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INTRODUCTION

Hundreds of millions of individuals worldwide have mobility impairments resulting from
degenerative aging and/or neuro-musculoskeletal disorders (Grimmer et al., 2019). Fortunately,
robotic lower-limb exoskeletons and prostheses can allow otherwise wheelchair-bound seniors
and rehabilitation patients to perform movements that involve net positive mechanical work (e.g.,
climbing stairs and standing from a seated position) using onboard actuators and intelligent control
systems (Tucker et al., 2015; Young and Ferris, 2017; Laschowski and Andrysek, 2018; Krausz
and Hargrove, 2019; Zhang et al., 2019a). Generally speaking, the high-level controller recognizes
the patient’s locomotion mode (intention) by analyzing real-time measurements from wearable
sensors usingmachine learning algorithms. Themid-level controller then translates the locomotion
intentions into mode-specific reference trajectories. This control level typically comprises a finite
state machine, which implements a discrete parametrized control law (e.g., joint position or
mechanical impedance control) for each locomotion mode. Finally, the low-level controller tracks
the reference trajectories and minimizes the signal error by modulating the device actuators using
feedforward and feedback control loops (Tucker et al., 2015; Young and Ferris, 2017; Laschowski
and Andrysek, 2018; Krausz and Hargrove, 2019; Zhang et al., 2019a).

Accurate transitions between different locomotion modes is important since even
rare misclassifications can cause loss-of-balance and injury. In many commercial devices
like the ReWalk and Indego lower-limb exoskeletons, the patient acts as the high-level
controller by performing volitional movements to manually switch between locomotion
modes (Tucker et al., 2015; Young and Ferris, 2017). These human-controlled methods can
be time-consuming, inconvenient, and cognitively demanding. Researchers have recently
developed automated locomotion mode recognition systems using wearable sensors like
inertial measurement units (IMUs) and surface electromyography (EMG) to automatically
switch between different locomotion modes (Tucker et al., 2015; Young and Ferris, 2017;
Laschowski and Andrysek, 2018; Krausz and Hargrove, 2019; Zhang et al., 2019a). Whereas
mechanical and inertial sensors respond to the patient’s movements, the electrical potentials
of biological muscles, as recorded using surface EMG, precede movement initiation and thus
could (marginally) predict locomotion mode transitions. Several researchers have combined
mechanical sensors with surface EMG for automated locomotion mode recognition. Such
neuromuscular-mechanical data fusion has improved the locomotion mode recognition
accuracies and decision times compared to implementing either system individually
(Huang et al., 2011; Du et al., 2012; Wang et al., 2013; Liu et al., 2016). However, these
measurements are still patient-dependent, and surface EMG are susceptible to fatigue, changes
in electrode-skin conductivity, and crosstalk from adjacent muscles (Tucker et al., 2015).
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Supplementing neuromuscular-mechanical data with
information about the upcoming walking environment could
improve the high-level control performance. Similar to the
human visual system, environment sensing would precede
modulation of the patient’s muscle activations and/or walking
biomechanics, therein enabling more accurate and real-time
locomotion mode transitions. Environment sensing could
also be used to adapt low-level reference trajectories (e.g.,
changing toe clearance corresponding to an obstacle height)
(Zhang et al., 2020) and optimal path planning (e.g., identifying
opportunities for energy regeneration) (Laschowski et al., 2019a,
2020a). Preliminary research has shown that supplementing
an automated locomotion mode recognition system with
environment information can improve the classification
accuracies and decision times compared to excluding terrain
information (Huang et al., 2011; Wang et al., 2013; Liu et al.,
2016). Several researchers have explored using radar detectors
(Kleiner et al., 2018) and laser rangefinders (Zhang et al., 2011;
Wang et al., 2013; Liu et al., 2016) for environment sensing.
However, vision-based systems can provide more detailed
information about the field-of-view and detect physical obstacles
in peripheral locations. Most environment recognition systems
have included either RGB cameras (Krausz and Hargrove, 2015;
Diaz et al., 2018; Khademi and Simon, 2019; Laschowski et al.,
2019b; Novo-Torres et al., 2019; Da Silva et al., 2020; Zhong
et al., 2020) or 3D depth cameras (Krausz et al., 2015, 2019; Varol
and Massalin, 2016; Hu et al., 2018; Massalin et al., 2018; Zhang
et al., 2019b,c,d).

