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Past work has shown model predictive control (MPC) to be an effective strategy for

controlling continuum joint soft robots using basic lumped-parameter models. However,

the inaccuracies of these models often mean that an integral control scheme must be

combined with MPC. In this paper we present a novel dynamic model formulation for

continuum joint soft robots that is more accurate than previous models yet remains

tractable for fast MPC. This model is based on a piecewise constant curvature (PCC)

assumption and a relatively new kinematic representation that allows for computationally

efficient state prediction. However, due to the difficulty in determining model parameters

(e.g., inertias, damping, and spring effects) as well as effects common in continuum joint

soft robots (hysteresis, complex pressure dynamics, etc.), we submit that regardless

of the model selected, most model-based controllers of continuum joint soft robots

would benefit from online model adaptation. Therefore, in this paper we also present

a form of adaptive model predictive control based on model reference adaptive control

(MRAC). We show that like MRAC, model reference predictive adaptive control (MRPAC)

is able to compensate for “parameter mismatch" such as unknown inertia values. Our

experiments also show that like MPC, MRPAC is robust to “structure mismatch” such

as unmodeled disturbance forces not represented in the form of the adaptive regressor

model. Experiments in simulation and hardware show that MRPAC outperforms individual

MPC and MRAC.

Keywords: model predictive control, adaptive control, continuum robot, dynamic modeling, MRAC, parameter

mismatch, structure mismatch, soft robot

1. INTRODUCTION

Large-scale soft robots hold promise as platforms that are safe for human and delicate
environments, and are able to accomplish tasks for which rigid robots are ill-suited. Some tasks
for which large-scale soft robots are uniquely capable include whole-arm wiping tasks, reaching
through unmodeled cluttered environments, and any task where incidental unmodeled contact is
likely or desirable. Continuum joint soft robots have specifically been modeled after examples in
nature that excel at these types of tasks (anteaters, octopi, elephants, etc.).

One major obstacle to the use of continuum joint soft robots is the lack of accurate models
to enable model-based control. Because flexible continuum joints are not necessarily constrained
to rotate about a single well-defined axis, even the kinematic modeling of these robots is relatively
complex when compared to rigid robots. The rigid-body dynamics equation that govern themotion
of traditional robots are further complicated in pneumatically-actuated continuum joint soft robots
by pressure dynamics, energy storage and dissipation in the joints, as well as buckling in some load
cases. These factors make the accurate modeling and model-based control of continuum joint soft
robots very difficult.
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In this work we present a novel dynamic model of a
continuum joint robot that can be evaluated fast enough for
real-time model predictive control (MPC). This novel dynamic
model is in fact a small extension of well-established dynamic
model of continuum joint robots based on piecewise constant
curvature (PCC) approximations, and a relatively new choice of
configuration variables. While only derived for a one joint robot
(two degree of freedom), the ideas in this paper are extensible to
continuum joint robots with multiple actuated joints.

We also present a form of adaptive MPC that can update
our model in order to improve dynamic performance and
eliminate steady state error. The adaptive law and much of
the theoretical basis for this controller are derived from model
reference adaptive control (MRAC) techniques.

The structure of this paper is as follows: section 2 presents the
state of the art in continuum soft robot modeling and control,
as well as the hardware, models and methods specific to this
work; section 3 explains our hypotheses about the new model
and proposed controller as well as the design of the experiments
performed; section 4 shows the results of the experiments
performed and discusses their importance; section 5 discusses
the importance of the presented work to the field and provides
suggestions for future work.

1.1. Related Work
There is a significant body of work relative to accuratelymodeling
the kinematics and dynamics of soft robots. In Renda et al. (2012)
and Thuruthel et al. (2016) the continuum joint is modeled using
Cosserat-beam theory. In Kang et al. (2011) and Khalil et al.
(2007) methods based on recursive Newton-Euler approaches are
used, while in Tatlicioglu et al. (2007) and Godage et al. (2011)
dynamic equations are derived using Lagrangian mechanics.
In Zheng et al. (2012) and Giri and Walker (2011) lumped
parameter models are derived by dividing the continuum joint
into a number of finite length sections. The trade-off between
accuracy and computational complexity in these methods can be
seen by varying the number of the finite sections. The authors of
Walker (2013) provide a more comprehensive review of dynamic
models for soft and continuum joint robots. Notably, there has
also been work to show that learned models can represent soft
robot dynamics as in Thuruthel et al. (2017).

In Mochiyama and Suzuki (2002) and Mochiyama and Suzuki
(2003) the authors derive the dynamic equations of a continuum
arm by integrating over infinitesimal disks and using the method
of Lagrange. No assumptions of constant curvature are made.
These works are similar to the modeling efforts presented in
this paper, the main differences being our choice of generalized
coordinates and our assumption of constant curvature. These two
differences allow us to derive closed-form analytical expressions
for the terms in our equations of motion such as the mass and
Coriolis matrices.

In Falkenhahn et al. (2014) and Falkenhahn et al. (2015) the
authors derive simpler models based on the PCC assumption.
However, they neglect generalized forces caused by rotational
inertias. They also model the mass of each PCC section as being
concentrated at a point that is fixed in some coordinate frame.

In Della Santina et al. (2020b), the authors derive a similar PCC-
basedmodel (also neglecting rotational inertia) and thenmatch it
to a dynamically equivalent rigid body model. Because the mass
and inertia of the joints used in our work are non-negligible, we
model themass as distributed uniformly throughout infinitesimal
disks and the center of mass of each joint is calculated analytically
assuming uniform density. This approach yields closed-form
equations of motion for the continuum joint while more
accurately representing the dynamics by including the effects of
rotational inertia. This approach also illustrates to a greater extent
the effect of dynamicmodels that include rotational inertia on the
performance of highly underdamped systems when compared to
the work found in Della Santina et al. (2020b).

