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Having a trusted and useful system that helps to diminish the risk of medical errors and

facilitate the improvement of quality in themedical education is indispensable. Thousands

of surgical errors are occurred annually with high adverse event rate, despite inordinate

number of devised patients safety initiatives. Inadvertently or otherwise, surgeons play a

critical role in the aforementioned errors. Training surgeons is one of the most crucial and

delicate parts of medical education and needs more attention due to its practical intrinsic.

In contrast to engineering, dealing with mortal alive creatures provides a minuscule

chance of trial and error for trainees. Training in operative rooms, on the other hand,

is extremely expensive in terms of not only equipment but also hiring professional

trainers. In addition, the COVID-19 pandemic has caused to establish initiatives such

as social distancing in order to mitigate the rate of outbreak. This leads surgeons to

postpone some non-urgent surgeries or operate with restrictions in terms of safety.

Subsequently, educational systems are affected by the limitations due to the pandemic.

Skill transfer systems in cooperation with a virtual training environment is thought as a

solution to address aforesaid issues. This enables not only novice surgeons to enrich

their proficiency but also helps expert surgeons to be supervised during the operation.

This paper focuses on devising a solution based on deep leaning algorithms to model the

behavior of experts during the operation. In other words, the proposed solution is a skill

transfer method that learns professional demonstrations using different effective factors

from the body of experts. The trained model then provides a real-time haptic guidance

signal for either instructing trainees or supervising expert surgeons. A simulation is utilized

to emulate an operating room for femur drilling surgery, which is a common invasive

treatment for osteoporosis. This helps us with both collecting the essential data and

assessing the obtained models. Experimental results show that the proposed method is

capable of emitting guidance force haptic signal with an acceptable error rate.

Keywords: deep learning, recurrent neural network, LSTM, haptic, force feedback, bone drilling, surgical skill

transfer, COVID-19

1. INTRODUCTION

Lack of having an appropriate medical training system may cause errors with adverse effects on
patients. The practical intrinsic of medical education systems has led expert surgeons to transfer
their skill to trainees via trial and error methods in the actual operating rooms. Evidently, novice
surgeons have a minuscule chance of the repetition for improving their proficiency during the
operation. Complications through surgical procedures have considerably raised, which signifies
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young surgeons require to be more proficient. On the one hand,
achieving hands-on skills in an actual operation room is a tedious
and time-consuming process. On the other hand, training in
operative rooms is extremely expensive so that estimations reveal
a significant increase in operative time for training translated
into about $53 million dollars per year (de Montbrun and
MacRae, 2012). However, the National Health Service (NHS) has
recommended a restriction in working hours for trainees (from
30,000 working hours to around 7,000 h) to increase the effective
time of expert surgeons as well as improve the outcome of
surgeries (Tan and Sarker, 2011). The aforementioned limitations
accentuate the importance of having a proper educational system
for surgeons other than the traditional methods.

Apart from the above challenging issues, the circumstances
such as the recent global shutdown due to the COVID-19
pandemic cause a closure in the education system as well.
In this case, trainees find it tough to attend the in-person
sessions and operation rooms for educational purposes. On the
one hand, most of operations are deferred in order to reduce
the burden on the shoulders of hospitals’ staff. On the other
hand, enacting preventive rules and initiatives such as social
distancing brings about encountering with the limitation in using
surgical labs (Al-Jabir et al., 2020). To this end, in order to
maintain surgical skills, the demands for using simulations and
artificial intelligence methods have been soared. For instance,
neurosurgical residents in New Orleans have been encouraged to
utilize the aforementioned technologies so as to practice complex
surgical task during the COVID-19 pandemic. The same concern
has emerged from the community of orthopedics surgeons so that
they have tended to use surgical simulation for their residents.
Hence, it is necessary to equip the medical education system
in such a way that the remote working become conceivable
(Bernardi et al., 2020).

Although the above issues can be generalized to a wide range
of surgical operations, for the sake of simplicity, this work
exclusively concentrates on the hip fracture treatment. One of
the most common health issues is hip fracture that is seen in
elderly adults with a high mortality rate of 20 and 35% within
1 year (Goldacre et al., 2002; Thorngren, 2008). The cause, on
the other hand, chiefly stems from osteoporosis so that 2–8%
of males and 9–38% of females are diagnosed with this disease,
which accounts for overall 30 million women and 8 million men
around the United States and EU (Schapira and Schapira, 1992;
Svedbom et al., 2013; Wade et al., 2014; Willson et al., 2015).
Therefore, the hip fracture issue needs a precise and reliable
treatment regardless of patients’ gender.

Closed reduction percutaneous pinning (CRPP) is a typical
treatment for supporting hip fractures, in which surgeons
perform based on hands-on experiences in the operating room.
This type of treatment is invasive and needs professional
surgeons to do the task, thereby diminishing the presumable
complications. Since the probability of making inadvertent
mistakes is high, expert surgeons are mostly reluctant to operate
and instruct novices simultaneously.With this inmind, having an
auxiliary system is necessary so as to overcome the challenges and
reduce the risk of medical errors as well as simplify the training
in medical education systems. This leads to not only enhance the

novice hands-on skills but also supervise expert surgeons during
the surgery.

