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Research on human-robot interactions has been driven by the increasing employment of

robotic manipulators in manufacturing and production. Toward developing more effective

human-robot collaboration during shared tasks, this paper proposes an interaction

scheme by employing machine learning algorithms to interpret biosignals acquired from

the human user and accordingly planning the robot reaction. More specifically, a force

myography (FMG) band was wrapped around the user’s forearm and was used to collect

information about muscle contractions during a set of collaborative tasks between the

user and an industrial robot. A recurrent neural network model was trained to estimate

the user’s hand movement pattern based on the collected FMG data to determine

whether the performed motion was random or intended as part of the predefined

collaborative tasks. Experimental evaluation during two practical collaboration scenarios

demonstrated that the trained model could successfully estimate the category of hand

motion, i.e., intended or random, such that the robot either assisted with performing the

task or changed its course of action to avoid collision. Furthermore, proximity sensors

were mounted on the robotic arm to investigate if monitoring the distance between

the user and the robot had an effect on the outcome of the collaborative effort. While

further investigation is required to rigorously establish the safety of the human worker,

this study demonstrates the potential of FMG-based wearable technologies to enhance

human-robot collaboration in industrial settings.

Keywords: human-robot collaboration, collision avoidance, recurrent neural network, force myography, industrial

robot

1. INTRODUCTION

Incorporating robotic technology in the industrial environment has facilitated the manufacturing
process by increasing flexibility and productivity (Finkemeyer and Kiel, 2017). While the robot or
the human might separately handle their given tasks, in some cases, sharing the workload increases
the quality and productivity while avoiding excessive fatigue for human workers (Bi et al., 2019).
Any collaborative scenario should put into place strategies to ensure safety of workers, intuitive
interfaces to establish clear communication between the human and robot, implement control
schemes, and deploy sensor network for task coordination and planning the trajectory of the robot
(Villani et al., 2018).
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Toward avoiding collisions and preserving safety of workers
while promoting productivity, the human-robot communication
during a shared task might be enhanced by implementing means
to detect the presence of humans in close proximity of the robot
and developing a scheme in which robot reactions are adjusted in
accordance with an estimation of human intentions for their next
move (Avanzini et al., 2014; Bi et al., 2019).

In shared workspaces, vision-based systems have been used
to monitor the dynamic location of humans, objects, and robots
(Halme et al., 2018). Using the acquired images, a variety
of algorithms have been proposed to monitor the distance
between the human and the robot, ensure collision avoidance,
estimate human motion pattern, and recognize gestures to
facilitate human-robot communication (Pérez et al., 2016;
Halme et al., 2018; Liu and Wang, 2018). The effectiveness
of vision-based systems have been demonstrated in different
simulated industrial environments, however, challenges, such as
computational complexity, performance degradation as a result
of dust or poor illumination, and the risk of occlusion still limit
their efficacy in real-time estimation of human intentions and
subsequent planning of the robot trajectory to avoid collisions
(Avanzini et al., 2014; Pérez et al., 2016; Halme et al., 2018).
Depending on the application and purpose, augmentative or
alternative to the vision-based systems could be instrumenting
the robotic manipulator with distance sensors (Avanzini et al.,
2014; Halme et al., 2018) and/or taking advantage of wearable
technologies (Liu and Wang, 2018; Bi et al., 2019). Wearable
devices, e.g., in the form of gloves and bands, are growing
non-image-based technologies for gesture recognition in human-
robot interactions that can provide fast responses and can be used
to incorporate an estimation of human intentions when planning
the robot trajectory (Liu and Wang, 2018; Bi et al., 2019).

