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In the context of 3D mapping, larger and larger point clouds are acquired with lidar

sensors. Although pleasing to the eye, dense maps are not necessarily tailored for

practical applications. For instance, in a surface inspection scenario, keeping geometric

information such as the edges of objects is essential to detect cracks, whereas very

dense areas of very little information such as the ground could hinder the main goal

of the application. Several strategies exist to address this problem by reducing the

number of points. However, they tend to underperform with non-uniform density, large

sensor noise, spurious measurements, and large-scale point clouds, which is the case

in mobile robotics. This paper presents a novel sampling algorithm based on spectral

decomposition analysis to derive local density measures for each geometric primitive. The

proposed method, called Spectral Decomposition Filter (SpDF), identifies and preserves

geometric information along the topology of point clouds and is able to scale to large

environments with a non-uniform density. Finally, qualitative and quantitative experiments

verify the feasibility of our method and present a large-scale evaluation of SpDF with other

seven point cloud sampling algorithms, in the context of the 3D registration problem

using the Iterative Closest Point (ICP) algorithm on real-world datasets. Results show

that a compression ratio up to 97 % can be achieved when accepting a registration

error within the range accuracy of the sensor, here for large scale environments of less

than 2 cm.

Keywords: sampling, spectral decomposition, large-scale environments, tensor voting, iterative closest point

(ICP), registration, 3D mapping, lidar

1. INTRODUCTION

Light Detection And Ranging (Lidar) sensors has recently been widely democratized in robotics
applications. Indeed, these sensors are able to acquire an efficient representation of the environment
(i.e., a point cloud), which can be used in localization algorithms, 3D mapping or environments
inspection (Stumm et al., 2012). Prior work on lidar-based registration algorithms have been
recently used to create larger and larger 3D maps (Pomerleau et al., 2014). As an example, Figure 1
shows the map of the Grand Axe of Laval University campus, where only a few minutes of data
collection lead to a number of points at the limit of the real-time computation capability. The
sensor used for this map, the Velodyne HDL-32E, yields up to 1.39 million points per second.
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Although pleasing to the eye, dense maps are not necessarily
tailored for practical applications. Indeed, such point clouds are
heavy to process and transmit: in scenarios where the processing
power and bandwidth are critical resources, point clouds need
to be compressed or sampled before any other manipulation.
For instance, search & rescue missions often lead the robot
in areas where the bandwidth is very narrow. As the tele-
operator needs quick feedbacks on where the robot is heading,
having access to point clouds with low memory footprint
to send through the network without losing information
is a necessity.

For any of these tasks, the robot needs to merge the different
acquired point clouds to create a dense 3D map as it is a
necessary information for most of robotics applications. The
Iterative Closest Point (ICP) is one of the main algorithms for
creating such maps, introduced by Besl and McKay (1992) and
Chen and Medioni (1992). It is still considered a strong solution
for registration in mobile robotics as shown by Pomerleau et al.
(2015). As we want to sample the point cloud, we need to
make sure that such action does not hinder the ICP process,
since the contrary would lead to noisy, impractical maps. On
the one hand, limiting the growth by reducing the number of
points will enlarge the spectrum of real-time applications. On the
other hand, reducing the number of points too aggressively can
lead to unworkable localization and mapping and might discard
potential critical information. For example, keeping the edges of
objects while doing surface inspection is essential to detect cracks,
whereas sampling very dense areas of very little information
such as the ground would lead to a substantial compression.
Under these considerations, geometric primitives seem a good
approach to capture the details along the topology (Stumm et al.,
2012). This information can be retrieved by the methodology
of Tensor Voting introduced by Guy and Medioni (1997) and
Medioni et al. (2000).

FIGURE 1 | (A) This large-scale map, containing more than 4.65 million points, presents structured (walls, pillars) and unstructured (trees, vegetation) elements with

varying densities. Color represents the elevation, the brighter the color, the higher the z-coordinate. Views of the reduced map to 100 k points (i.e., a compression

ratio of 97.85 %) by spatial sampling (B2) with a spatial extent of 0.8m, keeping points regularly given the spatial decomposition of the point but losing some

geometric details; by our proposed method (B1) where the density is uniform and more geometric details have been preserved.

As opposed to solutions for registration-based object
reconstruction, we will consider large-scale 3D environments,
which are still challenging even for the state-of-the-art sampling
methods, because of the uneven density coming from the
radial distribution of lidars. Given these working hypotheses,
contributions of this paper are 2-fold:

1. A novel sampling method, called Spectral Decomposition
Filter (SpDF), based on spectral decomposition analysis. This
method identifies and preserves geometric information
along the topology of point clouds and is scalable
to large environments.

2. A large-scale evaluation of current sampling strategies relying
on more than 2.45 million registrations in different types of
environments (indoor/structured, outdoor/unstructured),
including large-scale outdoors environments from
real-world datasets.

A visual overview of our sampling strategy is given by the
Figure 2. A point cloud is given as input. First, we identify
the geometric primitives along with their saliencies using the
tensor voting framework. Then, we derive density measures
from saliencies: if the density for each geometric primitive
is less than the desired density, we stop; else we sub-sample
each over-represented geometric primitive, and re-iterate. As
output, we have a uniform sampled point cloud enhanced with
geometric information.

This paper is organized as follows. First, we review the existing
sampling strategies of the literature in section 2. Secondly, we
briefly summarize the theory of tensor voting for completeness
in section 3. Then, we show how to derive new density measures
from the output of the tensor voting process in section 4,
and how these new measures are used to efficiently sample
point clouds in section 5. Finally, we present our experimental
setup in section 6 and analyze the results of our method along
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FIGURE 2 | Overview of our sampling strategy. Point cloud is given as input. First, we identify the geometric primitives along with their saliencies using the Tensor

Voting framework. Then, we derive density measures from saliencies: if the density for each geometric primitive is less than the desired density, we stop; else we

sub-sample each geometric primitive, and re-iterate. As output, we have a uniform sampled point cloud enhanced with geometric information.

with the evaluation of seven other sampling strategies from the
state-of-the-art in section 7.

2. RELATED WORKS

A point-sampled surface is a good representation for analyzing
the properties of 3D shapes (Alexa et al., 2001). Unfortunately,
most point clouds obtained in robotics context are noisy, sparse,
large, and have an uneven density. An important step during
the process of analyzing point clouds is to remove noise and
outliers. This can be done using filtering algorithms. An extensive
review of these algorithms has been realized by Han et al.
(2017). Point cloud simplification is related to the problem
addressed by the computer vision field but aims to accelerate
graphic rendering. A lot of methods based on meshing are
used to address this problem (Hoppe, 1996; Li and Zhu, 2008).
Technically, these methods can be directly extended to point
cloud representation, but most of the algorithms perform an
expensive dataset meshing pre-step. A review and comparison
of mesh simplification algorithms has been done by Cignoni
et al. (1998). Mesh-free algorithms have also been developed to
directly simplify point clouds. For instance, Pauly et al. (2002)
introduced, analyzed and quantitatively compared a number
of surface simplification methods for point-sampled geometry.
More recently, Leal et al. (2017) presented a novel method for
point cloud simplification using an estimated local density of the
point cloud, requiring no additional mesh estimation procedure.
Most of these algorithms have been designed in context of
computer graphics applications. They compare themselves only
with few others strategies, and rely most of the time on
evaluations conducted on small, uniform, dense, and complete
point clouds such as object models. These working hypotheses
usually break in the case of most robotics applications, where
point clouds are noisy, incomplete, and sparse. In addition,
the sampling process can be addressed by signal processing
strategies. Indeed, a point cloud can be considered as a manifold
sample. Pauly and Gross (2001) introduced the concept of
local frequencies on geometry in order to be able to use
all existing signal processing algorithms. Oztireli et al. (2010)
proposed a new method to find optimal sampling conditions
based on spectral analysis of manifolds. However, these methods
stand under the hypothesis of smooth manifolds, which is

usually not the case in maps acquired with lidar sensors in
robotics, and rely on evaluations conducted on object models
data only.

