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For naive robots to become truly autonomous, they need a means of developing their

perceptive capabilities instead of relying on hand crafted models. The sensorimotor

contingency theory asserts that such a way resides in learning invariants of the

sensorimotor flow. We propose a formal framework inspired by this theory for the

description of sensorimotor experiences of a naive agent, extending previous related

works. We then use said formalism to conduct a theoretical study where we isolate

sufficient conditions for the determination of a sensory prediction function. Furthermore,

we also show that algebraic structure found in this prediction can be taken as a proxy

for structure on the motor displacements, allowing for the discovery of the combinatorial

structure of said displacements. Both these claims are further illustrated in simulations

where a toy naive agent determines the sensory predictions of its spatial displacements

from its uninterpreted sensory flow, which it then uses to infer the combinatorics of

said displacements.

Keywords: sensory prediction, sensorimotor contingencies, interactive perception, developmental robotics,

bootstrapping

1. INTRODUCTION

Autonomous robots need possess the cognitive capabilities to face realistic and uncertain
environments. Classical approaches deal with this problem by giving them a priori models of
their interaction with their environment. These rely on carefully crafted models of the agent’s
body (Mutambara and Litt, 1998), its sensors, the environments it will encounter and the nature of
the tasks it is setting to perform (Marconi et al., 2011). But said models are notoriously difficult
to obtain (Lee et al., 2017), by definition incomplete (Nguyen et al., 2017) and often fail to
generalize to interactions varying in unknown spatial and temporal scales. As it has been previously
studied, models of an agent sensorimotor apparatus (Censi and Murray, 2012) or of a mobile robot
interaction with its environment (Jonschkowski and Brock, 2015) can alternatively be learned. In
particular, these capabilities crucially depend on the robot correctly learning its perception in that it
represents the interface layer between the raw readings of its sensors and its higher level cognitive
capabilities, e.g., decision making or task solving layers.

While there certainly is an established practice of mostly treating perception as processing the
sensory signal, multiple cues argue that perception can only emerge from the joint sensorimotor
experience (Noë, 2004). The field of interactive perception, reviewed in Bohg et al. (2017), indeed
displays several approaches which roughly adhere to this principle. One particular theoretical
framework is that of Sensorimotor Contingencies Theory (O’Regan andNoë, 2001) (SMCT for short)
which asserts that perception is the mastery of invariant structures in the sensorimotor flow an

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.561660
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.561660&domain=pdf&date_stamp=2020-12-01
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sylvain.argentieri@sorbonne-universite.fr
mailto:sylvain.argentieri@sorbonne-universite.fr
https://doi.org/10.3389/frobt.2020.561660
https://www.frontiersin.org/articles/10.3389/frobt.2020.561660/full


Godon et al. Structuring Actions Through Sensory Prediction

agent discovers during its interaction with the environment.
Their theoretical origin as an abstract, generic cognitive construct
lends them desirable properties for robotic applications: namely,
they could support bootstrapping the learning of perceptual
capabilities in a way that does not depend on the implementation
of the artificial agent considered as well as on the environments in
which said learning is done. In this regard, it differs significantly
from the modern developmental approaches supported by Deep
Learning (Ruiz-del-Solar et al., 2018) which rely on specific
structural details of neural networks, i.e., the numeric forms of
inputs, outputs and activation of the neurons.

Early works on SMCT have been shown to lead to discovery
of the color spectrum (Philipona and O’Regan, 2006) and of
the dimensionality of ambient space (Philipona et al., 2003,
2004; Laflaquière et al., 2010; Laflaquière et al., 2012) in “naive”
agents, which can be extended to that of an internal, path
independent, notion of space (Terekhov and O’Regan, 2016). We
already proposed different contributions in this field, successively
dealing with peripersonal space characterization (Laflaquière
et al., 2015), self-contact and body representation (Marcel et al.,
2017) and the emergence of a topological representation of
sensors poses (Marcel et al., 2019). These works, as well as
Laflaquière et al. (2018) and Laflaquière and Ortiz (2019), devote
a significant effort to providing formalisms suited to make
explicit, and, where applicable, formally prove—not only the
processing required to capture the contingencies, i.e., invariants
in the sensorimotor flow of the agent, but also the mechanisms
by which said contingencies should appear. This is an attempt
to pinpoint the exact conditions of validity of the proposed
processes in order to deliver on the promises of genericity
of SMCT.

Many recent contributions drawing from SMCT revolve
around sensorimotor prediction in some way: the ability to
discover a sensorimotor prediction is empirically shown to
arise from both the temporal structure of the sensorimotor
experience (Maye and Engel, 2012) and the spatial coherence
of a natural visual environment for a sensor based on a
retina (Laflaquière, 2017). Moreover, said ability to predict
sensory outcomes has been shown to provide in robots a basis
for an egocentric representation of ambient space (Laflaquière
and Ortiz, 2019), object perception (Maye and Engel, 2011;
Le Hir et al., 2018), action selection (Maye and Engel,
2012), motor control (Schröder-Schetelig et al., 2010), and
motor sequence compression (Ortiz and Laflaquière, 2018).
Along the “Bayesian brain” approach, predictive processing
is even argued to form the mechanistic implementation of
sensorimotor contingencies (Seth, 2014). This is very much in
line with classical findings in cognitive psychology, both those
regarding the physiological implementations of sensorimotor
prediction via efference copies (von Helmholtz et al., 1925;
Sperry, 1950; von Holst and Mittelstaedt, 1950) and how
it supports, albeit incompletely, a number of perceptual
processes (Bridgeman, 1995; Imamizu, 2010; Pynn and DeSouza,
2012; Bhanpuri et al., 2013), as well as those supporting
ideomotor theory (Stock and Stock, 2004) according to which
actions are equated to their perceptual consequences from a
cognitive standpoint.

This article follows much of the same approach begun in
Philipona et al. (2003) and subsequently developed in e.g., Marcel
et al. (2017), Marcel et al. (2019), Laflaquière et al. (2018),
and Laflaquière and Ortiz (2019). In particular, it sets out
to mathematically describe from an exterior, “objective,” point
of view some properties of the interaction between the robot
and its environment which should appear in its sensorimotor
flow. To this end we propose a revised formalism building
upon the previous instances in these contributions. One notable
contribution indeed resides in our proposal remedying their
requirement of the agent having a fixed base by transposing the
location of sensorimotor contingencies in sets of “displacements”
instead of that of motor or sensory configurations. In accordance
with the previous remark about genericity, a particular attention
is given to the construction of said formalism with assumptions
and proofs explicitly detailed.Moreover, the bootstrapping aspect
is emphasized throughout the work, much in the spirit of Marcel
et al. (2017), Marcel et al. (2019), highlighting the distinction
between the points of view of the agent and of the observer in
the description of the problems and an explicit discussion of the
degree of a priori knowledge given to the agent, in terms of both
data and computations available to it. There lie two contributions
of this article: while the formalism is used to formally describe
why and how spatial coherence lead to the discovery of sensory
prediction very much like alluded to in Laflaquière (2017) and
how this sensory prediction encodes spatial structure akin to
that of Terekhov and O’Regan (2016) and Laflaquière and Ortiz
(2019), it does so with a greater emphasis put on the precise
relations between the algebraic structures at play and with much
weakened assumptions about a priori capabilities of the agent,
much closer to those put forward in O’Regan and Noë (2001).
We argue that this formalism unifies and extends those found
in previous works; that the formal structures its expressive
power makes explicit (e.g., group morphisms between action and
prediction) give a conceptual explanation of results previously
achieved bymore complexmeans in experimental contexts (Ortiz
and Laflaquière, 2018; Laflaquière and Ortiz, 2019); and on a
somewhat “philosophical” level that it allows for a clearer picture
of the applicability and function of SMCT in the process of
bootstrapping perception via its systematic distinction of points
of view.

The paper is organized as follows: to begin with, we introduce
in section 2 all the notations and concepts used for describing
the sensorimotor experience. On this basis, section 3 defines the
two distinct points of view and enunciates generic properties of
the sensorimotor experience that motivate the proposed study of
internal sensorimotor prediction. In particular, the equivalence
between the combinatorial structures of actions and sensory
prediction is proved. Then, some simulations are proposed in
section 4 to assess the mathematical formalism through a careful
evaluation of each step of the proposed framework. We establish
that the spatial shifts mediating the sensory experience of a naive
agent allow it to determine the sensory outcome of particular
actions, in particular those corresponding to displacements of
the agent. Further, we show that the ability to predict said
outcomes can be used as a proxy to the hidden combinatorial
structure of its motor actions. We argue that the theoretical focus
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adopted in this work provides some new valuable insight into the
mechanisms supporting these results, as well as several similar
findings presented in aforementioned related works.

2. DEFINING A FORMALISM FOR
SENSORIMOTOR INTERACTION

This first section aims at expanding several previous results in
Interactive Perception as obtained for example in Bohg et al.
(2017). These have made use of several classical objects, such as
the pose (orworking) space and the forward (either geometrical or
sensory) maps, at times rearranging their definitions or making
them more precise to allow for formal proofs to be derived. Such
work is followed upon in this contribution, with a somewhat
significant overhaul of the formal definitions. This section is thus
devoted to the definitions of the terms we will use to describe
a sensorimotor problem, showing during the exposition how
they appear in a simple classical example and how they differ
from previous theoretical formulations. We then leverage these
definitions to propose and prove new perceptive bootstrapping
algorithms in the following section.

