
ORIGINAL RESEARCH
published: 16 November 2020

doi: 10.3389/frobt.2020.567491

Frontiers in Robotics and AI | www.frontiersin.org 1 November 2020 | Volume 7 | Article 567491

Edited by:

Carlos A. Cifuentes,

Escuela Colombiana de Ingenieria

Julio Garavito, Colombia

Reviewed by:

Dongming Gan,

Purdue University, United States

Chaoyang Song,

Southern University of Science and

Technology, China

*Correspondence:

Shaoping Bai

shb@mp.aau.dk

Specialty section:

This article was submitted to

Biomedical Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 02 June 2020

Accepted: 04 September 2020

Published: 16 November 2020

Citation:

Islam MRU and Bai S (2020) Effective

Multi-Mode Grasping Assistance

Control of a Soft Hand Exoskeleton

Using Force Myography.

Front. Robot. AI 7:567491.

doi: 10.3389/frobt.2020.567491

Effective Multi-Mode Grasping
Assistance Control of a Soft Hand
Exoskeleton Using Force Myography
Muhammad Raza Ul Islam and Shaoping Bai*

Department of Materials and Production, Aalborg University, Aalborg, Denmark

Human intention detection is fundamental to the control of robotic devices in order

to assist humans according to their needs. This paper presents a novel approach for

detecting hand motion intention, i.e., rest, open, close, and grasp, and grasping force

estimation using force myography (FMG). The output is further used to control a soft hand

exoskeleton called an SEM Glove. In this method, two sensor bands constructed using

force sensing resistor (FSR) sensors are utilized to detect hand motion states and muscle

activities. Upon placing both bands on an arm, the sensors can measure normal forces

caused by muscle contraction/relaxation. Afterwards, the sensor data is processed,

and hand motions are identified through a threshold-based classification method. The

developed method has been tested on human subjects for object-grasping tasks. The

results show that the developed method can detect hand motions accurately and to

provide assistance w.r.t to the task requirement.

Keywords: human intention detection, FSR sensor band, exoskeleton control, grasping assistance, soft hand

exoskeletons

1. INTRODUCTION

Grasping tasks are performed repeatedly in both the home and in workplaces. Studies have shown
that a human in a work/home environment performs grasp and transition between different grasps
approximately 4,700 times within a 7.45 h window (Zheng et al., 2011; Bullock et al., 2013).
Performing these tasks repeatedly over a longer period of time can cause fatigue and injuries. Hand
exoskeletons (Gull et al., 2020) have the capability to assist in these tasks, which can reduce human
effort and the risk of getting injured/fatigued.

Proper control of the exoskeleton depends mainly on accurate human intention detection.
Several methods to determine human intention that are based on electromyography (EMG) (Anam
et al., 2017; Meng et al., 2017; Pinzón-Arenas et al., 2019; Qi et al., 2019; Zhang et al., 2019;
Asif et al., 2020) and force myography (FMG) (Islam and Bai, 2019; Xiao and Menon, 2019,
2020) have been proposed. Leonardis et al. (2015) used EMG to control a hand exoskeleton for
bilateral rehabilitation. Here, a paretic hand was provided with grasping assistance by estimating
the grasping force of the non-paretic hand. In another work (Lu et al., 2019), pattern-recognition-
based hand exoskeleton control was proposed for spinal cord injury patients. An FMG-based hand
gesture classification method was proposed to control a hand prosthetic device in Cho et al. (2016).
In total, 10 hand grips were classified using a linear discriminant analysis technique. A high-density
force myography-based hand and wrist gesture classification approach was proposed by Radmand
et al. (2016). It was shown that for static hand postures 0.33% RMSE is achieved. While variation
in upper limb position reduces the accuracy, better performance can be achieved by introducing
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limb position variation in training protocol. Several other
works on force estimation and pattern-recognition-based hand
exoskeleton control have also been reported (Wege and
Zimmermann, 2007; Rasouli et al., 2016; Ferigo et al., 2017;
Secciani et al., 2019; Arteaga et al., 2020).

In all of the reported works, methods to control a hand
exoskeleton are limited to either pattern recognition or force
estimation. Furthermore, in these methods machine learning and
deep leaning techniques are used that requires large training
datasets to achieve good classification/estimation accuracy.