Sampling algorithms aim to decrease the complexity of
point cloud processing (e.g., the computation time) by reducing
the number of input points. For instance, ICP algorithm
complexity depends on the number of point to process. There
are different strategies for points selection that can be categorized
as global methods (e.g., uniform and random sampling, spatial
sampling), local methods (e.g., using geometric information
or density information), and feature-based methods. Feature-
based methods such as Fast Point Feature Histogram (FPFH)
introduced by Rusu et al. (2009), or Feature-Preserved Point
cloud Simplification (FPPS) presented by Zhang et al. (2019) use
features which describe the local geometry around a point. It
reduces then the number of points by grouping them to describe
the neighborhood. These methods provide improvements only
with point clouds where features are distinctive which is hard
to obtain with noise or incomplete data (Mellado et al., 2014).
Hence, this paper will only focus on global and local methods.
The most wildly used methods are based on octree or voxel
representations of point clouds (Schnabel and Klein, 2006;
Elseberg et al., 2013; Hornung et al., 2013; Fossel et al., 2017).
They take into consideration the spatial distribution of the points
by regularly partitioning the space into cells aligned with the
xyz-basis. Then, they reduce the number of points by taking
the most representative point in each cell, e.g., the centroid.
Spatial segmentation methods however do not take into account
distinctiveness between the points within cells. For instance,
when several geometric features are present in the same cell, the
information is lost, which is the case of details in dense areas.
They lack of fine grained control over the number of output
points and over the level of details.

Another category of methods analyzes geometric primitives
to sample relevant points in point clouds. Adaptive sampling
strategy based on local density estimation has been proposed
by Al-Durgham (2014) in context of registration. Al-Rawabdeh
et al. (2020) further extended the latter by sub-sampling on the
Gaussian sphere, where normals have been estimated by Principal
Component Analysis (PCA), but evaluated their method only
on precise point clouds and only against random sampling.
Rusinkiewicz and Levoy (2001) proposed a method based on
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normals analysis named Normal-Space Sampling (NSS). Points
are sampled uniformly according to their normal orientations.
They state that it helps convergence for scenes with small,
sparse features but by their nature, normals cannot help to
handle rotational uncertainties. Rodolà et al. (2015) defined
the concept of relevance based on curvature to sample points
but such primitives are often noisy and must be processed
carefully (Kalogerakis et al., 2009). They compared themselves
with the latter strategy and against uniform sampling, in
context of object model registration through ICP. Kwok (2018)
extended the work on normal space to handle rotational
error by introducing a dual normal space to constrain both
translation and rotation. He evaluated his method Dual Normal-
Space Sampling (DNSS) against several methods, including
feature-based and normal-based method, but only on uniformly
sampled mesh models. Both NSS and DNSS do not take
into account the spatial distribution of the sampling points
as they only analyze the normals distributions. Points are
not guaranteed to be kept uniformly in space, leading to less
accurate results in large-scale sparse point clouds. Gelfand
et al. (2003) presented a method based on covariance analysis,
Covariance Sampling (CovS), to perform stability analysis in
order to select geometrically stable points that can bind the
rotational component as well as the translation. An improvement
of CovS has been proposed in the context of manufacturing
by Kwok and Tang (2015). No evaluation have been conducted
on real-world large-scale point cloud for these methods. The
authors stated that their proposed approach may suffer from
high levels of noise, as large noises make some originally
smooth areas strongly constraining. Given our results, previous
methods cannot handle noisy, large-scale and density-varying
point clouds when they are used to reduce the number of
points. Eventually, similar to our method but subsequent to our
previous work (Labussière et al., 2018), Ervan and Temeltas
(2019) also proposed a sampling algorithm based on a modified
tensor voting framework to preserve geometric primitives while
down sampling dense areas taking most salient points as
representatives. Only qualitative results are given on only one
scan, and no comparison have beenmade. The method presented
in this paper is able to both reduce the number of point and
retrieve the geometric information in large sparse noisy point
clouds. Contrarily to other strategies, we presents a large-scale
evaluation of these strategies along with our method in context
of large-scale 3D environments.

Although several new strategies have been proposed in the
recent years, the most used point cloud processing software
such as CloudCompare, the Point Cloud Library
(PCL), or libpointmatcher, a popular modular library
implementing the Iterative Closest Point (ICP), mostly still rely
on either random, uniform or spatial sampling to reduce the
number of points.

3. TENSOR VOTING: THEORY

Medioni et al. (2000) introduced Tensor Voting (TV) as a
methodology to infer geometric information (e.g., surface, curve,

and junction descriptions) from sparse 3D data1. The algorithm
is based on tensor calculus for data representation and tensor
voting for data communication. Theory related to TV will be
summarized in this section for completeness.

3.1. Tensor Representation
To capture the first order differential geometry information and
its saliency, each datum can be represented as a second order
symmetric tensor in the normal space. In 3D, such a tensor
can be visualized as an ellipsoid with a shape that defines the
nature of the information and a scale that defines the saliency
of this information. A second order symmetric tensor K is fully
described by its associated spectral decomposition using three
eigenvectors e1, e2, and e3, and three corresponding ordered
positive eigenvalues λ1 ≥ λ2 ≥ λ3. This tensor can be
decomposed in three basis tensors, resulting in

K = (λ1 − λ2) S+ (λ2 − λ3)P + λ3B, (1)

with

S = e1e
T
1 ,

P =
2
∑

d=1

ede
T
d ,

B =
3
∑

d=1

ede
T
d ,

(2)

where S describes the stick tensor, P the plate tensor, and B the
ball tensor.

3.2. Voting Process
The main goal of Tensor Voting is to infer information
represented by the tensor K i at each position xi by accumulating
cast vote V from its neighborhoodN, following

K i =
∑

xj∈N(xi)

V(xi, xj). (3)

This process can be interpreted as a convolution with a
predefined aligned voting field. The voting fields encode the basis
tensors and are derived from the 2D stick field by integration
(see Medioni et al., 2000 for more details). Each input point
is encoded into a tensor. First, if no direction is given, the
tensor encodes a unit ball B. Second, if tangents are provided,
the tensor encodes a plate P. Finally, if normals are available, the
tensor encodes a stick S. In a case where no direction is given, a
first pass of refinement is done to derive the preferred orientation
information. Each tensor then broadcasts each of its independent
elements using an appropriate tensor field:

V(xi, xj) = VS(xi, xj)+ VP(xi, xj)+ VB(xi, xj), (4)

where VS (resp. VP and VB) is the vote generated by the tensor
field associated to S (resp. P and B).