2.1. Motor Actions
As a first step, this subsection is devoted to the introduction of
all the notions and definitions of the motor side of the proposed
sensorimotor framework. After highlighting the limitations of
the previous approaches, as seen in e.g., Marcel et al. (2017)
and Laflaquière et al. (2018), we show how to reparameterize
the sensorimotor interaction by introducingmotor actions. Their
definition and properties are then carefully discussed.

2.1.1. A Look Back to Previous Formalisms
Let us consider in all the following an agent endowed with
motor and sensing capabilities. In the referenced previous
contributions, the sensorimotor interaction is defined by the
internal motor configuration m and the sensory configuration
s of this agent, which lie, respectively into some sets M and S.
Both of them define the internal agent configuration (m, s), i.e.,
the sensorimotor flow the agent has access to. There is a clear
dependency between the sensory and motor configurations that
can be captured by the sensorimotor maps ψ :M × E → S,
such that ψ(m, ǫ) = s, where ǫ ∈ E represents the state of
the environment. As said in the introduction, other contributions
already exploited this kind of parameterization (Philipona et al.,
2003; Laflaquière et al., 2015; Marcel et al., 2017). In all
these contributions, only fixed base agents are considered,
since a single internal motor configuration m ∈ M is only
mapped to a single sensory configuration s ∈ S for a fixed
environment configuration ǫ.

To illustrate this point, Figure 1 represents a 2D-agent able to
translate itself only along one dimension x. This agent is able to
move inside an environment made of colored walls thanks to five
rotating joints whose states mi, i = 1, . . . , 5, are captured in its
motor configuration m = (mi)i (where the second i subscript
in (.i)i denotes the collection being taken with i for ranging
variable). To begin, let us consider the case where m1 and m2 are
fixed, so that the agent is only able to move its arm supporting a

camera-like sensor generating a sensation s, i.e., m is restricted
to (m3,m4,m5) only. In such a scenario, one has a fixed base
agent for which each motor configuration m can be mapped
to one corresponding sensor pose, which is itself mapped to a
sensation s. This simple statement allows to build structures in
M by exploiting only the sensorimotor flow (m, s), structures
that can be leveraged to build an internal representation of the
agent body; they can be further refined into a representation
of its peripersonal space (Marcel et al., 2017; Marcel et al.,
2019). In these works, m carries all spatial data, possibly with
some redundancy, about the coupling between the agent and its
environment: the combination of states m and e is sufficient to
determine the resulting sensory output s (as described by the
formal sensorimotor map ψ).

However, what would happen if the same agent was able to
perform translations in its environment? Let us now focus on the
case where all motor states mi are actually used, as depicted in
Figure 1. Indeed, one can imagine a case where the agent moves
in its environment along the x axis from (external) position τ

(with internal configuration m) to τ
′ (same m). In this case, the

sensor samples two different parts of the color wall so that its
generated sensations s and s′ from these two different positions
are different. Then two identical internal configurations m give
two different sensations: there is no more mapping between
m and s, and all the mathematical developments performed
in previous works can no longer apply. Therefore, it seems
necessary to generalize these formalisms to cope with agents able
to move freely in their environment. In this paper, one proposes
a variational formulation of motor actions to deal with this issue.
Importantly, the term variational refers in all the following to the
focus given on specific sequences of states (e.g., motor, sensory,
or external states) rather than any specific one of said states. It is
introduced in the next subsections.

2.1.2. Dealing With Mobile Agents: Reparameterizing

the Sensorimotor Interaction
From previous arguments, the internal motor configuration
m can not be mapped unambiguously to sensations without
additional considerations. If one still insists on having a
functional relation between motor data and sensations, one then
needs to enrich the initial motor set. In this paper, one proposes
to introduce some superset B of M as initial parameter space.
This new set B can be thought of as the set of all absolute
configurations b made of pairs (m, τ ) where m is the internal
motor configuration and τ represents an absolute measure of
the pose of the agent in its ambient space (which would most
commonly be position and orientation in 3D space). While
posture or proprioception givem a definite meaning, one should
instead only think of τ as a choice of reference frame in space.
Indeed for spaces much like ours it ought to be somewhat
arbitrary since any “displacement” from pose τ to τ

′ could be
instead realized as an opposite motion of the whole ambient
space like for compensatory movements as initially introduced
in Poincaré (1895) and dealt with in Philipona et al. (2003).
This equivalency argument has been mentioned in previous
contributions as a possible way to deal with mobile agents as
proposed in this contribution. While this could be formalized
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FIGURE 1 | Illustration of the motor actions effects. The agent actuator states mi are regrouped into its motor configuration m, while s denotes its sensor output. Both

define the internal agent configuration, i.e., the sensorimotor flow the agent has access to. The agent position and orientation in space is captured by τ , which

together with m makes the absolute configuration b, partially unknown to the agent. Note that one motor configuration m can be associated to distinct sensory

outputs s and s′ provided a displacement in space from τ to τ
′, thus preventing the existence of a mapping m7→s. The agent may also perform an action a to modify

its absolute configuration. One such action a is partially represented, mapping b to b′ = (m′=m, τ
′), and b′ to b′′. Note that it induces a rigid displacement in the first

case, while a change of posture occurs in the second. Also depicted are the inverse action a−1 of a and the combination a′′ obtained by repeating a twice.

in a consistent way, either from a quasi static or variational
perspective, we argue the proposed point of view offers usability
advantages, like for multi-agent situations (where space should
emerge as a shared common playground), an easier formulation
of compensability, or a clear separation between the internal
and external points of view. It is important to understand
that the agent itself has no knowledge of the current absolute
configuration b of its interaction with its environment, retaining
the same hypotheses about a priori structure. However, we may
then consider the sensorimotormap as a functionψ :B×E → S

instead of ψ :M× E → S to account for possible displacements
in the environment. Defining such a new set B allows then to
introduce the notion of external agent configuration as the tuple
(b, s). As such, two different points of view must be stressed out:
(i) the external point of view (i.e., coming from the designer
of the system) will allow to characterize some properties of the
agent interaction with its environment (through modelization,
hypotheses, etc.), and (ii) the internal point of view which
represents which data and concepts are available to the agent for
its operations. This specific point is discussed in section 3.1.

Coming back to Figure 1, the agent moves to three successive
absolute configurations b, b′, and b′′. All of them are now
different, which was not the case of the internal motor
configurations: introducing b ∈ B apparently solves the issue
raised at the end of section 2.1.1. Let us now explain how the
agent actually reaches some given absolute configuration b.

2.1.3. Going Variational: Introducing Motor Actions
As explained previously, the agent has no direct access to
the configuration data b: it cannot know where it is in B.
Instead we suppose it starts with some (very limited) knowledge

of how it moves in this set, i.e., it is capable of performing
some moves in B and of comparing any two moves for
equality. To this end, we propose to introduce some new set
A behaving in the following manner: an element a ∈ A

can be applied to any absolute configuration b ∈ B to give
a new configuration b′ = ab = a(b). Therefore, a can
be seen as a function B → B. We will usually denote

b
a
→ b′ this situation, and call a a motor action. Such a

definition for “actions” differs from many intuitions since it is

restricted to quasistatic differences in posture and position; it

does not account for a notion of dynamical effort exerted by

actuators. In particular, no dynamical effects are considered at

this level and no specification is made of the precise motor

path taken from b to ab. Instead, only these pairs of related
(b, ab) endpoints are relevant to characterizing any action a. This

constitutes a present limitation pervading much of similar works
to which a future—and assuredly significant—contribution shall
be devoted.

Now as we intend to represent the way in which the agent can
move in its environment, one can take for granted the existence

of a special action e ∈ A that verifies ∀b ∈ B, b
e
→ b: the agent

may decide to stay still. Note that for certain systems, e.g., drones
or bipedal walkers, this is distinctly different from doing nothing
since constant posture and position must still be maintained.
Moreover, considering it is able to do any moves a and a′, it may
then chain them in one single move a′′ = a′a ∈ A which satisfies

(1)
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so that A naturally carries the structure of a monoid. Remark
that this composition operation is necessarily associative since
motor actions are assumed to behave as functions B → B. In
the following, we will further restrict ourselves to the case where
individual actions are reversible, that is for any action a there
exists an action a−1 such that

(2)

makingA into a group. Seeing as how actions can be thought of as
mappings B → B, a necessary (and sufficient) condition is for
all mappings in A to be bijective. It is clear that this assumption
of invertibility may not apply in some experimental contexts, e.g.,
an agent may jump down a height which it cannot jump up.
This constitutes a current limitation of the proposed framework,
although several factors may limit its severity. In this example,
even if the agent cannot jump up the height directly, it may still
find a sequence of actions allowing it to climb back up to its
original position. Corresponding to the definition of Equation
(2), this would result in an inverse action in the formal sense, as
illustrated later in section 4.3.3.