Skill transfer system is considered as a solution with the aim
of addressing the aforesaid complications. As a matter of fact, the
system models the performance of experts for a certain surgical
procedure that culminates to a trained medical robot for fulfilling
multiple goals such as more reliable assisting. An example of
medical assistant robot is the human–robot interaction system,
which has been introduced as a tool for improving human
performance (RamónMedina et al., 2012; Medina et al., 2015; Gil
et al., 2019; Pezent et al., 2019). In general, a haptic device along
with a simulation environment is deemed as an experimental
setup for the human–robot interaction system in the surgical
application. On the one hand, users manipulate the haptic device
to complete a surgical task via a collaborative environment. On
the other hand, haptic guidance signal is generated to correct or
elevate the users’ performance (Morris et al., 2006; Rozo et al.,
2013). This setup can be utilized for the purpose of skill transfer
in order to help experts to convey their knowledge in a safer
environment.

In addition to the mechanical setup, it needs to elicit
robust models from expert surgeons’ demonstrations based on
their dynamic and non-linear behaviors during the surgery.
These behaviors are categorized into kinesthetic and kinematic
demonstrations. Learning kinematic demonstrations is chiefly
regarded as the process of extracting positional body movements
of the expert during the operation (Abbott et al., 2007;
Chipalkatty et al., 2011; Zahedi et al., 2017). Kinesthetic
information can be obtained by a physical interaction between
robots and users so that a surgeon directly works with the robot
to perform a specified task (Rozo et al., 2013, 2016; Kronander
and Billard, 2014).

All in all, the system comprises a perceptual part in
conjunction with a robotic actuator in order to provide the
realistic sense of surgery. In other words, this solution is an
assistant human-in-the-loop system that consumes the data
corresponding to either kinesthetic or kinematic demonstrations.
The data are captured while the expert is manipulating the
haptic end-effector to accomplish a specific task through a virtual
environment. Then, the compiled dataset is used to train models
for extracting experts’ behaviors. Finally, the haptic guidance
signal, which is emitted from the trained model, is employed as
a reference signal for both trainees and experts. The trainees can
correct their movements based on the provided signal through
the virtual environment. The haptic guidance signal can be
utilized as a supervisor for experts during a real operation as well.

Since the data related to both kinematic and kinesthetic
demonstrations is time varying and also learning the
performance of experts depends on modeling the dynamic
behaviors over time, it is crucial to investigate the data with
respect to the temporal characteristic. Statistical algorithms such
as HMM and CRF have been used to extract the aforementioned
features (Reiley and Hager, 2009; Ramón Medina et al., 2012;
Tao et al., 2013; Zahedi et al., 2017, 2019). In addition, control
algorithms have been applied to the human-in-the-loop system
for guiding human via robots based on the model obtained
from dynamic data (Chipalkatty et al., 2011; Safavi and Zadeh,
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2015, 2017; Safavi et al., 2015). However, previous works have an
impressive progress in modeling the dynamic data in the skill
transfer system, advent of machine learning and deep learning
algorithms is thought as a gigantic step toward developing more
trustworthy predictive systems. For instance, a method has been
proposed based on deep learning to predict the haptic feedback
in percutaneous heart biopsy for decreasing delay in remote
operations (Khatami et al., 2017). The temporal facet of data can
help to enrich the throughput of the system whether in the data
compilation or in the inference phase.

In this work, we seek to advance a solution for training
novice residents in the orthopedic surgical drilling procedure by
developing a skill transfer system using a deep learning method.
The proposed system aims at contributing to the educational
system of orthopedic residents during the COVID-19 pandemic.
To this end, first, a simulation environment is used to visualize
all components of a real operation room. The simulation creates
a 3D visualization of the patient-specific bones from CT scan
data. Moreover, it calculates an approximation of both bones’
density and stiffness as physical properties of the tissue through
the layers. As discussed in the next section, having these features
helps to estimate the applied force feedback, when drill touches
the bone. Using provided features, the system captures the
essential data while expert surgeons perform a specific drilling
task via the haptic device and simulation. Second, the solution
aims to extract the model of expert surgeons’ behaviors as a
reference signal using the captured data. For this reason, a
recurrent neural network with an LSTM architecture has been
designed and implemented in order to be trained on force
demonstrations as well as kinematic features and other effective
data, which stems from either drill physics or bone tissues.