Control strategies for soft robots vary from open-loop control
such as in Shepherd et al. (2011) and Tolley et al. (2014)
to Reinforcement Learning (Zhang et al., 2017) to model
predictive control (Best et al., 2016). In Hyatt et al. (2019)
and Hyatt and Killpack (2020) the authors demonstrate the
performance ofMPC on the same joints used for this work. These
implementations of MPC used a learned model of the dynamics
based on a less-accurate representation of the continuum joint
dynamics. The model inaccuracy that resulted in less aggressive
control in that work prompted the development of the more
accurate model and adaptive control techniques presented in
this paper.

Given a dynamic model of the correct form, the nature of
soft robots is still such that certain parameters of that model
may be difficult to estimate. In terms of adaptive control for
soft robots, the most similar to our work is Trumić et al.
(2020), where they use a similar formulation of MRAC (although
with a different dynamic model and no optimal control law).
Although not common in soft robotics, combining MPC and
adaptive control is beginning to be an established control strategy
where the strengths of MPC are combined with a variety of
adaptive control schemes (see Adetola et al., 2009; Kim, 2010;
Chowdhary et al., 2013; Bujarbaruah et al., 2018; Pereida and
Schoellig, 2018; Abdollahi and Chowdhary, 2019; Zhang and
Shi, 2020). The method developed in this paper is a unique
form of adaptive MPC that borrows ideas from model reference
adaptive control (MRAC) for robot manipulators (Slotine and
Li, 1987). Specifically, our work can be considered an extension
to the adaptive MPC presented in Terry et al. (2019). The
main extensions are an adaptive law formulated specifically
for robot manipulators and a regressor based on a more
accurate continuum joint dynamicmodel. These extensions allow
greater flexibility to adapt both the parameters and structure of
the model.

2. MATERIALS AND METHODS

2.1. Robot Platform Description and
Modeling
The robot used for this work is composed of a continuum joint
such as the one seen in Figure 1. These joints are made of four
separate pressure-controlled chambers surrounding a relatively
inextensible central cable. The two antagonistically placed pairs
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FIGURE 1 | A continuum joint robot such as the one used for this work. The

variables Eρ, φ, u, v, and h are labeled for reference.

of pressure chambers allow the joint to bend about two axes. We
choose tomodel the kinematics of this joint using arcs of constant
curvature. Each arc, which traces out the path in space occupied
by the inextensible spine, can be defined using three variables as
described in Allen et al. (2020) (see similar derivation in Della
Santina et al., 2020a). These variables are the length of the in-
extensible spine (h) and two components of the axis-angle vector
that describes the rotation from the bottom of the joint to the
top. Because the joint cannot twist about the inextensible spine
(to which the z axis is tangent) the axis-angle vector consists
of only two non-zero variables which we call u and v. These
values are labeled in Figure 1 and correspond to the rotation
about the x and y axes, respectively. We assume that the spine
is perfectly inextensible so that h in this work becomes a constant
kinematic parameter.

First we note some useful kinematic relationships. Because
u and v are the non-zero elements of the axis-angle vector we
can write

φ =
√

u2 + v2 (1)

where φ is the magnitude of the axis-angle vector [u, v, 0]T , or
total bend angle (see Figure 2).

Although the joint is modeled as an arc with an arc length of
h, we often want to refer to a position at some intermediate point
along the arc. We denote an intermediate length along the arc
using the variable l where l can take on any value between 0 and
h (see Figure 3). Note that a frame tangent to the arc at a length
l rotates as l is increased, therefore φl, ul, and vl are not constant
along the entire arc. However, we note that the vector Eρ from
the base of the joint to the center of curvature is the same for

FIGURE 2 | A 3D schematic to illustrate the kinematic relationships used in

the presented model derivation. Eφ is the axis-angle vector which can be

decomposed into components parallel with the base frame b. Note that Eu
points in the negative xb direction and that Ev points in the positive yb direction.

The magnitude of the axis-angle vector Eφ is also the total bend angle.

all points along the arc because the center of curvature does not
move. At any point l along the arc this vector can be calculated as

Eρ = l

φ2
l





vl
−ul
0



 . (2)

Because the magnitude of this vector || Eρ|| is the radius of
curvature, wemay also relate φ and l using the arc-length formula

φl =
l

|| Eρ|| (3)

We now wish to derive a means by which we can calculate ul and
vl at any point l along the arc given only l, h, and u and v at the
end of the arc. Given a point that lies at a distance l along the arc,
we may say using Equation (2)

Eρl = Eρh
l

φ2
l





vl
−ul
0



 = h

φ2
h





vh
−uh
0



 .
(4)
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FIGURE 3 | A side view of the kinematic model of a continuum joint showing

trigonometric relationships between variables.

Replacing φ terms using Equation (3) we obtain

l|| Eρ||2
l2





vl
−ul
0



 = h|| Eρ||2
h2





vh
−uh
0









vl
ul
0



 = l

h





vh
uh
0



 .

(5)

Differentiating with respect to time yields the relationship





v̇l
u̇l
0



 = l

h





v̇h
u̇h
0



 . (6)

In other words, the generalized coordinates ul and vl and their
time derivatives vary linearly along the length of the arc. This
becomes a very useful property of this kinematic representation
when deriving equations of motion.

Using the method of Lagrange, the equations of motion for a
system of rigid bodies take the form

M(q)q̈+ C(q̇, q)q̇+ g(q) = τ (7)

whereM(q) is the mass matrix, C(q̇, q) is the Coriolis matrix, g(q)
is a vector of gravity torques, q is a vector of the generalized
coordinates, and τ is a vector of the generalized torques
including friction terms. These matrices are derived using partial
derivatives of kinetic and potential energy terms. Since partial
derivatives are easily taken using a symbolic mathematics toolbox
such as Sympy (see Meurer et al., 2017), the problem of dynamic
modeling is reduced to the selection of generalized coordinates
and the representation of kinetic and potential energy.