In this work we develop a new sensing method for both
pattern recognition and force estimation using FMG. A multi-
mode task detection approach, i.e., motion classification and
grasp force estimation, is proposed for controlling a hand
exoskeleton. In this method, four hand motion states are
classified i.e., rest, open, close, and grasp. The classification
algorithm is based on threshold approach and requires a small
training dataset. Once the grasp is detected, the control mode
is switched to grasp assistance. This is achieved by virtue of two
sensor bands built with FSRs, which can detect muscle activities
conveniently and effectively. In terms of its sensingmethod, FMG
has exhibited a better performance than EMG in classification
and estimation tasks considering accuracy, repeatability, and cost
(Ravindra and Castellini, 2014; Jiang et al., 2017). Moreover,
unlike EMG, FMG is not affected by skin conditions and has a
simple electronics interface.

This paper is organized as follows. The design and
implementation of the sensor band and exoskeleton control
strategy are described in section 2. Section 3 presents the
data processing and algorithm design for grasp detection and
assistance. Experimental setup and testing results are described
in section 4. Discussion on the developed method is presented in
section 5. The work is concluded in section 6.

2. MATERIALS AND METHODS

In this section, a methodology to detect hand motions i.e.,
rest, open, close, and grasp is described. Sensor bands, a hand
exoskeleton, and control methods are also presented.

2.1. Methodology
In this work, four handmotion states are classified, i.e., rest, open,
close, and grasp. The last three motion states are classified as
dynamic states, whereas rest is identified as a static hand state in
any posture, e.g., keeping the hand fully opened/closed or holding
an object in a fixed posture.

In object grasping, fingers have to be flexed. During flexion,
the muscle belly shortens in length and contracts toward the
side of the elbow joint, which is referred as isotonic muscle
contraction. As the object comes into contact with the hand,
muscle shortening stops, and an isometric contraction state
is initiated. In this state the muscle belly along the forearm
contracts as long as the force applied to hold an object reaches
the steady state.

In this work contraction states and the transition between
them, i.e., isotonic and isometric, are measured through FMG,
using sensor bands built with FSR sensors. In this method,

normal forces caused by muscle contraction and applied to the
sensor band, hereafter called muscle contraction-induced (MCI)
force, are measured. Flexor digitorum profundus and flexor
digitorum superficialis are the prime muscles that govern fingers
flexion to close the hand. During hand closing movement, the
length of these muscle shortens and they contract toward elbow
joint. MCI force near the elbow will therefore increase, while it
will decrease near the wrist joint. As soon as the object is grasped,
muscles stop shortening and isometric contraction takes over. In
this case, MCI forces over the muscle belly will increase. This
principle can be expanded further to explain hand opening task.
In hand opening the object is ungrasped, MCI force on both
ends of the forearm will decrease. On the other hand, as the
object is released and the fingers are further extended, MCI force
measured near the elbow will decrease, while the force measured
near wrist will increase. From these changes of MCI force, hand
motion states can be determined with certain algorithms.

2.2. Sensor Band
The aforementioned hand motion detection relies on an effective
and convenient method to detect MCI forces. To this end, two
sensor bands are constructed at Aalborg University exoskeleton
lab, as shown in Figure 1A.

The sensor bands are designed to be placed on the forearm,
as shown in Figure 1B. One is placed near the elbow joint. This
band, referred to as SBe, is comprised of eight FSR sensors. The
other band is placed near wrist joint, referred to as SBw, which
has an array of four FSR sensors embedded. The placements of
FSR sensors inside the sensor bands are shown in Figure 1A. All
FSR sensors are FSR-402, developed by Interlink electronics, and
have the capability of measuring 0.1–10 N. More information on
the construction of sensor bands can be found in Islam and Bai
(2019).

2.3. SEM Glove
In this work a soft hand exoskeleton SEM Glove (Nilsson et al.,
2012; Hashida et al., 2019) is used to provide physical grasping
assistance, as shown in Figure 1B. The SEM Glove is equipped
with FSR sensors placed at the middle and index fingertips and
at the thumb. The assistance provided by the exoskeleton can
be measured by these sensors. Moreover, in the SEM Glove’s
own control unit, the assistance level is also controlled using the
same sensor data. The tighter the object is grasped the higher the
assistance level will be. In this work, the assistance level provided
by SEM Glove is controlled through MCI force measured by the
sensor band placed near elbow joint instead of using the SEM
Glove’s own sensors.