Incorporating human intentions in planning the robot
trajectories and reactions increases the flexibility and safety
of cooperation (Bi et al., 2019). While various image-based
communication methods, such as gaze tracking (Sakita et al.,
2004; Zhao et al., 2012), have been proposed, other sources
of information have been investigated as well (Bi et al.,
2019). Approaches that use data from sources, such as surface
Electromyography (sEMG) electrodes and inertial measurement
units (IMUs) are examples of the latter category (Assad et al.,
2013; Chen et al., 2017; Wang et al., 2018; Bi et al., 2019).
In such cases, upper-limb movements are observed to estimate
if arm and hand motions are aimed at collaborating with the
robot or are random (Bi et al., 2019). Probabilistic models, e.g.,
machine learning algorithms that do not require a complete
model of human behavior, have been employed to process the
data collected by sensors. Hidden Markov model and neural
networks are examples of methods used for estimating human
intentions in collaboration with a robot (Wang et al., 2009; Ge
et al., 2011; Ravichandar and Dani, 2017; Schydlo et al., 2018).

Force Myography (FMG) is a technique to quantify changes
in the volume of a limb resulting from muscle contractions
and relaxations (Xiao and Menon, 2014). This biosignal has
been employed in a variety of applications including gesture
recognition, control of exoskeletons, prostheses, and linear
actuators, and estimation of user-applied forces to manipulate

planar linear actuators (Xiao et al., 2014; Cho et al., 2016;
Sakr and Menon, 2016a,b, 2017, 2018; Jiang et al., 2017;
Sadarangani and Menon, 2017; Zakia and Menon, 2020).
Force myography from upper-limbs could be collected using
lightweight, compact, and unobtrusive bands wrapped around
wrist, forearm, and/or upper arm, which makes it an attractive
technique for developing wearables.

We have previously shown that the support vector machine
(SVM) model trained with two features extracted from FMG
data, namely power spectral density and likelihood, could classify
six different hand gestures with an accuracy of above 90%
(Anvaripour and Saif, 2018b). We also demonstrated that FMG
data could be used to estimate the forearm muscle stiffness. Such
an estimation was then applied to adjust the robot gripper force
to handle different objects with the same gripping force as that
of the human worker (Anvaripour and Saif, 2018a). Further, we
showed that the information provided with the FMG band along
with the robot dynamics can be used to plan the trajectory of the
robot during a shared task. The proposed approach was tested in
a scenario in which the robot and the human worked together
to carry a shared load along a predefined trajectory (Anvaripour
et al., 2019). This paper builds upon our previous works to
incorporate an estimation of human intentions to improve
work flow during performing the shared task, i.e., the task
continues without interruptions when the human is performing
movements required to complete the task. To this end, an FMG
band was placed around the forearm to record changes in the
muscle volume. A recurrent neural network (RNN) with Long
Short Term Memory (LSTM) architecture was implemented to
estimate human intentions based on multiple features extracted
from the collected FMG data and the robot dynamics. Moreover,
this study takes our previous investigations a step further by
using the information collected with proximal sensors mounted
on the robot arm to plan and execute evasive motions to
prevent a collision when the human is in the proximity of
the robot. The proposed approach was successfully tested in
two practical scenarios in which a human and a robot worked
collaboratively to complete defined shared tasks. Although this
method requires an ad-hoc sensory system for each individual,
noting that FMG is a relatively inexpensive technology, the
proposed approach does not considerably increase the hardware
or computational cost. Therefore, such a method can be used as
augmentative to the more established image-based methods, for
example to compensate for an obstructed view or to enhance the
real-time estimation of human intentions and planning of the
robot trajectory.

2. COLLECTION AND PROCESSING OF
FMG

In this section, the designed FMG band used to monitor
volumetric changes in the human forearmmuscles is introduced.
The signal processing technique and the feature extraction
method to acquire information about human forearm muscle
contractions/relaxations are explained. The resulting features are
then used to estimate the force that the human applies on the
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robotic manipulator (section 2.3), control the robot (section 3),
and train the proposed neural network to estimate human
intention during the collaboration with the robot (section 4.1).

2.1. Forearm FMG Band
Force myography data can be collected with force sensing
resistors (FSRs), the output of each sensor depends on the
amount of force applied to the active area. For this study,
a custom FMG-band with eight FSRs (FSR 400, Interlink
Electronics, Inc., Los Angeles, CA) was used. The band was
wrapped around the forearm muscle as shown in Figure 1 such
that FSRs were in contact with the user’s skin. Signals from FSRs
integrated in the band would then indicate muscle contraction
patterns resulting from changes in the volume of the forearm
muscles while performing a manual task. To make the band
wireless and more compact, a microprocessor (ATMega328,
Microchip Technology, Chandler, AZ) was programmed to
collect data from each FSR and transmit them to an on-site
computer through a Bluetooth module (HC-05 Wireless Ibeacon
Module) at a sampling frequency of 25 Hz.