1The original formulation can be extended to n-D data (Tang et al., 2001).

Frontiers in Robotics and AI | www.frontiersin.org 4 September 2020 | Volume 7 | Article 572054

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Labussière et al. Geometry Preserving Sampling Method

3.3. Vote Interpretation
The resulting generic second order symmetric tensor K is
then decomposed into elementary components to extract the
saliencies and the preferred direction. The interpretation of
these values is given in Table 1. We can then infer geometric
primitives, but the procedure to extract the salient features
corresponding to local maxima of the three saliency maps will
not be discussed here.

3.4. k-Nearest Neighbors Closed Form
Tensor Voting
Although tensor voting is a robust technique for extracting
perceptual information from point clouds, the complexity of
its original formulation makes it difficult to use in robotics
applications. We use the closed-form (CFTV) formulation
proposed by Wu et al. (2012) for efficiency. The generic second
order symmetric tensor is then computed given

K i =
∑

xj∈N(xi)

Sij with Sij = cijRijK jR
′
ij, (5)

and

Rij =
(

I− 2rijr
T
ij

)

, R′
ij =

(

I− 1

2
rijr

T
ij

)

RT
ij ,

rij =
xi − xj
∥

∥xi − xj
∥

∥

, cij = exp

(

−
∥

∥xi − xj
∥

∥

2

σ

)

,

(6)

where cij is a decay function and controls the strength of
the vote given the distance between the two positions and the
scale parameter σ ; rij is the normalized vector from xj in the
direction of xi; and N is the neighborhood retrieved using an
efficient k-Nearest Neighbors (k-NN) search (e.g., with a kD-
tree). As the input is generally not oriented, we still have to do
a first pass by encoding K j as a unit ball to derive a preferred
direction. Then, we do a second pass by encoding points with
the tensors previously obtained, but with the ball component
disabled as suggested by Wu et al. (2012), such as K j =
(λ1 − λ2) Sj+(λ2 − λ3)Pj. Once the generic tensor is computed,
we decompose and interpret it as shown above.

4. DERIVATION OF DENSITY MEASURES

Based on tensor voting theory, this paper presents a novel density
measure for each geometric primitive. By doing a first pass of TV

TABLE 1 | Interpretation of saliencies and preferred directions obtained by the

tensor voting framework, where the λd are the eigenvalues associated to the

eigenvectors ed obtained from spectral decomposition of the resulting tensors.

Predominating saliency determines the affected geometric primitive.

Geom. Primitive Tensor Saliency Normals

Surface-ness Surface Stick S λ1 − λ2 e1

Curve-ness Curve Plate P λ2 − λ3 e1, e2

Point-ness Junction Ball B λ3 e1, e2, e3

using the closed-form with an k-NN search (Equation 5), we are
able to derive more information from the tensors. In fact we can
show that 0 ≤ λd ≤ k, ∀d ∈ {1, 2, 3}, where k is the number of
neighbors. As the strength of the vote through the decay function
is directly dependent on the distance, we have λd = k when all
neighbors are at a distance δ = 0. Given this observation, the
lambdas can be considered as an indicator of local density.

In the following, the λd are normalized by k. We can compute
the expected normalized vote strengths ξD at a position where
the density would be uniform in a D-hyperball of radius ρ to
derive the density measures. The strength of the vote cij is only
dependent on the distance δ between xi and xj (Equation 6) such

as δ =
∥

∥xi − xj
∥

∥

2
. Therefore only the decay function c(δ) =

exp
(

−δ2/σ
)

is taken into account. We compute the expectation
of the decay function given points following a uniform spatial
distribution in a D-hyperball of radius ρ. In order to achieve
this distribution, we can generate samples of the distance δ

through the random variables X ∼ U[0,1], where U[0,1] is the
uniform distribution between 0 and 1, by using the inverse of
the cumulative distribution function (CDF) corresponding to the
surface area of this hyperball. A random sample is generated
by mapping random numbers in the range [0, 1] through the

application δ(x) = ρ · x 1
D . We then compute the expected value

of this distribution such as

E
[

c(δ(X))
]

=
∫ ∞

−∞
pdfX(x) · c(δ(x)) dx

= D

2

(

ρ2

σ

)−D
2
(

Γ

(

D

2

)

− Γ

(

D

2
,
ρ2

σ

))

,

(7)

where σ is the scale of the vote, Γ (·) is the gamma function and
Γ (·, ·) is the incomplete gamma function. For D ∈ {1, 2, 3}, the
expected kernel strengths are given by

ξ1 =
1

4ρ

√
πσ erf

(

ρ√
σ

)

ξ2 =
σ

ρ2

(

1− exp

(

−ρ2

σ

))

ξ3 =
3σ

4ρ3

(√
πσ erf

(

ρ√
σ

)

− 2ρ exp

(

−ρ2

σ

))

,

(8)

where erf(·) is the Gauss error function, ξ1 is the expected
strength in the plate case (D = 1), ξ2 is the expected strength
in the stick case (D = 2) and ξ3 is the expected strength in the
ball case (D = 3).

The associated eigenvalues λ̂d can be derived if we consider,
for each component, the ideal cases illustrated by Figure 3 where
each voter strength is ξD. By developing (Equation 5) with
cij = ξD, considering an infinite number of neighbors, thus
taking rij as the integral variable on the considered domain
(i.e., all possible orientations in D dimensions), we compute
for each case the expected eigenvalues λ̂d. For instance, in
the case where points are uniformly distributed on a sphere
(i.e., D = 3 as illustrated by Figure 3A) of radius such that
cij = ξ3, the integral variable is given by the normalized
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vector r =
[√

1− u2 cos(θ)
√
1− u2 sin(θ) u

]T
with (θ , u) ∈

[0, 2π]× [−1, 1], and the resulting normalized tensor by

K̄ = η

∫

Ŵ

ξD

(

I− 2rrT
)

(

I− 1

2
rrT

)

(

I− 2rrT
)T

dr

= 1

4π

∫ 2π

0

∫ 1

−1
ξ3

(

I− 2rrT
)

(

I− 1

2
rrT

)

(

I− 2rrT
)T

du dθ

= ξ3

4π





20
6 π 0 0

0 20
6 π 0

0 0 20
6 π



 =





5
6ξ3 0 0

0 5
6ξ3 0

0 0 5
6ξ3



 =





λ̂3 0 0

0 λ̂2 0

0 0 λ̂1





(9)
where Ŵ is the integration domain of r, and η =

(∫

Ŵ
dr
)−1

is the
normalization constant since the eigenvalues are normalized by
the number of neighbors. Finally, we have λ̂1 = λ̂2 = λ̂3 = 5

6 ξ3

and therefore the expected point-ness saliency is 5
6 ξ3. In a similar

fashion for the case D = 2 illustrated by Figure 3B, points are
uniformly distributed on a circle of radius such that cij = ξ2,

the integral variable is given by r =
[

cos(θ) sin(θ) 0
]T

with
θ ∈ [−π ,π], and the expected surface-ness saliency is given
by 1

4 ξ2. For the case D = 1 illustrated by Figure 3C, points
are uniformly distributed on line segment endpoints along the
x-axis, of length such that cij = ξ1, we only have to consider the

integral variable r ∈
{

[

1 0 0
]T

,
[

−1 0 0
]T
}

, and the expected

curve-ness saliency is given by 1
2 ξ1.