2.4. Sensing Data
The sensor bands allow us to collect handmotion data effectively.
An example of a dataset of rest, open, close, and grasp, labeled as
“R,” “O,” “C,” and “G,” respectively, is shown in Figure 2. Isotonic
contraction during opening and closing of hand can be seen in
Figure 2A. Figure 2B shows the data of an object being grasped
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FIGURE 1 | (A) FSR sensors placement inside sensor bands SBw and SBe and (B) SEM Glove and sensor bands placement on forearm.

FIGURE 2 | Net output voltage measured from sensor bands for opening and closing of hand (A) without grasping and (B) grasping an object.

when isometric contraction occurs. The state when the object is
grasped is labeled as “G.”

In the hand opening task, shown in Figure 2B, it can be
seen the sensor amplitude first goes down. This muscle activity
represents loosening of grip on the object. Afterwards, increase in
muscle activity at SBw and decrease in muscle activity at SBe are
observed, which represents fingers extension to open the hand.
In the implementation phase, loosening of grip is treated as a
steady state.

2.5. Multi-Mode Control
In this work, a multi-mode control approach is used to assist in
grasping, which is shown in Figure 3.

The control strategy is divided into two stages i.e., motion
classification and grasp force assistance. Motion classification is
based on a threshold approach. Out of four actions, i.e., rest,
open, close, and grasp, once the algorithm identifies grasp action,
the control mode is shifted to grasp force assistance. In this mode
a proportional control is implemented, where the assistance force
is determined using MCI force measured through SBe.

3. DATA PROCESSING

3.1. Sensor Calibration
The FSR sensors in the two sensor bands are interfaced with a
non-inverting amplifier. The output voltage of the amplifier is
thus given by the following equation:

Vout = (1+
Rref

Rfsr
)Vin (1)

FIGURE 3 | Flow chart of multi-mode control method.

Here, Vout is the output voltage of the amplifier, Vin is the input
voltage applied to positive terminal of the amplifier, Rref is the
reference resistance, and Rfsr represents the FSR resistance, which
varies with force applied on it.

With the amplifier designed, it is possible to change the range
of force measured by FSR. This is done either by changing the
reference resistance Rref or input voltage Vin. In our design, the
reference resistance is fixed to 100 kohm. We therefore adjust the
input voltage Vin through a DAC port from micro-controller for
this purpose, which is a task of sensor calibration.
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FIGURE 4 | Gestures used in calibration and training stage. (A) open hand gesture to calibrate SBw, (B) close hand gesture to calibrate SBe, and (C) rest state

gesture to collect data for threshold determination.

FIGURE 5 | FSR data for hand closing gesture (A) before and (B) after calibration.

In the calibration stage, input voltage Vin is adjusted so that
at least three of the FSR sensors from both SBe and SBw have
reached the maximum voltage limit. In this way, the sensor bands
can have high resolution in all detections.

During calibration of SBw, the subject is asked to keep the
hand open, as shown in Figure 4A. This posture initiates the
calibration procedure. An automated program checks the sensors
outputs above threshold level. If the number is less than three,
input voltage Vin is increased gradually until the condition is
fulfilled, i.e., at least three sensors are above threshold limit.
Similar procedure is followed for the calibration of SBe but for
the close hand gesture, as shown in Figure 4B, to complete the
calibration. In the current setup it is set to 1.5 V.

An example dataset of the calibration stage is shown in
Figure 5. This dataset represents the task of hand closing
from fully opened state. Figure 5A is the dataset collected
before calibration and Figure 5B is the dataset collected
after calibration.

The improvement in signal resolution, ν, is computed by
taking the ratio of change in signal amplitude, from open to close
hand gesture, to the standard deviation of signal value during the
steady state condition. Mathematically it is given as,

ν =
|µ(VO)− µ(VC)|

max(σ (VO), σ (VC))
(2)

Here, VO and VC represent the net voltage measured from the
sensor bands for open hand and close hand gestures respectively,

TABLE 1 | Resolution measured before and after calibration.

