object is pressed against the
tactile membrane, the elastomer distorts and indents the object
shape. The camera captures the obtained imprint into a digital
image. Since one property of tactile sensing is being immune
to external light variations, the camera is enclosed within an
opaque shell, with the tactile membrane being the only interface
with the external environment. Thanks to the finger shape of the
sensor, the LED light sources can be placed adjacent to the base

of the sensor and the strategically controlled light rays are guided
through the tube and elastomer.

3.2. The Sensor Projective Model
The tactile images captured by the sensor can be processed to
retrieve information about the contacted surfaces, that is, the
geometry of the object, the contact location, force distributions,
and so on. Methods for obtaining such information have been
introduced in previous works (Li et al., 2014; Yuan et al., 2017).
However, due to having a flat surface for the tactile membrane,
the relationship between the camera and the elastomer surfaces
has not been explicitly considered in all of these works of previous
GelSight sensors. In this subsection, we derive the protective
functionm that maps pixels in the image space (x′, y′) into points
(x, y, z) on the sensor surface. The camera is assumed to be placed
at the referential origin, looking in the direction of z axis. The
sensor space takes the center of its base, which is also the center
point of the camera, as the coordination origin (0, 0, 0); the image
space takes the center of the image as the origin (0, 0). Such
a projection model is necessary for, among other applications,
detecting the position of contacts in the 3D sensor surface.

As illustrated in Figure 2B, the sensor surface can be modeled
as a joint semi-sphere and an opened cylinder, both sharing the
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FIGURE 2 | (A) The working principle of the proposed GelTip sensor. The three-layer tactile membrane (rigid body, elastomer, and paint coating) is shown in gray. The

light rays emitted by the LEDs travel through the elastomer. As one object, shown in yellow, presses the soft elastomer against the rigid body, an imprint is generated.

The resulting image is captured by the camera sensor, placed in the core of the tactile sensor. An opaque shell, enclosing all the optical components, ensures the

constant internal lighting of the elastomer surface. (B) Two-dimensional representation of the geometrical model of the GelTip sensor. The tactile membrane is

modeled as a cylindrical surface and a semi-sphere. An optical sensor of a focal-length f is placed at the referential origin of the sensor, which projects a point on the

surface of the sensor P into a point P′ in the image plane. The sensor has a radius r, and its cylindrical body has a length d.

same radius r. The cylinder surface center axis and the z-axis are
collinear, therefore, the center point of the semi-sphere can be
set to (0, 0, d), where d is the distance from the center point of
the base of the semi-sphere to the center point of the base of the
sensor. The location of any point on the sensor surface (x, y, z)
can be represented as follows:

{

x2 + y2 + (z − d)2 = r2 for z > d (1)

x2 + y2 = r2 for z <= d (2)

By making the usual thin lens assumptions, we model the optical
sensor as an ideal pinhole camera. The projective transformation
that maps a point in the world space P into a point in the tactile
image P′ can be defined using the general camera model (Szeliski,
2010) as:

m(x′, y′) =



















































x = ( x
′−cx
α

)z

y = (
y′−cy

α
)z

z =























√

(rα)2

(x′−cx)2+(y′−cy)2
if (x′ − cx)

2 + (y′ − cy)
2 < ( rα

d
)2

α22d+

√

[−α22d]
2
−4[(x′−cx)

2+(y′−cy)
2][(d2−r2)α2]

2[(x′−cx)
2+(y′−cy)

2+α2]
otherwise

(6)

P′ = K[R|t]P (3)

K =





fk 0 cx 0
0 fl cy 0
0 0 1 0



 (4)

where P′ = [x′z, y′z, z]T is an image pixel and P =

[x, y, z, 1]T is a point in space, both represented in homogeneous
coordinates here, [R|t] is the camera’s extrinsic matrix that
encodes the rotation R and translation t of the camera, K
is the camera intrinsic matrix (f is the focal length; k and l
are the pixel-to-meters ratios; cx and cy are the offsets in the
image frame). Assuming that the used camera produces square
pixels, that is, k = l, fk and fl can be replaced by α, for
mathematical convenience.