We are now able to interpret the saliencies obtained by a
first pass of the closed-form TV where every point has been
encoded as ball tensor (i.e., K j = I,∀j) as a measure of local
density. We can therefore compare the values with the expected
saliencies, summarized in Table 2, to control the density of each
geometric primitive.

5. SPECTRAL DECOMPOSITION FILTER
(SPDF): OVERVIEW

The method presented in this article, namely SpDF, aims to
reduce the number of points while preserving as much as possible
the topology of the point cloud using geometric primitives (i.e.,
curve, surface, and junction). Note that it is not limited to plane,
line and point as the tensor voting framework allows to detect
more generic geometric primitives. A major challenge in robotics

applications is the non-uniformity of scans acquired with lidar
sensors. In fact most of sampling algorithms are designed for
uniform point clouds. This problem is addressed by proposing
a new efficient strategy to make the density uniform for each
of the three geometric primitives we consider. SpDF can be
divided into two main steps: (1) making the density uniform for
each geometric primitive; and (2) labeling and rejecting outliers
according to the confidence in the geometric information. A
visual overview of the algorithm is given in Figure 2.

5.1. Making the Density Uniform
Using the new local density measure on each geometric primitive,
the point cloud can be made uniform as follows. An iterative
procedure allows to progressively decimate primitives where the
saliencies are higher than the expected values reported inTable 2.
The saliencies are recomputed using TV with tensors encoded
as unit balls. The algorithm stops when the number of points
is stable, which means that the saliencies distributions have
converged below the expected values, as shown by Figure 4A.
This figure shows the convergence of the saliencies below their
expected values (represented by the vertical dashed lines), where
the top-histogram represents the initial saliencies distribution
and the bottom-histogram shows the resulting distribution after
making the density uniform. Therefore, the densities are uniform
around each primitive allowing us to detect them more clearly.
Otherwise, most dense areas will be detected as junction because
noise will predominate. An example of the result of making the
density uniform (for k = 50 and σ = ρ = 0.2) is given
by Figure 4B for a point cloud from 370 to 40 k points (i.e.,
a compression ratio of 89%). The resulting point cloud have
uniform density, and geometric primitives are preserved. All

TABLE 2 | Expected eigenvalues and saliencies in the case of a uniform density in

a D-hyperball, which can be interpreted as density measures and allow to control

the density of each geometric primitive.

D Eigenvalues Saliency

Curve-ness (P) 1 λ̂1 = λ̂2 = ξ1 and λ̂3 = 1
2 ξ1

1
2 ξ1

Surface-ness (S) 2 λ̂1 = ξ2 and λ̂2 = λ̂3 = 3
4 ξ2

1
4 ξ2

Point-ness (B) 3 λ̂1 = λ̂2 = λ̂3 = 5
6 ξ3

5
6 ξ3

FIGURE 3 | Ideal simplified voting situations. (A) All points are uniformly distributed on a sphere (D = 3); (B) All points are uniformly distributed on a circle lying in the

xy-plane (D = 2); (C) All points are uniformly distributed on the endpoints of a line segment along the x-axis (D = 1).
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FIGURE 4 | (A) Convergence of the saliencies below their expected values, represented by the vertical dashed lines, implying a uniform density on each geometric

primitive. The used parameters are k = 50 and σ = ρ = 0.2. The top-histogram represents the initial saliencies distribution obtained from the tensor voting framework.

The bottom-histogram shows the resulting distribution after making the density uniform. Illustration of the process of reducing and making uniform a structured point

cloud from 370 k (B1) to 40 k points (B2), i.e., a compression ratio of 89 %. The resulting point cloud have uniform density, and geometric primitives, such as corners,

edges and surfaces, are preserved.

planes have then the same density, edges have been kept at the
same density, and less points are wrongly identified as junction.

Finally, to control the density, the user only has to tune
the parameter ρ, i.e., the radius of uniformity within the
D-hyperball (where D is the dimension of the considered
geometric primitive). Indeed, the expected vote strengths ξD is
normalized, therefore σ (the spatial extent of the neighborhood)
and k (the number of points to consider in the neighborhood)
do not influence the density once set. In our experiment we set
σ = 20 cm, k = 50, which is a good compromise between
precision and time complexity, and ρ varies from 10 to 1.35m.
It means that once sampled, we expect a density of k points
uniformly distributed within a ball of radius ρ for junctions,
within a disk of radius ρ for surfaces, and on a segment of
half-length ρ for curves.

5.2. Rejecting Outliers and Identifying
Geometric Primitives
Given the saliencies computed with a last iteration of TV with the
ball component disabled, each point is then labeled into junction,
curve, or surface following the TV methodology, and the saliency
associated (respectively point-ness, curve-ness,or surface-ness)
encodes the confidence in this labeling. It provides a high level
description in terms of geometry. Points with a confidence higher
than t% of the maximum confidence of the considered geometric
primitive are kept (we used in our experiments t = 10 %). This
heuristic allows to reject outliers having a low confidence in their
measure. At the end of the process, the point cloud is uniform,
outliers have been rejected, and each point is labeled as surface,
curve or point. SpDF is then able to reduce the point cloud while
enhancing it with geometric information.

6. EXPERIMENTAL SETUP

To validate our sampling method, we investigate its impact on
a 3D registration process, and evaluate it along with several

sampling methods. Indeed, registrations of point clouds is a
mandatory step in most of robotics applications.

6.1. Registration Based on the Iterative
Closest Point (ICP) Algorithm
Registration is the process of aligning the frames of two point
clouds, the reference P and the reading Q, by finding the rigid
transformation T ∈ SE(3) between them by a minimization
process. The transformation can be determined through the
ICP algorithm introduced by Besl and McKay (1992) and
Chen and Medioni (1992). The original algorithm only works
well in ideal cases. To improve the robustness of the original
formulation, several variants have been proposed. In order to
leverage geometric information, such as normals, Rusinkiewicz
and Levoy (2001) introduced an efficient variant of the ICP
algorithm based on the point-to-plane formulation of the error
minimization. Segal et al. (2009) proposed a generalization of the
ICP algorithm, called Generalized-ICP, which takes into account
the locally planar structure of both scans in a probabilistic model.
Stoyanov et al. (2012) presented a novel approach to point
cloud registration, based on minimizing the distance between
Gaussian distributions. Point set are locally represented by their
Normal Distribution Transform (NDT), which are a special case
of Gaussian Mixture Model for representing the probability to
find a surface point at a specific position in space. Pomerleau
et al. (2015) highlight that surface reconstruction is expensive to
compute, but at the same time highlight the fact that leveraging
geometric information when using point-to-plane error leads to
a faster convergence rate. Most of the current strategies rely on
geometric information to minimize the error of the registration
process, requiring then to process the point cloud to extract
these information.