Sensor band
Resolution ν

% increase

Without calibration With calibration

SBw 27.88 60.13 221

SBe 27.94 61.74 222

and µ and σ are the mean and standard deviation respectively.
The results obtained through aforementioned equation are
provided in Table 1. The results clearly show that the resolution
of both sensor bands is increased significantly, more than two
times, after calibration.

3.2. Features Selection
While grasping an object, sensor readings highly depend on the
shape and weight of the object. Moreover, donning and doffing
of the sensor band also affects the sensor response. Developing a
threshold- or machine-learning-based task-detection algorithm
will require a large amount of data if the signal amplitude or it’s
RMS value is used as the input feature. It is noted that when a
user takes off the sensor band and puts it back on, it is desirable
that the sensor band has to be placed exactly at the same place
and with the same tightness, but this is very challenging. All these
factors will affect the classification performance.

With experiments, it is observed that the feature that gives
consistent results with less deviation is slope. This feature
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represents the change in signal amplitude w.r.t time. An example
dataset of grasping different shape and weight objects is shown
in Figure 6. A grasping dataset for each object is represented in
3s windows. From time 0 to 3, 3 to 6, and 6 to 9 s objects A, B,
and C are grasped sequentially, as shown in Figure 8. From 9 to
18 s a dumbbell bar is grasped three times with different weight
hanged on the sides of it. The weights of the dumbbells, applied
from t = 9 to 12, 12 to 15, and 15 to 18 s were 1.2, 2.3, and
3.4 kg, respectively. Data sessions from 0 to 9 and from 9 to 18
s were recorded separately. It can be seen from Figure 6A that
there is big variation in FSR reading, as it depends on the shape
and weight of the object. However, if we look at the slope feature
in Figure 6B, a similar pattern but with different peaks can be
observed. Initially, fingers are flexed therefore we see opposite
slopes for the FSR sensors placed near elbow and wrist joint. As
soon as an object is grasped, positive slopes for both sensor bands
are observed. By carefully selecting the threshold value, grasp
action can be detected very effectively. In this work we therefore
selected slope feature for detection of hand motion.

3.3. Features Extraction
Two features are extracted from raw sensor data, i.e., root mean
square (RMS) and slopes. RMS from raw sensor data is obtained
using a 150 ms window in which 100 ms is non-overlapping and
50 ms is overlapping from previous window. After calculating
RMS values for each FSR sensor, slopes are obtained using the
following equation:

κ =
Ri − Ri−1

tws
(3)

Here, κ represents the slope feature, Ri represents the newest
sample of RMS data, and tws is the window time to
extract features.

3.4. Threshold Determination
In this method each state, i.e., rest, open, close, and grasp, is
identified using a threshold-based classification approach. To
determine the threshold limits, subject is asked to hold rest state,
as shown in Figure 4C, for 5 s. Raw data obtained in this task
is post processed to obtain slopes, which are further used to
determine threshold limits.

After the computation of slope feature, the minimum and
maximum slope value for each FSR was computed:

ξmax
w = max(1w), ξmin

w = min(1w) (4)

ξmax
e = max(1e), ξmin

e = min(1e) (5)

with

1w = [κ1
w ... κN

w ], 1e = [κ1
e ... κM

e ] (6)

Here, N andM are the numbers of FSR sensors embedded inside
the sensor bands SBw and SBe, respectively. ξ

min
w and ξmax

w are row
matrices of order 1 × N and contain minimum and maximum
slope values of SBw sensor band data computed for rest state.
ξmin
e and ξmax

e are also row matrices of order 1 ×M and contain

minimum and maximum slope values of SBe sensor band data.
1w is a I × N matrix, where I is the number of slope feature
samples computed from rest gesture data, and 1e is also a matrix
but of I ×M dimension.

Using (4) and (5), threshold conditions to detect each task are
given as

HR = 1r
w <= kξmax

w & 1r
e <= kξmax

e (7)

HO = 1r
w > kξmax

w & 1r
e < kξmin

e (8)

HC = 1r
w < kξmin

w & 1r
e > kξmax

e (9)

HG = 1r
w > kξmax

w & 1r
e > kξmax

e (10)

Here, HR, HO, HC, and HG are the thresholds for rest, open,
close, and grasp task detection. 1r

w and 1r
e are row matrices that

are computed during real-time testing. The information in these
matrices is in same order as in 1w and 1e.