The orthogonal projections in the XZ and YZ of a generic
projection ray can be obtained by expanding the matrix

multiplication given by Equation (3) and solving it with respect
to x and y.











x′z = αx+ cxz

y′z = αy + cyz

z = z

⇔

{

αx = x′z − cxz

αy = y′z − cyz
⇔

{

x = ( x
′−cx
α

)z

y = (
y′−cy

α
)z

(5)

The desired mapping function m :(x′, y′) → (x, y, z) can
then be obtained by constraining the z coordinate through
the intersection of the generic projection ray with the sensor
surface, described in Equation (6). The discontinuity region,
that is, a circumference, is found by setting z = d in
Equation (5). The complete derivation of z can be found in the
Supplementary Material.

The introduced sensor model is validated and visualized in
Figure 3. Two projection rays, corresponding to the spherical
and cylindrical regions, are depicted. Each ray intersects three
relevant points: the frame of reference origin, the point in the
3D sensor surface, and the corresponding projected point in the
image plane.

3.3. Fabrication Process
With its fingertip-shaped design, the GelTip sensor can be
mounted onto robotic grippers and serve as a replacement for
existing senseless fingers/fingertips. Due to its compact size
and the non-flat surface, the major challenge to address in the
development of the GelTip sensor is the fabrication of the tactile
membrane. On the other side, because of the finger-like shape,
the elastomer can grab better onto the non-flat body and be
more robust to external tangential forces. In addition, the bent
elastomer can be used to guide the light rays and minimize
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FIGURE 3 | Two projection rays that correspond to the spherical (in red) and

cylindrical (in navy blue) regions are depicted in the figure. Each ray intersects

three relevant points: the frame of reference origin, a point in the sensor

surface, and the corresponding projected point in the image plane.

the necessary illumination apparatus, compared to the GelSight
sensor of a flat membrane (Li et al., 2014).

An off-the-shelf transparent test tube is used to construct
the rigid layer of the sensor body, simplifying (or avoiding) the
fabrication of the necessary curved surface. The commercially
available tubes are made up of plastic/acrylic or glass, and are
sold for experimental or decorative purposes. While initially we
experimented with glass tubes, we quickly found that trimming a
tube made up of such material is far too complicated. Because
of that, we turned to plastic/acrylic tubes. One disadvantage
of using the off-the-shelf test tubes, particularly the plastic
ones, is that they contain small imperfections resulted from the
manufacturing process. An example is the discontinuity between
the semi-spherical and cylindrical regions. A second example is
that an imprint is often found at the center of the semi-spherical
region of the test tube. An alternative approach would be to print
the rigid tube using a stereolithography 3D-printer and clear
resin; however, proper polishing would be necessary to ensure
its optical transparency. For this reason, we did not explore this
approach in this work.

As shown in Figure 4A, the remaining necessary rigid parts
to build the sensor body are a shell, where the camera electronics
and LEDs are installed, a sleeve that is glued onto the test tube
and tightened to the shell, and a supporting base that is used to
bolt the sensor into the fingers of the robot gripper and host
the main electronics. Furthermore, a three-part mold is used to
fabricate the elastomer with the desired thickness and shape.
To fabricate the rigid parts, we take advantage of 3D printing
technology. We experiment with printing the parts using both
fused filament fabrication (FFF) and stereolithography (SLA)

printers, that is, the Anycubic i3 Mega and the Formlabs Form
2. The 3D-printed parts are shown in Figure 4C. The models
and further information about the GelTip sensor are available at
http://danfergo.github.io/geltip.

Having the mold and test tube ready, as shown in
Figure 4D, that is, the test tube is inserted into the sleeve
and mounted onto the mold; afterwards the tube is measured
and trimmed. The silicone for the soft membrane is then
poured through the LED slits. Because of the three-part
design, once the elastomer is cured, the mold can be opened
from the bottom to reveal the tactile membrane, as shown
in Figure 4E. We use the same materials as suggested in
Yuan et al. (2017), that is, XP-565 from Silicones, Inc. (High
Point, NC, USA) and Slacker R© from Smooth-on Company.
After extensive experiments, we find the best ratios to be
1:22:22, that is, we mix 1 g of XP-565 part-A, 22 g of XP-
565 part-B, and 22 g of the Slacker. This amount of mixture
is sufficient to fabricate two sensor membranes. The ratio
part-A/part-B influences the rigidity of the elastomer, that
is, higher concentration of part-B produces a softer silicone.
The Slacker, on the other hand, contributes to the silicone
tackiness. It is necessary to add sufficient Slacker to make the
elastomer be able to capture high-frequency imprints such as a
fingerprint. However, it will make the silicone sticky if too much
slacker is added.