To evaluate the accuracy of the registration, we calculate
separately the translation error part, εt , and the rotational
error part, εr , the same way it is done by Pomerleau et al.
(2013). Given the ground-truth transformation Tgt and its
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corresponding transformation found by the registration solution
T, the remaining error 1T is defined as

1T =
[

1R 1t

0 1

]

= TT−1
gt , (10)

and εt is then given as the Euclidean norm of the translation
1t, and εr is defined as the Geodesic distance directly from
1R, such as:

εt = ‖1t‖ and εr = arccos

(

trace (1R) − 1

2

)

. (11)

As ICP needs a prior for fine registration (i.e., the initial

transformation Ť) to compute the transformation between two
point clouds, we applied a uniform perturbation on the ground-

truth transformation Tgt using Lie algebra, such that Ť =
exp(ς)Tgt , with ς ∈ se(3) and exp(·) being the standard matrix
exponential. For our experiments, a perturbation sampled from
a uniform distribution of 50 cm was applied on the translation,
and from a uniform distribution of 20◦ on the rotation. During
the data filtering step, we applied the evaluated filter on both
the reading and the reference. The data association is conducted
by matching the two closest neighbors. We rejected the outliers
in the matching process according to a trimmed distance. We
limited the scope our experiments to a point-to-plane version of
ICP, as it tends to perform better in those datasets as highlighted
by Pomerleau et al. (2013). The minimization process stops when
the number of iterations reached 150, or when the differential
translation error is less than 1 cm and the differential rotation
error is less than 0.001 rad.

6.2. Details on the Real-World Datasets
Working under the hypothesis of robotics applications, this
paper presents an in-depth evaluation of sampling algorithms
on (1) structured with 45 pairs of scans, (2) semi-structured
with 32 pairs of scans, and (3) unstructured point clouds with
32 pairs of scans, using the datasets “Challenging data sets for
point cloud registration algorithms” (Pomerleau et al., 2012)2.
The structured environment is a map of an apartment with
approximate dimension of 17 × 10 × 3 m, with an average
365 k points per scan. The semi-structured environment is a map
of a park where there is grass, paved small roads, sparse trees,
and containing a gazebo made of rock walls and a wood ceiling
covered with vines trees. The dimension are 35 × 45 × 16 m,
with an average of 170 k points per scan. Finally, the unstructured
environment is a map of a wood, mainly constituted of vegetation
(tree, bushes, etc.). The only structured element is a small paved
road that crosses the wood. The dimension are 36 × 60 × 22 m,
with an average of 178 k points per scan. The used sensor is an
Hokuyo UTM-30LX, a time-of-flight sensor with a minimum
range of 0.1m and a maximal range of 30m. As indicated
by Pomerleau et al. (2012), the specifications of the sensor give a
range accuracy varying from± 1 cm for distances within [0.1, 10)
m to± 3 cm for distances within [10, 30] m.

2Details on dataset can be found online at https://projects.asl.ethz.ch/datasets/

doku.php?id=laserregistration:laserregistration (last accessed July 27, 2020).

TABLE 3 | Ranges [a; b] of parameters influencing the number of points, where a

gives the smallest number of points (here, 1,000 points) and b preserves all the

points (with n being the total number of points), for each evaluated method with

their description.

Method Parameter description Range

Random (baseline) prob. to keep point [0.004 ; 1.]

NSS nb. of points to keep [1000 ; n]
CovS nb. of points to keep [1000 ; n]
SSNormal nb. of neighbors to merge [253 ; 3.]

Octree nb. max of points by cell [1000 ; 1.]

Voxel size max of the cell in m [2.49 ; 0.001]

Max Density nb. max of points by m3 [16.8 ; 506 k]

SpDF (ours) radius of uniformity in m [1.35 ; 0.1]

6.3. Overview of the Evaluated Methods
To evaluate the impact of the number of points on the
registration process, several methods from the state-of-the-art
had been implemented in the open-source modular library for
ICP named libpointmatcher, introduced by Pomerleau
et al. (2013) and available online3. The eight evaluated filters,
summarized in Table 3, are the following:

• Random sampling, chose as our baseline for its simplicity and
because it is still one of the most used solution; point cloud is
reduced by dropping points given a fixed probability.

• One neighbor-based method from the libpointmatcher,
the Sampling Surface Normal filter, SSNormal; it recursively
decomposes the point cloud into boxes until each box contains
at most a given number of points, and select one point if
normal estimation can be conducted within the box.

• Two variants of spatial segmentation, Voxel and Octree
(centroid); Voxel sub-divides the space with a fixed spatial
extent whereas Octree uses the number of points per cell as
a criterion to stop the partition. Both take the centroid in each
cell to sub-sample the point cloud.

• Two normal-based methods, CovS, the Covariance Sampling
method from Gelfand et al. (2003) and NSS, the Normal Space
Sampling method from Rusinkiewicz and Levoy (2001).

• Two density-based method, the MaxDensity method from
the libpointmatcher and eventually, the proposed
method in this paper, SpDF; MaxDensity aims to
homogenize the density of a point cloud by rejecting a
sub-sample of points in high-density regions. Points are
only considered for rejection if they exceed a density
threshold, otherwise they are preserved. It relies on a spherical
approximation to compute density. SpDF also aims to
homogenize the density but on each different geometric
primitive. It leverages the tensor voting framework to identify
these primitives and to derive density measures for each.
It therefore reduces the number of points and enhances
the point cloud with geometric information, such as the

3The library is available at https://github.com/ethz-asl/libpointmatcher. The filters

documentation is available at https://libpointmatcher.readthedocs.io/en/latest/

DataFilters/ (last accessed August 06, 2020).
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normals. Hence, SpDF can be seen as an improvement of the
MaxDensitymethod.

The evaluated methods are similar to the most used
strategies available in point cloud processing software such
as CloudCompare and PCL. For each method, we resumed in
Table 3 the range

[

a; b
]

of parameters influencing the number
of points, where a gives the smallest number of points, here,
1.000 points, and b preserves all the points, with n being the
total number of points. We performed 2.500 registrations using
the ICP algorithm (5.000 for our baseline Random) across the
range for each method on each pair of scans, for each dataset,
accumulating more than 2.45million registrations in different
types of environments.

7. RESULTS AND DISCUSSION

7.1. Evaluation on Registration Accuracy
First, we compare the different sampling methods on the
registration accuracy. Figure 5 presents the translation and the
rotational errors as functions of the compression ratio of the
point clouds for all environments concatenated. At 0%, all points
have been kept and at 100%, all points have been removed.
The gray area represents the errors lower than our baseline
(Random), the red solid-line corresponds to SpDF and the
dashed-lines to the other methods.

FIGURE 5 | Influence of the number of points (i.e., compression ratio) on the

registration process for all environments concatenated. The gray area

represents the errors less than the baseline. SpDF (ours) is displayed in

solid-line. The top-graph represents the error in translation εt in m; The

bottom-graph represents the error in rotation εr in deg. Both translation and

rotational errors show the same patterns. Only spatial methods (Voxel and

Octree) and density-based methods (MaxDensity and SpDF (ours))

outperform the baseline, providing a translation error less than 2 cm, and a

rotation error of less than 0.3 ◦, which tend to the minimal reachable errors for

the ICP algorithm.