Figure 1 illustrates these notions, with the agent moving from
external configuration b to b′ through an action a. This action,
applied at b = (m, τ ), happens to produce a translation of
the agent so that its internal motor configuration finishes at the
same m. Note that the agent would be able to return back to its
initial absolute configuration by applying the inverse action a−1

of a. Moreover, since a is a function defined on the whole B

set, the same action can be applied at b′ = (m, τ ′) to reach a
third configuration b′′ = (m′′, τ ′′). This time, the same action
a has conducted to a global displacement of the agent in the
environment, combined with a change in its internal motor
configuration. Indeed, while it represents cases which are mostly
avoided for practical reasons, it is not required for a to only
depend onm in the general case: the outcome of the same action
amay depend on the position τ of the agent in the environment.
Finally, the agent would have been able to move from b to b′′ by
applying the action a′′ = a2, as per Equation (1).

With these structure assumptions, for a given subset of motor
primitives A′ ⊂ A available to the agent, we can search for the
set of composed moves the agent can actually reach by iteration
of its known ones. We shall say an action a ∈ A decomposes over
A′ = {ai}i∈I if it can be written in the form

a = ain . . . ai1 =
∏

1≤k≤n

aik , ik ∈ I (3)

This represents a formal property functionally similar to that of
compositionality of motor trajectories, with A′ filling for actions
the role of primitives (Flash and Hochner, 2006). Indeed, the
interest of these decompositions appears because the effect of
composed moves on motor configurations boils down to the
effects of its components as per the following diagram:

(4)

In the example in Figure 1, it may well be that the agent can
move to any configuration b, i.e., that its action set is A = R

5

(for the five possible angular increments of its five joints). But it
may also be restricted to a limited set of moves, for example if it
only can send discrete commands to its joints. For instance, if
each actuator is a stepper motor, then its action set turns into
A = Z

5. In this case, a would be written as the tuple (1qi)i,
i = 1, . . . , 5, where1qi ∈ Z is the ith motor increment expressed
in step increments. Consequently, any action awould decompose
over A′ = {ai}i where action ai corresponds to adding one step
to the ith actuator. In this specific case, while A is infinite, it is
sufficient for the agent to know the five motor primitives ai to
generate any action a ∈ A. This is very similar to the notion
of reducing a (finite dimensional) vector space, which is usually
infinite, to the very finite subset of a generating set or if possible
a base. However it can be proven that any finite subset of R will
not generate it as a group, and that it will often only generate a
discrete kZ subgroup. This occurs in the proposed simulations
in section 4, where all combinations of a finite subset of starting
actions lead to the discovery of a discrete generated action group.

2.2. Grounding Sensations in Space
The previous subsection was devoted to the introduction of
actions on the motor side of the proposed sensorimotor
framework. This subsection accordingly deals with the sensory
side of it, and more particularly with its relation to a persistent
“space” which was entirely absent from previous considerations.
After a more precise definition of the meaning of “environment
configuration,” the link between local perception and spatial
considerations is formalized. This will constitute the root of the
theoretical developments proposed in the next section.

2.2.1. Decoupling Space and Environment: The

Where and the What
In previous works, a traditional way for parameterizing the
environment was to introduce the environment configuration ǫ.
The meaning of such a variable was often left unspecified, almost
without any formal semantics linking it to the sensorimotor
experience of the agent (Laflaquière et al., 2015). In this paper
it is proposed to stress the difference between the ambient
geometrical space—in which sensorimotor experience occurs—
and the environment itself—that is the state of “things” lying in
this space.The former takes the form of some set X endowed
with a spatial structure as encoded by a group G (X) of admissible
transformations. These spatial transformations are mappings
X → X preserving some “geometry” of X. The most common
illustration is the usual affine geometry of R3 given by the group
SE3(R) = SO3(R) ⋊ R

3 of its rigid transformations, made
of 3D rotations, translations and their compositions. On this
basis, one chooses to particularize a “state of the environment”
as a valuation that maps each point of X to its corresponding
physical properties, such as temperature, color, luminance, etc.
These states are therefore best represented as functions ǫ :X→ P

where P is a set describing the different physical properties the
agent can observe. Consequently, ǫ(x) represents the observable
physical properties at point x ∈ X. We will henceforth denote E

the set of environment states, i.e., a set of such functions ǫ.
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FIGURE 2 | Illustration of the receptive fields for a sensor made of two rigidly linked cameras at configuration b. Each pixel ci of either camera produces a sensory

value sci in the overall sensory array s explained only by a small subset of space Fci (b). The same applies for both cameras, thus explaining how a sensation for the

agent can be explained by the perception of a subset of space.

Figure 2 illustrates these considerations. In this simple case,
the geometrical space X is monodimensional, represented as
an axis where each point x is assigned a color through a
function ǫ1 or ǫ2. Interestingly, one can now distinguish points
in X on which the physics described by different environment
states ǫ1 and ǫ2 locally coincide, as far as the agent is able to
observe this coincidence. Particularizing the former unspecified
ǫ state to a function ǫ of the spatial variable will allow to
express new properties of the sensorimotor experience, as in the
next subsection.

2.2.2. Local Perception and Receptive Fields
Now that we have formally defined what is “out there” from
an external point of view, let us now focus on the sensory
capabilities of the agent. On this specific point, most previous
contributions were considering the full sensory output as atomic
data: although it is implemented as a possibly high dimensional
vector, elements and subarrays were generally kept from scrutiny.
On the contrary, we now take interest at the subarray level and
accordingly adapt the formalism. Therefore, in all the following
the sensorimotor map is written as ψc :B × E → Sc where
the c subscript outlines that the sensory map is explicitly written
for a sensory element c (or sensel, i.e., one pixel for a camera,
the cochlea cell coding for one sound frequency, etc.). Thus, the
sensorimotor map ψC for the entire sensory apparatus is made
of the aggregate of all sensels alongψC :B×E → S =

∏

c∈C Sc

with C the set of all sensels.1 An illustration of these points
is proposed in Figure 2 for a similar agent endowed this time
with two cameras so as to better show the descriptive capabilities
of the formalism. In this case, the sensels ci—each depicted as
elements in a color array—represent the pixels of either camera.
Separate sensors in the apparatus thus appear as sub-arrays in C :
the first (resp. second) camera is figured by C1 (resp. C2). Note
that this decomposition of C as C1 ∪ C2 directly comes from

1In all the following, the map ψC will be shortened to ψ when there is no

ambiguity, consistently with the initial definition of the sensorimotor map of the

agent recalled in section 2.1.1.

our external understanding of the agent structure (i.e., with one
camera corresponding to one set of sensels, i.e., one sensor). One
could have selected others sub-arrays to form a distinct set of
(virtual) sensors not necessarily corresponding to their (physical)
implementation on the agent.

With space and sensors made formally precise we can now
proceed with the (spatial) receptive field of sensor C

′ ⊂ C , that is
a region of space which environment state suffices to determine
the output of C

′. This region as a subset of X should naturally
depend on the current configuration b since moving causes one’s
sensors to sample new parts of space, so that it takes the form
of a map b ∈ B 7→ FC ′ (b) ⊂ X. Then, its characteristic
property is

∀ǫ1, ǫ2 ∈ E ,∀b ∈ B,

ǫ1|FC ′ (b)
= ǫ2|FC ′ (b)

⇒ ψC ′ (b, ǫ1) = ψC ′ (b, ǫ2).
(5)

Figure 2 represents some of the receptive fields for the two
cameras agent. The first one, Fci (b), is the receptive field of
a single sensel/pixel ci ∈ C . The receptive fields FC1 (b) and
FC2 (b) of each camera can be obtained as the union of the
receptive field Fcj (b) of their respective pixels. In the same vein,
the overall receptive field of the agent FC (b) is also given by
FC1 (b) ∪ FC2 (b). From the same figure, it is clear that even if
ǫ1 6= ǫ2 (since there are areas of different colors on the X

axis), the sensation captured by the agent is the same since the
aforementioned differences are restricted to areas of space unseen
to the agent.

It is important to notice that this is the formal step
where the notion of receptive field formalizes an implicit
relation between the sensations of the agent and spatial
structure. This constitutes one fundamental property sufficient
to leverage spatial knowledge from the agent interaction with
its environment. The application of these theoretical elements is
proposed in the next section.
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3. A ZERO-TH LAYER OF SENSORIMOTOR
CONTINGENCIES: SPATIAL
REGULARITIES THROUGH VARIATIONS

In this section, we proceed by describing how the formal
elements from section 2 can be arranged to enunciate some
interesting properties of the sensorimotor interaction. First, to
keep in line with considerations of minimalist bootstrapping,
the assumptions we use relative to the model of knowledge
of the agent are discussed, and compared to that of previous
contributions. Then, the definitions provided in the previous
sections are used to isolate conditions where the spatial structure
of the receptive fields can be leveraged, in particular via a
certain class of “conservative” actions which are themselves
defined. We prove that under these conditions a naive agent
may achieve the determination of sensory prediction functions
for said conservative actions, and that the algebraic structure
of these prediction functions matches that of their actions. The
corresponding results are of two distinct but equally important
sorts: some, taking the viewpoint of an external observer, assert
that certain particular objects of interest (such as a sensory
prediction function) exist; others guarantee these objects to be
computable in the boundaries set by our model of knowledge.
This endeavor is made in an effort to keep a priori knowledge to a
minimum, and these proofs are generally of a constructive nature.