For image classification, researchers have used learning-based
algorithms like support vector machines (Varol and Massalin,
2016; Massalin et al., 2018) and deep convolutional neural
networks (Rai and Rombokas, 2018; Khademi and Simon, 2019;
Laschowski et al., 2019b; Novo-Torres et al., 2019; Zhang et al.,
2019b,c,d; Zhong et al., 2020). Although convolutional neural
networks typically outperform support vector machines for

FIGURE 1 | Development of the ExoNet database, including (A) photograph of the wearable camera system used for large-scale data collection; (B) examples of the

high-resolution RGB images (1,280 × 720) of human walking environments; and (C) schematic of the 12-class hierarchical labeling architecture.

image classification (LeCun et al., 2015), deep learning requires
significant and diverse training images to prevent overfitting
and promote generalization. Deep learning has become pervasive
ever since AlexNet (Krizhevsky et al., 2012) popularized
convolutional neural networks by winning the 2012 ImageNet
challenge. ImageNet is an open-source dataset containing ∼15
million labeled images and 22,000 different classes (Deng et al.,
2009). The lack of an open-source, large-scale dataset of human
locomotion environment images has impeded the development
of environment-aware control systems for robotic lower-limb
exoskeletons and prostheses. Until now, researchers have been
required to individually collect training images to develop their
classification algorithms. These repetitive measurements are
time-consuming and inefficient, and individual private datasets
have prevented comparisons between classification algorithms
from different researchers (Laschowski et al., 2020b). Drawing
inspiration from ImageNet, we developed ExoNet–the first
open-source, large-scale hierarchical database of high-resolution
wearable camera images of human walking environments.
In accordance with the Frontiers submission guidelines, this
article provides a detailed description of the research dataset.
Benchmark performance and analyses of the ExoNet database for
human locomotion environment classification will be presented
in future work.

MATERIALS AND METHODS

Large-Scale Data Collection
One subject was instrumented with a lightweight wearable
smartphone camera system (iPhone XSMax); photograph shown
in Figure 1A. Unlike limb-mounted systems (Zhang et al.,
2011, 2019b,c; Varol and Massalin, 2016; Diaz et al., 2018; Hu
et al., 2018; Kleiner et al., 2018; Massalin et al., 2018; Rai and
Rombokas, 2018; Da Silva et al., 2020), chest-mounting can
provide more stable video recording and allow users to wear
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pants and long dresses without obstructing the sampled field-
of-view. The chest-mount height was ∼1.3m from the ground
when the participant stood upright. The smartphone contains
two 12-megapixel RGB rear-facing cameras and one 7-megapixel
front-facing camera. The front and rear cameras provide 1,920
× 1,080 and 1,280 × 720 video recording at 30 frames/s,
respectively. The smartphone weighs ∼0.21 kg, and features an
onboard rechargeable lithium-ion battery, 512-GB of memory
storage, and a 64-bit ARM-based integrated circuit (Apple A12
Bionic) with six-core CPU and four-core GPU. These hardware
specifications can support onboard machine learning for real-
time environment classification. The relatively lightweight and
unobtrusive nature of the wearable camera system allowed for
unimpeded human walking biomechanics. Ethical review and
approval were not required for this research in accordance with
the University of Waterloo Office of Research Ethics.

