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Recently, with the increased number of robots entering numerous manufacturing fields,

a considerable wealth of literature has appeared on the theme of physical human-robot

interaction using data from proprioceptive sensors (motor or/and load side encoders).

Most of the studies have then the accurate dynamic model of a robot for granted. In

practice, however, model identification and observer design proceeds collision detection.

To the best of our knowledge, no previous study has systematically investigated

each aspect underlying physical human-robot interaction and the relationship between

those aspects. In this paper, we bridge this gap by first reviewing the literature on

model identification, disturbance estimation and collision detection, and discussing the

relationship between the three, then by examining the practical sides of model-based

collision detection on a case study conducted on UR10e. We show that the model

identification step is critical for accurate collision detection, while the choice of the

observer should be mostly based on computation time and the simplicity and flexibility

of tuning. It is hoped that this study can serve as a roadmap to equip industrial robots

with basic physical human-robot interaction capabilities.

Keywords: dynamic identification, collision detection, disturbance observer, human-robot interaction, observer

design, physical human-robot interaction

1. INTRODUCTION

With the advancement and proliferation of robotics, particularly in the manufacturing industry,
human-robot interaction (HRI) is becoming more complex. The safe collaboration of humans and
robots is being studied within the physical human-robot interaction (pHRI) field, which considers
such collaboration to be based upon the ability of robots to sense their environment. In its simplest
form pHRI boils down to monitoring robots’ collisions with the environment or humans and
stopping it if a collision has been detected. A more sophisticated realization of pHRI in terms of
software should include collision localization (Haddadin et al., 2017; Mikhel et al., 2019), collision
reaction strategies (Haddadin et al., 2008), relevant control techniques such as force/impedance
control, and real-time motion planning (De Santis et al., 2008). In this paper, we focus on a simple
form of pHRI which can be used independently—in situations when a robot is performing a task
and a human happens to be in its way, or in situations when a human, by deliberately coming into
contact with a robot, can prevent it from hurting itself, others, or damage the environment—or as
a part of more sophisticated pHRI used for supportive, collaborative, or cooperative interactions
(Haddadin and Croft, 2016).
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There are two main approaches to collision detection: model-
free and model-based. Model-free methods usually compare
torques/currents needed to execute the trajectory with real
torques applied to the robot, and if a collision occurs, a certain
threshold is exceeded (Takakura et al., 1989). These methods
require access to the trajectory planner and controller of the
robot; however, such access is not available to the users of
the industrial manipulators. On the other hand, model-based
methods use the dynamic model of a robot to estimate the
disturbance torques using observers, and, based on the value of
such torques, conclude the presence of a collision.

Most studies on model-based pHRI focus primarily on
collision detection schemes or external torque estimation where
they assume that the real model of the robot is known
(Haddadin et al., 2017; Garofalo et al., 2019). However, systematic
treatment of all three aspects of basic pHRI–model identification,
observer design, and collision detection–and the relationship
between the three has not been addressed yet. This study
aims to bridge this gap and put forward a clear roadmap for
enabling industrial robots with basic pHRI capabilities. The
remaining part of the paper proceeds as follows: in the Model
Identification subsection we outline the main steps needed for
accurate dynamic parameters estimation; for each step we review
relevant literature and provide practical advice. Compared to
Wu et al. (2010) our literature review includes important recent
contributions and is primarily intended for practitioners. In
the Disturbance Estimation subsection, we review and compare
several algorithms in terms of computation time as well as
simplicity and flexibility of tuning. Our paper reviews alternative
observers to the well-established pHRI community momentum
observer and provides a new perspective of the momentum
observer. In the Collision Detection subsection, we review both
classical and recently proposed collision detection algorithms and
discuss their advantages and limitations. Finally, we demonstrate
the roadmap on a case study that involved manipulator UR10e.

2. THEORETICAL PRELIMINARIES

Industrial manipulators might be subject to external disturbances
due to collisions or contact with the environment. Usually,
industrial manipulators are supplied with a controller and a
trajectory planner. Themajority of suchmanipulators allow users
to input high-level tasks andmeasure torques/currents, positions,
and velocities; however, such robots give users access to neither
control nor the output of the trajectory planner. Given everything
mentioned above, a question arises as to the most efficient way
of detecting collisions of robot with their environment. In this
section, we answer this question by consecutively discussing
three main cornerstones that constitute model-based collision
detection: model identification, observation, and detection.

2.1. Model Identification
An accurate dynamic model is the paramount element of any
model-based collision detection algorithm. The manipulator
dynamics equation generally used is

M(q)q̈+ C(q, q̇)q̇+ F(q̇)+ g(q) = τ + τ ext , (1)

where q, q̇, q̈ ∈ R
n are the vectors of generalized coordinates,

velocities, and acceleration, respectively; M(q) ∈ R
n×n is an

inertia matrix; C(q, q̇) ∈ R
n×n is a matrix of Coriolis and

centrifugal forces; F(q̇) ∈ R
n and g(q) ∈ R

n are the vectors
of friction and gravitational torques; τ is the vector of the
actuation torques; τ ext is the vector of the torques induced at the
joints by the contact forces, in the absence of contact/collision
with the environment τ ext = 0 (Siciliano et al., 2010). The
model requires the exact knowledge of the kinematic and
dynamic parameters. In real life, kinematic parameters are known
(because of manufacturing standards and calibration of robots
before shipping) and provided by manufacturers. However, the
latter usually do not provide dynamic parameters, with rare
exceptions like, for example, Universal Robots that provide
CAD models. Even with the CAD model the torque prediction
lacks accuracy because it contains neither friction nor motor
inertia parameters. A more accurate model can be obtained
by performing identification. In this subsection, we provide an
outline of the identification procedure.