After the elastomer is cured and de-molded, we proceed with
painting. The off-the-shelf spray paints tend to form a rigid coat
and cracks will develop in the coat when the elastomer deforms
or stretches. To avoid these issues, we fabricate a custom paint
coat using the airbrush method suggested in Yuan et al. (2017).
We mix the coating pigment with a small portion of part-A and
part-B of XP-565, with the same ratio used in the elastomer. We
experiment with both the Silver Cast Magic R© from the Smooth-
on Company and the aluminum powder (1 µm) from the US
Research Nanomaterials, Inc. After mixing them properly, we
dissolve the mixture using a silicone solvent until we achieve a
watery liquid. The liquid paint is then sprayed onto the elastomer
surface using an airbrush. It is essential to apply the paint using
low pressure and at a sufficient distance, and have the surface rest
between coats, so that a smooth surface finish can be achieved.
We use a ratio of 1:20:5 for part-A, part-B and the pigment
powder, respectively.

Three sets of LEDs are then soldered, either of different colors,
red, green, and blue, or all white. They are inserted into three
corresponding pockets in the sensor sleeve. Since different LEDs
emit different light intensities, we solder each cluster to a different
wire and resistor before connecting them to the power source.
The values of these resistors are manually tuned and vary from
30 to 600�. The power source can be either extracted from
the camera USB cable, by splicing it, or adding a secondary
USB cable.

At the core of this sensor lies a Microsoft LifeCam camera
(either the Cinema or Studio version). We choose these cameras
because of the fact that their main circuit board is orthogonal to
the optical sensor. This configuration enables us to use it within
the compact cylindrical finger shell. By default, the cameras
are equipped with a viewing angle 73◦ lens. To have a larger

Frontiers in Robotics and AI | www.frontiersin.org 6 November 2020 | Volume 7 | Article 541661

http://danfergo.github.io/geltip
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Gomes et al. Robotic Manipulation Using the GelTip Sensor

FIGURE 4 | (A) Exploded view of the GelTip tactile sensor design. (B) A GelTip sensor, next to a British one pound coin, for relative size comparison. The sensor has

a length of approximately 10 cm, its shell has a diameter of 2.8cm, and the tactile membrane has a length of 4cm and a diameter of 2cm. (C) The three-part mold next

to the remaining parts used in the GelTip construction. (D) The plastic tube is inserted into the sleeve and then mounted onto the mold, afterwards the tube is

measured and trimmed and then the elastomer is poured. (E) The tactile membrane after being de-molded and before being painted.

TABLE 2 | Manufacturing steps and their corresponding approximate durations.

Steps Durations

Sensor parts and molds

printing

3 h FFF printing

4.5 h SLA printing + 1 h washing + 1 h curing

Elastomer preparation and

pouring

mixing + cut&glue tube + 1 h vacuum degassing

Elastomer curing 2+ days in the ambient temperature

Electronics 1 h camera dissassembly and LEDs soldering

Painting 1 h paint fabrication and application

Paint drying 2+ days in the ambient temperature

Final assembly 15 min for assembly and focal-length adjustment

It should take about 1 week to make a GelTip sensor by hand; however, the durations

for the elastomer to cure and for the paint to dry depend significantly on the ambient

conditions (temperature, etc.) of the manufacturing site.

Field of View (FoV), we replace the lens by a 170◦ wide angle
M12 lens.

The final prototype can be seen in Figure 4B. The sensor,
placed next to a British 1 pound coin, has a length of
approximately 10 cm; its shell has a diameter of 2.8 cm; and
the tactile membrane has a length of 4 cm and a diameter of
2 cm. In Figure 11, example contacts with human fingerprints
and an open-cylinder solid are also provided for qualitative
evaluation. In Table 2, we provide a summary of the steps of
the process and their corresponding durations for fabricating a
GelTip sensor.