2.2. Forearm Muscles Contraction Patterns
Graph
Data collected from FSRs were processed using a sliding window.
Denoting the sampling frequency of the FMG band with fs, a
total of 1/fs samples were extracted in 1 s. A window of size
w > 1/fs was applied to extract the features. The sliding window
was moved in time by m samples where m < w; thus, every
two consecutive windows had an overlap of the size of w-m
samples. Signal segments in each time window were debiased by
calculating each segment’s mean value and subtracting it from
the signal values in the corresponding time frame. Power spectral
density (PSD), one of the features commonly used for the training
of machine learning algorithms, was then calculated for each time

window (Saa and Gutierrez, 2010)

PSD =
|X[k]|2

fs.w

X[k] =
N−1
∑

m=0

xwe
(−2π i(m−1))/N , k = 0, 1, ...,N − 1

(1)

where N is the length of the frequency window used for Fast
Fourier Transform (FFT), fs is the sampling frequency, w is the
window length,m determines the number of overlapping samples
in two consecutive time windows, X is the frequency domain
representation of the collected signal, and xw is the segment of
collected signal corresponding to window w.

Likelihood was selected as another feature and calculated as

ln =
ks ×Ms

1+Ms
− log(1+Ms) (2)

where ks = |X|2/var(Ns) is the a posteriori signal to noise ratio
(SNR). The variance of noise for calculating this parameter can be
obtained in the training phase of the model. TheMs is the a priori
SNR calculated using the decision-directed method (Ephraim
and Malah, 1984).

The feature extracted from each window was a combination of
the above features:

Q(n) =
n

∑

i=n−ws

αiPSDi.e
βili (3)

where α and β parameters could be determined experimentally.
Since different arm and hand movements activate different

muscles, data collected during various arm and hand
movements/gestures are distinct, and extracting the relationship
between them creates a unique description of the performed. To
define such a relationship quantifying of the forearm muscle,

FIGURE 1 | (A) The FMG band equipped with FSRs, (B) positioning of the band around the forearm. (Reproduced with permission).
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data from all sensors were considered together to form a graph
ofm sensors at each time step:

Y =











0 |Q2 − Q1| ... |Qm − Q1|

|Q1 − Q2| 0 ... |Qm − Q2|

...
...

...
...

|Q1 − Qm| |Q2 − Qm| ... 0











(4)

This matrix is symmetric, i.e., Y(i, j) = Y(j, i), and can be

interpreted as a graph with m vertices and m2−m
2 distinct edges

which represent the relationship between each two sensors.

2.3. Estimating Forces Applied on the
Robot
The measured graph Y can be normalized using the maximal
voluntary contraction (MVC) feature denoted by V . This value
refers to the maximum external force that the robot arm can
tolerate during the cooperation. V is determined experimentally
for each specific application. The normalized matrix describes
muscle FMG and is obtained as

Ri,j =
Yi,j

Vi,j
(5)

where 0 ≤ R ≤ 1. The activation level for each sensor is defined
as

D =

m
∑

k=1

R(:, k) (6)

where m is the number of force sensors used in the FMG band,
and D is a diagonal matrix in which the elements are the sum
of the associated activation level of each sensor used to capture
the FMG. To find the corresponding value of force for use in the
robot controller, the following mapping is defined

fr = c(fmax − fmin)+ fmin (7)

where fmin and fmax are the minimum andmaximum controllable
force externally applied to the robot. Anvaripour and Saif (2018a)
were defined the mapping parameter c as follow

c = T1
1− eT2DD

T

1+ eT2DD
T

(8)

where T1 and T2 are mapping parameters obtained
experimentally.

The translated applied force value can be used to estimate
human intentions, e.g., whether the user intends to move
the manipulator as part of a pre-defined collaborative task.
Consequently, it can be incorporated in the robot control
algorithm to adjust the endpoint velocity and joints torques
during the cooperation such that the robot reacts accordingly to
estimated human intentions.