The process of the identification of the dynamic parameters
of mechanical systems can be divided into seven main steps
(Swevers et al., 2007):

1. derivation of the dynamic model in regressor form
2. computation of base inertial parameters
3. trajectory planning
4. experiment conducting and collecting data
5. data processing
6. parameter estimation
7. validation

Identification starts by deriving the dynamic model of a
manipulator moving in free space (τ ext = 0) in a linear
regressor form

Y(q, q̇, q̈)π = τ , (2)

where Y(q, q̇, q̈) ∈ R
n×nπ is the regressor matrix, that can be

obtained symbolically or numerically using recursive Lagrange-
Euler formulation (Siciliano et al., 2010), modified recursive
Newton-Euler formulation (Atkeson et al., 1986), or screw theory
formulation (Garofalo et al., 2013), and π ∈ R

nπ is the vector of
dynamic parameters (standard parameters). It consists of inertial
parameters of each link modeled as a rigid body, an actuator,
and friction parameters of each joint. The inertial parameters of
a link include massmi, the first moment of inertia hi = miri (the
product of a mass and the position of the center of mass), and
inertia tensor with respect to the origin of the link Ii. Friction
parameters are the coefficient of the Coloumb friction fc, the
coefficient of the viscous friction fv, and an offset due to motor
current offset fo. Actuator parameter is reflected rotor inertia Ji
[If servomotor inertia Im,i and the gear ratio of the transmission
kri are known, then reflected rotor inertia can be computed as
Ji = Im,i/k

2
ri and the components of the regressor corresponding

to reflected inertia should be moved to the right-hand side of
Equation (2)]. In total, the vector of dynamic parameters for each
link is

Frontiers in Robotics and AI | www.frontiersin.org 2 November 2020 | Volume 7 | Article 571574

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Mamedov and Mikhel Model-Based Collision Detection

π i =
[

Iixx Iixy Iixz Iiyy Iiyz Iizz hTi mi Ji f
i
v f ic f io

]T
∈ R

14. (3)

Remark. More advanced friction models, for example, models with
the Stribeck effect are not linear in parameters, yield a non-linear
regressor matrix, that significantly complicates the identification
process. However, if the linear friction model does not accurately
describe friction torques, then it can be replaced by a non-linear
model after identifying all other parameters. The non-linear model
is usually identified for each link separately using non-linear least
squares (Gaz et al., 2018).

Not all the dynamic parameters enter the dynamic equation
of the robot independently; some of them do not enter at
all, some of them enter in linear combinations with other
parameters. Due to that, the regressor matrix Y(·) has zero
or linearly dependent columns leading to singularity which
causes problems during trajectory planning and parameter
estimation. Several methods have been proposed to overcome
these limitations by deriving a set of identifiable parameters
called base parameters πb and corresponding base regressor
matrix Yb(·). Gautier and Khalil (1990) proposed an analytical
method based on the recursive properties of robot energy.
However, a year later Gautier (1991) proposed numerical
methods based on QR- and SVD- decompositions. The analytical
method was derived using Denavit–Hartenberg convention
and it employs heuristics for determining linear dependence
or independence of actuator parameters. Numerical methods
(especially QR) are easy to implement and not limited to a
specific convention, thus they should be the first choice when
approaching parameter reduction.

The choice of trajectory significantly affects the accuracy
of identification. For example, random point-to-point motion
will most probably not lead to accurate parameter estimates
because of the lack of property called persistence of excitation
(Anderson, 1982). To find a persistently exciting trajectory it is
necessary to carry out trajectory planning that is usually posed
as an optimization problem (non-linear program) that aims to
find q∗(t), q̇∗(t), and q̈∗(t) such that chosen objective function
associated with persistence of excitation is minimized. The most
commonly used objective functions are condition number of
the observation matrix [cond(Wb), for the definition of Wb

see Equation (5)] or log-determinant of the moment matrix
(log(det(WT

b
Wb))) (Hollerbach et al., 2016). For industrial

manipulators, several families of trajectories were proposed in
the literature: fifth-order polynomials (Atkeson et al., 1986),
truncated Fourier series (Swevers et al., 1997), and their
combination (Wu et al., 2012). Fifth order polynomials have
fewer parameters to optimize and can guarantee zero velocity
and acceleration in the beginning and at the end of the
trajectory. Periodic trajectories have an advantage in terms of
data processing, as the same periodic trajectory can be executed
several times and the collected data can be averaged. Moreover,
they allow for exact frequency domain differentiation. However,
there is a disadvantage in terms of abrupt change in initial
velocities and accelerations (q̇i(0) 6= 0, q̇i(T) 6= 0, q̈i(0) 6= 0,
q̈i(T) 6= 0), which may cause robot vibration as well as hinder
accurate trajectory tracking. Even in cases when zero initial and

final velocities and accelerations are imposed as constraints of
the optimization problem, the solver struggles to satisfy the
constraints. The addition of a fifth-order polynomial solves this
problem leading to the trajectory in the form

qi(t) =
N

∑

k=1

[

ai,k

ωf k
sin(ωf kt)−

bi,k

ωf k
cos(ωf kt)

]

+
5

∑

i=0

ci,k

(

t − ⌊ t
T
⌋T

)k

, (4)

where wf is the fundamental frequency, N is the number of
harmonics, and ⌊ ⌋ is floor function.

Once trajectory planning has been performed, it is necessary
to execute the trajectory on a real robot in closed-loop and record
currents/torques, generalized positions q(t), and, if available,
generalized velocities q̇(t). After the trajectory execution, the
recorded data should be processed to remove measurement
noise and to reconstruct missing variables from the available
ones. If q̇(t) are measurable, then only accelerations have to
be estimated from velocities; otherwise, velocities have to be
found first based on position measurements. As data processing
is performed offline, the central difference scheme should be
used for a more accurate estimation of derivatives (Hoffman and
Frankel, 2018). However, derivative estimates are noisy even with
a central difference scheme, so they should be filtered. To avoid
introducing delays, non-casual filters (a zero-phase filter) should
be used during filtering (Mitra and Kuo, 2006).

For parameter estimation, it is necessary to calculate
observation matrix Wb(·) and observation vector T from the
collected and processed data as

T =













τ (t1)
...
τ (tk)
...
τ (tn)













, Wb =













Yb

(

q(t1), q̇(t1), q̈(t1)
)

...
Yb

(

q(tk), q̇(tk), q̈(tk)
)

...
Yb

(

q(tn), q̇(tn), q̈(tn)
)













; (5)

then, compute base parameters estimates employing ordinary
least squares

π̂b = (WT
bWb)

−1WT
bT, (6)

which minimizes the squared torque prediction error, i.e., the
cost function J = 1

2 ||T − Wbπb||2. However, Equation (5) does
not guarantee the physical consistency of parameters, thus the
properties of the dynamic model (Siciliano et al., 2010). Since
model-based techniques are extensively used in robotics, and
the properties of dynamic equations are used to prove theorems
and to guarantee convergence of controllers and observers,
several important developments have been made in dynamic
parameter identification in terms of the physical consistency
of parameters. First, Sousa and Cortesão (2014) proposed to
impose linear matrix inequality constraint on kinetic energy,
more specifically—on the generalized inertia matrix of each link
(semi-physical consistency)

[

Ii S(mir
T
i )

S(mir
T
i ) miI

]

≻ 0, (7)
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where S(·) is the operator that maps a 3 × 1 vector into a 3 × 3
skew-symmetric matrix. Then, Wensing et al. (2017) and Sousa
and Cortesao (2019) proposed to impose triangle inequality as
the linear matrix inequality constraint (physical consistency)

[ 1
2 tr(Ii)I − Ii ri

rTi mi

]

≻ 0. (8)

Besides the constraints on inertial parameters of links, it is
possible to impose constraints on other dynamic parameters:
reflected inertia (Ji > 0) and friction (f iv > 0, f ic > 0).
To impose physical or semi–physical consistency constraints
while searching for base parameters, Sousa and Cortesão
(2014) proposed a bijective mapping from the base and
dependent parameters to standard parameters. It does not
require additional computation, rather uses the result of base
parameter calculation.