Both translation (εt) and rotational (εr) errors show the same
patterns. From 0 to 25%, corresponding to more or less 100 k
points, the errors decrease as the compression ratio increases.
From 25 to 80%, the errors are almost constant or grow at
a really slow rate. Beyond 80%, the errors start to increase
exponentially. In the first situation, with more points, the dense
areas predominate in the minimization process, leading to less
accurate results. In the last situation, with only a few points,
the minimization process cannot converge efficiently as not
enough information is available to constrain the process. Both
situations lead to less accurate results. The evaluated methods
are significantly more accurate than the baseline except NSS,
CovS, and SSNormal, which perform worse than Random,
with a median error of 20 cm against 7 cm for the translation.
This confirms their inability to manage uneven density and large-
scale point cloud performing poorly for all types of environment.
These algorithms need to be adapted for an application in the
context of robotics, with large-scale, uneven environments.

Spatial methods perform well on all datasets, providing a
median translation and rotation errors which tend to theminimal
reachable errors for the ICP algorithm on these kind of maps.
However, Octree starts diverging sooner than the others,
around 90%, corresponding to approximately 30 k points, when
the number of points decreases. With Octree, we obtained
a translation error of 1.9 cm and a rotational error of 0.4◦. It
performs well to a certain extent as it is able to preserve the
spatial distribution for a large number of points, but suffers
from the uneven density distribution for a small number of
points. The Voxel method performs well as it preserves the
spatial distribution whatever the density, with a translation error
of 1.2 cm and a rotational error less than 0.27◦. Using only
the density, MaxDensity leads to more accurate alignments
than the baseline showing a translation error of 1.6 cm and
a rotational error less than 0.3◦. Finally, SpDF with an error
in translation of 1.8 cm and an error in rotation of 0.278◦,
shows the best results from all the evaluated methods along
with MaxDensity and Voxel, which are equivalent in terms
of errors. The proposed method inherits the qualities of the
density-methods and manage efficiently large point clouds with
uneven densities by maintaining a given density for each
geometric primitive.

Figure 6 gives a statistic analysis of the translation error
at compression ratio between 0 and 99.9% for each method,
graphically represented as box plots. Medians are given with their
firstQ1 and thirdQ3 quartiles. The spacing between the different
parts of the box indicate the degree of dispersion (spread) and
skewness in the errors. Boxes are given with whiskers with
maximum 1.5 IQR, where IQR = Q3 − Q1 is the inter-
quartile range. Points outside the boxes represent the outliers.
We can clearly identify two clusters of solutions: (1) Voxel,
MaxDensity, and SpDF; and (2) SSNormal, Random, CovS,
and NSS. The Octree method is in-between as the spread
extends from the first to the second cluster. The second cluster
presents a median error between 6.5 and 20 cm with a large
spread of more than 50 cm. The first cluster presents a median
error between 1.2 and 1.8 cm but with an equivalent degree a
dispersion of 2.8 cm. The three methods are therefore equivalent
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FIGURE 6 | Statistic analysis of the translation error at compression ratio

between 0 and 99.9 % for each method, graphically represented as box plots.

Medians are given with their first Q1 and third Q3 quartiles. The spacing

between the different parts of the box indicate the degree of dispersion

(spread) and skewness in the errors. Boxes are given with whiskers with

maximum 1.5 IQR, where IQR = Q3 −Q1 is the inter-quartile range. We can

clearly identify two clusters of solution: (1) Voxel, MaxDensity, and SpDF;

and (2) SSNormal, Random, CovS, and NSS. The Octree method is

in-between as the spread extends from the first to the second cluster.

in terms of error. In the following, we will conduct the analysis
only on the first cluster of solutions, i.e., on SpDF along with
MaxDensity and Voxel.

7.2. Comparison for High Compression
Ratio and for Each Type of Environment
Secondly, we analyze the behavior for high compression ratio.
The three best methods have been compared for compression
ratio between 85 and 99.9%. Errors in translation and rotation
are illustrated by Figure 7. Both errors are displayed with their
quartiles at 25 and 75%. All method errors are of the same
magnitude, even if MaxDensity performs slightly worse as the
compression ratio grows. Rotational error is constant and less
than 0.3◦ until 97% and start growing exponentially afterward.
The same behavior is observed for the translation errors which
are less than 2 cm until a compression of 92%.We believe that the
error tends to the minimal reachable error that can be obtained
with the ICP algorithm, making it hard to state that one method
outperforms the others. However, SpDF and MaxDensity are
slightly more stable as the compression rate grows compared to
Voxel. One explanation is that spatial sampling depends on
the origin of the sampling and on the frequency: the larger the
spatial extent of the voxel, the greater the shift in the point cloud.
Sampled point in the reading and reference point cloudmight not
represent the same part of the point cloud, leading to less stable
results while matching. Finally, density-based methods as ours
are able the perform well in context of 3D registration because
they are able to deal with noisy and non-uniform point clouds.

These threemethods are equivalent in terms of translation and
rotation errors. Statistical analysis reported in Figure 8 confirms
this hypothesis. On this range of compression ratio, we can
expect a translation errors of: 2.37 cm with a lower quartile

FIGURE 7 | Comparison of Voxel, MaxDensity, and SpDF (ours) influence

of the number of points on the registration process for high compression

ratios. The top-graph represents the median error in translation εt in m. The

bottom-graph represents the median error in rotation εr in deg. Both errors are

displayed with their quartiles at 25 and 75 %. All method errors are of the

same magnitude and can be considered equivalent. However, SpDF is slightly

more stable as the compression rate grows compared to Voxel. We can

expect a compression ratio of 97 % without hindering the registration process

for all of these methods, i.e., εt < 2 cm and εr < 0.3 ◦.

Q1 = 1.05 cm, and upper quartile Q3 = 5.11 cm, i.e., an IQR
of 4.06 cm for Voxel; for SpDF, an error of 2.40 cm with a lower
quartile Q1 = 1.21 cm, and upper quartile Q3 = 4.59 cm, i.e.,
an IQR of 3.37 cm; and of 3.59 cm with a lower quartile Q1 =
1.63 cm, and upper quartileQ3 = 9.62 cm, i.e., an IQR of 7.99 cm
for MaxDensity. MaxDensity provides a higher error and
spread than the two others methods. Voxel and SpDF are
equivalent in terms of median errors, but SpDF is slightly more
stable as the spread is lower. On this range of compression ratio,
we can expect a rotation errors of: 0.40◦ with a lower quartile
Q1 = 0.23◦, and upper quartile Q3 = 0.82◦, i.e., an IQR of 0.59◦

for Voxel; for SpDF, an error of 0.31◦ with a lower quartile
Q1 = 0.19◦, and upper quartileQ3 = 0.50◦, i.e., an IQR of 0.31◦;
and of 0.48◦ with a lower quartileQ1 = 0.26◦, and upper quartile
Q3 = 1.15◦, i.e., an IQR of 0.89◦ for MaxDensity. Compared
to MaxDensity and Voxel, SpDF gives the lowest median
error with the smallest spread, but the difference is not significant
enough and all three methods can be considered equivalent.