In order to accurately express kinetic and potential energy
we choose to model the continuum joint, as many have
done before, with an infinite set of infinitesimally small disks.

However, the assumption of constant curvature, the choice of
generalized coordinates, and current tools in symbolic math
libraries allows us to produce analytical expressions for M, C,
and g, whereas previous methods have not yielded these closed-
form expressions.

We can define the kinetic energy of an infinitesimally thin disc
at a length l along the arc as

Tl =
1

2
(µdl)ṗTl ṗl +

1

2
ωT
l Iωl

= 1

2
(µdl)ṗTl ṗl +

1

2
ωT
l







µdlr2

4 0 0

0 µdlr2

4 0

0 0 µdlr2

2






ωl

= 1

2
(µdl)ṗTl ṗl +

1

2

[

µdlr2

4
ω2
l,x +

µdlr2

4
ω2
l,y +

µdlr2

2
ω2
l,z

]

= µ

2

[

ṗTl ṗl + r2
(1

4
ω2
l,x +

1

4
ω2
l,y +

1

2
ω2
l,z

)

]

dl

(8)

where µ is the linear density of the disc, dl is some infinitesimal
length, ṗl is the velocity of the center of the disc, ωl is the angular
velocity of the disc expressed in the disc frame, and I is the inertia
of the infinitesimally thin disc expressed in the disc frame.

The linear and angular velocity of each disc (ṗl and ωl) can be
found using a configuration dependent jacobian J (meaning it is a
function of joint configuration variables ul and vl) that is defined
such that

[

ṗl
ωl

]

= J(ul, vl, l)

[

u̇l
v̇l

]

[

ṗl
ωl

]

=
[

Jṗl (ul, vl, l)
Jωl

(ul, vl, l)

] [

u̇l
v̇l

]

[

ṗl
ωl

]

=
[

Jṗl (ul, vl, l)
Jωl

(ul, vl, l)

] [

u̇h
v̇h

]

l

h
.

(9)

A definition of this Jacobian for the choice of u and v as
generalized coordinates can be found in Allen et al. (2020).

Using this relationship, we see that we can simplify the
expression for kinetic energy (Equation 8) by scaling portions of
the jacobian. The new inertia-weighted jacobian is defined as

Jweighted(ul, vl, l) =





















√
µJṗl,x√
µJṗl,y√
µJṗl,z√
µr
2 Jωl,x√
µr
2 Jωl,y√
µr√
2
Jωl,z





















(10)

allowing us to rewrite Equation (8) for the kinetic energy of a
disc as

Tl =
1

2
q̇TJweighted(ul, vl, l)

TJweighted(ul, vl, l)q̇dl. (11)
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By treating a continuum joint as a series of infinitesimal disks and
integrating the kinetic energy of each disc along the length of the
arc we can write the total kinetic energy of a joint as

T = 1

2
q̇T

[ ∫ h

0
Jweighted(ul, vl, l)

TJweighted(ul, vl, l)dl

]

q̇ (12)

We note here that the Jacobian can be expressed analytically at
every point along the joint as a function of l and the configuration

variables ul and vl (which are
l
h
uh and

l
h
vh, respectively) thanks to

Equation (5). Given this analytical expression for Jweighted we can
integrate this expression with respect to l over the definite bounds
0 to h to get an analytical expression for JT

weighted
Jweighted, which

we recognize as the joint space inertia matrix or mass matrixM.
We use the symbolic mathematics library Sympy (see Meurer

et al., 2017) to calculate JT
weighted

Jweighted, and to integrate this

expression analytically between the definite bounds 0 and h in
order to obtainM(q). OnceM(q) has been obtained symbolically,
it is then relatively straightforward to take partial derivatives
using Sympy in order to obtain an expression for the Coriolis
matrix C(q̇, q) from Equation (7) using the method outlined
in Bruno et al. (2010). The resulting coefficients that multiply
q̇ to calculate the Coriolis matrix are commonly called the
Christmases symbols of the first kind.

In order to find the gravity torques (g) we must first find the
vector from the joint base to the joint center of mass (Ep). By
inspection we can see that a joint’s center of mass must project
down onto the vector Eρ which is from the center of curvature
to the base of the joint, however the vector to the center of mass
must also contain some component in the z direction (orthogonal
to the plane of the bottom plate of the joint). We find the
components of the center of mass vector Ep by again dividing the
joint into a series of infinitesimal disks of height dl.

Using the definition of the center of mass assuming the joint
has uniform density along its length, the portion of Ep along the z
axis is given by

z̄ =
∫ h
0 zdV
∫ h
0 dV

(13)

Using the trigonometric relationship seen in Figure 3, namely

z(l) = || Eρ|| sin( l
h
φ) (14)

as well as the volume formula for an infinitesimally thin disc

dV = πr2dl, (15)

we can now integrate to find z̄:

z̄ =
∫ h
0 || Eρ|| sin( l

h
φ)πr2dl

∫ h
0 πr2dl

z̄ = πr2|| Eρ||
∫ h
0 sin( l

h
φ)dl

πr2h

z̄ =
−

[

|| Eρ|| h
φ
cos( l

h
φ)

]h

0

h

z̄ = −|| Eρ||
φ

(cos(φ)− 1).