For some robots, instead of torque measurements, current
measurements are available. In such cases, in addition to π (πb),
it is necessary to estimate drive gains. For that, Gautier and
Briot (2014) proposed to carry out an additional experiment
with a load attached to the end-effector of the robot and use the
extended observation vector T and matrixWbe

T =
[

Iu
Il

]

K , Wbe =
[

Wb 0 0

Wb W lu W lk

]

, (9)

where Iu and Il are current measurements for unloaded and
loaded cases respectively; K is a vector of drive gains; W l =
[

W lu W lk

]

∈ R
10 is the observation matrix of the load,

divided into parts corresponding to unknown and known inertial
parameters. Using Equation (9), it is possible to derive the
dynamics equation in a regression form linear with respect to
unknown parameters

[

0

W lkπ lk

]

=
[

Wb 0 Iu
Wb W lu Il

]





πb

π lu

K



 , (10)

that allows estimating base dynamic parameters, unknown
load inertial parameters, and drive gains, satisfying the (semi)-
physical consistency constraints provided that some of the
parameters of the load π lk are known (at least one), usually it is
mass because it is easier to measure compared with other inertial
parameters. Gautier and Briot (2014) proposed another method
for computing drive gains using total least squares to avoid bias
errors caused by the same q(t), q̈(t), and q̈(t) used in both parts of
Equation (10). However, it is not clear how to impose constraints
in that case; without constraints, such a computation method can
result in negative drive gains.

Remark. For drive gain identification, it is important to choose
a load such that torques for loaded and unloaded trajectories differ.
It can be achieved by choosing a heavy load and attaching it in a
way that is not aligned with the axis of the end-effector.

After the identification of parameters, model validation
should be performed to assess the accuracy of torque prediction
for any arbitrary trajectory executed by the robot. One example of

ametric that can be used tomeasure accuracy is root mean square
for the prediction error. If torque predictions are poor, then steps
3 to 6 should be repeated until the accurate model of the robot
is obtained.

2.2. Disturbance Estimation
Ideally, to implement collision detection, it is necessary to
estimate τ ext , as it is the only indicator of the collision. However,
even with the most recent model identification methods, it is
impossible to reconstruct the exact model of a robot (Equation
1). The most accurate model available is

M̂(q)q̈+ Ĉ(q, q̇)q̇+ F̂(q̇)+ ĝ(q) = τ̂ + τ ext , (11)

with a mismatch between the real model and its estimate
(unmodeled dynamics) being equal to

τum = 1M(q)q̈+ 1C(q, q̇)q̇+ 1F(q̇)+ 1g(q). (12)

Using Equation (12) it is possible to rewrite Equation (11) as

M̂(q)q̈+ Ĉ(q, q̇)q̇+ F̂(q̇)+ ĝ(q) = τ + τ d. (13)

Thus, the parameter that can be estimated is lumped disturbance
τ d = −τum + τ ext . If variables q, q̇, q̈, τ can be
measured, then the vector of disturbance torques can be found
from Equation (13) through straightforward subtraction. In
practice, this approach is hardly applicable, since acceleration
measurements are not available, and estimating them from noisy
velocity measurements through numerical differentiation further
amplifies noise. Therefore, more sophisticated techniques should
be considered that would allow for estimating τ d in absence
of acceleration measurements. In the following two subsections
we review several disturbance observers proposed in the context
of pHRI.

2.2.1. Non-linear Disturbance Observer (NDOB)
Inspired by the disturbance observer for linear systems,
Chen et al. (2000)—first assuming that acceleration
measurements are available—proposed an observer for lumped
disturbance estimation

˙̂τ d = Le, e = (τ d − τ̂ d), (14)

where L ∈ R
n×n is the observer gain matrix. In general, the error

dynamics of the observer is

ė = τ̇ d − Le, (15)

if there is no prior information on τ d, then τ̇ d is set to
zero yielding

ė+ Le = 0. (16)

When L is a constant stable matrix, the estimation error tends
to be zero. However, due to lack of acceleration measurements,
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the authors modified the original observer by introducing an
auxiliary variable z = τ̂ d − ψ(q, q̇) such that

d

dt
ψ(q, q̇) = LM̂(q)q̈, (17)

while the dynamics of z is:

ż = −Lz + L
[

Ĉ(q, q̇)q̇+ F̂(q̇)+ ĝ(q)− τ − ψ(q, q̇)
]

. (18)

(It is obtained by taking the time derivative of z followed by
substituting Equation (14) for ˙̂τ d and Equation (13) for τ d.) The
special choice of ψ(q, q̇) used in modified observer results is the
same error dynamics as the original observer (Equation 14).

The main difficulty in designing NDOB is choosing gain
matrix L and vector ψ(q, q̇). Chen et al. (2000) proposed a design
procedure for planar 2 degrees of freedom (DOF) manipulator,
Nikoobin and Haghighi (2009) extended it to n-DOF planar
manipulators. Later, Mohammadi et al. (2013) extended the
observer to the spatial case, more specifically authors proposed
to choose L and ψ as

ψ(q̇) = X−1q̇, L = X−1M̂(q)−1. (19)

For τ̇ d = 0 using candidate Lyapunov function V =
eTXTM̂(q)Xe they proved that if X is invertible and there exists
positive definite symmetric matrix Ŵ such that X + XT −
XT ˙̂

M(q)X ≥ Ŵ then disturbance estimation error converges
exponentially to zero (Mohammadi et al., 2013, Theorem 1). For
τ̇ d 6= 0 if the rate of change of the lumped disturbance is bounded
i.e., ||τ̇ d|| ≤ κ , κ > 0, it was proven that the estimation error
exponentially converges to a ball of a certain radius (Mohammadi
et al., 2013, Theorem 2). In both cases, to design X the user can
either solve linear matrix inequality

[

Y + YT − ξ I YT

Y Ŵ−1

]

≥ 0, (20)

where Y = X−1, ξ is upper bound of ||Ṁ(q)|| and I is identity
matrix of proper dimension, or use analytical solution for the case
when matrices Y and Ŵ are scaled identity matrices

Y = 0.5(ξ + 2βσ2)I, (21)

where β is minimum convergence rate, σ is upper bound of
inertia matrix (M(q) ≤ σ2I).