3.5. Grasp Force Estimation
During the motion classification stage, if grasp action is detected,
the control method is switched to grasp assistance. In this mode,
we need to determine and control the grasp assistance provided
by the SEM Glove. In this work, it is determined using the
following equation:

u = (SBrms
e − LBe)K (11)

Here, u is the control input relayed to the SEM Glove, K is the
proportional gain and SBrms

e is the net FSR output measured from
the sensor band SBe. LBe is the net FSR output measured at the
time of grasp detection and is given by following equation:

LBe = mean(Rie,R
i−1
e ) (12)

Here, i is the sample when grasp action was detected, and i − 1
represents the sample before.

3.6. Performance Analysis
The performance of the task detection technique is analyzed with
a group of four parameters, namely, precision, recall, F1-score,
and accuracy (Powers, 2011). Mathematically, these parameters
are calculated by

Ppre =
NTP

NTP + NFP
(13)

Prec =
NTP

NTP + NFN
(14)

PF1 = 2 ·
Ppre · Prec

Ppre + Prec
(15)

Pacc =
NTP + NTN

NTP + NTN + NFP + NFN
(16)
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FIGURE 6 | FSR feature dataset for grasping objects of different sizes and weights. (A) RMS and (B) slope.

FIGURE 7 | Classification of TP, TN, FP, and FN samples.

Here, NTP, NTN, NFP, and NFN represent number of samples that
are true positive, true negative, false positive, and false negative,
respectively, as illustrated in Figure 7. Ppre, Prec, PF1, and Pacc are
the performance measures that represents precision, recall, F1-
score, and accuracy, respectively. Of these measures, precision,
recall, and F1-score are defined in the range of 0–1, whereas,
accuracy is expressed in percentage.

Using these four parameters we can evaluate the classification
performance comprehensively and in an unbiased manner. From
mathematical representations, we can see that the fundamental
difference between accuracy and other parameters is TN samples.
In our designed experiment the number of samples in each class is
not consistent. In such cases precision and recall can also provide
very useful insight into classification performance. Taking the
example of rest task, precision calculates from the total number
of samples that are classified as rest how many were actually
rest. Meanwhile, recall calculates, from the number of times a
user was instructed to keep rest state, how many samples were
correctly identified as rest state. Finally, the F1-score tells the
balance between precision and recall.

4. EXPERIMENTS AND RESULTS

With the developed method, three experiments are performed,
i.e., task identification, influence of sensor placement, and
grasping assistance. Details and results of each task are provided
in forthcoming sections.

4.1. Task Identification
Six subjects participated in this experiment. All of them were
healthy, right-handed, and aged between 25 and 35 years. Ethical

FIGURE 8 | Objects of different shape and weight that are grasped during

task identification experiment, (A) empty cup, (B) aluminum bar, and (C) solid

metal cylinder.

approval for these experiments was obtained from an ethical
committee, Region Nordjylland, Denmark.

In this experiment, performance measures, i.e., precision,
recall, F1-score, and accuracy, are computed to evaluate the
classification performance. For this purpose, an experiment was
designed where a subject performs hand opening and closing,
first without any object and afterwards with three objects, as
shown in Figure 8, of different attributes.

The protocol of the experiment is as follows: the subject
is instructed to sit in a chair with their hands resting on the
table beside the objects. The first task the subject performs is
calibration, as explained in section 3.1, which is followed by a
rest state gesture, as shown in Figure 4C, which is held for 5 s
to determine the threshold limits. Afterwards, real-time testing
tasks are performed in which, for open and close tasks, the subject
lifts his/her hand from the table and keeps it in open state, as
shown in Figure 4A. The subject closes his/her hand when the
instruction is shown on the screen and opens it up when the
instruction to open is shown on the screen again. The subject
is instructed that an open hand posture should be maintained
throughout the experiment. For the grasp task, hand is lifted
from the table and kept open, as shown in Figure 4A. When
the grasp instruction is shown on the screen, subject grasps the
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FIGURE 9 | Tasks performed during (A) the whole span of time, (B) opening and closing of the hand, and (C) grasping object B.

object and slightly lifts it from the table with a small clearance of
approximately 1.0 cm.