4. EVALUATION

In this section, we summarize the results of our experiments. In
the first group, a set of parameters of the sensor, that is, the test
tube radius, the viewing angle of the camera lens, the painting and
illumination, and the surface roughness, are investigated. Then
we demonstrate that the GelTip sensor can effectively localize
the contacts at different locations of the finger body, with a
small localization error. Finally, the advantages of leveraging
all-around touch sensors in the context of manipulation tasks,
together with other remote sensors, are evaluated by executing
a set of grasp experiments in a Blocks World environment.

4.1. Sensor Construction Parameters
In section 3, the GelTip generic model and fabrication process
have been described. In this section, we summarize the results
obtained during experiments carried to determine the optimal
settings for parameters that highly affect the quality of the
obtained tactile image.

4.1.1. The Radius of the Sensor Test Tube
One key parameter to consider when designing the GelTip
sensor is its tactile membrane radius. Given a fixed length,
the radius influences not only the sensor compactness but its
lateral observable area as well, as depicted in Figure 5A. Samples
showing the practical consequence of this effect are shown in
Figures 5B–D, where three images are captured using three test
tubes of different inner diameters, that is, 21 , 15 , and 13mm,
with the same depth d of 3 cm. A yellow and green electrical
tape is placed on the cylindrical region of the tube, tangent to
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FIGURE 5 | (A) Three sensor designs of different radiuses and their lateral observable areas (highlighted in red). It should be noted that for tubes with the same length

(given the same camera viewing angle), the larger the radius is, the shorter is the lateral observable area. (B–D) Images captured using three test tubes of different

diameters: 21, 15, and 13mm, respectively. The three have the same depth d of 3cm. A yellow and green electrical tape is placed on the cylindrical region of the tube,

tangent to the discontinuity line. The tape has a width of approximately 14.5mm, and each of its green stripes has a width comprised between 1 and 2mm. For the

thinner tube, an additional red line is traced approximately 2mm from the tape. The same camera and wide lens are used to capture the images.

FIGURE 6 | (A) Illustration depicting the cause of ghost contacts. Due to the sensor geometry, lighting, and surface characteristics, the light rays initially guided

through the elastomer are diverged by a (real) contact imprint, and consequently are projected onto the opposite side of the sensor, resulting in a second ghost

contact. (B–D) Comparison of different paints: silicone with aluminum powder (only), metallic elastic paint and silicone with a mix of aluminum and Silver Cast Magic®

powders. In (B) and (C), RGB lighting is used, and in (D) white lighting is used. In (B) and (C), due to the illumination and paint reflectiveness, the discontinuity region

generates a bright reprojection on the opposite side of the sensor. In (D), the contact existing in that region is also projected as an artifact that we refer to as ghost

contact.

the discontinuity line. The tape width is approximately 14.5mm
and each of its green stripes width is between 1 and 2mm. For the
thinner tube, an additional red line is also traced, approximately
2mm from the tape. The same camera and wide lens are used to
capture the images. As seen in the figures, the larger the tube, the
further away the optical rays intersect it, and consequently the
smaller is the observable side area. As we aim to develop a sensor
that is capable of perceiving the maximum side area, we use the
tube with an inner diameter of 15mm, which is the minimal
radius to fit our M12 lens inside. This configuration offers an
intermediate compromise between observable side areas, sensor
compactness, and flexibility for adjusting the positioning of the
camera sensor.

4.1.2. The Viewing Angle of the Camera Lens
Similar to the finger radius, the camera viewing angle is another
parameter that highly affects the size of the observable area,
as demonstrated in Figure 5. The shown pictures capture the
internal views of the sensor, using lenses of two different viewing
angles: 70◦ and 170◦ respectively. In this experiment, a test tube
with an inner diameter of 15mm is used. When a standard 70◦

lens is used, only the area of the tip of the finger is visible,
while with a wider lens the side area is also visible. To this end,
the camera lens with a viewing angle 170◦ is selected, so that

the GelTip sensor is capable of sensing contacts on both its tip
and sides.