2.2.2. Momentum Observer
Another widely used approach for disturbance estimation is
based on generalized momentum and was proposed in the
context of actuator fault detection and isolation (De Luca and
Mattone, 2003). Below we show the derivation of the observer
following the same steps as for NDOB. Given the definition of
the momenta

p = M(q)q̇, (22)

and its time derivative

ṗ = M(q)q̈+ Ṁ(q)q̇ (23)

= τ + CT(q, q̇)q̇− g(q)− F(q̇)+ τ d,

we can rewrite the disturbance dynamics defined in Equation (14)
in terms of the rate of change of momentum

˙̂τ d = L(ṗ− ˙̂p). (24)

If gain matrix L is constant, then by integrating both parts we can
obtain a so-called momentum observer (Haddadin et al., 2017)

τ̂ d = L
{

p−
∫ t

0

(

τ + Ĉ
T
(q, q̇)q̇− ĝ(q)− F̂(q̇)+ τ̂ d

)

dξ − p(0)
}

,

(25)

Compared with NDOB, momentum observer does not require
inertia matrix inversion and each diagonal entry of the gain
matrix L can be assigned independently.

Equation (23) can be interpreted as linear system

ṗ = 0 p+ I u+ τ d. (26)

where u = τ + CT(q, q̇)q̇ − g(q) − F(q̇) and 0 is zero
matrix of proper dimension. In Oh and Chung (1999), the
authors used Equation (26) together with apriori information on
disturbance–the disturbance is the output of some linear system
(Johnson, 1971)

ω̇ = Gω, τ d = Fω, (27)

– to obtain extended linear system

ζ̇ =
[

0 F

0 G

]

ζ +
[

I

0

]

u (28)

y =
[

I 0
]

ζ ,

where ζ =
[

pT ωT
]T

is the extended state vector. Then Oh and
Chung (1999) used a reduced state observer in order to estimate
τ d. Hu and Xiong (2017) assumed that both states and output of
Equation (28) are affected by white Gaussian noise and used the
Kalman filter to estimate τ d.

2.2.3. Sliding Mode Momentum Observer
Garofalo et al. (2019) proposed a second-order sliding mode
(Super Twisting Algorithm, Fridman and Levant, 2002)
extension of the classical momentum observer:

˙̂p = u− T|p̂− p| 12 sgn(p̂− p)+ σ (29)

σ̇ = −S sgn(p̂− p),

where S,T ∈ R
n×n are positive definite diagonal matrices with

diagonal elements satisfying conditions given in Moreno and
Osorio (2008) that guarantees global finite-time stability of the

equilibrium point
[

p̂− p σ − τ d
]T = 0. Convergence property
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of the second order sliding mode observer can be improved—
from finite time to exponential—by introducing linear correction
terms (Moreno and Osorio, 2008; Garofalo et al., 2019):

˙̂p = u− T1|p̂− p| 12 sgn(p̂− p)− T2(p̂− p)+ σ (30)

σ̇ = −S1 sgn(p̂− p)− S2(p̂− p),

A sliding mode momentum observer is superior to a
classical momentum observer in terms of noise attenuation
and convergence time; however, it requires tuning many
more parameters.

2.2.4. Filtered Dynamics Observer
A different approach to disturbance estimation was put forward
in Van Damme et al. (2011) and Ho and Song (2013) where they
used the idea from online dynamic parameter estimation: if both
parts of Equation (13) are filtered with a strictly stable filter then
there is no need for acceleration measurements. To outline the
derivation, assume we choose a filter with a transfer function

F(s) = 1

s/ω + 1
, (31)

and impulse response f (t) = L
−1(F(s)) = ω exp (−ωt).

Multiplying both parts of Equation (13) by Equation (31) is
equivalent to

f (t) ∗ {M̂(q)q̈+ Ĉ(q, q̇)q̇+ F̂(q̇)+ ĝ(q)} = f (t) ∗ {τ + τ d},
(32)

where ∗ is used to denote convolution operation. Using
properties of the convolution operation, we can rewrite
Equation (32) as

f (t) ∗ {τ + τ d} = ḟ (t) ∗ {M̂(q)q̇} + f (0)M̂(q)q̇− f (t)M̂(q(0))q̇(0)

+ f (t) ∗ {Ĉ(q, q̇)q̇+ F̂(q̇)+ ĝ(q)− ˙̂M(q)q̇},
(33)

where ḟ (t) is the impulse response of a stable filter

F2(s) = − ω2

s+ ω
, (34)

Rearranging Equation (33) and using properties of the rigid
body dynamics, it is possible to obtain an expression for
filtered disturbance

f (t) ∗ τ d = ḟ (t) ∗ {p} + ωp+ f (t) ∗ {F̂(q̇)+ ĝ(q)− Ĉ
T
q̇− τ },

(35)

(For detailed derivation see Lewis et al., 2003 Chapter 6.6 or
Van Damme et al., 2011). Van Damme et al. (2011) showed
that momentum observer and filtered dynamics observer are
equivalent for special choice of L in Equation (25): all diagonal
entries are the same.

2.3. Collision Detection
From Equation (13) we know that disturbance observers estimate
the sum of torques due to unmodeled dynamics and interaction.
An easy and effective way to detect collisions in presence of
unmodeled dynamics is to set a static threshold (upper and lower
bounds on unmodeled dynamics). The value of the threshold can
be chosen as a percentage from maximum torque, for example,
±0.1τmax (Haddadin et al., 2008) or determined from data
used for validation of dynamic parameters. However, inaccurate
parameter identification or use of dynamic parameters from
CAD may result in a high threshold yielding long collision
detection time. To deal with it several solutions were proposed
in the literature.

Hu and Xiong (2017) proposed to improve the dynamic
model by training a neural network (multi-layer perceptron)
to predict the residual between measured torques and torques
found from a rigid body model. As the input of the network,
they used generalized positions and velocities that, according to
authors, provide the same degree of accuracy as the network with
generalized positions, velocities, and accelerations. Rigid body
model enhanced with neural network allowed authors to choose
tight thresholds thus decrease collision detection time.