While most environment recognition systems have been
limited to controlled indoor environments and/or prearranged
walking circuits (Zhang et al., 2011, 2019b,c,d; Du et al., 2012;
Wang et al., 2013; Krausz et al., 2015, 2019; Liu et al., 2016; Hu
et al., 2018; Kleiner et al., 2018; Khademi and Simon, 2019),
our subject walked around unknown outdoor and indoor real-
world environments while collecting images with occlusions,
signal noise, and intraclass variations. Data were collected
at various times throughout the day to incorporate different
lighting conditions. Similar to human gaze fixation during
walking (Li et al., 2019), the sampled field-of-view was ∼1–5
meters ahead of the participant, thereby showing upcoming
walking environments rather than the ground underneath
the subject’s feet. The camera’s pitch angle slightly differed
between data collection sessions. Images were sampled at 30Hz
with 1,280 × 720 resolution. More than 52 h of video were
recorded, amounting to ∼5.6 million images (examples shown
in Figure 1B). The same environment was never sampled twice
to maximize diversity among the ExoNet images. Data were
collected throughout the summer, fall, and winter seasons
to incorporate different weathered surfaces like snow, grass,
and multicolored leaves. In accordance with the Frontiers
submission guidelines, the ExoNet database was deposited in a
public repository (IEEE DataPort) and is available for download
at https://ieee-dataport.org/open-access/exonet-database-
wearable-camera-images-human-locomotion-environments.
The file size of the uncompressed videos is∼140 GB.

Hierarchical Image Labeling
Given the subject’s preferred walking speed, there were
minimal differences between consecutive images sampled at
30Hz. The labeled images were therefore downsampled to
5 frames/s to minimize the demands of manual annotation
and increase the diversity in image appearances. However,
for real-time environment classification and control of
robotic lower-limb exoskeletons and prostheses, higher
sampling rates would be more advantageous for accurate
locomotion mode recognition and transitioning. Similar
to ImageNet (Deng et al., 2009), the ExoNet database was
human-annotated using a hierarchical labeling architecture
(see Figure 1C). Images were labeled according to exoskeleton

and prosthesis control functionality, rather than a purely
computer vision perspective. For instance, images of level-
ground environments showing either pavement or grass were
not differentiated since both surfaces would use the same
level-ground walking state controller. In contrast, computer
vision researchers might label these different surface textures as
separate classes.

Approximately 923,000 images in ExoNet were manually
labeled and organized into 12 classes using the following
descriptions, which also include the number of labeled
images/class: {IS-T-DW = 31,628} shows incline stairs with
a door and/or wall; {IS-T-LG = 11,040} shows incline stairs
with level-ground thereafter; {IS-S = 17,358} shows only incline
stairs; {DS-T-LG = 28,677} shows decline stairs with level-
ground thereafter; {DW-T-O = 19,150} shows a door and/or
wall with other (e.g., hand or window); {DW-S = 36,710}
shows only a door and/or wall; {LG-T-DW = 379,199} shows
level-ground with a door and/or wall; {LG-T-O = 153,263}
shows level-ground with other (e.g., humans, cars, bicycles, or
garbage cans); {LG-T-IS = 26,067} shows level-ground with
incline stairs thereafter; {LG-T-DS = 22,607} shows level-
ground with decline stairs thereafter; {LG-T-SE = 119,515}
shows level-ground with seats (e.g., couches, chairs, or benches);
and {LG-S = 77,576} shows only level-ground. These classes
were selected to encompass the different walking environments
encountered during the data collection sessions. We included
the other class to improve image classification performance
when confronted with non-terrain related features like humans
or bicycles.

Inspired by previous work (Huang et al., 2011; Du et al.,
2012; Wang et al., 2013; Liu et al., 2016; Khademi and Simon,
2019), the hierarchical labeling architecture included both steady
(S) and transition (T) states. A steady state describes an
environment where an exoskeleton or prosthesis user would
continuously perform the same locomotion mode (e.g., only
level-ground terrain). In contrast, a transition state describes
an environment where the exoskeleton or prosthesis high-level
controller might switch between different locomotion modes
(e.g., level-ground and incline stairs). Manually labeling the
transition states was relatively subjective. For example, an
image showing level-ground terrain was labeled level-ground-
transition-incline stairs (LG-T-IS) when an incline staircase was
approximately within the sampled field-of-view and forward-
facing. Similar labeling principles were applied to transitions
to other conditions. The Python code used for labeling the
ExoNet database was uploaded to GitHub and is publicly
available for download at https://github.com/BrockLaschowski2/
ExoNet.