3.1. Model of Knowledge of the Agent
In the authors’ previous works (Marcel et al., 2017; Marcel
et al., 2019), sensorimotor interaction occurred as a sequence
of (generally discrete) steps where at each point, the agent
could access both its proprioception m ∈ M (seen as an
array of current joint configuration states) and its corresponding
exteroceptive array s = ψ(m, ǫ). These sensory arrays were then
compared for equality (and for equality only) as total vectors, that
is the agentmay not access the vectors component by component.
It is crucial to note that, much like in the referenced articles—
and following the argument that “there is no a priori reason
why similar neural processes should generate similar percepts”
as found in O’Regan and Noë (2001)—we will assume here that
the sensory signals are uninterpreted in the very strong sense
that they retain no other structure than equality. This presents
an a priori significant hurdle since this includes, e.g., order
comparisons, substractions, metric structures and precludes us
from using objects, such as gradients or clusterings, which are
required in almost all comparable works (Censi and Murray,
2012; Montone et al., 2015; Laflaquière, 2017 among others). This
knowledge was then used for example to compute set-theoretic
motor kernels (Marcel et al., 2017) which were shown to be a
structural invariant of the sensorimotor interaction (Marcel et al.,
2019). By contrast, in this paper slight modifications are applied.
Indeed, from the external point of view we now have B as a
functional analog to the previousM, that is the set of “parameter”
data that entirely determines the state of the interaction between
agent and environment. However, as the definition of B refers
to some explicitly external data [i.e., the τ in b = (m, τ )],
we cannot assume its knowledge from the point of view of

the agent. We could however elect, on the same basis previous
contributions used, to assume internal knowledge of the m part
of b = (m, τ ). Instead, we even assume no direct access to
“proprioceptive” data and treat it as unknown to the agent. Our
hypothesis is that the agent should learn to isolate what part of its
proprioception lies in its unified sensory array s from the statistics
of its sensorimotor experience.

As for remedies, it is instead where a variational approach,
as defined in section 2.1.1, is preferred: while configuration data
represented by b ∈ B still exists as an external object, the agent
may only choose a motor action a ∈ A which, applied at b,
yields the following configuration b′ = ab = a(b). The agent
is therefore given the capacity to compare any two elements ofA
for equality, so that it may tell whether at any two steps of its
sensorimotor experience it performed two identical or distinct
actions. Moreover, much deeper change in knowledge occurs
at the level of sensory readings: in the following we not only
ask that the agent be able to compare its entire sensory output
s = (sc)c∈C for equality as a vector, but that it also can check
for equality two values of any given sensel. That is, for every
sensel c ∈ C , for every values sc, s′c this sensel may output, the
agent may test whether sc == s′c. In this contribution, it will
be further assumed that the values output by distinct sensels are
themselves a priori comparable for equality.While it is a common
property in many classical applications, this limitation has been
partially tackled in Laflaquière (2017) via sensory prediction.
However, this solution relies on clustering methods implicitly
exploiting structure assumptions we do not yet consider available.
Therefore, this remains a current limitation of our approach
which will be addressed in a future ongoing work.

3.2. Sensorimotor Binding: A Marketplace
for Spatial Information
The formalism introduced in section 2 makes space appear as
a variable in the sensorimotor equations via the receptive field,
which we will use in this section to prove that under some
reasonable assumptions we can talk about the spatial information
content of a sensory signal. This in turn is used to form the
basis of a sensory prediction the agent can use to try and infer
the sensory consequences of its motor actions, mirroring the
psychological construct of forward sensory model which is at the
heart of ideomotor theories. This is the core idea we will further
develop in the simulations of section 4 to see how a naive agent
can derive such a prediction function from its sensorimotor flow.

Recall that for any given sensel c ∈ C and environment
state ǫ ∈ E , we introduced Fc the receptive field of sensel c
as the function which given agent configuration b ∈ B yields
X’= Fc(b) ⊂ X the minimal region of space which entirely
determines the output of ψc. Therefore, we can write

∀b ∈ B,∀ǫ ∈ E ,ψc(b, ǫ) = fc(ǫ|Fc(b)), (6)

where fc is a “sensitivity” function (or filter) which converts
the physical properties of environment sampled into a sensory
output, both selecting to which property the sensor reacts and
how. Equation (6) describes the sensorimotor dynamics by
dissociating the spatial dependency (which is given by Fc) and
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the sensitivity one (as seen with fc), so that the observer can now
speak of sensels that look at the same region of space. Let us then
consider a particular condition, in which for a given action a,
some sensel ci samples after a the same point some other sensel
cj was sampling before the agent began to move. This is formally
described by the relation

∀b ∈ B, Fci (ab) = Fcj (b). (7)

This situation where the spatial difference between two sensels
can be bridged by a displacement of the agent over time to make
their respective sensory experiences coincide has already proven
to yield interesting structures as in Montone et al. (2015) and
Laflaquière (2017). However, these works largely dealt with the
geometry of sensels and sensors, while we aim to elaborate on
how this relates to the structure of actions. As for us, to have this
relation apparent to the agent we also require that the output of
these particular sensels be comparable, as already discussed in
section 3.1. In the strictest sense, this can be by requiring that
their sensitivity functions fci and fcj are equal. It follows that

∀b ∈ B, ∀ǫ ∈ E ,

ψci (ab, ǫ) = fci (ǫ|Fci (ab))

= fcj (ǫ|Fcj (b)) = ψcj (b, ǫ).

(8)

While there are reasons to hope that a working relation could be
found even for dissimilar fci and fcj , one should remember that
at the moment the outputs of sensels ci and cj lie in some sets
totally devoid of structure. Therefore, even though a conversion
function Ci,j such that ψci (ab, ǫ) = Ci,j(ψcj (b, ǫ)) might exist, we
would lack the means to represent it in any way but the collection
of the related sensory outputs, e.g., as opposed to the already
resource heavy clustering done in Laflaquière (2017).

Equations (7) and (8) are both illustrated in Figure 3, where
a 1D (infinite) pixel array is placed in front of a 1D colored line
along which the sensor can translate itself thanks to actions a.
Equation (7) is captured by the fact that both receptive fields
Fcj (b) and Fci (b

′), drawn as two rectangular shapes, project on the
same area on the environment. Then, Equation (8) explains how,
provided the environment state ǫ at these locations stays constant
through any one execution of a, it causes both sensels to actually
generate the same sensory (red) output. It is clear that the spatial
relation being forwarded to sensory transitions depends on the
sensels actually outputting the same (red) value. This might be
argued to be a restrictive assumption. Nevertheless, being able to
deal with different sensitivity functions is a sizable development
to which an ongoing contribution shall be devoted. To conclude,
a key point here is that a property entirely defined from the
external point of view through receptive fields is accessible from
the internal one by the constraints it imposes on the sensels
outputs values during exploration. Equation (8) therefore shows
how space, insofar as it is common to all sensels and actions,
makes this phenomenon of shifts of receptive fields into an
observable contingency of the agent’s sensorimotor experience.

3.3. A Motor and Sensory Account of
Spatial Conservation
3.3.1. Conservation Through Permutation:

Conservative Actions
The result obtained in the previous subsection exhibits an
important property making internally available spatial matching
between receptive fields at different timesteps of motor
exploration. But given that the actual motor exploration follows
the algebraic structure of actions A, it still remains to be shown
how these two structures are consistent. This can be made
apparent by introducing conservative actions as those a of A for
which all sensels of the agent exchange the places they sample:
there is conservation of the (spatial) information available. In
terms of the formalism, a ∈ A is conservative if it verifies

∀c ∈ C , ∃c′ ∈ C such that ∀b ∈ B, Fc(ab) = Fc′ (b), (9)

generalizing somewhat Equation (7). This characterizationmakes
apparent that many actions can’t be conservative: for example,
“turning back” may only be conservative for the rare agent
that “sees” precisely as much forwards as it does backwards. In
fact, the spatiality of the condition on receptive fields makes
it so that all readily found conservative actions correspond to
displacements of the body of the agent. In the following, “∀b ∈

B, Fc(ab) = Fc′ (b)” will be shortened to the more legible c
a
→ c′,

and c (resp. c′) is said to be the predecessor (resp. successor) of c′

(resp. c) by a. It is proven in Appendix 1 that for conservative

actions a, the relation
a
→ can be made into a successor function

σa : C → C

c 7→ c′
(10)

where c′ = σa(c) is a sensel verifying c
a
→ c′.

Therefore, conservative actions can equivalently be thought of as
permutation of sensels. Importantly, conservative actions provide
a natural framework for exploiting Equations (7) and (8) during
motor exploration. Indeed, it is proven in Appendix 2 (see
the Supplementary Materials) that conservative actions form a
subgroup AC ⊂ A for its composition operation. That is to
say, chaining conservative actions yield other actions which are
necessarily conservative, and the inverses of conservative actions
are themselves conservative.

At this stage, it has been shown how the spatial property of
permutation of the receptive fields relates to the intrinsic motor
structure of the agent. However, this does not suffice to make this
group structure of conservative actions accessible to the agent
given the a priori knowledge we discussed in subsection 3.1,
since the dependency of the sensorimotor process on the spatial
variable is implicit. We must therefore go through one final
step to relate the available informational content (i.e., sensory
reading) to the motor structure.