Ho and Song (2013) proposed using a 2nd order band-pass
filter in Equation (33) instead of a low-pass filter (Equation
31). By carefully choosing cut-off frequencies they were able
to filter out low-frequency torques due to the motion of the
robot and high-frequency torques due to noise, leaving torques
caused by the collision. Band-pass filtering allowed authors
to decrease threshold 5-fold compared to classical momentum
observer yielding to the detection of collision in 5–6 ms.
However, their approach is limited to cases when the dynamics
of collision is significantly faster than the dynamics of the task,
moreover, band-pass filtering modifies estimated disturbance
torques making them impossible to use, for example, in collision
localization. Haddadin et al. (2008) and Li et al. (2019) proposed
to use two observers, one to detect slow or soft collisions using
low-pass filtered collision torques and one to detect fast collisions
using band-pass filtered collision torques.

Sotoudehnejad et al. (2012) proposed using time-variant
thresholds that take into account uncertainties in inertial
parameters of the robot as well as friction parameters. To estimate
uncertainties authors proposed to conduct time-consuming
experiments with a robot applying various collision torque at
different states. Although it sounds promising, the difference
in the detection time between the time-variant threshold and
constant threshold is of the order of 0.1–0.01 s. Briquet-
Kerestedjian et al. (2019) proposed to also consider uncertainties
due to numerical differentiation used to find generalized
velocities and acceleration from noisy encoder measurements.
Their approach is different from Sotoudehnejad et al. (2012)
in a way they treat the model of the manipulator. Briquet-
Kerestedjian et al. (2019) consider a decentralized linear model
and treats non-linear coupling between joints as a disturbance.
It allows authors to use linear estimation techniques such as
Kalman filter. Sotoudehnejad et al. (2012) on the other hand
consider a centralized non-linear model of the manipulator
and use the momentum observer. In general, it is not clear if
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time-consuming experiments worth the amount of time gained
in collision detection time and if the time-variant threshold is
robust and provide consistent result in the whole workspace of
the robot.

3. CASE STUDY: UR10E

In this section, we demonstrate all the steps required to
implement model-based collision detection on real robot UR10e
which is a collaborative industrial robot arm from the Universal
Robots company. It weighs 33.5 kg, has a 10 kg payload, and the
radius of workspace up to 1,300 mm. The robot consists of six
rotating joints which allow having the full degree of freedom in
Cartesian space.

3.1. Software Implementation
Within the scope of this work, we developed a C++ library
for processing the measurements and estimating disturbance
torques (https://github.com/mikhel1984/ext_observer). The
library consists of two basic abstract classes: robot and observer.
The former provides an interface for defining the dynamic model
of a robot. The latter allows working with an observer regardless
of its internal implementation: it defines an obligatory method
that takes current joint angles, velocities, torques, and time step,
and returns the disturbance torque estimate. The library can be
included in the source code of a robot control program, used
with MATLAB (loaded as a C shared library) or robot operating
system (ROS) as a standalone component.

To start working with the library, a user has to create a new
robot instance inheriting the basic abstract class and define its
dynamic model. The dynamic model can be supplied in two
forms: functions for M̂(q), Ĉ(q, q̇), F̂(q̇), and ĝ(q) generated
based on symbolically derived model; numerical procedure such
as recursive Newton-Euler algorithm (RNEA) implemented as
rneag(q, q̇, q̈) where subscript g indicates the value of the gravity
constant. If the dynamics of the robot is computed numerically,
the problem arises related to the computation of Ĉ(q, q̇)T used in
the majority of the observers. One way to overcome this problem
is to use the modified Newton-Euler algorithm (De Luca and
Ferrajoli, 2009), another is to use the numerical approximation

of the time derivative of the inertia matrix ( ˙̂M ≈ 1M̂/1t). Even
though the second method is easier to implement, its accuracy
depends on sampling time 1t. We propose a simple way to
improve the accuracy, by using the definition of the rate of change
of the inertia matrix

˙̂M =
[

∂M̂

∂q1
. . .

∂M̂

∂qn

]

q̇, (36)

where ∂M̂i/∂qi ≈ 1M̂/1qi has to be calculated numerically,
for example, with finite differences. Further, noting that all the

observers we have discussed utilize the product Ĉ
T
and q̇ rather

than Ĉ
T
, it is possible to reduce computational costs by evaluating

the product directly as ˙̂Mq̇− Ĉq̇ or

Ĉ
T
q̇ ≈

n
∑

i=1

1

1qi
(rnea0(q+ 1qi, 0, q̇)− p0)− rnea0(q, q̇, 0),

(37)

where p0 = rnea0(q, 0, q̇) and n is the number of joints.
From a computational point of view Equation (37) is cheaper

than computing ˙̂M and Ĉ separately because it allows avoiding
multiple calls of rneag(·) for column-wise evaluation of the

matrix ˙̂M.
Each observer has to be initialized when called for the first

time; we suggest initializing based on the assumption that there is
no collision, and disturbance torques are equal to zero. Moreover,
each observer depends on its previous states that can be implicit
as in the case of filters, or explicit and implemented via the
integration of some parameters. Therefore, observer does not
work as a "pure function" and cannot be used several times during
a time instant.

3.1.1. NDOB
NDOB is among the easiest in terms of implementation, partially
because it does not require C(q, q̇)T q̇. The dynamics of the
auxiliary variable (Equation 18) can be stiff for high convergence
rates, therefore, to integrate it, we used the implicit Euler method.
As for initialization, since the output is τ̂ d = z + ψ(q, q̇),
the initial value can be set to z(0) = −ψ(q, q̇). In terms of
performance, NDOB was among the slowest (Table 3) because
of the matrix inversion, to decrease computation time associated
with it the properties of the inertia matrix have to be exploited.

3.1.2. Momentum Observer
The observer retains states of the integrator

∫ t
0

(

τ + Ĉ
T
(q, q̇)q̇−

ĝ(q) + τ̂ d
)

dξ , that can be initialized with zeros, but it is better
to use −p(0) to avoid subtraction during the next calls. The
efficiency of the observer depends on the accuracy of integration;
a comparison of different integration schemes showed that a
simple trapezoidal rule is sufficient for high sampling rates.