Thirdly, we analyze the impact of the type of environment on
the registration error for high compression ratio between 85 and
99.9%. Figure 8 gives a statistic analysis of the translation and
rotation error for the top three methods, graphically represented
as box plots. Medians are given with their first Q1 and third
Q3 quartiles. Boxes are given with whiskers with maximum
1.5 IQR. Even if each environment shows its own kind of
errors variations, the methods behave similarly independently
of the types of environment. For the rotation errors, the semi-
structured and unstructured present similar errors of 0.3◦, with
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FIGURE 8 | Statistic analysis of the translation and rotation errors at high compression ratio between 85 and 99.9 % for each environment (structured,

semi-structured, unstructured and all environments concatenated), for the top three methods, graphically represented as box plots. Medians are given with their first

Q1 and third Q3 quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the errors. Boxes are given

with whiskers with maximum 1.5 IQR, where IQR = Q3 −Q1 is the inter-quartile range. All environments present similar errors, except in rotation for the structured

environment which presents a slightly higher error. The spreads and medians are of the same order for the three methods.

similar dispersion of 0.3◦. On the structured environment, the
evaluated methods perform slightly worse, with an error of 0.6◦

with a larger spread of 0.8◦. One explanation is that the latter
environment usually presents a non-homogeneous distribution
of the surfaces orientations (some orientations are preferred, e.g.,
the walls orientations) leading to less precise rotation estimation.
One another explanation is that the structured environment
is at a smaller scale than the others, which leads to a noisier
estimation of the rotational component. Translation errors are of
the same order for all the environments. We can expect an error
of less than 3 cm with a 5 cm dispersion. The spread is smaller
in the case of the unstructured environment than the other
two. In particular, the spread of the MaxDensity is slightly
higher than the others. Unsurprisingly, translation median
errors are greater for the unstructured than the structured
environment, as the point-to-plane cost function performs better
in latter environments.

7.3. Computation Time Analysis
Computation time analysis has been conducted on an
Intel R© CoreTM i7-7820HQ CPU @ 2.90GHz, with 8 cores,
on Ubuntu 16.04.3. Parallelization has been enabled when
possible using then 8 threads. Figure 9 provides a comparison
of the computation time as function of the compression
ratio, from 50 to 99.9%, for the following methods: Random,
MaxDensity, Voxel, and SpDF. Voxel construction and the
voting process have been parallelized. For each method, 2.500
samples have been used to sub-sample one scan per type of
environment. The three types of environments are: structured,
with 198 k points; semi-structured, with 134 k points; and
unstructured, with 166 k points. The results are presented for all
environments concatenated.

First, only the computation time of applying the filter has
been measured, therefore not including the time required by
the ICP process. As shown in Figure 9, the computation time
of MaxDensity and Random is constant with respect to the

FIGURE 9 | Computation time analysis as function the compression ratio for

Random, Voxel, MaxDensity, and SpDF (ours) sampling methods. The

computation time of applying the filter (solid-line) has been measured along

with the accumulated time required for normals estimations (dashed-line). For

MaxDensity and Random, the computation time of applying the filter is

constant with respect to the compression ratio. For Voxel and SpDF, it

decreases while the compression ratio increases, as the number of cells

decreases and the number of iterations for the voting process also decreases.

compression ratio. Random iterates only once on all the point
cloud to decimate randomly the points, and MaxDensity
computes the densities using the full point cloud, then randomly
removes points with high density. For Voxel and SpDF,
the computation time decreases while the compression ratio
increases, as the number of cells decreases and the number of
iterations for the voting process also decreases. Due to its iterative
nature, SpDF is more costly and slower: for low compression
ratios, one order of magnitude against MaxDensity, two
order against Voxel, and three order against Random; for
high compression ratios, MaxDensity is of the same order,
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one order against Voxel and two order against Random.
For instance, at a compression ratio of 95%, for the semi-
structured environment, we have the following computation
times: tRandom = 4.5 ms, tVoxel = 20 ms, tMaxDensity =
750 ms, and tSpDF = 500 ms. The evaluated strategies do
only reduce the input point cloud, while SpDF is designed to
reduce and enhance the point cloud with geometric information
at the same time. Therefore, it is clear that the method has a
higher computational time, but what we lose in computation
time is gained in geometric information. As the computation
time tends to the limit of real-time capabilities, efforts might
be done to optimize the code and could be ported to GPU.
Especially, porting the tensor voting and tensor decomposition
parts on GPU, as done in Liu et al. (2012), provides significant
improvement in computation time.

Secondly, considering the computational time of the whole
pipeline of the ICP algorithm, we need to take into account
the pre-processing time. In the case of the point-to-plane
version it is required to compute the normals. Figure 9 presents
for each method the accumulated time needed for applying
the filter and computing the normals. Normals estimation is
conducted on the sampled point cloud. For MaxDensity,
normals estimation is performed at the same time as the
densities calculations, therefore there is no additional time.
SpDF intrinsically computes the normals when applied, hence
requiring no additional time either. For the other methods, the
computation time is significantly increased for low compression
ratio. At a compression ratio of 50%, Random required a total
computation time of 350ms against 4.5ms without normals
estimation. The computation time of Voxel increases from
100 to 500ms. The time required is now of the same order
of magnitude as MaxDensity. The gap between Voxel and
SpDF is now only of a factor 6. For high compression ratio,
the difference is less significant. At a high compression ratio
of 90%, Random required a total computation time of 100ms.
The computation time of Voxel increases up to 200ms, which
is however still one order of magnitude quicker than SpDF.
Note that when not enough points are available, the normals
estimation is not robust and could hinder the registration
process. SpDF leverages the tensor voting framework to provide
a robust estimate of the normals.

7.4. Preserving Details and Making the
Density Uniform on Real-World
Large-Scale Data
Finally, we evaluate qualitatively SpDF on real-world large-scale
datasets. Figure 4 illustrates that SpDF is able to make the
density uniform while preserving each geometric primitive, from
an original point cloud of 370 k points where most points are
concentrated in a small area, to a uniform point cloud of 40 k
points, i.e., a compression ratio of 89%. Edges and corners have
been preserved, while dense surfaces have been made uniform.

We evaluated the proposed method along with one of the
top three methods, Voxel sampling with a spatial extent of
0.8m on a real-world large-scale outdoor environment. Figure 1
shows the qualitative result of a sampled point cloud from 4.65

million points to 100 k points, i.e., a compression ratio of 97.85%.
The map dimensions are approximately of 340 × 100 × 6 m.
Figure 1B2 gives the full and top views of the map sampled
by Voxel. The spatial sampling stops the voxel decomposition
when the cell size is less than 0.8m or when the cell contains less
than 45 points. The decomposition is aligned with the xyz-basis.
In this case, Voxel suffers from the discrepancy between the x,
y, and z scales, as it creates the bounding box with a radius of the
size of the bigger dimension. Furthermore, as the ground is not
aligned with the xy-plane, it keeps points which are at different
altitudes within the dense path. Finally, when geometric details
are not dense enough such as the pillars of the top-left of the
map, Voxel does not keep them. Contrarily, SpDF identifies the
geometric primitives, and is able to sub-sample efficiently each
primitive locally: the ground is uniformly sampled, and the pillars
of the top-left of the map are preserved even if the density is low.
From Figure 1B1, the full and top views of the map sampled by
SpDF show that most of the details have been preserved and the
density is uniform.