(16)

Recognizing that || Eρ|| = h
φ
,

z̄ = h

φ2
(1− cos(φ)). (17)

In order to find the component of Ep that lies in the plane of u
and v we follow a similar procedure. We will use x to represent
the portion of Ep that lies along Eρ. Using the trigonometric
relationship seen in Figure 3, namely

x(l) = || Eρ||(1− cos(
l

h
φ)), (18)

we can now integrate to find x̄:

x̄ =
∫ h
0 || Eρ||(1− cos( l

h
φ))πr2dl

∫ h
0 πr2dl

x̄ = πr2|| Eρ||
∫ h
0 (1− cos( l

h
φ))dl

πr2h

x̄ =
|| Eρ||

[

l− h
φ
sin( l

h
φ)

]h

0

h

x̄ = || Eρ||
φ

(φ − sin(φ)).

(19)

Recognizing that || Eρ|| = h
φ
,

x̄ = h

φ2
(φ − sin(φ)). (20)

Using the derived equations for z̄, x̄, and the normalized version
of Eρ we obtain the vector from the base of the joint to the center
of mass:

Ep = h

φ2





(φ − sin(φ)) v
φ

(φ − sin(φ))−u
φ

(1− cos(φ))



 . (21)

The potential energy of the joint due to gravity is simply the dot
product of this vector, expressed in the inertial frame, with the
gravity vector (EG) expressed in the same frame:

V = Ep · EG. (22)
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Having calculated the potential energy due to gravity, the gravity
torques are calculated simply by taking the negative partial
derivative of V with respect to q:

g = −∂V

∂q
. (23)

The method above has yielded analytical expressions for M,
C, and g with the generalized coordinates u and v. Although
complex, these closed-form expressions can be exported from
the Sympy library into C code that can be evaluated within
microseconds, allowing for real-time model-based control of
these continuum joints.

In the absence of applied pressures, the joints used for this
paper tend to drive themselves toward an equilibrium position at
roughly u = v = 0 with slight overshoot and brief oscillation.
This spring force could have been modeled as a part of the
potential energy, however we choose to model the spring and
damping separately from the traditional Lagrangian equations
of motion. We approximate the spring forces as a linear spring
term Kspringq and friction as a linear viscous damping term Kdq̇.
Including these terms, the final model used is,

M(q)q̈+ C(q̇, q)q̇+ g(q) = τ − Kdq̇− Kspringq (24)

2.2. Development of Model Reference
Predictive Adaptive Control
In this section we give brief overviews of both MPC and MRAC
in order to clarify notation and establish a background for the
development of MRPAC. For in-depth explanations of MPC and
MRAC we refer the interested reader to Hyatt et al. (2020) and
Lavretsky and Wise (2013) respectively.

2.2.1. Model Predictive Control
Any dynamic systemmay be represented in state variable form as

ẋ = A(x, u)x+ B(x, u)u+ w(x, u) (25)

where x is the vector of states, u is the vector of system inputs, and
w is a vector of offsets or disturbances. By linearizing this system
and using any discretization method (Euler, semi-implicit Euler,
matrix exponential, etc.) we can create a linear discretized state
space model:

xk+1 = Adxk + Bduk + wd. (26)

The above equation can be used to forward simulate the states
of our system, given initial conditions and inputs. In MPC
these discretized dynamic equations are the constraints of our
optimization while xk and uk are the optimization variables. In an
MPC solver predicting over a horizon of T time steps, a trajectory
optimization may be formulated as:

J(x, u) =
T

∑

k=0

[

(xgoal − xk)
TQ(xgoal − xk)

+ (ugoal − uk)
TR(ugoal − uk)

]

s.t.

xk+1 = Adxk + Bduk + wd ∀ k = 0, ...,T − 1

(27)

where J is the objective function value, xgoal and ugoal are the
goal states and inputs respectively. Other constraints may easily
be added to this formulation to place bounds on inputs or states.
By defining a quadratic cost function and enforcing only linear
dynamics constraints we have defined a convex optimization
problem suitable for solution using a very fast convex solver. We
choose to use the state of the art solver OSQP (from Stellato et al.,
2017) for our implementation of MPC. In order to lengthen the
horizon of MPC and decrease solve times we also use the input
parameterization technique presented in Hyatt et al. (2020).

MPC solves the above trajectory optimization for the entire
horizon of length T, however only the first input (u0) is applied
to the system. After applying this input, the optimization is
solved again using state information that is updated from sensor
feedback. The discrete-time model can also be updated with
a new linearization centered at the new operating point. This
process is repeated with MPC only ever applying the first input,
but solving over an entire horizon of value T. The fact that
MPC re-solves the trajectory optimization problemwith themost
current state and model information is what leads to MPC being
robust to model error as will be shown hereafter.

2.2.2. Model Reference Adaptive Control
MRAC is a form of adaptive control that seeks to drive a system
to behave like a reference system. Because we are interested in
controlling continuum joint soft robots we specifically follow
the implementation of MRAC outlined in Slotine and Li (1987)
which is specific to robot manipulators. In this derivation of
MRAC for manipulators, the authors take advantage of several
special properties of manipulator dynamics. Firstly, they express
the mass matrix, coriolis matrix, and gravity torques as being
linear in certain manipulator parameters. Stated mathematically:

M(q)q̈+ C(q̇, q)q̇+ g(q) = Y(q̈, q̇, q)a = τ (28)

where Y(q̈, q̇, q) is the nxp regressor and a is a px1 vector
containing the manipulator dynamic parameters which may be
unknown or changing over time. In rigid body manipulators it
can be shown that a contains the link masses, inertias, and the
positions of centers of mass. Using the soft robot continuum joint
dynamic model from section 2.1 to derive M, C, and g it can be
seen by inspection that all of these terms are linear in the joint
massm, as well as square of the joint radius r2 and joint height h2.