4.1.3. Painting and Illumination
In Yuan et al. (2017), aluminum powder paint is suggested to
reduce the existence of specular reflections, so as to improve the
image quality for surface reconstruction. In our experiments, we
find that due to the curved surface of the GelTip, this powder
ends up absorbing most of the light that results in a highly
non-uniform color distribution. Furthermore, the absorption of
the light makes the tip of the finger to be poorly illuminated.
As a consequence, there exists a darker region at the tip and
a poor tactile image is observed when contacts are applied
to the tip. As depicted in Figure 6, we compare the views of
two tactile membranes painted differently by the aluminum
powder and the metallic elastic paint. To obtain homogeneous
light distribution, we mix Silver Cast Magic R© powder into the
aluminum powder to increase the reflectiveness of the coating. It
should be pointed that the chance of having ghost contacts, that
is, internal reprojections that resemble real contacts, increases
when the paint reflectiveness and light brightness are excessive.
The effect of the ghost contact is illustrated in Figure 6A and
an example of such ghost contacts can be seen in Figure 6D,
where a contact happening near the sensor discontinuity region
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FIGURE 7 | Elastomer textures obtained using (A) fused filament fabrication

(FFF) and (B) stereolithography (SLA) 3D printers. As highlighted in (B), the

ridges of human fingerprints are camouflaged by the elastomer ridges.

is projected onto the opposite side of the sensor. A larger but less
prominent reprojection, in this case caused solely by the sensor
self-curvature, is also seen in most samples captured with tactile
membranes coated with the semi-specular paints, as highlighted
in Figure 6C.

4.1.4. Surface Roughness
In Donlon et al. (2018), the usage of textured fabric is discussed
as an approach to increase the responsiveness of the tactile
signal. We experiment with printing the necessary molds for
shaping the elastomer using both the Anycubic i3 mega (FFF)
and the Formlabs Form 2 (SLA) 3D printers. Consequently,
two differently textured elastomers are obtained, as shown in
Figure 7. The FFF printing process results in a textured surface
with ridges that run parallel to the sensor base, while with the SLA
printer a smoother surface is obtained. Specks that result from
the currently imperfect painting process are also visible on both
surfaces. As seen in the figure, ridges in the elastomer make it
more difficult to identify high-frequency textures such as human
fingerprints. From handling the sensor, we can also point that
the textured elastomer has a lower friction coefficient than the
non-textured elastomer.

4.2. Contact Localization
As an optical tactile sensor of a finger shape, the main feature
of the GelTip sensor is the detection of contacts throughout the
entire surface of the finger. To evaluate this capability, we carry
out a contact localization experiment, in which contacts at the
sensor tip and sides are measured. To this end, the GelTip sensor
is installed on a robotic actuator that rotates and translates to
tap objects at multiple known positions of its finger surface, as
illustrated in Figure 8.

4.2.1. Experiment Setup
A set of small objects is 3D printed using the Formlabs Form 2
SLA 3D Printer. The set contains seven different objects: a cone,
a sphere, an irregular prism, a cylinder, an edge, a tube, and a
slab, as shown in Table 3. Each object has a maximum dimension
of 1 × 1 × 2 cm3. A 3D-printed mount is also built to ensure
that all the objects are kept in the same position throughout the
experiment. The GelTip sensor is installed on a robotic actuator,
that is, the 6-DOF Universal Robots UR5 arm with a Robotiq 2F-
85 gripper. The 3D-printed mount is placed on top of a raised

surface. For the sake of inverse kinematics, the actuator Tool
Center Point (TCP) is set as the sensor tip.

The actuator starts with its fingers pointing downwards, that
is, orientation 0. The actuator is then visually aligned using the
cone object. Contacts are then registered, first on the sensor
tip, by rotating the sensor, and then on the side, by translating
the sensor. In Figure 5B, markings show the location of such
contacts, and in Figure 5C, the necessary (1x, 1z) translation
to obtain contacts on the finger skin is also shown.