3. ROBOT CONTROL ALGORITHM

The system under study is a robotic platform directly interacting
with or working in proximity of a human. In such cases, user’s
hand is the most vulnerable limb to injury if there is a collision
with the robot arm during a collaborative scenario. Considering
that the location of the object that the robot is working on as
well as the endpoint trajectory are both defined in the control
algorithm, describing human limb motions with respect to the
same coordinates and estimating human intentions facilitate
adjusting the controller parameters.

The robot dynamic can be presented by a second
order equation:

Mẍ+ Cẋ+ Kx = f + fr (9)

where fr and f are joints torques and the user-applied force,
respectively. M denotes the mass matrix, C is the damping
vector, and K contains the stiffness factors. The objective of
controlling the manipulator is to minimize the error according
to the desired TCP trajectory, i.e., e = xd−x, which results in the
following equation:

Më+ Cė+ Ke = f (10)

The controller should follow the desired trajectory in the
presence of uncertainties, such as user-applied force. The position
and velocity of joints can be controlled by defining the sliding
mode error tracking, defined as Anvaripour et al. (2019):

r = ė+ αe (11)

Consequently, the controller equation would be

f = h(q, q̇, e, ė)− fr (12)

where h is a function of joint and endpoints positions as
well as the error between desired and actual positions. In
many practical situation, the gravity is usually mechanically
compensated, therefore, it is not considered in the dynamics
differential equation.

The parameters of the controller should be adjusted such
that robot reactions and TCP velocity are determined according
to estimated human intentions, e.g., evasive motions in cases
of unintended arm movements. In this regard, the robot
controller should adjust the joint torques by finding an
appropriate h function.

4. INCORPORATING AN ESTIMATION OF
HUMAN INTENTIONS IN PLANNING
ROBOT REACTIONS

This section explains how FMG data and robot dynamics
are simultaneously used to enhance the collaboration scheme.
The proposed approach is learning-based and task-specific: the
desired trajectory for each task is pre-defined and followed during
sample executions of that task. A recurrent neural network is
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trained using features extracted from collected FMG data and
the robot dynamics, including endpoint and joint positions
and velocities, in this phase. Using two sources of information,
i.e., FMG and robot dynamics, improves the reliability of the
approach, as discussed in Medina et al. (2017).

4.1. Proposed Recurrent Neural Network
Scheme
For the purpose of this study, long short term memory (LSTM),
an enhanced topology with less complexity compared to standard
recurrent neural networks, was implemented (Srivastava et al.,
2014). A standard LSTM can be defined as Yao et al. (2015):

it = σ (Wxixt +Whiht−1 +Wcict−1)

ft = σ (Wxf xt +Whf ht−1 +Wcf ct−1)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1)

ot = σ (Wxoxt +Whoht−1 +Wcoct)

ht = ottanh(ct)

(13)

where it , ft , and ot are the input, forget, and output gates,
respectively. Moreover, x and c are the input data and states,
respectively. W denotes the matrix corresponding to each
equation, and h is the output at the final time step/cell.

In the proposed approach, at each time step, selected features
are extracted from FMGdata and RD, xt in (13), and a probability
is assigned to each possible class of motions at the output of
the LSTM, ht in (13). Subsequently, the classification is achieved

based on probability distribution. The feature vector,ct in (13) is
then passed to the next time step through the embedding layer.

Figure 2 shows the proposed LSTM topology that trains the
system using features extracted from FMG data and RD. The
information is passed to the fixed-length context vector of size
n. The final state represents the probability distribution defining
the vector of selected features. Following the proposed approach,
at each time step t = n, data collected during t = 1, ..., n are used
by the network to estimate human intentions during this period.