3.3.2. From Permutation to Prediction: Making It Into

Sensory Territory!
Let us consider the agent at any point (b, s) of its sensorimotor
experience. Its sensory output is s = ψC (b, ǫ) = (sc)c∈C , and
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FIGURE 3 | Illustration of how the underlying 1D space induces transitions between cross-sensel outputs. In this case, under action a, sensel ci takes the place of

sensel cj : the output of ci after a (red) is the same as the output of cj before a (red). The same applies when performing a a second time: the yellow color is transferred

from cj to ci .

for any action a it may perform this sensory output should shift to
s′ = ψ(b′ = ab, ǫ) provided the environment state stays constant
throughout the action. If we now restrict ourselves to the case of
conservative actions, we get

s′ =(s’c)c∈C

=(ψc(ab, ǫ))c∈C = (fc(ǫ|Fc(ab)))c∈C

=(fc(ǫ|Fσa(c)(b)))c∈C = (ψσa(c)(b, ǫ))c∈C

=(sσa(c))c∈C

(11)

so that performing motor action a only results in a permutation
of the components of the sensory output. This permutation is
exactly σa, and therefore is a constant of the agent which does not
depend on the actual current configuration (b, ǫ). Equation (11)
shows that any conservative action a ∈ AC corresponds to a
sensory function

5a : S→ S

(sc)c∈C 7→ (sσa(c))c∈C
(12)

which verifies the property

∀b ∈ B,∀ǫ ∈ E ,ψC (ab, ǫ) = 5a(ψC (b, ǫ)). (13)

Per this property, 5a is a function which given any starting
sensory reading of the agent can determine the sensation it would
experience after performing action a (provided the environment
state stays constant during a). It must be reiterated that a crucial

part is that this function operates on sensory data, which is
precisely the only data available to the agent.

3.4. Prediction as an Internal Proxy of the
Action Group
From there, let us now consider

5 : AC → Bij(S)

a 7→ 5a
(14)

with Bij(S) the set of all bijections from S onto itself, i.e.,5maps
abstract motor actions to their sensory prediction functions.
As proven in Appendix 3 (see the Supplementary Materials), it
establishes a group isomorphism between conservative actions
a ∈ AC and their associated sensory prediction maps 5a ∈

5(AC ), so that

AC
∼= 5(AC ). (15)

While Equation (15) written as is might easily pass as benign,
it is actually a very powerful result and the centerpiece of
our argument. In a similar fashion to Equation (8) before
it, this specifies how the algebraic structure of (conservative)
actions —which largely governs the sensorimotor experience—
appears as a contingency of the sensorimotor flow which can
be picked up on by an agent as naive as outlined in section 3.1.
Using the terminology introduced there, it shows how some
external structures describing the interaction between agent and
environment can be captured from the internal point of view.
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In turn, it is the enunciation —and the proof— of this result
that motivate developing the formalism as in section 2, going as
far back as absolute configurations b ∈ B and ambient space
X. Equation (15) will be leveraged as part of the simulations in
the following.

4. SIMULATING A 2D VERSION OF OUR
TOY MODEL

Up until this point, the discussion has been kept to a purely
theoretical level. The following section is now devoted to a
simulated experiment illustrating the new proposed formalism.
To this end it starts with a description of the experimental
setup, highlighting how it manifests in the proposed formalism
of section 2. Then, we describe what steps the agent goes through
and how they relate to the theoretical results we put forth in the
previous section. Finally, we review the observable results of these
experiments to inspect how our earlier theoretical claims appear
in practical cases.

4.1. Description of the Experimental Setup
In the following, we will consider the 2D generalization of the
illustrating case used in the previous sections. That is, the studied
agent body is now made of a planar, rectangular camera sat atop
omnidirectional wheels, see Figure 4. These allow for translations
along both x and y coordinates, as well as rotations in the plane.
The pixels of the camera are sensitive to the luminance of the
ambient stimulus, which for our experimental purposes is a fixed
grayscale image placed above the moving camera. Describing the
problem in the terms of the developed formalism gives:

• the ambient space X is the plane R2;
• the set of physical properties of space P is [0; 255] the set

of luminance values. Therefore, a state of the environment
ǫ ∈ E is a function which takes points (x, y) of the ambient
plane and map them to luminances as given by the data of the
acquired image;
• the configuration space B is R2 × S1 ∼= R

2 × ]−π;π] to
account for both position (x, y) and orientation θ of the robot
on the plane;
• the sensory output of the agent is an array s ∈ [0; 255]Wc×Hc ,

with Wc (resp. Hc) the number of sensels/pixels in one row
(resp. one column) of the camera. In the simulation, the
image dimension is set to Wc = Hc = 10. Each of the
components sci of s are the sensory output of pixel ci, given
by the luminance of the spatial location in the environment it
is currently looking at. Importantly, the order of each pixel in
s is chosen arbitrarily.

Let us define a set A of seven basic actions ak, k = 1, . . . , 7:

1. one identity action a1, mapping any current absolute
configuration to itself;

2. four translations a2, a3, a4, a5, one for each direction of the
basis axes on the plane, all of amplitude the size of 1 pixel.
These are defined relative to the current orientation of the
agent, which can end up distinct from external systems of axes
when the agent rotates;

3. two 90◦ rotations a6, a7, to account for both clockwise and
counter-clockwise turns.

These actions are depicted in Figure 4 with colored arrows. Note
that the color convention used in this figure is the same used in
the forthcoming figures for coherence.

Relative to the prior discussion about properties of motor
actions, these are not strictly conservative as per the definition (9):
indeed, consider a5 the elementary “forward” translation. While
inner pixels of the camera will certainly exchange receptive fields,
those in the front row will necessarily observe new areas of
space after the agent has moved forward. Therefore, none of
these front row pixels has any successor for a5, which precludes
it from being strictly conservative. The same phenomenon of
border impredictibility occurs for all translations, each with their
respective side failing to verify the conservation property. We
nevertheless proceed with the formalism on the basis that actions
are at worst, informally speaking, “quasi” conservative. This is
based on the quick analysis that, for a N-by-N square camera,
this defect only occurs in N pixels which remains an order of
magnitude fewer than the N2 total.

Representing the sensory configuration as numerical arrays
makes the permutation of sensels into Nc-by-Nc sparse matrices,
where Nc = Wc × Hc is the number of sensels. Indeed, starting
with any permutation φ :J1,NcK→ J1,NcKwe can define amatrix
Mφ ∈ MNc ,Nc (R) by

Mφ i,j =

{

1 iff j = φ(i),

0 else.
(16)

It can then be checked that for any array s = (si)i∈J1,NcK, the array
sφ = (sφ(i))i∈J1,NcK obtained by permutating the components
of s by φ verifies sφ = Mφs. It is clear that working with such
a representation incurs a large memory overhead (with only Nc

of all N2
c coefficients being non-null). Furthermore, finding a

permutation is known to be a problem of exponential complexity.
However, we do not aim to propose a scalable implementation in
the following, but rather to illustrate as a proof of concepts the
developments in section 3.

4.2. Description of the Experiments
The proposed simulation can be decomposed as a sequence
of two related, successive, experiments. First, these are briefly
described in a global manner so as to go through the flow
of the experiment. Then, each experiment is described in
greater detail with respect to its implementation. It is in this
second part that relevant proofs ensuring both completion and
correctness of the endeavor are provided. In this setup, the
robot is given a set Ainit of nA unknown actions drawn in the
set of combinations of actions of A. Although A was designed
for convenience from an external point of view, Ainit may not
accurately reflect it. Indeed, for random draws there is a high
likelihood of missing actions when nA is small, of duplicate
actions when it is large. However, as discussed previously these
notions do not yet make sense to the agent, which can only
“run” actions drawn. Importantly, at first the considerations
will be restricted to the case where Ainit = A. This is a
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FIGURE 4 | Experimental setup used in simulation to assess the proposed formalism. A holonomic agent is placed in a 2D environment which ceiling is made of a

fixed grayscale image. The agent can move in this environment by applying seven different actions ak . A 10× 10 camera pointed toward the ceiling is placed on the

top of the agent and generates a sensory array s = (sci )i .

possibly strong assumption about the initial fitness of readily
available commands to the “objective” capabilities of the agent.
The influence of this choice and the effect of less optimally
designed starting command shall be discussed in the final part
of this section.

The first part of the experiment is one of motor babbling.
During it, the agent effectively runs its available actions ak ∈
Ainit multiple times and tries to figure out whether they are
conservative by computing their associated sensel permutation
map. This is realized as a sequential process: at timestep tn,
the agent chooses and runs an action ak = a[tn] ∈ Ainit,
and the absolute configuration b[tn] = (x[tn], y[tn], θ[tn]) is
accordingly changed to b[tn+1] = akb[tn]. Corresponding
sensory array s[tn+1] = (si[tn+1])i is then used to proceed
in the computation of the (candidate) permutation matrix Mak
of ak, with the details of the update rule discussed in the
following subsection. It must again be stressed that we do not
consider the actual time tn+1 − tn required to perform the
action a as a relevant information of the proposed sensorimotor
framework. It may vary for distinct actions without it affecting
whatsoever the sequence of experienced absolute configurations
b. During this exploration, the state of the environment ǫ is
also allowed to vary with time so long as it is not updated
during the generation of ak, i.e., ǫ can change between actions.
This is achieved during the simulation by entirely changing the
grayscale image presented to the agent between each action. In
the following, the choice of action is randomly made at each

timestep. This may at times slow the learning of the permutation
matrices and could certainly be improved, for instance by
introducing a necessarily intrinsic criterion like curiosity as
in Oudeyer et al. (2005). However, the specific case studied
here is simple enough that a random strategy suffices to obtain
good results.