DISCUSSION

Environment recognition systems can improve the control
of robotic lower-limb exoskeletons and prostheses during
human locomotion. However, small-scale and private training
datasets have impeded the widespread development and
dissemination of image classification algorithms for human
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TABLE 1 | Comparison of the ExoNet database with previous environment recognition systems for robotic lower-limb prostheses and exoskeletons.

Reference Sensor Position Dataset Resolution Classes

Da Silva et al. (2020) RGB camera Lower-limb 3,992 Images 512 × 512 6

Diaz et al. (2018) RGB camera Lower-limb 3,992 Images 1,080 × 1,920 6

Khademi and Simon (2019) RGB camera Waist 7,284 Images 224 ×224 3

Krausz and Hargrove (2015) RGB camera Head 5 Images 928 × 620 2

Krausz et al. (2015) Depth camera Chest 170 Images 80 × 60 2

Krausz et al. (2019) Depth camera Waist 4,000 Images 171 × 224 5

Laschowski et al. (2019b) RGB camera Chest 34,254 Images 224 × 224 3

Massalin et al. (2018) Depth camera Lower-limb 402,403 Images 320 × 240 5

Novo-Torres et al. (2019) RGB camera Head 40,743 Images 128 × 128 2

Varol and Massalin (2016) Depth camera Lower-limb 22,932 Images 320 × 240 5

Zhang et al. (2019b,c) Depth camera Lower-limb 7,500 Images 224 × 171 5

Zhang et al. (2019d) Depth camera Waist 4,016 Images 2,048 Point Cloud 3

Zhang et al. (2020) Depth camera Lower-limb 7,500 Images 100 × 100 5

Zhong et al. (2020) RGB camera Head and lower-limb 327,000 Images 1,240 × 1,080 6

ExoNet database RGB camera Chest 922,790 Images 1,280 × 720 12

locomotion environment recognition. Motivated by these
limitations, we developed ExoNet–the first open-source,
large-scale hierarchical database of high-resolution wearable
camera images of human walking environments. Using a
lightweight wearable camera system, we collected over 5.6
million RGB images of different indoor and outdoor real-
world walking environments, of which ∼923,000 images
were human-annotated using a 12-class hierarchical labeling
architecture. Available publicly through IEEE DataPort,
ExoNet provides researchers an unprecedented communal
platform to develop and compare next-generation image
classification algorithms for human locomotion environment
recognition. Although ExoNet was originally designed for
environment-aware control systems for lower-limb exoskeletons
and prostheses, applications could extend to humanoids and
autonomous legged robots (Park et al., 2015; Villarreal et al.,
2020). Users of the ExoNet database are requested to reference
this dataset report.

Aside from being the only open-source image database of
human locomotion environments, the large scale and diversity
of ExoNet significantly distinguishes itself from previous
environment recognition systems, as illustrated in Table 1.
ExoNet contains ∼923,000 individually labeled images. In
comparison, the previous largest dataset contained ∼402,000
images (Massalin et al., 2018). While most environment
recognition systems have included fewer than six classes
(Krausz and Hargrove, 2015; Krausz et al., 2015, 2019;
Varol and Massalin, 2016; Massalin et al., 2018; Khademi
and Simon, 2019; Laschowski et al., 2019b; Novo-Torres
et al., 2019; Zhang et al., 2019b,c,d; Zhang et al., 2020),
the ExoNet database features a 12-class hierarchical labeling
architecture. These differences have real-world implications
given that learning-based algorithms like convolutional neural
networks require significant and diverse training images (LeCun
et al., 2015). The spatial resolution of the ExoNet images

(1,280× 720) is considerably higher than previous efforts (e.g.,
224 × 224 and 320 × 240). Poor image resolution has
been attributed to decreased classification accuracy of human
walking environments (Novo-Torres et al., 2019). Although
higher resolution images can increase the computational and
memory storage requirements, that being unfavorable for real-
time mobile computing, researchers have been moving toward
the development of efficient convolutional neural networks
that require fewer operations (Tan and Le, 2020), therein
enabling the processing of larger images for relatively similar
computational power. Here we assume mobile computing for
the exoskeleton and prosthesis control (i.e., untethered and
no wireless communication to cloud computing). Nevertheless,
an exoskeleton or prosthesis controller may not always benefit
from additional information provided by higher resolution
images, particularly when interacting with single surface textures
(i.e., only pavement or grass). With ongoing research and
development in computer vision and artificial intelligence, larger
and more challenging training datasets are needed to develop
better image classification algorithms for environment-aware
locomotor control systems.