The results of the experiment are shown in Figures 9–12
and summarized in Table 2. Figure 9 shows the experimental
results for one of the subjects. Figure 9A shows the reference
and predicted tasks. In the first 80 s of the experiment, the
subject is instructed to perform the rest, open, and close
tasks. From t = 80 to 155, t = 155 to 220, and t = 220
to 285 s, the subject is instructed to grasp objects A, B,
and C sequentially. In this figure, the solid blue line shows
the task to be performed and the dotted red line the result
predicted by a classifier when a subject performs that particular
task. A zoomed-in view of open and close tasks is shown
in Figure 9B and of grasping task for object B is shown in
Figure 9C.

Single instances of abovementioned tasks are shown in
Figure 10. Figure 10A is the result of an open and close task.
The results show that, initially, the hand was in the close state;
as the subject opens the hand, a drop in signal amplitude near the
elbow and an increase in signal amplitude near the wrist joint is
observed. The classifier is able to detect that the hand is opened
as the movement is performed. Afterwards, when the hand is
closed, the inverse muscle activity pattern can be seen, and, as

the movement is performed, the classifier is again able to detect
that the hand is closed.

The instances of grasping object A, B, and C are shown in
Figures 10B–D, respectively. Data is presented in the same order
as represented for Figure 10A. Initially, the subject is holding the
object. As the hand is opened, it is seen from the FSR readings
that their associated muscle contraction near the wrist increases,
and contraction near elbow is decreased. From the opened hand
state when the subject is instructed to grasp the object, it can be
seen that classifier first detects that the hand is closing. It can also
be seen from the FSR readings that it is increasing near the elbow
and decreasing near the wrist, indicating hand closing. As the
object is grasped, an increase in readings on both sensor bands
is seen, and the classifier correctly detects that an object is being
grasped. These results show that the threshold-based classifier is
able to distinguish between all four motion states, i.e., rest/steady,
open, close, and grasp, accurately.

Results in terms of precision, recall, F1-score, and accuracy are
shown in Figures 11, 12 and Table 2. In the figures, the error bar
represents the performance deviation within the tasks, i.e., rest,
open, close, and grasp.

The average performance values w.r.t each task are shown
in Figure 12. Considering the rest state, it can be seen that
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FIGURE 10 | Results of single instances (A) open/close, grasping objects (B) A, (C) B, and (D) C, shown in Figure 8.

average recall value is 0.98, which reveals that only 2% of the
rest states were not detected. It is to be noted that rest state
was held in all postures, i.e., open hand, close hand, and grasp.

In the context of real-time operation, this result is very critical.
Any miss-classification can cause undesirable movement/action,
especially if subject is holding an object. The results show that the
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FIGURE 11 | Results calculated for each subject individually (A) precision, (B) recall, (C) F1-score, and (D) accuracy.

FIGURE 12 | Average results of each performance measure w.r.t each task. Accuracy plot is shown normalized between 0 and 1.

algorithm is highly accurate in detecting the rest state. Precision
for detecting rest state is equal to 0.96, which shows that in only
few cases where subject was performing another task (open, close,
or grasp), classifier detected it as rest state.

For open and close tasks, it can be seen that recall and
precision scores are very similar. For grasp, we can see that
precision (0.97) is higher than recall (0.94). From precision,
we can deduce that, of all the tasks that were classified as
grasp, only 3% of them were miss-classifications. Meanwhile,
the recall result tells us that 6% of the times when a subject
grasped an object, the classifier did not detect it as grasp. To
improve precision, the threshold level should be raised, but this

will affect the performance of recall. Raising the threshold will
have the opposite impact on other performances. It will improve
the recall but might reduce the precision. With the current
setup, classification performance of the algorithm depends on
the trade-off between recall and precision. Depending on the
applications, threshold levels can be tuned to get better results.
The performance can be improved by incorporating more FSR
sensors or by using more features for threshold determination.

4.2. Influence of Sensor Placement
In this experiment, the effect of sensor placement on
motion detection is studied. To achieve this objective
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sensor bands are placed over the forearm in three different
orientations/placements, as shown in Figure 13. In placement
A, FSR1 from sensor bands SBe and SBw is aligned with
brachioradialis and near insertion of brachioradialis. In
placement B, it is aligned with brachioradialis and flexor carpi
ulnaris muscles. Finally, in placement C, it is aligned with
palmaris longus and near the insertion of brachioradialis.