In Slotine and Li (1987) the authors present a method by
which joint accelerations need not be measured or estimated
in order to calculate the regressor. Instead they exploit several
properties of manipulator dynamics in order to rewrite the
regressor as a function of joint positions (q), joint velocities
(q̇), reference system velocities (q̇ref), and reference system
accelerations (q̈ref):

τ = Y(q, q̇, q̇ref, q̈ref)a. (29)

The reference system includes a set of differential equations that
describe a system of our choosing with desirable characteristics
(such as being a 2nd-order critically damped system with a
desired rise time). This is useful in practice because while
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accurate measurements or estimates of joint accelerations are
hard to obtain, the acceleration of the reference system is a
calculated value that we know perfectly.

When using MRAC, we generally do not know the parameter
vector a perfectly (especially for soft robots), so we desire
to estimate it. We will denote our estimate â. The adaptive
parameter vector â is adapted according to the law:

˙̂a = −Ŵ−1Y(q, q̇, q̇ref, q̈ref)
Ts (30)

where

s = ˙̃q+ 3q̃

˙̃q = q̇− q̇ref

q̃ = q− qref.

(31)

The terms q̃ and ˙̃q are the position and velocity tracking errors
with respect to the response of the reference system, and so
therefore s is a sort of weighted tracking error term. Ŵ can be
thought of as the learning rate of the adaptive controller.

The final step in manipulator MRAC as explained in Slotine
and Li (1987) guarantees that not only parameter error, but also
position error will be driven to zero. In order to ensure this, the
final control law for MRAC is defined as:

τ = Y(q, q̇, q̇ref, q̈ref)
T â− KDs (32)

Note that because s is a weighted sum of our position and velocity
tracking errors, the matrices KD and 3 can be thought of as
a feedback controller on position error. This feedback term, in
addition to the feed-forward term from the adaptive parameters,
helps to decrease steady-state position error.

In the above equations,Ŵ,3, andKD are all tuning parameters
used to determine how quickly the adaptive parameters can
change and how quickly position error is driven to zero. In
general, selecting higher values for the tuning parameters causes
the adaptive parameters to change more quickly and the tracking
error to decrease more quickly. However, as one may expect,
increasing these values to be too high can lead to instability.

Defining f = M(q)q̈ref + C(q̇, q)q̇ref + g(q) + Kdq̇ + Kspringq,
the regressor used for the continuum joint soft robot in this work
is of the form:

Y(q, q̇, q̇ref, q̈ref) =
[

∂f
∂m

∂f

∂h2
∂f

∂r2
∂f
∂q

∂f
∂ q̇

]

. (33)

2.2.3. Model Reference Predictive Adaptive Control
MRPAC combines the strengths of bothMPC andMRAC to yield
a model-based optimal controller that can adapt its model online,
but remains robust to unmodeled disturbances. As with MPC we
begin with a model of the system, however this time we explicitly
model the error in our model as a torque disturbance term:

ẋ = Ax+ Bu+ w+ τdisturbance. (34)

If the error in our model is simply due to incorrect estimates
of the manipulator parameters, then we should be able to

represent this disturbance exactly using the same regressor as
MRAC, namely:

τdisturbance = −Y(q, q̇, q̇ref, q̈ref)â. (35)

The negative sign is necessary because we adapt the parameters in
â according to theMRAC adaptation law.MRAC’s adaptation law
is designed to estimate a torque that, when applied to the system,
will “cancel out" the system’s dynamics. In MRPAC we want to
represent the system’s dynamics instead of the torque needed to
cancel them out. These two quantities are opposite in sign, hence
the negative sign shown here.

It is important to note that in MRPAC we are using the
regressor and adaptive parameters to represent our model error,
while inMRAC they are used to represent the system dynamics in
their entirety. We therefore can not expect â to contain the same
values for MRAC and MRPAC. In fact, if given a perfect model,
â should theoretically remain zero for MRPAC. This is because
given a perfect model, MRPAC, like MPC, should track perfectly
from the beginning and q̃ and ˙̃q will remain zero. As one can see
from the adaptive law in Equation (30), as long as these tracking
errors remain zero, the adaptive parameters will not change.

Also, it is important to note that Ŵ and 3 are the only
tuning parameters for the estimation of â in MRPAC. While
in MRAC there is an error term multiplied by KD in order to
ensure that position error is decreased, in MPC the tracking
error is decreased by virtue of the optimization that seeks to
minimize error.

In order to make a fair comparison between MRAC and
MRPAC we use the same regressor for both controllers.

3. DESCRIPTION OF EXPERIMENTS

Adaptive control techniques are useful in the case where we do
not know a complete and accurate model of our system a priori.
After all, if we did have a complete and accurate model then we
could perfectly predict the behavior of our system for model-
based control techniques. We will classify all modeling error into
two categories: parameter mismatch and structure mismatch.
Parameter mismatch correspond to terms, physical phenomena,
or parameters in our model that we are accounting for, but whose
values are uncertain or unknown. For example inertias, damping
coefficients, and spring coefficients may be parameter mismatch.
Structure mismatch in our model corresponds to phenomena
that occur in the real system, but are not represented in our
model for whatever reason. If we assume all spring and damping
elements in our system are linear while they are in fact non-linear,
then we do not have the ability to represent the non-linear effect
of the spring and this non-linear effect is structure mismatch.

3.1. Simulation Experiments
In the simulation portion of the experiments, a simulation is
created using themodel outlined in section 2.1 and this simulated
system is controlled using three different controllers. The goal
of each controller is to drive the system to follow a reference
trajectory generated by a reference system. The three controllers
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implemented are MPC, MRAC, and the MRPAC algorithm
detailed in section 2.2.3.