Since in this study, two sources of information, i.e., FMG
data and RD, are used to provide the required information
about the human-robot interaction, two LSTM networks are
formed: The LSTM-F network uses information from the FMG
data collected from human forearm muscles, and the LSTM-
R network uses information about the robot endpoint velocity
and joint location. To form the feed-forward network, the two
probability distributions obtained from these two networks are
used as inputs to the hidden layer of the final LSTM (Figure 2),
which applies the SoftMaxmethod to estimate human intentions.
To output such an estimation, a, a probability distribution over a
set of possible intentions is obtained using Up and lt :

P(at+1|at , [Ft ,Rt]) = SoftMax(Up[Ft ,Rt]+ b) (14)

where a is the output estimated intention. Ft andRt are the output
vectors of LSTM-F and LSTM-R, respectively, that are considered
as inputs to the SoftMax, and Up and b are the parameters to be
learned. Since the proposed strategy estimates whether a contact

FIGURE 2 | Schematic of the method proposed for estimating human intentions. The length of the LSTM cell is n. Features extracted from FMG and robot dynamics

(RD) are inputs to the neural network at each time step.
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between the human and the robot is intentional or not, the result
is a binary classification. In this case, the loss function for training
the model is defined as

logP(a|l) ≥ E[logP(a|l)]− KL[Q(F|a,R)||P(F|R)] (15)

where l is the vector of the concatenated F and R. The distribution
Q(F|a, l) is an approximate posterior distribution, which aims
to approximate the intractable true posterior distribution.
The first term can be rewritten as

∑

logP(at+1|at ,[Ft ,Rt]),
which is calculated by SoftMax layer. The second term
KL[Q(F|a, l)||P(F|l)], namely the KL term, is the Kullback-
Leibler divergence whichmeasures the non-symmetric difference
between two probability distributions (i.e., Q(F|a, l) and P(F|l))
Krishnan et al. (2015). Figure 3 demonstrates the information
flow in two consecutive time steps.

4.2. Planning the Robot Reaction
The RNN described in the previous subsection provides insight
into human intentions. The next step is to plan the robot reaction
such that the robot collaborates during intended movements
to perform the shared tasks but performs evasive motions or
activates brakes in case of unintended movements.

The distance sensor mounted on the robot arm can provide
information about the distance between the robot and the human
worker as well as the direction of potential collision. Denoting

the distance sensor reading by
−→
dist, an effective way to derive

the joint movement is by utilizing the impedance approach with

interpreting f
−→
dist as virtual force at the ith joint of the robot. In

this case, f
−→
dist is achieved by (12). As discussed in Chiaverini

(2008) and Avanzini et al. (2014), the torque vector can be
calculated from

τ =

n
∑

i=1

JTi .f
−→
disti (16)

where Ji corresponds to the Jacobian matrix of the ith Denavit-
Hartenberg frame position corresponding to the ith link of the
robot. The resulting τ represents the control action to be applied
to the robot. By taking into account the information provided by

the vector of
−→
disti, the evasive motion that moves the robot away

from the human worker can be determined. The joint’s evasive
motion can be defined by a mass-damper model Avanzini et al.
(2014) and expressed by joint velocity as

q̇ev = (M.s+ C)−1.τ (17)

where s indicates the Laplace domain, andM > 0 and C > 0 are
the mass matrix and damping vector, respectively.

A reward function, denoted by R, was used to establish how
the FMG and RD probability distributions were used to control
the robot movement. This reward function was defined as

R =

n
∑

j=1

q̇
j
evP(LSTM − F)P(LSTM − R, hj) (18)

FIGURE 3 | Block diagram of the information flow in two consecutive time steps.
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where P(LSTM − F) is the resulting probability distribution at
the final state of the LSTMF memory cell, P(LSTM − R, h) is the
extracted probability distribution at the final state of the LSTM-
R considering the robot controller state, and hj is the state of
the joint j that is estimated by the controller throughout the task
operation. By evaluating the robot endpoint position and speed,
possible collisions or dangerous actions can be avoided when a
human uses his hand to interact with the robot. The final step
LSTMusing the Softmaxmethod assigns probabilities to different
anticipated actions, categorized as intended and unintended.

TABLE 1 | Robot reactions defined to provide safe human-robot interaction.