3.1.3. Sliding Mode Momentum Observer
Both observers Equation (29) and Equation (30) can be
implemented in single program code, as they only differ in
coefficients T2, S2 that can be set to zero for second-order sliding
mode observer. In our implementation, the dynamics of the
observers is integrated using the explicit Euler method, and sgn(·)
is replaced with the hyperbolic tangent to remove chattering. To
initialize, p̂(0) can be set to p(0).

3.1.4. Kalman Filter Observer
Themethod evaluates the variable u and calls the implementation
of the discrete-time Kalman filter. The filter requires the user to
define the discrete-time model of the system (Equation 28). If
the sampling rate is constant, then the discrete-time model can
be calculated from the original continuous-time model offline.
However, if sampling time varies then online matrix exponent
computation has to be used. For a high sampling rate, we
approximated matrix exponential by the first terms of its Taylor
series expansion.
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3.1.5. Filtered Dynamics Observer
The implementation of the observer is based on infinite impulse
response filters. In particular, F(s) and F2(s) are implemented as
yi = k1yi−1 + k2(xi + xi−1) where x and y are the input and
output respectively, k1 and k2 are coefficients of the filters. Both
coefficients depend on the cut-off frequency of the filter and can
be found, for example, via bilinear transforms. For disturbance

estimation, F(s) can be initialized as ĝ(q)− Ĉ
T
q̇− τ , while F2(s)

as p.

3.2. Identifying Dynamic Model
Universal Robots provides a description of the UR10e in
the universal robot description file (URDF). The file contains
kinematic parameters of the robot as well as inertial parameters of
links but does not contain inertial parameters of themotors, drive
gains, and friction parameters needed for accurate modeling of
dynamics. Thus, we performed model identification, following
the main steps from section 2.1. First, we symbolically derived
regressor matrix Y(·) ∈ R

6×84 using kinematic parameters
from URDF and Euler-Lagrange formulation of dynamics. Then
reduced parameter space using QR—decomposition obtaining
πb ∈ R

40 and Yb(·) ∈ R
6×40.

In experiment design, as a trajectory, we chose the
combination of truncated Fourier series and fifth-order
polynomials (Equation 4); as an objective function—condition
number of the observation matrix. The optimization problem
was posed in MATLAB and solved using the patternsearch
algorithm. We performed trajectory optimization for different
periods T (20, 30, 40, 50 s) and number of harmonics N (5, 8,

10, 12, 15); the best estimation in terms of root mean square
error of torque prediction was obtained for N = 12 and
T = 30 (Figure 1).

The optimized trajectory was executed on UR10e in the
velocity control mode. There are several methods to program
the robot to execute the desired trajectory: MATLAB, ROS, UR
Script. We used UR Script because it allows sending commands
to the robot with a higher sampling rate than other methods.
Despite the trajectory tracking capabilities of the UR10e, the
nominal and real trajectories do not always coincide because of
safety limitations on velocities and accelerations. To overcome
that either safety constraints can be removed, or maximum
velocity and acceleration constraints can be decreased during the
trajectory planning phase.

In the data processing stage currents, positions, and velocities
were filtered with zero-phase fifth-order Butterworth filter
(the filtfilt function in MATLAB). For acceleration estimation,
we used numerical differentiation—central difference scheme—
followed by zero-phase filtering to remove the noise.

Parameter estimation was divided into two parts: first, we
identified drive gains on one trajectory (T = 50, N = 14),
then on a different trajectory (T = 30, N = 12) the vector of
base and standard parameters. In both cases, physical consistency
was imposed by linear matrix inequality constraints using the
YALMIP toolbox (Lofberg, 2004). Finally, the parameters were
validated on a different harmonic trajectory (Figure 2) for which
the root mean square error of torque prediction is rms =
[

2.81 4.16 1.90 0.70 0.65 0.46
]

Nm. The estimated parameters
are shown in Tables 1, 2.

FIGURE 1 | Optimized trajectory for dynamic parameter identification, executed on the robot UR10e. The condition number of the base observation matrix is

cond(Wb(·)) ≈ 93.27.
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FIGURE 2 | Validation of identified dynamic parameters. τi is measured current multiplied by identified drive gains ki , τ̂i estimated torque based on identified dynamic

paramters.

TABLE 1 | Identified link parameters.

Ixx Ixy Ixz Iyy Iyz Izz hx hy hz m

No kg ·m2 kg ·m2 kg ·m2 kg ·m2 kg ·m2 kg ·m2 kg ·m kg ·m kg ·m m

1 16.02 0 0 16.02 0 10−6 0 0 0 4.83

2 3.93 0.85 0.15 3.72 −0.59 1.90 0.05 −0.28 3.26 7.93

3 2.22 −0.53 −0.18 1.39 −0.22 1.39 0.02 0.24 0.89 2.48

4 1.03 0.23 −0.01 0.08 0.07 1.07 −10−3 −0.25 0.19 2.16

5 0.03 −0.03 −0.03 0.11 −0.01 0.11 0.01 0.09 0.11 2.16

6 0.03 −10−3 −0.01 0.04 −10−3 0.01 10−3 −10−3 −0.02 0.22

TABLE 2 | Identified motor and friction parameters.

K J fv fc f0

No N ·m · A−1 kg ·m N · s N ·m N ·m

1 10.0 0 21.25 12.54 0.20

2 10.70 3.74 20.22 13.27 −0.75

3 8.46 0 10.38 4.99 0.20

4 9.0 0.07 3.58 2.0 0.05

5 9.48 0.23 2.49 2.69 −0.01

6 10.12 0.44 3.03 2.30 0.04

3.3. Choosing and Tuning Observers
In this subsection we provide the general guideline for selecting
and tuning the disturbances observer discussed in the section
2.2. All the observers in absence of collisions show non-zero
disturbance torques because of the inaccurate estimates of
some dynamic parameters or unmodeled dynamics. The closer
identified parameters are to real ones, the smaller are going to
be estimated disturbance torques and vice versa. It emphasizes
the significance of the accurate dynamic model in estimating
torques associated with collisions. For high level comparison of
the observers see Table 3.

TABLE 3 | Comparison of observers in terms of computation time (average time

needed to predict disturbance torques at a given time instant, laptop parameters:

CPU Core i3 2.30GHz, RAM 4 GB) and tuning.