The reference system used for these experiments can be
thought of as two uncoupled, critically-damped mass-spring-
damper systems each modeled by the equation:

mẍ+ bẋ+ k(x− r) = 0. (36)

The masses (of massm) are driven by the springs to the reference
positions (r) and the damping coefficient (b) is always chosen

such that the system is critically damped (b =
√
4mk). The rise

time of the reference system can be altered by varying the spring
constant (k). We choose a rise time such that the system has
settled to steady state within about 1 s.

As mentioned in the adaptive control literature, model
parameter estimation and adaptive control schemes require
sufficient “excitation” in order to converge or to adapt. We
provide this excitation by changing the reference positions (r)
of our system every 2 s. Reference positions are drawn from a
uniform distribution bounded above and below by − π

2
√
2
and

π

2
√
2
. These bounds are chosen so that the resulting total bend

angle (φ =
√
u2 + v2) is never greater than π

2 radians.

3.1.1. Case 1: Perfect Regressor

(Parameter Mismatch)
The first experiment performed is designed to show the
performance of all three controllers in the case where the
regressor can fully describe the dynamics of the system (e.g.,
there is no structure mismatch). The hypothesis to be tested is
that given a perfect regressor (speaking in terms of form and
not initial values), both MRAC and MRPAC should be able to
compensate for the system’s dynamics perfectly and should drive
the system to follow the reference trajectory exactly. For MPC,
since it cannot adapt its model we expect that increasing model
error (but not adding additional unmodeled terms) will lead to
increasing tracking error.

To test this hypothesis we control the same system using
the three controllers outlined in section 2.2 (i.e., MPC, MRAC,
and MRPAC) and provide MRAC and MRPAC each with the
same regressor. Because MPC and MRPAC require a discretized
model, we introduce model error in order to see the effect
on their performance. The method used for introducing model
error is to make our estimates of h, m, Kspring, Kdamper a scalar
multiple of their simulated value. Because MRAC does not utilize
a model apart from the regressor, it is invariant to model error.
All adaptive parameters for MRAC and MRPAC are initialized
at zero.

Each controller is run in simulation for 5 min of “excitation"
(new reference commands every 2 s) in order to allow the
adaptive parameters to settle. After 5 min of “excitation” the
performance of each controller is evaluated during one additional
minute. Because MPC is not adapting at all, this excitation period
makes no difference in its performance. The integral of the
position error during the 1min evaluation is shown in Figure 4 as
a function of themodel error. As an example, the joint trajectories
during the evaluation using a modeling error scalar of 1.5 are

FIGURE 4 | Tracking error sensitivity to model error for all three controllers in

simulation.

shown in Figure 5. Note that the green line cannot be seen
because it is directly beneath the blue and red lines.

3.1.2. Case 2: Imperfect Regressor (Structure

Mismatch)
The second experiment performed is designed to show
the performance of all three controllers in the case where the
regressor cannot fully describe the dynamics of the system. The
hypothesis to be tested is that neither MRAC nor MRPAC should
be able to adapt for the system’s dynamics perfectly given an
imperfect regressor, and both should therefore struggle to drive
the system to follow the reference trajectory exactly. However,
because MPC has been shown to be robust to modeling error,
both MPC andMRPAC should be more robust to the unmodeled
forces that affect the dynamics.

To test this hypothesis, instead of simulating a system in which
a spring force drives the joint toward the zero configuration,
we simulate a system in which the spring force drives the joint
toward a non-zero configuration. This is a phenomenon observed
in real soft robot hardware because of slight inconsistencies in
the manufacturing of the plastic bellows. This offset spring force
can be thought of as a constant torque that is applied to the
joint in one direction. Because the regressor does not contain
any terms that correspond to a constant torque offset, this force
cannot be represented by the regressor and therefore constitutes
a “structure mismatch.” While we do actually know about this
constant offset and likely would include a constant term in the
regressor, we anticipate that there will be forces which we do not
know about or whose form is unknown for any real soft robot.
This simple experiment allows us to see the potential effects of
these completely unmodeled forces.

In order to see the sensitivity of each controller to this
unmodeled force that cannot be represented with the regressor,
we vary the spring force equilibrium offset between u = v = 0.05
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FIGURE 5 | Joint trajectory tracking using all three controllers in simulation. This is for the case of errors in the model parameters used for MPC and MRPAC. Note

that the reference trajectory corresponds to qref, the position states of our dynamic reference system defined in Equation (36). Also note that the performance of

MRAC and MRPAC is indistinguishable.

FIGURE 6 | Simulated tracking error sensitivity to unmodeled offset

forces/torques (structure mismatch) if the rest of the model is perfect.

rad and u = v = 0.25 rad. We do this for each setting of %
model error tested in the first experiment, yielding a surface of
tracking error that is a function of both a scaled model error

(parameter mismatch) as well as an unmodeled constant torque
(structure mismatch).

Again, after 5 min of “excitation” the performance of each
controller is evaluated during one additional minute. The
integrated position error during the evaluation minute is shown
in Figure 6 as a function of the model error. As an example,
the joint trajectories during the minute evaluation using a spring
offset of u = v = 0.25 are seen in Figure 7.

3.2. Hardware Experiments
In order to validate both simulations, we implement the
same three controllers (MPC, MRAC, and MRPAC) on
the soft continuum joint shown in Figure 1 and compare
their performance.

The soft continuum joint used for this experiment is actuated
by four plastic bellows, each of which can be controlled
independently. A pressure difference in each of the bellows causes
a rotation about one or both of the joint’s axes. The angle about
each of these axes (denoted u and v in Figure 1) is the robot’s
position and are the variables that we attempt to control. We
expect this hardware platform to illustrate the sensitivity of each
controller to both parameter mismatch and structure mismatch.