Intended contact

With distance sensors
Stop

Release brakes

Without distance sensors
Stop

Release brakes

Unintended contact

With distance sensors
Evasive motion

Slow down, brake

Without distance sensors
Stop

Slow down, brake

FIGURE 4 | Distance sensors used to detect obstacles within a 5-cm range. (A) sensors mounted on the TelosB wireless mote, (B) sensors affixed to the robot joints.

FIGURE 5 | Scenario 1: unintentional human-robot contact when distance sensors are used. (A) Human works to the side of the robot to place the packed box at

location A, (B) FMG values (output of each sensor is shown with a different color), (C) output of the distance sensor, (D–F) evasive motion trajectory of joints 2, 3,

and 4.
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5. EXPERIMENTAL EVALUATION

5.1. Experimental Setup
To evaluate the proposed approach, a YUMI manipulator robot
(ABB Robotics, Switzerland) was used. This robot has two 7-
DOF arms with grippers, as shown in Figure 5A. The controller
measures and controls arm movements in Cartesian coordinates.
The robot parameters during the operation are recorded by
Robot Studio software developed by the ABB company. The
maximum tolerable force, fmax, for this robot is 20 N Robotics
(2015). Tomimic the passive stiffness in human forearmmuscles,
the minimum force was set to fmin = 0.01 N. The position of
the end-point and joints was predetermined in the controller.
A laptop equipped with Robot Studio, MATLAB (MathWorks,
Natick, MA), and TinyOS software was used as the base station
and communicated with the robot via an Ethernet cable.

Three distance sensors (Sharp GP2Y0D805Z0F) were
mounted on the TelosB wireless mote and were affixed to the
second and third joint of the left robotic arm (Figure 4). These
sensors can detect obstacles in the 5-cm distance, and their data
were sent to the base station through the mote using wireless
communication.

Considering that eight FSRs were used in the FMG band
(Figure 1), the FMG graph (Equation 4) had 8 vertices and
28 edges. The FMG data captured from the human forearm
were used to train the LSTM-F, and recorded joints positions
and velocities were applied to train the LSTM-R. The LSTM
was tested with a sigmoid activation function for cells 1–9,
and two sets of features, i.e., FMG data and robot dynamics,
were considered in the proposed multimodal topology. Since in

TABLE 2 | Specifications of parts used in the experiments.

Parts 1 2 3

Size (cm) 3 × 3 × 1.5 5 × 3 × 2 6 × 5 × 4

Weight (g) 100 250 500

real-world applications, different collaboration scenarios might
occur, the LSTM-R network was trained for each scenario
separately, as explained in the next subsection.

5.2. Training the LSTM Network
Ten healthy adults (31.7 ± 6 years old; 4 females and 6 males)
with limited prior experience in working alongside the robot
consented to participate in this study. The participants were
asked to wear the FMG band around their right forearm and
to touch the robot manipulator 50 times following a self-chosen
trajectory, while the robot moved along a predefined trajectory
to relocate a part (see Figure 5A). The LabView platform was
used for data acquisition, and FMG data were collected with a
sampling frequency of 10 Hz. The corresponding data collection
session for each participant was about 100 s. Using a sliding
window of 10 samples with a 5-s overlap resulted in 10,000 data
points per participant, and therefore, 100,000 data points for all
10 participants. The model was developed using 10-fold cross-
validation, and its performance was further evaluated by asking
five participants to return for a second data collection session
similar to the first one. These individuals were a subset of the
ten participants who provided data for the training phase and
were selected based on their availability to attend a second data
collection session. The goal was to replicate the situation in which
the same worker wears the FMG band during different working
days. It is also worth noting that the FMG band might not be
worn on the exact same location on the forearm everyday. Testing
the proposed model in such a situation demonstrated how the
model dealt with the effects of slight relocation of the band.

5.3. Sample Collaboration Scenarios
In this section, two human-robot cooperation scenarios that
might arise during packing and moving of objects are presented.