4.2.2. Contact Localization Algorithm
To automatically detect the positions of such contacts, a simple
image subtraction-based algorithm is implemented. Before each
contact, a reference image is captured. When a contact is applied,
the element-wise absolute difference between the reference and
the in-contact frames is computed. The obtained difference frame
is filtered with per-channel 15 × 15 2D mean convolutions,
which are then averaged and normalized channel-wise, to obtain
a heat map of the contact regions. Pixels with a likelihood lower
than 60% are discarded, that is, set to zero. In the next step,
the OpenCV findContours operation is used to extract cluster
regions. Such clusters are further filtered based on the size of their
area, that is, only clusters with an area between 0.012 and 0.04% of
the picture area are kept. The OpenCV fitEllipse function is then
applied to each cluster to find their center points. To mitigate
the potential effect of outliers, and since in our experiments we
are interested in predicting a single contact per frame, a final
prediction is set as the weighted average of the cluster centers.
The sensor projection model (see section 3) is then used to get
the contact position on the sensor.

4.2.3. Projection Model Calibration
To use the projection model described in section 3, five
parameters are necessary to be known: r, d, cx, cy, and α. The
first two are extracted from the dimensions of the sensor design;
however, the latter three are the intrinsic parameters of the
camera, which need to be calibrated. To this end, we obtain
such parameters from a known pair of corresponding (x′, y′) and
(x, y, z) points. We set the actuator to tap the object in the 15mm
translation position. The center of the sensor tip (cx, cy) and the
contacted point aremanually annotated in the image space. The α

parameter can then be derived by fitting the known information
into Equation (5).

4.2.4. Results of the Contact Localization
After detecting the contact in the image space and projecting
it into (x, y, z) coordinates, the Euclidean distance between the
predicted and the true contact positions is computed. For each
of the seven objects, a total of eight contacts are recorded, that
is, four rotations (θ): 0, π/6, π/4, π/3; and four translations
(τ ): 0, 5, 10, 15mm. The resulting localization errors, expressed
in millimeters, are summarized in Table 3. Overall, the variance
between the observed localization errors is substantial; in some
contacts the obtained errors are lower than 1mm, while in others
are over 1 cm. On the other hand, the localization error, for each
object or position, is correlated with its variance. The largest
localization errors occur on objects with large or rounded tops,
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FIGURE 8 | (A) Two GelTip sensors are installed on a robotic actuator and a 3D-printed mount that holds a small 3D-printed shape (a cylinder here) placed on top of

a wooden block. The actuator moves in small increments and collects tactile images annotated with the known contact positions. (B,C) Illustration of the motion of

the sensor during the data collection. The sensor starts pointing downwards, as shown in (B). To obtain contacts on the sensor surface, while moving, the sensor is

also translated by (1x, 1z), as shown in (C). A total of eight contacts are collected per object: four rotations (θ ) on the sensor tip and four translations (τ ) on the sensor

side, as highlighted in (B).

TABLE 3 | Summary of the contact errors expressed in millimeters.

Pose

Object

Cone Sphere Irregular Cylinder Edge Tube Slab x ± s

R
o
ta
ti
o
n
s
(θ
) 0 3.81 4.77 4.81 4.85 3.88 6.19 4.17 4.71± 0.75

π/6 0.36 1.70 1.68 2.45 1.63 2.88 3.33 2.01± 0.90

π/4 0.79 1.00 0.86 0.45 1.61 0.69 1.81 1.04± 0.46

π/3 5.85 9.95 8.05 2.34 16.79 2.74 3.01 6.96± 4.82

T
ra
n
s
la
ti
o
n
s
(τ
) 0 9.99 12.73 11.94 2.41 14.00 1.96 2.06 7.87± 5.08

5 4.81 10.69 7.76 7.90 9.37 6.05 9.66 8.03± 1.92

10 2.55 13.02 8.52 13.67 11.73 3.24 0.74 7.55± 5.00

15 0.85 0.43 1.28 2.48 0.76 2.91 25.35 4.86± 8.41

x ± s 3.63± 3.26 6.79± 5.38 5.61± 4.08 4.57± 4.30 7.47± 6.29 3.33± 1.90 6.27± 8.17 5.38± 5.07

Contacts are localized in the image space, using the contact localization algorithm (see section 4.2.2). The detected contact is then projected into the world coordinates, using the

sensor projective model (see section 3.2). Finally, the contact error is calculated as the Euclidean distance between the detected and true contact points.

that is, sphere, edge and slab; contrariwise, the lowest errors
are observed for objects with sharp tops, that is, cone, tube and
cylinder. In terms of the localization errors at different positions,
contacts occurring near the sensor tip, that is, the rotations,
present lower errors than contacts occurring on the sensor side,
that is, translations. In particular, contacts occurring at pi/4 and
pi/6 have the lowest errors.