Tasks performed for each placement of sensor bands are
as follows:

• Open and close of hand without grasping any object
• Grasping object C as shown in Figure 8.

Each task is performed 10 times under same conditions as
explained in section 4.1. The results of each experiment are
shown in Figure 14, where Figures 14A–C are the results of
placement A, B, and C, respectively, by sensor band orientation.
In each sub-figure of Figure 14, the first figure is the FSR sensors
data from the sensor band placed near the wrist, and the second
is the data of FSR sensors placed near the elbow, and the third
figure displays the reference and predicted tasks.

Even though the raw data is not similar for each sensor
placement, the developed method is able to detect all four hand
gestures accurately. The performance of task detection is less
affected. As seen from predicted results, rest state, hand opening,
closing, and grasping achieved the average accuracies of 98.15,
99.24, 100, and 98.16% for all three placements.

4.3. Grasping Assistance
In this work, grasping assistance is provided using SEM
Glove where the desired assistance level is regulated by
implementing a proportional control scheme. The block

TABLE 2 | Average results of performance measures calculated for each subject.

Performance

measures

Precision Recall F1-score Accuracy %

Subject 1 0.98 ± 0.013 0.99 ± 0.012 0.99 ± 0.010 99 ± 0.5

Subject 2 0.98 ± 0.019 0.97 ± 0.029 0.97 ± 0.011 99 ± 0.9

Subject 3 0.99 ± 0.012 0.98 ± 0.030 0.99 ± 0.014 99 ± 0.6

Subject 4 0.99 ± 0.029 0.96 ± 0.044 0.97 ± 0.019 99 ± 1.0

Subject 5 0.91 ± 0.063 0.92 ± 0.030 0.92 ± 0.032 96 ± 1.6

Subject 6 0.97 ± 0.024 0.98 ± 0.007 0.97 ± 0.013 99 ± 0.7

Average 0.97 ± 0.029 0.97 ± 0.024 0.97 ± 0.027 98 ± 1.3

diagram of the control scheme is shown in Figure 15.
Referring to Equation (11), the input of the proportional
control is the average MCI force measured by the sensor
band placed near the elbow, and the output u is then
relayed to the exoskeleton. Moreover, grasping assistance
provided by SEM Glove is further validated by measuring the
grasping force through force sensors embedded inside SEM
Glove exoskeleton.

In this experiment the sensor bands are worn on
right forearm and exoskeleton is worn on the left hand.
Furthermore, three different payloads, i.e., 1.2, 2.3, and
3.4 kg, applied from t = 0 to 20, t = 20 to 40, and t
= 40 to 60 s, respectively, are being grasped for three
times each. The results of the experiment are shown in
Figure 16.

Figure 16A shows the task predicted by the classifier. Net
MCI force measured by the SBe sensor band is shown in
Figure 16B. The resulting grasping force measured from SEM
Glove sensors is shown in Figure 16C. Whereas, the single
instance of grasp task is shown in Figure 17. With the detection
of a grasping task and MCI force, assistance is provided by the
exoskeleton, which is evident from the sensor reading of the
SEM Glove.

If we look closely at Figures 16B,C, we can see that the
MCI forces are increasing with the payload grasped by the
subject. It is also seen that the forces read by the sensors
placed at the middle finger and thumb are increasing with
the payload. These are the grasping forces that are caused
by the physical interaction between fingertips and the object.
When assistance provided by the exoskeleton is increased, the
exoskeleton will help to grasp the object tightly and in turn
grasping force measured the sensors, placed in finger tips, will
increase. This validates that with the increase in MCI force,
shown in Figure 16B, exoskeleton is able to provide the grasping
assistance accordingly.

5. DISCUSSION

In this work a novel method is developed for hand motion
detection and for the provision of assistance in carrying out an
object grasping task. We also addressed the challenge of data
collection for training and proposed an alternative solution for it.