Average time Tuning

ms Simplicity Flexibility

Momentum observer 0.028 X X

Nonlinear disturbance observer 0.146 X X

Sliding mode observer 0.032 ✗ X

Kalman disturbance observer 0.294 ✗ X

Filtered dynamics 0.028 X ✗

3.3.1. NDOB
To use NDOB, a user needs to specify gain matrix L and vector
ψ , both of which can be obtained from Y = X−1 (Equation
19). There are two approaches to finding Y : solving linear
matrix inequality for a given positive definite symmetric matrix
Ŵ (Equation 20); using analytical solution found for the case
when Ŵ and Y are constrained to be scaled identity matrices
(Equation 21). The latter is easier from a user perspective because
it requires tuning single parameter β that defines minimum
convergence rate whereas ξ and σ2 are constants that depend
on the dynamics of the robot. While tuning the NDOB, whether
matrix Ŵ or scalar β , the user should seek a compromise between
convergence rate and measurement noise amplification. Figure 3
shows disturbance torque estimation for different values of β . For
the second joint the lower is β the less noisy is τ̂d,2, but for the
fourth joint the value of β does not affect the amount of noise. It is
the drawback of the analytical solution that all diagonal elements
of Y are identical, thus the convergence rate of each joint cannot
be tuned separately. Solving linear matrix inequality instead of
using an analytical solution can serve as a remedy to this problem.

3.3.2. Momentum Observer
If L in Equation (25) is chosen as diagonal, then the classical
momentum observer can be interpreted as n low-pass filters
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driven by disturbance torque of each joint (Figure 4). Therefore,
the user can conveniently design each filter independently. On
the other hand, the momentum observer can be treated as a
linear time-invariant system (Equation 28) where disturbance
torques are non-measurable states. In that case, the classical
state observer can be designed using pole placement or
linear quadratic techniques (Åström and Murray, 2010).
The former is easier because the user needs to specify
poles i.e., 12 parameters but it is not optimal, while the
latter is more difficult to design as the user needs to
tune matrices Q ∈ R

12×12 and R ∈ R
6×6 but it is

optimal.
If unmodeled dynamics is mainly due to friction modeling

and can be described as zero-mean Gaussian white noise, then
theoretically we can estimate τ ext by filtering out unmodeled
dynamics using the Kalman filter. The price for accuracy is a
time-consuming tuning procedure. To design the Kalman filter
user needs to identify the diagonal covariance matrix of the
unmodeled dynamicsQτum by individually moving each joint and

calculating the variance of the τ ium, then the diagonal covariance
matrix of output measurement Rp which is assumed to be mainly
due to noise in velocity measurement. In turn, the covariance of
the velocity measurement Rq̇ can be found by moving each joint
at a constant velocity and finding the variance of the residual
1q̇i = q̇i − ¯̇qi. Then time-variant covariance matrix of the
momentum can be computed by applying linear transformation

properties of the normal Rp = M̂Rq̇M̂
T
. The only parameter

that has to be tuned is the covariance matrix of the external
torque dynamics. In the absence of any apriori information, it
can be chosen the diagonal. The general guideline is that the
larger diagonal elements are the less filter trusts the dynamics
and the more amplifies noise. The interested reader is referred
to Wahrburg et al. (2017) for more details. Figure 5 shows τ̂d
for three different values of tuning parameter, the estimates are
much less noisy and slower even for high values of the tuning
parameter compared with other observers. Moreover, it does
not filter model noise, probably because the assumptions on the

FIGURE 3 | Disturbance torque estimation for joints 2 and 4 using nonlinear disturbance observer with different rates of convergence β. The change in τd is due to

collision with the wrist.

FIGURE 4 | Disturbance torque estimation for joints 2 and 4 using classical momentum observer with different L(4, 4). The change in τd is due to collision with

the wrist.
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FIGURE 5 | Disturbance torque estimation for joints 2 and 4 using Kalman disturbance observer with different disturbance covariance matrices.

diagonal structure of the covariance matrix as well as the source
of unmodeled dynamics are too strong.

3.3.3. Sliding Momentum Observer
The sliding mode observers are the most difficult to tune
as they require tuning two matrices for second-order sliding
mode observer and four matrices for second-order slide mode
observer with linear terms matrices. Even if the matrices are
restricted to be diagonal, the user needs to tune 12 and
24, parameters respectively for 6-DOF industrial manipulator.
In order to guarantee the stability of the observers, the
parameters should satisfy certain constraints (Moreno and
Osorio, 2008). To obtain the desired behavior of the observer
Garofalo et al. (2019) suggested considering the observer as a
non-linear proportional-integral controller with all underlying
tuning procedure. More specifically, they suggest tuning S,
then starting from T = 1.5

√
S tune T. Linear terms of the

second orders sliding mode observer with linear terms can be
interpreted as second-order linear filter that allows obtaining
the desired damping. For a more detailed discussion of tuning
sliding mode momentum observers, readers are referred to
Garofalo et al. (2019).

3.3.4. Filtered Dynamics Observer
Probably the simplest observer in terms of tuning is the filtered
dynamics observer (Equation 35) as it requires tuning the single
parameter: cut-off frequency of the low-pass filter. It is identical
to classical momentum observer when gain matrix L is a diagonal
with identical entries along the diagonal. The drawback is the
lack of flexibility e.g., a cut-off frequency can be well suited for
the first joints but can be too high for the rest. Figure 6 shows
disturbance torque estimation for three different values of the
cut-off frequency. Different behavior of τ̂d,2 for higher (ω =

60) and lower frequencies (ω = 10/20) can be explained by
high frequency dynamics, which was filtered during the model
identification phase.

3.4. Detecting Collisions
For collision detection we did two experiments: in one
experiment the robot experienced a soft collision with a human,
while in another test—a hard collision with a brick. In both cases,
manufacturer safety presets were set to the least restricted to
achieve fast motions. Model-based estimated disturbance torques
were compared with those estimated based on the real and target
currents of the UR10e that were computed as

τ̂d,UR = diag(K)(Itarget − Ireal), (38)

where K is the identified vector of drive gain coefficients,
Itarget and Ireal are the vectors of measured and target
currents, respectively.

Due to the modeling error and torque/current measurements
noise, the estimated disturbance torques do not equal zero during
nominal operation conditions (without collision). To detect a
collision it is necessary to set upper and lower thresholds on
estimated disturbance torque in the absence of collisions τ̂ d,ub
and τ̂ d,lb, respectively. When a collision occurs, some of τ̂ d,i
significantly increases depending on the location of a collision
crossing corresponding τ̂d,ub,i or τ̂d,lb,i. The static threshold is the
easiest approach to detecting collisions; it can be chosen for a
specific task or the whole workspace (any task). On the one side,
task-specific bounds for a single or several tasks are tighter and
result in faster collision detection time. On the other side, if a
robot is reprogrammed to execute a new task, then the threshold
can be violated in the absence of collision. Thus, for robots that
are constantly reprogrammed to execute different tasks, global
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FIGURE 6 | Disturbance torque estimation for joints 2 and 4 using filtered dynamics observer with different cutoff frequencies.