Figure 10 illustrates the effects of the proposed method on
large-scale point cloud, presenting a comparison of sub-views
from the Grand Axe map. Sub views have been extracted from
the whole sampled point cloud by Random sampling, by Voxel
sampling and by SpDF. Local compression ratio has been
reported for each sub-view. Figure 10A presents a sub-view of
a dense path containing a very high density of points. Random
kept a lot of points and still presents varying densities. Voxel
regularly sampled the path, but still kept slightly more points as
the ground is not aligned with the xy-plane. SpDF aggressively
sampled the path, adapting then the local compression ratio up
to 99%, and have made the density uniform. Figure 10B is a sub-
view of one tree representing less than 0.04% of the total point
cloud. With Random, most of the points have been removed due
to the low local density and the tree is no longer distinguishable.
Voxel kept more points than Random, allowing to identify the
tree within the point cloud, reducing the compression ratio to
92.39%. However, less details have been preserved, and most of
the ground have been removed.With SpDF, we efficiently sample
the tree, reducing then the local compression ratio to 76.8%, and
keep most of the details. Finally, Figure 10C gives a sub-view of
structured walls. Random kept more points in the dense part
of the wall, then losing the geometric information of the upper
part. It also removed the two small bushes next to the building,
which are kept by the other methods. Even if Voxel sampled
regularly the walls and kept more points, it does not differentiate
the geometric primitives. For instance, structured elements have
not been kept but replaced by regular samples, and the ones with
a low density (on the left) have been removed. SpDF kept points
uniformly on the structure, reducing then the local compression
ratio to 96.79%.

7.5. Discussion on the Choice of the
Sampling Method
Our results show that sampling strategies designed for computer
graphics applications cannot be extended to real-world large
dataset. CovS and NSS cannot handle large scale map with noise,
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FIGURE 10 | Sub-views comparison from the Grand Axe map, containing more than 4.65 million points with varying densities. The whole point cloud has been

sampled to 100 k points (i.e., a compression ratio of 97.85 %) by Random sampling, by Voxel sampling and by our method, SpDF. Local compression ratio has

been reported for each sub-view. (A) Sub-view of a dense path containing a very high density of points. Random kept a lot of points and still presents varying

densities. Voxel regularly sampled the path, but kept slightly more points as the ground is not aligned with the xy-plane. SpDF aggressively sampled the path,

adapting then the local compression ratio up to 99 %, and have made the density uniform. (B) Sub-view of one tree. With Random, most of the points have been

removed due to low local density and the tree is no longer distinguishable, while with SpDF, we efficiently sample the tree, reducing then the local compression ratio to

76.8 %, and keep the geometric information. Voxel kept slightly less points than SpDF, preserving less details. (C) Sub-view of structured walls. Random kept more

points in the dense part of the wall, losing then the geometric information of the upper part. Voxel kept the more point, regularly sampled the walls but loose the

original geometric details. It removed the structured elements with low density on the top-left, while our method, SpDF, kept points uniformly on the structure,

reducing then the local compression ratio to 96.79 %.

while SSNormal and Random suffer from their inability to deal
with varying densities.

Considering real-world large scale environments with
spurious and noisy measurements, Voxel, MaxDensity, and
SpDF can be used to sample the point cloud. In applications
where computation time is critical, Random can still be
considered as a strong solution. However, if the precision is
critical, it is better to use Voxel, MaxDensity, or SpDF
as they provide errors within the range accuracy of the used
sensor. Here, in the context of large scale environments, it
represents less than 2 cm in translation and less than 0.3 deg
in rotation up to a compression ratio of 97%. The Voxel
method provides an efficient representation of the map by
sampling regularly the point cloud space, with a computational
time of less than 100ms. However, one drawback of the spatial
methods is the lack of fine grained control over the number of
output points and over the level of details. In applications where
geometric information is required, such as surface inspection
scenario, Voxel does not guarantee to preserve the geometric
details as it averages the points within each voxel. Density-
based methods, such as MaxDensity are able to preserve
further geometric information as they work locally. However,

MaxDensity does not differentiate geometric primitive during
the density calculation and relies on spherical approximation.
Our qualitative experiments show that SpDF by sampling locally
on each geometric primitive further preserves the details and
the topology of the point cloud. The major drawback of the
proposed method is its high computational time at the limit of
real-time capabilities, but does not required a pre-processing
step. It provides a higher level description in terms of geometric
primitives that could be used by another pipeline for scene
interpretation, or directly in the minimization process as
normals are provided in the point-to-plane version.

The general registration strategy selected for an application
may require to balance advantages and drawbacks of the chosen
solutions. Readers are invited to refer to Pomerleau et al. (2015)
as they provide a clear overview of geometric registration in
case of robotics applications, as well as a method to solve it
in specific instances. Typical use-cases for ICP do not need to
apply the filter at a high rate on all input scans. Most of the
strategies rely on scan-to-map registration, where the maintained
map is sup-sampled by an efficient sampling strategy according
to the desired application. For instance, in case of surface
inspection, we want to preserve geometric information, we can
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then use the proposed method in this paper. At 10Hz, input
scans should use Random to maintain high rates. Reducing the
map size increases all registration done to it and decreases data
transmission bandwidth when it comes to sharing the map.

8. CONCLUSION

This paper presents a novel sampling algorithm, named Spectral
Decomposition Filter (SpDF), aiming at reducing the number
of points while preserving the geometric information along the
topology of large-scale point cloud with non-uniform density,
large sensor noise, and spurious measurements. This method
builds on spectral decomposition applied to point clouds in
order to obtain a density better suited for robotics applications
where geometric information are essentials. First, we identify
the geometric primitives along with their saliencies using the
tensor voting framework from the input point cloud. Then, we
derive density measures from saliencies: if the density for each
geometric primitive is less than the desired density, we stop;
else we sub-sample each geometric primitive, and re-iterate. As
output, we have a uniform sampled point cloud enhanced with
geometric information.

We verified the feasibility of our method through quantitative
and qualitative results. We presented a large-scale evaluation of
SpDF along with other seven point cloud sampling strategies
from the state-of-the-art, in the context of the 3D registration
problem using the ICP algorithm. Our results show that only
spatial sampling strategies and density-based methods are able
to manage such large 3D environments without hindering the
registration process. In particular, SpDF performs successfully
on large-scale maps acquired with lidar sensor, where the
density is non-uniform. We manage non-uniform densities by
leveraging the new derived measures of density from saliencies
for each geometric primitive which allows us to preserve the
topology of the point cloud. Thus, by making the density
uniform and leveraging the geometric information, the proposed
method efficiently sub-samples large scale point cloud while
simultaneously enhancing it. Even for high compression ratio
(i.e., > 90 %), the process of registration is not hindered which
enable a large spectrum of robotics applications. Indeed, for
such applications, this sampling is usually critical to reduce
bandwidth or computation complexity without losing accuracy
during the registration process, whilst geometric information
provides higher level of description.

Computational time is however still high and at the limit
of real-time capabilities. Future works will include efforts to
optimize the code and the tensor voting part will be ported
on GPU which should significantly improve the computation
time (Liu et al., 2012). Furthermore, as we provide a second
order symmetric tensor representation for each point (i.e., a
Gaussian representation), future works will aim to leverage this
information directly in the minimization process of the ICP,
inspired by the Point-to-Gaussian cost function derived by Babin
et al. (2019).
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