A potential limitation of the ExoNet database is the two-
dimensional nature of the environment information. Whereas
RGB cameras measure light intensity information, depth cameras
also provide distance measurements (Krausz et al., 2015, 2019;
Varol and Massalin, 2016; Hu et al., 2018; Massalin et al.,
2018; Zhang et al., 2019b,c,d). Depth cameras work by emitting
infrared light and calculate distances by measuring the light
time-of-flight between the camera and physical environment
(Varol and Massalin, 2016). Depth measurement accuracies
typically degrade in outdoor lighting conditions (e.g., sunlight)
and with increasing measurement distance. Consequently, most
environment recognition systems using depth cameras have
been tested in indoor environments (Krausz et al., 2015,
2019; Varol and Massalin, 2016; Hu et al., 2018; Massalin
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et al., 2018) and have had limited capture volumes (i.e.,
between 1 and 2m of maximum range imaging) (Krausz
et al., 2015; Varol and Massalin, 2016; Massalin et al.,
2018). Assuming mobile computing, the application of depth
cameras for environment sensing would also require robotic
lower-limb exoskeletons and prostheses to have embedded
microcontrollers with significant computing power and minimal
power consumption, the specifications of which are not
supported by existing untethered systems (Massalin et al.,
2018). These practical limitations motivated our decision to use
RGB images.

Our camera images could be fused with the smartphone
IMU measurements to improve high-level control performance.
For example, if an exoskeleton or prosthesis user unexpectedly
stops while walking toward an incline staircase, the acceleration
measurements would indicate static standing rather than
stair ascent, despite the staircase being accurately detected
in the field-of-view. Since environment information does
not explicitly represent the locomotor intent, environment
recognition systems should supplement, rather than replace,
the automated locomotion mode recognition systems based
on patient-dependant measurements like mechanical and
inertial sensors. The smartphone IMU measurements could
also be used for sampling rate control (Zhang et al., 2011;
Diaz et al., 2018; Khademi and Simon, 2019; Da Silva
et al., 2020). Faster walking speeds would likely benefit
from higher sampling rates for continuous classification.
In contrast, static standing does not necessarily require
environment information and therefore the smartphone camera
could be powered down, or the sampling rate decreased, to
minimize the computational and memory storage requirements.
However, the optimal method for fusing the smartphone camera
images with the onboard IMU measurements remains to
be determined.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://ieee-dataport.
org/open-access/exonet-database-wearable-camera-images-
human-locomotion-environments. The name of the online
repository is “IEEE DataPort” and the name of the image
database is “ExoNet”.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

BL was responsible for the study design, literature review, data
collection, image labeling, data interpretation, and manuscript
writing. WM assisted with the study design, image labeling, data
interpretation, andmanuscript writing. AW and JM assisted with
the study design, data interpretation, and manuscript writing. All
authors read and approved the final manuscript.

FUNDING

This research was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC), theWaterloo
Engineering Excellence Ph.D. Fellowship, JM’s Tier I Canada
Research Chair in Biomechatronic System Dynamics, and AW’s
Tier II Canada Research Chair in Artificial Intelligence and
Medical Imaging.

REFERENCES

Da Silva, R. L., Starliper, N., Zhong, B., Huang, H. H., and Lobaton, E. (2020).

Evaluation of embedded platforms for lower limb prosthesis with visual sensing

capabilities. arXiv [Preprint]. arXiv:2006.15224.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009).