Once this first step is complete, the agent computes all
products of (quasi) permutation matrices to make the resulting
set of matrices. As per Equation (4), this set is precisely the
one of all matrices that decompose over the Mak , ak ∈ Ainit.
Following our argument about the groups of prediction functions
and motor actions being isomorphic, this set can be taken as
the global understanding of its motor capabilities the agent has
acquired. Here “global” denotes that new structure, absent from
the first empirical phase which was limited to Ainit, emerged
from the computation of products. Finally, the effect of changing
the set of actions available at start on the structure graph
discovered in the second experiment is studied in a third part (see
section 4.3.3).

4.2.1. Learning the Prediction Through Sensorimotor

Interaction
The first experiment performed by the agent is computing, where
possible, the permutationmatrix associated to each of its available
motor actions. This is done according to the following procedure:
at the beginning of the sensorimotor experience, to each starting
action ak ∈ Ainit associate a Nc × Nc matrix Mak where Nc is
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associated the number of sensels. This matrix is initialized so that
all of its coefficients are 1. Then, at the end of timestep tn where it
performed action ak (that is a[tn] = ak), the agent uses its sensory
output arrays both previous (s[tn]) and current (s[tn+1]) as per
the update rule:

(Mak [tn+1])i,j =

{

1 iff sj[tn+1] = si[tn] and (Mak [tn])i,j = 1

0 else.
(17)

Let us first observe that in this rule the only possible change
in coefficients is going from 1 to 0: whenever a coefficient
(Mak [tn])i,j is already 0, the condition of the first case

automatically fails so that its value stays at 0. Therefore, the rough
dynamics of the update is that while all coefficients start at 1,
some are eventually switched to 0 upon exploration until matrices
converge to a final (possibly null) form.

One can note that this is a very drastic choice compared
to the more usual soft incremental rules. This offers increased
simplicity, such as in Appendix 4 (see the Supplementaty
Materials) where an argument is provided that for any
conservative motor action this algorithm makes the empirical
matrixMak converge to the associated permutation matrixMσak

.

Moreover, we argue that obtaining said convergence with such
an unforgiving rule is strong evidence toward the systematic,
rather than statistical, nature of the supporting mechanism. The
argument also proves that for non-conservative actions, under
the same richness hypothesis the associated empirical matrix will
converge to the null matrix. This fact allows the robot to naively
distinguish between conservative and non-conservative actions,
should he be given the capability to perform both on startup.

4.2.2. Inferring Motor Structure From Learned

Interaction
In the second phase of the experiment, the agent uses the
prediction functions it discovered for elementary conservative
moves to infer how combinations of these moves relate to
each other. Indeed, it was proved in the previous part that for
any conservative actions a and a′ with associated permutation
matricesMσa andMσa′

, it is true that

Mσa′
Mσa = Mσa′a

. (18)

In the case of actions which are not strictly conservative, such as
those in the simulation, equality in the previous equation is not
guaranteed. This happens because in theMσa′

Mσa expression, all
the loss of information of a and a′ on their respective boundaries
is accumulated, whereas a′a might recoup some of it, e.g., when
a′ = a−1. However, multiple expressions should at least yield
non-contradictory prediction, that is whenever one specifies a
pair ci → cj another other cannot assert ci → ck with j 6= k.
As long as these combinations are kept short enough to limit
the accumulation, this non-contradiction criterion can be used
by the agent to internally infer the sensory prediction of any
combination of the moves it empirically learned. This is used
in a Dijsktra-like process to build a graph of prediction matrices,
which runs as follows, see Algorithm 1: starting from a prediction
matrix M0 corresponding to any origin action a0, each of the

Algorithm 1: Dijkstra-like algorithm for live construction of
action group graph.

Input

A The set of all matrices learned in exp. 1
D A bound on length of matrix combinations used
O A reference matrix around which to explore

Output

G A local view of the combinatorial graph of matrix
products around O, using edges in A

Add O to collection U
O.depth← 0
Add node O to G
while U is not empty do ⊲ True iff the neighborhood of some node K

is still Unexplored

K← node in U

for allMa in A do ⊲ Test all learned predictions starting from node K

P← MaK

P.depth← K.depth + 1

if P.depth≤ D then

B← False

for all node C in G do ⊲ Test previously discovered nodes for

equality

if predictions for P and C match then

B← True

Set edgeMa: K→ P in G

end if

end for ⊲ END for all node C in G

if B is False then ⊲ Branch taken iff P :=MaK was not

previously discovered

Add P to U

Add node P to G

Set edgeMa: K→ P in G

end if

end if ⊲ END if P.depth ≤ D

end for ⊲ END for all a in A

Remove K from U

end while ⊲ END while U is not empty

known matrices Mak , ak ∈ Ainit are applied to yield both a set
of new neighboring “end points” NM0

: =
{

MakM0, ak ∈ Ainit

}

and for each pair
(

M0,MakM0

)

a directed edge Mak . This is
then recursively applied to all newly discovered end points, while
those that were previously visited (as the prediction matrices can
be compared for equality) are discarded. However, the resulting
graph would in most cases be infinite, therefore a stopping rule
must be chosen. In our case, we chose to explore up to a given
depth parameter in graph edge distance.

4.3. Results
This subsection is devoted to the evaluation in simulation of the
previous points, divided in three successive experiments. The first
one illustrates how the agent can build the permutation matrices
associated to each of its conservative actions; a discussion about
the convergence and the statistics of this experiment is then
proposed. The second one exploits the permutation matrices just
obtained to structure its own actions through a graph of their
combinations; a discussion about its fidelity as a representation
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of the action group A is proposed. In the third and final one, the
effect of varying starting action sets on the structure discovered is
studied, concluding the subsection.

4.3.1. Experiment 1: Discovering the Permutations

4.3.1.1. Building the permutation matrices
To begin with, the simulated robot in Figure 4 is placed at
a random 2D position inside the image to be explored. The
available action set is defined as Ainit = A so that nA = 7.
Then, at each time step tn, a random action ak = a[tn] ∈ Ainit

is run, and the associated permutation matrix Mak is updated
according to (17). After this update, the agent is able to evaluate if
these matrices have finished converging and therefore can decide
when to stop the exploration. An entropy-like internal criterion
is proposed to quantify this convergence, along

C(M) = 1−
1

Nc log2(Nc)

Nc
∑

i=1

Hi,

where Hi = −

Nc
∑

j=1

Mi,j

µi
log2(

Mi,j

µi
),

and µi =
1

max(1,
∑Nc

j=1Mi,j)
.

(19)

In this criterion, Hi is the entropy of the post-action output
of sensel ci as a random variable of the pre-action outputs of
all sensels cj. Therefore, it measures which degree of surprise
remains in the determination of which (if any) sensel is successor
to ci. Finally, this makes C into an average measure of certainty
in the discovery of successor sensel pairs, going in non-
decreasing trajectories from 0 at initialization to 1 at permutation
matrices. Consequently when it obtains the updated matrices
Mak [tn+1], ak ∈ Ainit the agent computes all Ck[tn+1] =
C(Mak [tn+1]) to assess the state of its discovery, stopping its
exploration when all the Ck have reached 1.

After convergence, the resulting matrices for all seven actions
shown in Figure 4 are depicted in Figure 5. In this figure, a 0
(resp. 1) is represented in black (resp. white). Since the agent has
no knowledge of its sensor geometry, the position of its sensels
(i.e., pixels) inside the sensory array s (i.e., the flattened image) is
randomly chosen. In this case, the resulting permutationmatrices
for each action is depicted in Figure 5 (top), demonstrating
the fact that those matrices are not easy to understand from
an external point of view. If one now selects a more natural
ordering of the pixels inside s, like a line by line arrangement,
one then gets the permutation matrices in Figure 5 (middle).
With such an arrangement, an external observer is now able
to get a clearer intuition about the effects of each action on
the pixels permutations. Nevertheless, these two different sets
of matrices, as two contingent images of the same underlying
structure, are purely equivalent from an internal point of view.
This can be illustrated by mapping the permutation on the
overall sensor to better catch how the agent has been able to
discover the underlying spatial transfer between sensels. This
is done by plotting the sensel pairs along which values are
transferred as proposed in Figure 5 (bottom). In this figure,

the 10 × 10 pixel grid of the simulated camera is represented
together with arrows connecting each sensel to its successor.
While such a representation requires external knowledge in
the sensor geometry, the arrows are entirely determined by
the internal permutation matrices from either of the two sets
presented. It is thus a convenient external way to display that
each matrix has actually captured the pixel shift induced by each
action. For instance, with such a visualization, it is now very clear
that (a2, a3), (a4, a5), or even (a6, a7) are all found to be pairs of
inverse actions; this specific capability will actually be exploited
in section 4.3.2 to structure the agent set of actions.