From the data and our observations during the experiment,
we conclude that the obtained errors arise from three sources:
(1) week imprints, (2) the flexing of the sensor, and (3)
imperfections in the sensor modeling and calibration. Examples
of captured tactile images and corresponding predictions are
for the smallest (i.e., < Cone, θ = 0 >) and largest
localization errors (i.e., < Slab, τ = 15mm >), as shown in
Figure 9. In the first case, due to the bright imprint provided

by the sharp cone top, the algorithm successfully locates the
contact. In the second case, due to the imperceptible contact
imprint, the algorithm incorrectly predicts the contact in the
sensor tip.

4.3. Touch-Guided Grasping in a Blocks
World Environment
In the task of grasping objects, the initial motion of the
gripper is often planned using remote sensing, for example,
camera vision and Lidar. However, remote sensing suffers
from occlusions and inaccurate predictions about geometry
and distances. In such cases, the final grasp and re-grasp
control policies have to rely on inaccurate information
of where and when contacts occur. In contrast, touch
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FIGURE 9 | Contact localization for the smallest and largest errors, that is, < Cone, θ = 0 > and < Slab, τ = 15mm >. From left to right: the reference frame, the

in-contact frame, the computed pixel-wise absolute difference. The contact region (dash circumference), the predicted contact position (yellow circle), and the axis

where the contacts occur (dotted line) are highlighted in the right most frame.

sensing offers accurate feedback about such contacts. To
demonstrate how the all-around sensing of the GelTip sensor
will facilitate such situations, we conduct a set of experiments
of grasping objects in a Blocks World environment, as shown in
Figure 10.

4.3.1. Experiment Setup
To mimic the inaccuracies from remote sensing (in its worst
extreme), in this experiment, each grasp attempt is randomly
selected, and therefore no camera or any other visual system is
used. As such, the hardware setup consists of two GelTip sensors
installed on a Robotiq 2F-85 gripper that is mounted onto a
6-DOF Universal Robot UR5 robot arm. Wooden blocks from
the YCB object set (Calli et al., 2015) are randomly placed on a
4x4 board, positioned under the gripper. Each block has a side
of 2.5 cm and only one block is placed in each row. The robot
attempts to grasp each block and remove it from the board, with
the goal of clearing the board. The robot starts at one row and
moves to the opposite iteratively. While approaching an object,
if a collision happens against the sensors tips, that is, outside the
grasp closure, the motion is halted. If the arm reaches a minimal
known height, the gripper is closed. While closing, if a contact is
detected inside its grasp closure, it means that an object is being
grasped and the gripper is stopped. Otherwise, it is considered
an unsuccessful attempt. After five unsuccessful attempts of

FIGURE 10 | The Blocks World experimental setup. In each experiment, the

robot actuator moves row by row, attempting to grasp each block. The

experiment shows that, even with the initial uncertainty, the robot grasps all the

blocks successfully using the all-around touch feedback.

grasping the same block, the robot skips to the next one. Blocks
left on the board at the end of a given run are considered
as failures.
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4.3.2. Compared Policies
Three policies compared are as follows: (1) Random grasp

(Rg) that mimics the inaccuracies from remote sensing–based
grasping by sampling the block position, that is, column, from a
uniform random distribution [0, 3]. (2) Random grasp + Touch

informed regrasp (RgTr). It chooses the grasp position in the
same manner as Random grasp. However, when a collision
occurs during the grasping motion, it exploits the contact
information to perform a regrasp by moving toward the column
in which the contact was detected. (3) Controlled policy (C) that
is implemented as a reference. In this case, the agent always
knows the position of each block and consequently always moves
directly toward it.

4.3.3. Results of the Grasping Experiment
For each of the three policies, each run is repeated five times,
and the obtained results are summarized in Table 4. In all the
measured metrics, RgTr is a more successful policy than Rg. For

TABLE 4 | The table summarizes the percentage of failing to grasp blocks (failure

rate), and the average number of attempts and collisions per block in all the

grasping attempts (4× 5).