“ImageNet: a large-scale hierarchical image database,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Miami, FL: IEEE), 248–255.

doi: 10.1109/CVPR.2009.5206848

Diaz, J. P., Da Silva, R. L., Zhong, B., Huang, H. H., and Lobaton, E. (2018). “Visual

terrain identification and surface inclination estimation for improving human

locomotion with a lower-limb prosthetic,” in Annual International Conference

of the IEEE Engineering inMedicine and Biology Society (EMBC) (Honolulu, HI:

IEEE), 1817–1820. doi: 10.1109/EMBC.2018.8512614

Du, L., Zhang, F., Liu, M., and Huang, H. (2012). Toward design of an

environment-aware adaptive locomotion-mode-recognition system. IEEE.

Trans. Biomed. Eng. 59, 2716–2725. doi: 10.1109/TBME.2012.2208641

Grimmer, M., Riener, R., Walsh, C. J., and Seyfarth, A. (2019). Mobility related

physical and functional losses due to aging and disease - a motivation for

lower limb exoskeletons. J. Neuroeng. Rehabil. 16:2. doi: 10.1186/s12984-018-

0458-8

Hu, B. H., Krausz, N. E., and Hargrove, L. J. (2018). “A novel method for bilateral

gait segmentation using a single thigh-mounted depth sensor and IMU,” in

IEEE International Conference on Biomedical Robotics and Biomechatronics

(BIOROB) (Enschede: IEEE), 807–812. doi: 10.1109/BIOROB.2018.8487806

Huang, H., Dou, Z., Zheng, F., and Nunnery, M. J. (2011). “Improving the

performance of a neural-machine interface for artificial legs using prior

knowledge of walking environment,” in Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC) (Boston, MA: IEEE),

4255–4258. doi: 10.1109/IEMBS.2011.6091056

Khademi, G., and Simon, D. (2019). “Convolutional neural networks for

environmentally aware locomotion mode recognition of lower-limb amputees,”

in ASME Dynamic Systems and Control Conference (DSCC) (Park City, UT:

ASME), 11. doi: 10.1115/DSCC2019-9180

Kleiner, B., Ziegenspeck, N., Stolyarov, R., Herr, H., Schneider, U., and Verl,

A. (2018). “A radar-based terrain mapping approach for stair detection

towards enhanced prosthetic foot control,” in IEEE International Conference

on Biomedical Robotics and Biomechatronics (BIOROB) (Enschede: IEEE),

105–110. doi: 10.1109/BIOROB.2018.8487722

Krausz, N. E., and Hargrove, L. J. (2015). “Recognition of ascending stairs from

2D images for control of powered lower limb prostheses,” in International

IEEE/EMBS Conference on Neural Engineering (NER) (Montpellier: IEEE),

615–618. doi: 10.1109/NER.2015.7146698

Krausz, N. E., and Hargrove, L. J. (2019). A survey of teleceptive sensing

for wearable assistive robotic devices. Sensors 19:5238. doi: 10.3390/

s19235238

Frontiers in Robotics and AI | www.frontiersin.org 5 December 2020 | Volume 7 | Article 562061

https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-locomotion-environments
https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-locomotion-environments
https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-locomotion-environments
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/EMBC.2018.8512614
https://doi.org/10.1109/TBME.2012.2208641
https://doi.org/10.1186/s12984-018-0458-8
https://doi.org/10.1109/BIOROB.2018.8487806
https://doi.org/10.1109/IEMBS.2011.6091056
https://doi.org/10.1115/DSCC2019-9180
https://doi.org/10.1109/BIOROB.2018.8487722
https://doi.org/10.1109/NER.2015.7146698
https://doi.org/10.3390/s19235238
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Laschowski et al. Image Database of Human Walking Environments

Krausz, N. E., Hu, B. H., and Hargrove, L. J. (2019). Subject- and environment-

based sensor variability for wearable lower-limb assistive devices. Sensors

19:4887. doi: 10.3390/s19224887

Krausz, N. E., Lenzi, T., and Hargrove, L. J. (2015). Depth sensing for improved

control of lower limb prostheses. IEEE. Trans. Biomed. Eng. 62, 2576–2587.