FIGURE 7 | Detecting a hard collision of the UR10e with a brick using static threshold. Thresholds and estimated disturbance torques are shown for two nonlinear

disturbance observers with different rate of convergence. The third disturbance torque (in red) is estimated from current measurements of the UR10e. Dashed lines are

thresholds associated with specific value of β.
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bounds are more advantageous even though they can be looser
and can result in higher detection time.

To find task-specific thresholds it is necessary to execute a
task making sure there is no collision, then estimate disturbance
torques and choose bounds that exceed maximum andminimum
values of τ̂ d,i by 5–10% (Figure 8). For global bounds, it is
possible to use data from validation or execute several trajectories
that cover the whole workspace, then perform the procedure
similar to the one for task-specific thresholds. In any case,
the bounds will depend on the choice of disturbance observer,
particularly on the convergence rate: the higher the convergence
rate, the higher the bounds and vice versa (Figure 8). However,
although for faster convergence rates the bounds are higher, the
detection time is shorter, especially for fast collisions (Figure 7).

Both Figures 7, 8 show that collision detection capabilities of
the UR10e and model-based collision detection algorithms with
β = 30 were identical for hard collisions (Table 4), while for
soft collisions UR10e was slightly faster (Table 5). One possible
explanation is that the internal control loop of the UR10e is much
faster than the rate at which we read generalized coordinates
and velocities, and currents which are around 100 Hz. Another
explanation is that the convergence rate of the disturbance
observer inside the UR10e control system is higher than the
convergence rate of the non-linear disturbance observer we use.
The behavior of slower disturbance observer with β = 5 is

different from the others; for example, in the case of hard collision
of the third joint, estimated disturbance torque did not cross
thresholds (Figure 7), but overall collision detection time was the
same as for β = 30. In the case of soft collision, the observer with
β = 5 was the fastest to detect collision (Table 5). In view of
this result, the best strategy could be to use several disturbance
observers with different convergence rates and static thresholds.

Theoretically, thresholds can be significantly reduced for
fast collisions—collisions that have a distinguishingly higher
frequency than the motion of robot—by a band-pass filtering,
the dynamics of the robot (Ho and Song, 2013; Li et al.,
2019). However, in our experiments by applying band-pass
filter we were not able to reduce thresholds and to obtain
faster collision detection time without getting false positives. A
possible explanation is that the trajectory had abrupt changes
in the sign of generalized velocities that caused fast changes in
the friction torques, therefore the dynamics of the robot had
high frequencies.

Another way to reduce the threshold is to use machine
learning to predict unmodeled dynamics (Hu and Xiong, 2017).
If enough data is provided for training, then neural networks
can approximate unmodeled dynamics with a high degree of
accuracy. The limitation of this method is that it requires
knowledge of the field that engineers may not have, making it
suitable for few who are familiar with neural networks.

FIGURE 8 | Detecting a soft collision of the UR10e with a human using static threshold. Thresholds and estimated disturbance torques are shown for two nonlinear

disturbance observers with different rates of convergence. The third disturbance torque (in red) is estimated from current measurements of the UR10e. Dashed lines

are thresholds associated with specific value of β.
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TABLE 4 | Identified link parameters.

Joint no Collision detection time, s

β = 30 β = 5 UR

1 21.642 21.642 21.642

2 21.654 21.674 21.654

3 21.664 – 21.664

4 21.632 21.632 21.632

Overall 21.632 21.632 21.632

TABLE 5 | Identified motor and friction parameters.

Joint no Collision detection time, s

β = 30 β = 5 UR

1 18.052 18.02 18.042

2 18.082 18.136 18.072

3 18.178 18.198 18.208

4 – – –

Overall 18.052 18.02 18.042

4. CONCLUSION

This paper has outlined a roadmap for engineers and specialists
new to the field, to equip industrial manipulators with collision
detection capabilities needed to guarantee workplace safety. The
roadmap consists of three main steps: identifying the dynamic
model, choosing and tuning the disturbance observer, and
detecting collisions based on the output of the disturbance
observer. The most important step is model identification
because the accurate model allows choosing tighter thresholds,
and consequently reducing collision detection time. Accurate
dynamic parameter estimation might be time-consuming,
especially its trajectory planning phase (depending on the
trajectory and the number of parameters, trajectory optimization
can take up to 10 h on a usual desktop computer), which
is necessary to guarantee persistent excitation. At the cost of
model accuracy, the trajectory planning phase can be notably
simplified by omitting optimization, and instead use several
points connected with fifth-order polynomials. The rest of the
steps, unfortunately, cannot be further simplified.

For disturbance estimation, there is a great variety of
disturbance observers. If simplicity is the priority, then non-
linear disturbance observer or filtered dynamics observer
can be chosen as they are tuned with single parameter β

and ω, respectively. If more flexibility is required, then a
classical momentum observer can be used because it allows
prescribing the convergence rate of each joint separately. If
better measurement and model noise filtering are required,
then the Kalman momentum observer should be used. If finite

time convergence is required, then second-order sliding mode
observers should be chosen.

As the final step, it is necessary to choose thresholds for
estimated disturbance torques in the absence of collisions, those
can be chosen regardless of task type or on task-specific basis.
Task-specific thresholds are tighter and result in faster detection
time, while global bounds are not limited to any task but may
result in slower detection time. In both cases, thresholds depend
on the convergence rate of the disturbance observer, the faster
the observer, the higher the threshold. In our experiments, faster
disturbance observers were better at detecting hard collisions,
while slower observers—at detecting soft collisions. It can suggest
that the use of both slow and fast observer can lead to faster
collision detection regardless of the type of collision. To further
decrease collision detection time, several authors proposed ways
to reduce threshold by using band-pass filtering, neural networks,
while others proposed to use time-varying thresholds. Band-pass
filtering works well with very fast collisions, depends on the
dynamic model (friction model) and the trajectory of robot—in
our experiment with a brick band-pass filtering did not decrease
collision detection time—the use of neural networks requires
a certain background that prevents engineers from using it.
Finally, identifying coefficients of the time-varying thresholds
involves time consuming joint-wise experiments and do not
result in a significant reduction in collision detection time
(Sotoudehnejad et al., 2012).
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