4.3.1.2. A discussion about the dynamics of convergence
It is clear from Figure 5 that at some point the agent captured the
permutation to the best of its capabilities. One therefore proposes
to study the dynamics of the convergence of the approach w.r.t.
the experimental time step tn. For the remainder of experiment
1, we now keep the image constant during all the simulation, so
as to better assess the influence of the experienced environment
on the results. First, the internal criterion Ck = (Mak ) defined
in Equation (19) is evaluated at each tn and each ak, resulting in
the plot in Figure 6. One can then confirm that the Ck increase
from 0 (all elements in the matrices are initialized at 1) to 1 (all
successor pairs have been discovered). It also appears that for
each particular action ak, the associated criterion increases in
sparse jumps because its matrix Mak is only actually updated at
the random time steps when ak is drawn. Figure 6 also illustrates
the fact that the amplitude of these jumps decreases over the
experiment. For the starting conditions of this experiment, a
detailed analysis shows that about seven realizations of each
action are necessary to fully discover the target permutation
matrices. But it also appears that most of the initial 1s in
the matrices are wiped out very early, with a criterion value
Ck[tn] ≈ 0.7 after only one execution of the corresponding action
ak. However, one still questions whether the differences in the
dynamic of all actions is a random occurrence of this particular
exploration, or there is an intrinsic variance in difficulty in
learning between actions.

4.3.1.3. A statistical analysis about richness of the

environment
The answer to the previous question can be obtained by
performing an empirical survey (i) by averaging over
random explorations for given starting conditions, and (ii)
by varying these starting conditions and comparing the resulting
performances. With such a study, (i) will allow to quantify the
influence of the randomness in exploration, while (ii) lets us
assess how the properties of the environment influence the
discovery of permutations. For this experiment, the environment
is made of the image shown in Figure 7A, where the starting

points of each exploration is depicted as a grid of points on

it. At each of these points, 1,000 random explorations are
conducted, each of them consisting in a random run of actions

ak as in section 4.3.1.1, resulting in 1,000 sets of seven Ck

curves as in Figure 6. For each random exploration l and each

action ak, the number of jumps Jl,ak in the Ck curve obtained

is taken as a measure of difficulty in learning the permutation.
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FIGURE 5 | Representation of the seven binary 102 × 102 permutation matrices Mak corresponding to the actions ak possibly generated by the agent, where a 0

(resp. a 1) is represented as black (resp. white). (First row) Matrices obtained for a random organization of the sensels outputs si inside the sensory array s. (Second

row) Matrices obtained for a well-chosen sensels arrangement, where each pixel values are stored line by line in s. (Third row) Interpretation of the permutation

matrices (either from the first or second row) directly on the physical 10× 10 pixel array: if a 1 is present at line i and column j of a matrix Mak , then an arrow joining

pixel i to j is plotted. Note that the arrow length has been resized for actions 6 and 7 (i.e., rotations) to enhance readability. (A) Ma1 . (B) Ma2 . (C) Ma3 . (D) Ma4 . (E) Ma5 .

(F) Ma6 . (G) Ma7 .

FIGURE 6 | Representation of the criterion Ck = C(Mak ) for the seven actions ak . Each jump in this figure corresponds to a reevaluation of the criterion happening at a

timestep when the corresponding action has been drawn in the set in Ainit. As expected, the criterion starts from 0 to reach 1, indicating that all possible permutations

have been found.

The average J = 1
L

∑

l

∑

k Jl,ak of Jl,ak over all actions ak and
explorations l at a given starting position is depicted as the color
of the grid in Figure 7A, with L = 1,000 (runs) × 7 (actions).
Green points correspond to a low number of jumps J, while
red ones are representing higher values. One can observe that
the points are overwhelmingly green, and that the red ones
are restricted to precise areas in the picture. These correspond
to areas with locally low contrast, such as the sky (in the top
left corner) or its reflection (in the bottom). The extremal
conditions corresponding to the two green and red highlighted

points are further compared. For each of them, the distribution
of the Jl,ak is plotted as an histogram in Figure 7B. Clearly,
green points correspond to areas in the environment where
the permutation matrices can be discovered in at most five
executions of actions. On the contrary, at red points the agent
must wait for about 17 on average, and up to 35, executions
before it has obtained the same results. This illustrates how the
richness of the environment might influence the agent ability
to capture the structure of its sensory prediction. On a more
global scale, Figure 7C shows the distribution of the Jl,ak for all
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FIGURE 7 | Statistical analysis of the permutation matrices building process. (A) Environment explored by the agent. Each point in this environment corresponds to a

starting position around which the agent draws actions to build the permutation matrices Mak . Counting the mean number of jumps in the criterion curves Ck for each

(Continued)
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FIGURE 7 | realization of the exploration around a given starting point and each action leads to the value J representing the difficulty to build the corresponding

matrices. A high (resp. low) J value in red (resp. in green) corresponds to areas in the environment harder (resp. easier) to exploit for sensory prediction. (B,C)

Normalized histograms of the number of jumps in the criterion curves Ck averaged across actions. (B) Focus on the histograms obtained around two different starting

conditions corresponding to low (resp. high) J value highlighted by a green (resp. red) circle in the environment. (C) Overall normalized histogram for all actions and all

starting positions in the environment, showing that most of the permutation matrices are correctly obtained after a low number of action run.

random explorations, indiscriminately of the starting position.
This corroborates the observation that most positions in the
image are green, i.e., lead to easy convergence. It appears that
for a randomly selected starting position, there is more than
66% of chance of permutation matrices being discovered in <4
executions of their corresponding actions.

4.3.2. Experiment 2: Structuring Actions by

Combination
From the previous experiment, we now have as many
permutation matrices Mak as we have actions in Ainit. As
outlined in section 4.2.2, one can then use them to build a
graph of prediction matrices by following Algorithm 1. Recall
that in this graph, a node is a permutation matrix obtained
as a combination of the Mak matrices, while there is a Mak
edge from matrix M to M′ iff M′ = MakM. Therefore, all
edges in the graph correspond to the permutation matrices built
during experiment 1. According to Equation (15), this graph is
isomorphic to the graph of corresponding actions, meaning all
properties discovered of any combination of matrices holds true
for the corresponding combination of actions. As an example, if
one discovers thatMa1 = Ma2Ma3 , then one also has a1 = a2a3.

As a first step, let us consider only the actions corresponding
to translations in the environment, i.e., a6 and a7 are discarded
from Ainit. This a priori selection is only made to simplify the
visualization of the graph at first. After applying Algorithm 1
to the matrices shown in Figure 5, one gets the directed graph
in Figure 8A, where all the color conventions are consistent
with experiment 1. This particular graph has been built for a
maximum depth set to 3 and with Ma1 taken as the origin of the
graph. Note that the depth of this graph has been maintained
voluntarily low so as to help in the reading of the graph.
Note also that the arbitrary choice of origin makes all of its
neighbors themselves correspond to one of theMak discovered in
experiment 1 since they all occurred asMakMa1 = Mak products,
whereas all other nodes are indeed new matrices.

This graph mirrors many algebraic properties of the Mak
as captured by the internal experience. Indeed one can first
observe that the light blue arrow leads from any given node M
to itself, which corresponds toMa1 being the identity matrix INc .
Furthermore, one can note that the graph obtained is, up to its
borders, completely homogeneous; that is the neighborhoods of
each interior nodes share the same geometry. This even extends
to the color of edges matching, so that some of them form pairs.
One can for example verify that whenever a yellow edge goes
from node M to M′, there is a green edge from M′ to M and
no other one. This identifies the corresponding actions to be
inverses w.r.t. successive execution since from any starting node,
taking first the green (resp. yellow) edge then the yellow (resp.
green) one forms a loop. The same can be said of the red and

purple colors, which are found to correspond to another pair of
inverse actions. At last, the four central squares correspond to the
commutativity of the ak used: indeed one can see on the graph
that taking the red edge first, then the green one always leads to
the same node as green first, red second.

While those observations were discussed as properties of
the permutation matrices, the actual result is their representing
properties of the abstract motor actions ak. And indeed one
can check that the blue arrow corresponds to the identity
action a1, that the inverse pairs (yellow, green) and (orange,
purple), respectively correspond to (rightward, leftward) and
(forward,backward) translations, and that the commutativity
discussed is that of “forward then left” being the same as “left
then forward.” While these facts seem obvious from an external
point of view, they were not part of the initial knowledge of the
agent discussed in section 3.1. This only appears as a consequence
of the agent capability to predict the sensory consequences of its
own actions built during experiment 1. On a functional level, this
is very similar to the property of motor sequence compression
exhibited by RNNs performing sensorimotor prediction in Ortiz
and Laflaquière (2018); in fact we argue that it is the same
phenomenon that is picked up on by the neural networks and that
it is intrinsically related to sensorimotor prediction as developed
in section 3.