doi: 10.1109/TBME.2015.2448457

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems Conference (NIPS) (Lake Tahoe, NV), 1097–1105.

doi: 10.1145/3065386

Laschowski, B., and Andrysek, J. (2018). “Electromechanical design

of robotic transfemoral prostheses,” in ASME International Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference (IDETC-CIE) (Quebec City: ASME), V05AT07A054.

doi: 10.1115/DETC2018-85234

Laschowski, B., McNally, W., Wong, A., and McPhee, J. (2019b). “Preliminary

design of an environment recognition system for controlling robotic

lower-limb prostheses and exoskeletons,” in IEEE International

Conference on Rehabilitation Robotics (ICORR) (Toronto: IEEE), 868–873.

doi: 10.1109/ICORR.2019.8779540

Laschowski, B., McNally, W., Wong, A., and McPhee, J. (2020b). “Comparative

analysis of environment recognition systems for control of lower-limb

exoskeletons and prostheses,” in IEEE International Conference on Biomedical

Robotics and Biomechatronics (BIOROB) (New York City, NY: IEEE).

doi: 10.1109/BioRob49111.2020.9224364

Laschowski, B., McPhee, J., and Andrysek, J. (2019a). Lower-limb prostheses and

exoskeletons with energy regeneration: mechatronic design and optimization

review. ASME J. Mech. Robot. 11:040801. doi: 10.1115/1.4043460

Laschowski, B., Razavian, R. S., and McPhee, J. (2020a). Simulation of stand-to-sit

biomechanics for design of lower-limb exoskeletons and prostheses with energy

regeneration. bioRxiv. doi: 10.1101/801258

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Li, M., Zhong, B., Liu, Z., Lee, I. C., Fylstra, B. L., Lobaton, E., et al. (2019).

“Gaze fixation comparisons between amputees and able-bodied individuals

in approaching stairs and level-ground transitions: a pilot study,” in Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (Berlin: IEEE). doi: 10.1109/EMBC.2019.8857388

Liu, M., Wang, D., and Huang, H. (2016). Development of an environment-

aware locomotion mode recognition system for powered lower limb

prostheses. IEEE Trans. Neural Syst. Rehabilitation Eng. 24, 434–443.

doi: 10.1109/TNSRE.2015.2420539

Massalin, Y., Abdrakhmanova, M., and Varol, H. A. (2018). User-independent

intent recognition for lower limb prostheses using depth sensing. IEEE. Trans.

Biomed. Eng. 65, 1759–1770. doi: 10.1109/TBME.2017.2776157

Novo-Torres, L., Ramirez-Paredes, J. P., and Villarreal, D. J. (2019). “Obstacle

recognition using computer vision and convolutional neural networks for

powered prosthetic leg applications, in Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin: IEEE),

3360–3363. doi: 10.1109/EMBC.2019.8857420

Park, H. W., Wensing, P., and Kim, S. (2015). “Online planning for autonomous

running jumps over obstacles in high-speed quadrupeds,” in Robotics:

Science and Systems Conference (RSS) (Rome). doi: 10.15607/RSS.2015.

XI.047

Rai, V., and Rombokas, E. (2018). “Evaluation of a visual localization system

for environment awareness in assistive devices,” in Annual International

Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC) (Honolulu, HI: IEEE), 5135–5141. doi: 10.1109/EMBC.2018.

8513442

Tan, M., and Le, Q. V. (2020). EfficientNet: rethinking model scaling for

convolutional neural networks. arXiv [Preprint]. arXiv:1905.11946v115.

Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., et al.