The first scenario considers the case in which the human
works in proximity of the left robotic arm and helps packing
and moving of small boxes. In this case, intentional contact is
defined as the situation in which the worker touches the robot
arm with a plan, e.g., to manually adjust it. However, when

FIGURE 6 | Scenario 1: intentional human-robot contact when distance sensors are not used. (A) Human intentionally manipulates the robotic arm, (B) FMG values

(output of each sensor is shown with a different color), (C) TCP velocity reduced when intended contact is detected. The robot stops when the worker readjusts joint

configurations during the third interaction.
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the worker accidentally gets too close to/touches the robot arm,
an unintentional contact happens. In the intentional contact,
the robot would stop working and release brakes to allow the
worker to manually readjust the joints configuration. When an
unintentional contact is detected, the robot controller should
either stop working to prevent injury to the worker or adjust joint
positions to prevent collision while continuing to the task.

The second scenario deals with the case in which the human
is working in front of the robot. Such a situation might arise
when the worker should manually adjust the endpoint location
during the process. In this case, the human intention should
be estimated and distinguished from random contacts which
might lead to a collision. To cooperate with the human worker,
the controller should release the joint related to the gripper
of the robot so that the gripper location can be manually
adjusted. If the controller detects an unintended contact, it would
stop the robot immediately to prevent possible injury to the
worker’s hand.

Table 1 summarizes how the robot reacts to intended or
unintended contacts with or without using distance sensors in
each scenario.

5.3.1. Scenario 1: Human Works Next to the Robot

In this experiment, the participant packed a small box and placed
it at marked location (A) to be moved by the robot to location
(B). The human stayed close to the left side of the robot as shown
in Figure 5A. In this scenario, the performance of the proposed
method was evaluated in two situations.

The first situation dealt with the case in which data from
distance sensors were considered, and human intentions were
estimated using FMG data. If the contact was classified as
intended, the robot controller decreased the TCP velocity and
released the brakes. In case of unintended contacts, the controller
planned evasive joint angles to avoid collision.

In the second situation, it was assumed that data from
distance sensors were not available. The human intention was
still estimated using the FMG data, however, the robot reaction
to a detected contact was to decrease the TCP velocity and
apply brakes.

To train the proposed RNN algorithm, the worker donned
the FMG band on their forearm, packed three boxes with
different weights (Table 2), and placed them on the marked
location. This procedure was repeated 10 times. Subsequently,

FIGURE 7 | Scenario 1: effect of the length of LSTM cells on F1 factor.
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the participant was asked to touch the robotic arm 30 times
with the FMG band-wearing hand. Consequently, a total of 60
sequences of data, i.e., 30 sequences corresponding to packing
and placing of parts and 30 sequences of human-robot contact,
were collected and used to train the LSTM-F network. To train
the LSTM-R, joint angles in Cartesian coordinates, TCP velocity,
and brakes status were included in the controller and were
monitored while the robot was operating in the presence of the
human worker.

To evaluate the trained model, the human worker performed
packing and placing of boxes for 5 min, during which they
intentionally and unintentionally touched the robotic arm.
Figure 5 shows the results for a case in which distance sensors
were used, and worker’s shoulder came very close to the robot
arm when picking up a part. The distance sensor on Joint3 of the
robot arm, which was closer to the worker, detected the obstacle

(Figure 5C), and the controller initiated the evasive motion of
joints to prevent collision (Figures 5D–F). For simplicity, only
trajectories of joints 2, 3, and 4 of the robot arm are shown.
For the sake of clarity, in Figures 5D–F, the evasive motions
and joints angles are only shown during 8 s of task operation,
corresponding to when the robot moves down to pick up the part
and return to its initial position.

In the second part of the experiment, it was assumed
that distance sensors were not available. The human worker
intentionally touched the robotic arm three times during
performing of the task. Human intentions were estimated based
on FMG data (Figure 6A). During the first two contacts, the
controller reduced the velocity of TCP and released the brakes.
However, as the worker readjusted the configuration of robotic
joints during the third intended contact, the controller stopped
the robot and released the brakes (Figures 6B,C).