Both sources of error are present in hardware. Because
no system identification was performed previously, the
aforementioned model parameters such as h, m, r, Kspring, and
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FIGURE 7 | Simulated joint trajectory tracking of all three controllers with a perfect model besides an unmodeled offset torque. Note that the reference trajectory

corresponds to qref, the position states of our dynamic reference system defined in Equation (36). Also note that the performance of MPC and MRPAC is

indistinguishable.

Kd are not known perfectly. Additionally, the continuum joint
exhibits unknown non-linear behavior near the extremes of its
range of motion or in certain directions, where its stiffness or
damping vary non-linearly with respect to u and v. In addition
to the non-linear effects, we observe the effects of various
offset forces in the plastic bellows used to actuate the joint.
For example, even with equal pressures in each of the four
bellows, the continuum joint remains slightly bent, indicating
the presence of some constant unmodeled forces. For our
simulations (see section 3.1.2) we represented this as a constant
spring offset, but the actual source of this offset is unknown.
In order to allow the adaptive control methods to compensate
for this constant offset force we add to the regressor an identity
matrix. This identity matrix means that the adaptive parameters
that multiply it will be mapped directly to generalized torques in
the dynamic model.

We track the orientation of a frame on top of the joint relative
to a frame below the joint in order to estimate the state of the
joint in real-time. We reuse the same reference trajectory from
the simulation with one minor change: the command changes
every 5 s instead of every two. This was adjusted in an attempt to
be conservative with experimental hardware and software while
still validating the performance of each controller.

As in the simulation experiments, we excite the system with
the same 150 commands used in simulation (12.5 min) before

evaluating each of the controllers for the last 30 commands (2.5
min). The joint trajectories for this evaluation period are shown
in Figure 9.

4. RESULTS

4.1. Simulation Experiments
4.1.1. Case 1: Perfect Regressor (Parameter

Mismatch)
The first experiment was designed to see the sensitivity of each
controller to parameter mismatch, or model error where at least
the form of the model is known. The results of this experiment
can be seen in Figure 4. An example of the joint angle trajectories
achieved by each controller is shown in Figure 5. As expected,
MRAC is unaffected by this kind of model error because MRAC
was initialized with all parameters equal to zero and adapted
the parameters to their values based on the MRAC adaptation
law. We see that given a correct form of the model, MRAC is
able to find a very good model and track the reference trajectory
with very little error. When MPC is given a perfect model,
we see that it performs better than either MRAC or MRPAC,
reducing tracking error to near zero over the entire evaluation
period of 60 s. However, we see that it is the most sensitive to
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FIGURE 8 | Simulated joint trajectory tracking error as a function of both model parameter error (parameter mismatch) and a spring offset error (structure mismatch).

FIGURE 9 | Joint trajectory tracking of all three controllers in hardware. Note that the reference trajectory corresponds to qref, the position states of our dynamic

reference system defined in Equation (36).
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model error, especially when inertial, damping, and spring effects
are underestimated.

The data presented in Figure 4 seem to validate the hypothesis
that MRAC and MRPAC can both compensate for model error,
given a model with the perfect form. We see that MRPAC is able
to perform almost identically to MRAC in all cases except when
inertial, damping, and spring effects are grossly underestimated.
Upon further inspection of the data we found that for this case
the adaptive parameters for MRPAC had not quite settled during
the 5min excitation period and that givenmore time, the tracking
performance of MRPAC again approached that of MRAC. This is
an interesting and important note - that where MPC performs
worst, MRPAC has the most tracking error to overcome, and
therefore may take longer to converge its adaptive parameters to
a steady state. This suggests that the tuning of Ŵ and 3 as well as
the transient response of the adaptive terms of these controllers
are important topics of future research.

4.1.2. Case 2: Imperfect Regressor (Structure

Mismatch)
The second experiment was designed to see the sensitivity of each
controller to structure mismatch, or model error where the form
of the model is not known. The results of this experiment can
be seen in Figure 6. An example of the joint angle trajectories
achieved by each controller is shown in Figure 7. As can be seen
from the figure, every controller’s performance suffers because of
this additional modeling error, however MRAC is by far the most
sensitive. Note that the x axis of the plot denotes the value of both
u and v, and the entire bend angle is equal to φ =

√
u2 + v2.

Keeping this in mind, with a spring offset of about 4◦ (u = v =
0.05 radians) MRAC’s tracking performance is worse than MPC
with 50% error on estimates of masses, lengths and spring and
damper coefficients. This represents a very significant decrease in
performance due to a relatively small, but completely unmodeled,
disturbance. This is themainmotivation behind the development
of MRPAC. MRPAC can be seen from this figure to inherit from
MPC insensitivity to completely unmodeled disturbances or
dynamics, and can be seen from Figure 4 to inherit from MRAC
insensitivity to partially modeled disturbances or dynamics.

We can vary the magnitude of both scalar modeling error
as well as the unmodeled spring offset in order to develop a
surface of tracking error that is a function of both parameter
mismatch and structure mismatch. This surface can be seen in
Figure 8. This is useful information because in reality we are
likely to encounter both types of unknowns instead of just one.
From the figure we can see that MRPAC consistently has the
lowest tracking error of the three controllers, except when MPC
has a perfect model or when the model used for MRPAC grossly
underestimates inertial, damping, and spring effects. As stated
earlier, we have observed that the performance of MRPAC can
be improved in the latter case by allowing it to adapt for longer.
However, these experimental results outline an important fact,
which is that the transient responses of the adaptive terms of
MRAC and MRPAC are not the same for the same Ŵ and 3

values. The exact differences between them and the exact reasons
remain for future work.

TABLE 1 | Position tracking error statistics for all three controllers during the 2.5

min evaluation.