(2015). Control strategies for active lower extremity prosthetics and orthotics:

a review. J. Neuroeng. Rehabil. 12:1. doi: 10.1186/1743-0003-12-1

Varol, H. A., and Massalin, Y. (2016). “A feasibility study of depth image

based intent recognition for lower limb prostheses,” in Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

(Orlando, FL: IEEE), 5055–5058. doi: 10.1109/EMBC.2016.7591863

Villarreal, O., Barasuol, V., Wensing, P., and Semini, C. (2020). “MPC-based

controller with terrain insight for dynamic legged locomotion,” in IEEE

International Conference on Robotics and Automation (ICRA) (Paris: IEEE),

arXiv: 1909.13842. doi: 10.1109/ICRA40945.2020.9197312

Wang, D., Du, L., and Huang, H. (2013). “Terrain recognition improves the

performance of neural-machine interface for locomotion mode recognition,” in

IEEE International Conference on Computing, Networking and Communications

(ICNC) (San Diego, CA: IEEE), 87–91. doi: 10.1109/ICCNC.2013.6504059

Young, A. J., and Ferris, D. P. (2017). State of the art and future directions for

lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabilitation Eng.

25, 171–182. doi: 10.1109/TNSRE.2016.2521160

Zhang, F., Fang, Z., Liu, M., and Huang, H. (2011). “Preliminary design of a

terrain recognition system,” in Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (Boston, MA: IEEE),

5452–5455. doi: 10.1109/IEMBS.2011.6091391

Zhang, K., De Silva, C. W., and Fu, C. (2019a). Sensor fusion for predictive control

of human-prosthesis-environment dynamics in assistive walking: a survey.

arXiv [Preprint]. arXiv:1903.07674.

Zhang, K., Luo, J., Xiao, W., Zhang, W., Liu, H., Zhu, J., et al. (2020). A

subvision system for enhancing the environmental adaptability of the powered

transfemoral prosthesis. IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2978216

Zhang, K., Wang, J., and Fu, C. (2019d). Directional PointNet: 3D Environmental

Classification for Wearable Robotics. arXiv [Preprint]. arXiv: 1903.06846.

Zhang, K., Xiong, C., Zhang, W., Liu, H., Lai, D., Rong, Y., et al. (2019c).

Environmental features recognition for lower limb prostheses toward

predictive walking. IEEE Trans. Neural Syst. Rehabilitation Eng. 27, 465–476.

doi: 10.1109/TNSRE.2019.2895221

Zhang, K., Zhang, W., Xiao, W., Liu, H., De Silva, C. W., and Fu, C.

(2019b). Sequential decision fusion for environmental classification in

assistive walking. IEEE Trans. Neural Syst. Rehabilitation Eng. 27, 1780–1790.

doi: 10.1109/TNSRE.2019.2935765

Zhong, B., Da Silva, R. L., Li, M., Huang, H., and Lobaton, E. (2020).

Environmental context prediction for lower limb prostheses with uncertainty

quantification. IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2993399

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Laschowski, McNally, Wong and McPhee. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 6 December 2020 | Volume 7 | Article 562061

https://doi.org/10.3390/s19224887
https://doi.org/10.1109/TBME.2015.2448457
https://doi.org/10.1145/3065386
https://doi.org/10.1115/DETC2018-85234
https://doi.org/10.1109/ICORR.2019.8779540
https://doi.org/10.1109/BioRob49111.2020.9224364
https://doi.org/10.1115/1.4043460
https://doi.org/10.1101/801258
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/EMBC.2019.8857388
https://doi.org/10.1109/TNSRE.2015.2420539
https://doi.org/10.1109/TBME.2017.2776157
https://doi.org/10.1109/EMBC.2019.8857420
https://doi.org/10.15607/RSS.2015.XI.047
https://doi.org/10.1109/EMBC.2018.8513442
https://doi.org/10.1186/1743-0003-12-1
https://doi.org/10.1109/EMBC.2016.7591863
https://doi.org/10.1109/ICRA40945.2020.9197312
https://doi.org/10.1109/ICCNC.2013.6504059
https://doi.org/10.1109/TNSRE.2016.2521160
https://doi.org/10.1109/IEMBS.2011.6091391
https://doi.org/10.1109/TCYB.2020.2978216
https://doi.org/10.1109/TNSRE.2019.2895221
https://doi.org/10.1109/TNSRE.2019.2935765
https://doi.org/10.1109/TASE.2020.2993399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	ExoNet Database: Wearable Camera Images of Human Locomotion Environments
	Introduction
	Materials and Methods
	Large-Scale Data Collection
	Hierarchical Image Labeling

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