This also applies to the graph shown in Figure 8B obtained
when considering all seven actions, i.e., the two rotations
corresponding to actions a6 and a7 are now included in
the analysis. This plot, obtained through a classical force-
directed algorithm, shows the same 2D graph of translations
obtained before, but enriched with a third dimension supporting
the change of orientation induced by rotations. Again, the
depth of the graph is maintained low to keep things legible.
The global structure of the graph can be described as a
disjunction of 2D subgraphs corresponding to translations at
fixed orientation. Each subgraph is therefore equivalent to
each other up to a rotation as can be seen by the edges
colors shifting between the planes. As an example, one can
see that the same node in the graph can be reached by
following either (green, dark blue) and (dark blue, purple), or
(left, turn left), and (turn left, forward) in terms of actions
seen from an external point of view. Figure 8B also shows
that rotations are limited to the third vertical dimension in
which they form cycles at constant position in the planar
subgraph. This property is highlighted in the graph by the
four circled nodes which figure the same agent position for
the four possible orientations. The cycle simply mirrors the
external observation that taking four π/2 rotations successively
takes one back to the initial orientation. Importantly, this
could constitute an internal signature of rotations as opposed
to translations.
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FIGURE 8 | Directed graph of permutation matrices Mak -and thus also of corresponding actions ak as per Equation (15)– obtained by combination of these

matrices. Color conventions for edges match the color of each action in Figure 4. The depth up to which new nodes are explored has been limited for visualization

purposes by setting low depth parameters in Algorithm 1. (A) Graph obtained when considering only the actions corresponding to translations of the agent in the

environment. (B) Graph obtained when considering all actions: the 2D graph from (A) is now enriched with a third dimension supporting the changes of orientation

induced by the agent rotations in the environment.

In the end of this second experiment, the agent has thus been
able to discover a structure of its actual group of motor actions.
The agent now has access to algebraic relations between its own
actions which relate to its motor capabilities. This knowledge
also allows it to generalize the sensory prediction it discovered
in experiment 1 to all the combinations considered in the graph.
Nevertheless, one has to keep in mind that all the actions
considered in these experiments are not exactly conservative in
the sense of Equation (9). Indeed, they fail at conserving spatial
information on the border of the simulated camera. However,
results show that conservativity holding true for all internal pixels
allows for discovering the aforementioned properties. Because
all calculations are made on actual current outputs of the pixels,
one obvious consequence is that the agent has no way to predict
what happens outside of its field of view, and so far it keeps
no memory of it. Therefore, the results only hold for a very
local movement w.r.t. the dimension of the agent. However, the
discovered structure stays true whatever the initial position of
the exploration.

4.3.3. Experiment 3: Exploiting the Graph to Improve

the Representation of the Action Set
In the previous results, we have run the experiments with an
experimental starting action set Ainit conveniently set to A,
the set of externally defined movements. While this has been
useful at first to yield easily recognized structure in Experiment

2, it is a crucial point that the results do not depend on this
strong assumption. Therefore, the same two part experiment is
conducted with the difference that the starting action set Ainit

the agent can run is not arbitrarily set to A anymore. Instead, it
is now drawn in the set of combinations of actions ak ∈ A. Three
important cases are now possible : first, it may be that some of the
ak are “missing” in Ainit; on the contrary, duplicates may have
been drawn so that the agent can run a, a′ ∈ Ainit which are
effectively the same action (i.e., ∀b ∈ B, ab = a′b). Finally, it
may even have drawn “complex” actions a /∈ A, that is actions
that can only be obtained by combining some of the ak.

The three situations are illustrated in Figure 9, where the
graphs obtained at the end of Experiment 2 are drawn for various
starting action sets. In both cases, both the complexity of the

starting action set and the depth of the depicted graph have been
limited to keep the discussed structure as readable as possible.

Figure 9A depicts the first two cases: the agent was given a
duplicate action from A as well as missing one. This can be
assessed in the resulting prediction graph by the yellow and black
arrows which relate the same ordered pairs of nodes, e.g., from
the highlighted red to blue nodes, and the lack of an inverse
arrow that would match them. Note that while the absence of
this inverse (green) arrow represents the lack of a “direct” inverse
action in Ainit, the emerging structure from the graph allows for
the determination of an inverse path as highlighted by the bold
(red, orange, blue) arrows. From an external point of view, this
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FIGURE 9 | Illustration of the effect of drawing starting actions at random on the discovered structure. (A) Graph obtained with a duplicate starting action (depicted in

black) and a missing action (a2, green in other figures). A path made of 3 edges (red, orange, blue) equivalent to the missing starting action is highlighted, providing an

inverse to the (also highlighted) yellow edge. (B) Graph obtained by adding a combination (depicted in black) to the set of starting actions. Here, the action set was

limited to translations to keep a clear visual.

basically means that if the agent has no action to translate itself to
its left, it can instead rotate clockwise, then move backward, and
finally rotate counter-clockwise to reach the correct orientation.
Interestingly, this phenomenon where a missing inverse can be
otherwise obtained by combination of other actions can only
occur when the agent is able to rotate. The third situation is
depicted in Figure 9B, where the experiment was conducted with
the robot given the additional action a8 “forward then rightward”
along a8 = a5a3 in addition to the translations of A. The
choice not to give the agent its defined rotations a6 and a7
serves only to get an easily legible picture of the resulting graph,
much like in Figure 8A, and does not impact the following. This
additional move a8, which we as an external observer know to be
a combination, is studied like all other basic actions by the agent
during the motor babbling phase. It means that the agent has no
cue about a8 being an actual combination of two other actions. In
the end of the experiment, the obtained graph of action exhibits
this additional action a8 as black edges, as shown in Figure 9B.
From this graph, one can easily see that, from any point, it is
indeed equivalent to follow either the black arrow or first the
orange and then the yellow ones. The agent has thus been able
to discover the action combination property.

These graphs therefore show two important results. The
first conceptual comment is that the validity of the proposed
experiment is not conditional to a perfect match between ideal,
“objective” moves of the agent and actions it is effectively able
to perform at start. This is a desirable property for genericity
and our goal of bootstrapping, for it allows to avoid justifying
said match. The second, more practical, comment is that the

graph resulting from the experiment can be used by the agent
to select an action set “better” thanAinit. Indeed, the redundancy
between edges (or paths of edges) in Figures 9A,B represent the
agent discovering it can discard the actions corresponding to
black edgeswithout losing capabilities, i.e., while keeping all nodes
reachable. It can then be used to prune the available action set to a
minimal set generating the same group, in the sense of Equation
(4). Determining a criterion for selecting which actions are kept
and which are discarded could functionally correspond to a basis
for invariant principles in motor actions of the agent (Flash and
Hogan, 1998). The agent may also expand its action set with
new actions that verify useful properties: for example, in the case
depicted in Figure 9A it can package the bolded path of edges
into a single action so that it gets a missing inverse.

5. CONCLUSION

This paper was devoted to the introduction of a variational
extension of a previous framework into the sensorimotor
framework, extending the scope of such approaches to
naive agents able to move freely in their environment. We
demonstrated how, despite their extremely limited starting
capabilities, these agents could exploit said framework not only
to perform sensory prediction, but also to structure their own
actions. The proposed formalism has been assessed in simulation
as a proof of concept, with a naive agent able to (i) build
for each of its actions some permutation matrices associated
to its own sensory array, and (ii) exploit them to structure
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its own set of actions. These experiments were conducted
here in a somewhat simplistic experimental setting to keep
the simulated situation as close as possible to the theoretical
exposition. However, their transparent exploitation of the formal
mechanisms we explicitly isolated yields valuable insight as to
similar results, which related works otherwise achieved in more
realistic conditions.

Implementing a formal version of sensory prediction comes
with many interesting perspectives, as it was shown to yield
crucial properties both in the original cognitive psychology
literature and in the previous robotic contexts. We hypothesize
that it can be used to better understand the emergence and
properties of capabilities often related to that of sensory
prediction, both from robotics and from cognitive sciences,
such as those mentioned in the Introduction. These include,
e.g., motor control, motor planning, isolating proprioception,
suppression of self-induced changes or object perception. These
capabilities therefore constitute potential applications to which
further study could be devoted from there.

Nevertheless, the applicability of the proposed paradigm
to real agents or robots is still an opened question. First, it
is clear that most of the actions an agent will be dealing
with are not strictly conservative, but rather quasi-conservative
like in the simulations conducted in this paper. While not
extensively studied in this paper, some ongoing mathematical
developments show that their properties still allow to reach the
same concepts of sensory prediction and action structuration.
Then, the fact that the sensory prediction relies on exact
sensory values shifts inside the non noisy sensory array is
not very realistic. Introducing stochastic matrices instead of
permutation ones constitutes a promising way to deal with such
an issue, also pulling all these developments inside a probability
territory (Rao and Ballard, 2005; Seth, 2014) in which a lot
of development still needs to be done. Moreover, the way this

framework can be extended to agents exhibiting dynamical

effects, e.g., when performing kinematic or dynamical control,
must still be investigated. This requires some clarification about
the structure and role of time in the sensorimotor experience,
a point which is still largely eluded in the SMCT context.
Finally, actions can also be noisy, and the question of their
repeatability over time needs to be addressed so as to face
realistic conditions. This poses significant challenges in the
SMCT context of minimal a priori knowledge outlined in the
present contribution. However, ongoing exploratory work tends
to show that topological structure grounding some continuity of
the sensorimotor experience can be found as a contingency in
said naive context. All these paths constitute future promising
works in the field and will undoubtedly extend the scope of these
approaches to naive adaptive and robust agents able to build
by themselves their own understanding of their interaction with
their environment.
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