Policies Failure rate Avg. number of

attempts per

block

Avg. number of

collisions per

block

Control 0% 1 0

Random grasp 20% 3.30 1.45

Random grasp + Touch

informed regrasp

0% 1.85 0.55

It can be noted that the Random grasp + Touch informed regrasp policy outperforms

Random grasp in all three metrics, that is, obtains lower failure rate, less attempts, and

less collisions.

instance, Rg fails to grasp 20% of the blocks, that is, on average
one block is left on the board at the end of each run. In contrast,
with the RgTr policy all the blocks are grasped, resulting in a
failure rate of 0%. Similarly, both the average number of attempts
and the average number of collisions per block with the RgTr
policy is also lower than the Rg policy, that is, 1.85 and 0.55
vs. 3.30 and 1.45. This difference in performance is justified by
the fact that in the case of RgTr, once a collision occurs the
regrasp policy ensures that the grasp attempt is successful. If
the grasp position is sampled randomly, there will be a success
chance of 1/4 for each grasping attempt. In contrast, with the
touch feedback enabled, this chance jumps to 2.5/4 on average.
As a consequence, the RgTr policy finds a successful grasp more
quickly and thus grasps more blocks within the maximum five
attempts limit. This experiment shows that sensing contacts
outside the grasp closure offers an important feature to improve
the success chance of a given grasp attempt.

5. DISCUSSION

The main aim of this work is to create an optical tactile sensor
of all-around sensing for robotic grasping tasks, as illustrated in
Figure 11. It can be seen that fine ridges of human fingerprints
can be perceived in Figure 11A while the fine texture of a plastic
strawberry can also be captured by the sensor in Figure 11B.
Compared to the GelSight sensors (Li et al., 2014; Yuan et al.,
2017), due to the sensor design of a finger shape, the light
distribution throughout the sensor internal surface is no longer
homogeneous. Specifically, a brightly illuminated ring can be
observed near the discontinuity region (see Figure 2B). Shadows
can also be observed in the bottom-left sample of Figure 11A
when contacts of large pressure are applied, due to the placement
of the camera and light sources. It may pose a challenge

FIGURE 11 | (A) Tactile images captured using our proposed GelTip sensor. From left to right, top to bottom: a fingerprint pressed against the tip of the sensor, two

fingerprints on the sides, an open-cylinder shape being pressed against the side of the sensor, and the same object being pressed against the corner of the tip, all

highlighted in red circles. (B) A plastic strawberry being grasped by a parallel gripper equipped with two GelTip sensors, with the corresponding imprint highlighted in

the obtained tactile image (in gray scale).
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to geometry reconstruction using the Poisson reconstruction
method (Li et al., 2014; Yuan et al., 2017; Romero et al., 2020) that
builds a fixed mapping of pixel intensities to surface orientations
and requires carefully placed RGB LEDs. In future research,
convolutional neural networks could be used for geometry
reconstruction of the GelTip sensor.

The new sensor geometry also introduces ghost contacts
(detailed in section 4.1.3), resulted from projection of a contact
onto the opposite side of the sensor. A deeper study on
adjustment of the involved reflection coefficients and improved
image analysis could mitigate this issue. The measurement of
force fields using GelSight sensors using imprinted markers has
been discussed in Yuan et al. (2017). We will also investigate
adding such markers to the GelTip sensor in our future research.

6. CONCLUSIONS

In this paper, we propose a novel GelTip optical tactile sensor
for all-around finger touch sensing. The GelTip sensor offers
multiple advantages when compared against other camera-based
tactile sensors, especially being able to capture high-resolution
readings throughout its entire finger-shaped surface. The
experiments show, for instance, that the sensor can effectively
localize these contacts with a small error of approximately 5 mm,
on average, and under 1 mm in the best cases. More importantly,
the grasping experiments in the Blocks World environment show
the potential of the all-around finger sensing in facilitating
dynamic manipulation tasks. In our future research, we will
introduce imprinted markers to the GelTip sensor to track the

force fields. The use of the GelTip sensor in the manipulation
tasks, such as grasping in cluttered environments, will also be of
our interest.
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