The new method is advantageous in reducing the complexity
and increasing the usability of the system for a longer period.
In an AI-based pattern recognition method, obtaining a correct

FIGURE 13 | Three placements of sensor bands, (A) two FSR1 from SBe and SBw are aligned with brachioradialis and near insertion of brachioradialis, (B) aligned

with brachioradialis and flexor carpi ulnaris, (C) aligned with palmaris longus and near insertion of brachioradialis.
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FIGURE 14 | Hand motion detection with three placements of the sensor bands, (A) with placement A, (B) with placement B, (C) with placement C.

and sufficient training dataset is one of the major challenges.
Moreover, even if the training data is obtained correctly there
still exists another challenge of reusing it from time to time. The
reason is due to the placement of sensor at the exact location and
change in muscle activity levels. The method proposed in this

work effectively addresses these challenges. The method requires
sensor calibration and rest state data of the hand. Afterwards, the
system can detect the hand motions based on change in activity
level. Additionally, the requirement on placing sensor band at
exact location is mitigated. Moreover, the calibration procedure
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FIGURE 15 | Block diagram of the exoskeleton control.

FIGURE 16 | Hand exoskeleton control results: (A) task identified, (B) MCI force measured from sensor band placed near elbow joint, and (C) assistance force

provided by SEM Glove.

increases the sensor’s sensitivity and solves the problem of sensor
resolution if the band tightness is changed from one day to
the next.

Another advantage of this method is the dual working modes
of the sensor band. Besides motion recognition, the sensor band
is also used to control assistance level in grasping an object, which
is proportional to the MCI force measured.

The results in this work are significant for physical assistance
in workplaces. For a workplace environment, it is critical for
any solution that it be accurate, robust, involving less training,
and is not sensitive to environmental conditions. With these
requirements in mind, comparing our method to other detection
methods like sEMG, which is highly prone to noise that is
caused by sensor placement, orientation, and skin conditions, our
method is less affected by skin condition and can be worn without
very exact orientation and placement. Moreover, our developed
method has the advantage of using small training datasets. In
Arteaga et al. (2020) and Pinzón-Arenas et al. (2019), each gesture
was repeated for more than 10 times. Whereas, in our method
beside calibration, rest data is recorded for only one time. By
this advantage the user can take off the device and put it back
on conveniently without worrying about its performance.

This novel method using FSR sensor bands offers a robust
and accurate alternative for human-robot interaction. The
works presented in this paper and in previous studies (Islam
et al., 2018; Islam and Bai, 2019) have shown that FSR-based
sensor bands can be applied for control of upper-body assistive
exoskeletons in different ways. Beside these, sensor bands can
be applied for other types of applications of upper-limb and
lower-limb exoskeletons. Moreover, this method can be used to
assess the muscle activities for medical purposes and design of
control strategies.

Besides these advantages, some limitations of the method are
noted. External contact with the sensor band can change the
sensor readings, which can result in incorrect motion detection.
Hand motion speed is also a factor that can lead to miss-
classification. If the motion is performed at slow speed, the
algorithm might not be able to detect the task. These challenges
can be addressed by either placing the FSR array outside of
the sensor band or by implementing robust AI techniques for
fault detection. Movement speed challenge can be addressed
by increasing the window size during features extraction stage.
However, increasing the window size can introduce delay in
exoskeleton response.
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FIGURE 17 | History of task performed, average MCI forces, and grasping forces measured by SEM Glove.

6. CONCLUSIONS

This work is aimed at developing an effective and convenient
method to detect hand motions, i.e., rest, open, close, and grasp,
using FSR-based sensor bands, which is further used to control
hand exoskeleton and provide assistance in grasping task. The
objectives are achieved by developing a threshold-based task
detection algorithm to determine the hand motion, which is
based on the change in MCI forces. Moreover, with the detection
of grasping task a proportional force control is also implemented
to provide assistance through a soft hand exoskeleton.

The contribution of this work is to experimentally validate
whether the sensor bands can be used to detect hand motion
and to implement proportional assistance control. Detection of
hand motion with the requirement of minimal training data
and its validation with testing on multiple subjects are other
contributions of this work. The results showed that the developed
method can detect each task with high precision, recall, and
accuracy. Furthermore, experimental verification of proportional
assistance control with SEM Glove in a grasping task is another
contribution of this work. The results have shown that the
developed method can be used with soft exoskeleton to assist
workers in grasping tasks.

In this work, experiments were performed in a controlled
environment. In order to test the method for daily routine
activities, our future work will focus on sensor fusion techniques
to improve robustness against disturbances, which can be caused
by other limb movements. Furthermore, the method can be
extended to detect other hand gestures and elbow and lower
extremity motions.
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