FIGURE 8 | Scenario 2: intentional human-robot contact when distance sensors are not used. (A) Human intentionally adjusts the position of TCP, (B) FMG values

(output of each sensor is shown with a different color), (C) TCP velocity, (D) adjusted joint angle considering human manipulation.
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The proposed method combines data from both FMG sensors
and robot dynamics to make a decision about the nature of
contact. To compare it performance with that of using either
FMG data or robot dynamics, F1 factor was calculated as a
measure of intention recognition performance (Schydlo et al.,
2018). This factor was obtained by 3-fold cross-validation, and
the average is reported. F1 factor is defined as Schydlo et al. (2018)

F1 =
2× TruePositive

2× TruePositive+ FalseNegative+ FalsePositive
(19)

By this definition, 0 ≤ F1 ≤ 1, where F1 = 1 denotes flawless
performance of the recognition algorithm. Figure 7 shows how
the length of LSTMs affects the intention prediction and the
subsequent robot reaction. It is observed that increasing the
number of LSTM memory cells results in an F1 factor closer
to 1. Moreover, as shown in Figure 7, the proposed multi-
modal approach considering both FMG data and robot dynamics
boosts the performance in comparison with cases in which
these information sources were separately applied. Using distance
sensors to detect objects closer than 5 cm to the robotic arm
further improves the F1 factor and has a positive effect on
estimating intentions. Considering that the sampling period was
0.04 s and a window width of 10 samples with a 5-sample overlap
between windows was chosen, the total time required for the
intention prediction process using three memory cells was: 3 ×

(10× 0.04)− 2× (5× 0.04) or 0.8 s.

5.3.2. Scenario 2: Human Works in Front of the Robot

In this part of the experiment, the human worker performed the
collaborative task while standing in front of the robot. Similar
to Scenario 1, the worker donned the FMG band on their right
forearm, and the proposed approach was tested in two different
modes of using or not using the data from distance sensors. In
this scenario, the right arm of the robot was used to interact with
the human worker, and the distance sensors were affixed to joints
5 and 6 which are close to the robot gripper (Figure 8A).

Figure 8 shows results for the case in which the worker
manipulated the robotic arm to adjust the position of its endpoint
or the TCP, and the data from distance sensors were not available.
It is seen in Figure 8 that the intended contact was correctly

detected, and the controller stopped the robot and released the
brakes to cooperate with the human.

When distance sensors were used to report obstacles within
the 5-cm range, the controller stopped the robot to avoid collision
when intended contact was detected. Figure 9 shows the results
for the case in which the worker modified the TCP position. The
change in the output of the distance sensor (Figure 9C) indicated
the contact, and consequently, the controller adjusted the angle of
joint6 to collaborate with the human (Figure 9B).

To assess if considering information from both FMG data
and robot dynamics improved the performance, F1 factor is
calculated in this scenario as well. Figure 10 shows that the
proposed multi-modal approach considering both FMG and
robot dynamics data along with the distance sensors results in the
most reliable intention estimation. This result is consistent with
that obtained in Scenario 1.

6. CONCLUSIONS

This paper presented a neural network-based method to
incorporate human intentions in human-robot collaboration
scenarios. In this regard, force myography data, collected
from the human forearm, and robot dynamics were used
to train a recurrent neural network to estimate human
intentions. A control algorithm was then implemented to
plan appropriate robot reactions considering the outcome of
this estimation. The performance of the proposed method
was evaluated experimentally, and successful human-robot
collaboration during two practical scenarios was demonstrated.
It was also shown that having a measure of distance between the
human worker and the robot further boosts the performance.
Moreover, the experimental evaluation showed that the proposed
approach could estimate human intentions in <1 s. The results
of this study show that a system incorporating human muscle
information (FMG data), robot dynamics, and environment
factors (the distance between the human and the robot) could
provide necessary tools for improved and flexible human-
robot collaboration.

Instrumenting the robot with new sensor technologies, such
as passive tactile sensors, to provide information about the

FIGURE 9 | Scenario 2: intentional human-robot contact when distance sensors are used. (A) FMG values (output of each sensor is shown with a different color), (B)

the adjusted joint angle, (C) output of the distance sensor.
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FIGURE 10 | Scenario 2: effect of the length of LSTM cells on F1 factor.

distance between the human user and the robotic arm, and
implementing more advanced machine learning techniques to
increase estimation accuracy by using data frommultiple sensing
sources are next steps in this research.
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