Integrated error Mean error Median error Std. Dev. of error

MPC 18.24 –0.0043 –0.0037 0.1198

MRAC 21.63 –0.0027 –0.0005 0.1829

MRPAC 9.529 –0.0009 –0.0002 0.0924

4.2. Hardware Experiments
The joint trajectories for the hardware experiments are shown in
Figure 9 and the integral of the position tracking error is reported
in Table 1. It is important to note that, unlike for the simulation,
we cannot separate the perfect regressor and imperfect regressor
cases on real hardware. Because of the nature of the continuum
joint, we expect some combination of both cases to influence the
controller performance results.

Generally, we see from the results that MPC struggles to
eliminate steady state error. This matches the simulated behavior
in Figure 5 and is expected becauseMPC does not have the ability
to compensate for modeling errors that exist in the continuum
joint. MRAC and MRPAC, on the other hand, do have the ability
to compensate for modeling errors. Consequently they both track
the steady state reference trajectory much closer than MPC.
This indicates that the hypothesis presented in section 3.1.1 is
demonstratively true at least for this hardware platform. MRAC
and MRPAC certainly compensate for the modeling errors and
drive the system to follow the reference trajectory. In hardware
however, we see that neither controller is capable of following
the reference trajectory exactly. In other words, we do not see
in hardware the same performance as we see in the simulation
results in Figure 5, where both trajectories deviate very little
from the reference. This is because in addition to the modeling
error (parameter mismatch) for which MRAC and MRPAC can
compensate, there are still system dynamics for which they
cannot fully compensate (structure mismatch).

The effect of structure mismatch in simulation is shown in
Figure 6. Tracking error increases for all control methods as the
magnitude of these modeling errors increase, but they increase
dramatically for MRAC, hence its poor simulation performance
exhibited in Figure 7. Importantly, this same pattern emerges in
our hardware experiments. There are several instances during the
evaluation period where unknown forces cause deviation from
the reference trajectory. For examples of this, see the upper plot
(u) of Figure 9 at 65, 100, and 135 s and the bottom plot (v) at
30, 45, and 95 s. All controllers are negatively affected, but MPC
and MRPAC are more robust than MRAC. In other words, when
encountering such disturbances, MRAC is forced to artificially
adapt dynamic parameters in an attempt to eliminate the error.
In contrast, MPC and MRPAC are better able to respond to
disturbances because they re-solve the trajectory optimization
over the whole time horizon, not just a single time step.
These results support the hypothesis outlined in section 3.1.2 as
well. MRAC and MRPAC do not track the reference trajectory
perfectly because of the unknown disturbances but MPC and
MRPAC are quantifiably more robust to the structure mismatch.
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The results reported in Table 1 add a quantitative
performance analysis in addition to the qualitative analysis from
Figure 9. From the table we can see that MRPAC accumulates
about half of the integrated tracking error of the other two
controllers during the 1 min evaluation. It is interesting to note
that MPC and MRAC have similar integrated tracking error,
although qualitatively their trajectories look different. While
MPC has a good transient response and large steady state error,
MRAC has a poor transient response and small steady state
error. This is also reflected in the statistics, since MRAC has
lower mean and median error than MPC, but a higher standard
deviation. According to these results, it seems that MRPAC
has taken the strengths of the two approaches yielding a good
transient response and smaller steady state error.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel dynamic modeling
approach for one joint of a continuum joint robot. We have
shown that while not linear in the same parameters as rigid
robots, joint accelerations using this model can be shown to be
linear in other dynamic and kinematic parameters. This linearity
inmodel parameters can be exploited for system identification, or
as we show later in the paper, for adaptive control. Future work
in the area of continuum joint dynamic modeling may include
system identification on hardware, as well as verification that
the proposed model accurately describes the joint’s dynamics.
While the presented model is only valid for one joint, another
straightforward extension to this work would be to derive
dynamic models using the same ideas and assumptions (constant
curvature assumptions, u and v parameterization) in order to
derive a dynamic model for a robot with many joints and links.

In this paper we have also shown that MPC is an effective
control strategy for maintaining robustness to unmodeled forces
and/or dynamics. Medium to high fidelity models (such as
the one presented in this paper) are promising as a means of
reducing these unmodeled disturbances, but take time and effort
to develop with possibly very small gains in performance. Even
equipped with a perfect model, determining soft robot model
kinematic and dynamic parameters accurately is a formidable
task and these parameters may also change over time. As
such, our presented control strategy, MRPAC, contributes a
novel approach to overcoming these challenges by adapting the
dynamic model while still leveraging the benefits of MPC.

Specifically, MRPAC inherits two invaluable traits:
the adaptive capabilities of MRAC and the robustness

of MPC. As a result, MRPAC outperforms both MPC
and MRAC on a soft continuum joint, where both
parameter mismatch (such as unknown spring and
damper coefficients) and structure mismatch (such as
unmodeled external forces or offsets) exist. MRPAC
successfully compensates for modeling errors to eliminate
steady state error while also demonstrating robustness to
modeling disturbances.

Future research intoMRPAC should include investigation into
how to identify a minimal regressor that accurately represents
a system’s dynamics. Although not discussed in this work, the
time taken by MRAC and MRPAC to converge to steady-
state adaptive parameters was notably different. For MRPAC it
depended heavily on the initial model parameters. The exact
differences between the transient response of each control
method as well as investigation into the reasons for these
differences is left to future work. While our approach has
shown promising results, we also did not compare it to other
adaptive MPC formulations. Nor do we make the claim that
it is the best adaptive MPC formulation. Future work should
likely include a comparison between our approach and other
existing methods.

Although the problems of accurate soft robot modeling and
control remain interesting and unsolved problems, we believe
that the dynamic model and adaptive control methods presented
in this work represent an important contribution as a new
approach to soft robot control.
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