The main contributions of the proposed solution are
summarized as follows: it investigates the influence of a
deep recurrent neural network with an LSTM architecture on
enhancing the quality of transfer skills in orthopedic surgical
drilling. In contrast to the proposed solution in Khatami et al.
(2017), our method incorporates multiple effective features,
instead of utilizing force data solitary. In fact, in Khatami et al.
(2017) the solution anticipates forces of X and Y directions using
only the previously applied forces in the same directions and
it does not engage other effective parameters in the estimation
of force signals over time. Our proposed method, on the other
hands, extracts the temporal behavior of force feedback data by
fusing the data stemmed from multiple sources such as “bone’s
layer type,” “penetration depth,” “drill’s temperature,” and “drill’s
position.” As a sensor fusion model, it will learn how to regulate
the forces based on a fusion of data that impacts on the maneuver
of the surgeon. Helping trainees to sense the guidance signal
that stems from expert surgeons’ hands-on skills along with
other effective factors during surgery is another advantage of the
proposed method. Also, since the force sensor is not utilized
in this study, simulation aids to estimate forces as well as the
other data.

The rest of the paper is organized as follows: the general
explanation of proposed method along with experimental setup
and data gathering are presented in section 2. Section 3 explains
data preparation, computer experiments, result, and discussion.
The paper concludes in the final section.

2. DEEP HAPTIC GUIDANCE GENERATOR

The proposed system provides a solution based on a deep
learning algorithm for conveying experts’ hands-on proficiency
to novice surgeons, exclusively in orthopedic surgical drilling
with the purpose of treating hip fractures (Figure 1). This is
achieved by utilizing a simulation environment, which creates a
virtual shape of the intended patient’s bone using CT scan images.
This shape preserves the most principal features of the bone such
as stiffness of every layer. At the same time, a haptic device is
used by a user to drill a specified path through the bone. To
provide a realistic sense, physical features such as temperature
and rotation speed are considered, while the drill touches bone.
This setup has two main advantages for the proposed method:
First, it helps to capture the requisite data from expert surgeons
while accomplishing a predefined drilling task. Second, it aids to
exploit the trained model virtually.

Subsequently, a deep neural network is fed by the attained data
to generate models on the behaviors of experts in a predefined
task. As with the behavior modeling, learning gestures occurs
over time. With this in mind, a recurrent neural network
with an LSTM architecture is employed to extract a dynamic
model. The aforementioned network is trained by the data of
multiple sources (explained in detail in section 2.2) and then the
force feedback in three axes is expected in its output. In other
words, the proposed method with a modified LSTM architecture
attempts to identify the dynamic relationship between inputs
and their corresponding outputs in a supervised manner, while
they are not equal in terms of dimension size. Intuitively, the
significant objective is to investigate the impact of physical
properties emerged from the bone’s tissues or drill on the
performance of the skill transfer system. As a sensor fusion
system, however, this method outputs force feedback in three
axes, it combines multiple data such as drill temperature, the type
of bone’s layer, penetration depth, and drill position rather than
only force feedback as the network’s input.

It is worth noting that, because we do not utilize force
sensor, the corresponding data are estimated using the physical
properties of the patients’ bone obtained from CT images.
For simplicity, we call the proposed method “DHG” (Deep
Haptic Guidance). Figure 1 illustrates the structure of the DHG.
Experimental setup, data gathering, and DHG are explained in
the following sections.

2.1. Simulation and Experimental Setup for
Bone Drilling Surgery
An experimental setup is used so as to capture the required
data. It encompasses a haptic device (Phantom Omni, Geomagic
Touch, USA) and a virtual environment (VE). The haptic device
was set up on a movable and height adjustable table. The height
of the table can be adjusted with respect to the convenience of the
participants. The surgeons either experts or novices interact with
the simulation system via the haptic device, a keyboard, and a
computermouse. A virtual drill can bemanipulated to touch/drill
the femur bone’s shape through the stylus of the haptic device.
The haptic device records motions of the end-effector, while it
has been attached to a drill (Figure 2). It has 6 Degree of Freedom
(DOF) positional sensing and capable of providing the user with
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FIGURE 1 | The diagram depicts the structure of the Deep Haptic Guidance (DHG). The CT data corresponding to a patient enters for modeling, rendering, and

determining the stiffness of the bone. The data are captured while an expert is completing the task. The obtained data are converted to a compatible dataset for

training deep recurrent neural network. The trained model provides haptic force feedback based on the professional demonstrations. The guidance signal is generated

by the difference between the DHG’s prediction and force feedback of novice user. In fact, expert’s skill implies DHG’s prediction.

the force feedback in 3 DOF translational motions (the space
of force feedback data). The sampling frequency for compiling
data is 10 Hz. The estimation on stiffness of the bone’s layer is
updated every 20 ms. The tasks were completed by moving the
end-effector in order to drill and penetrate through the bone
along the pre-defined path.

In this setup, the simulation plays a crucial role in
capturing data. Generally, simulated and virtual reality (VR)
environments can be considered as an alternative of real
operation rooms (Seymour, 2008; Kho et al., 2015; Van Duren
et al., 2018). This enables trainers to define particular surgical task
and drilling path for each patient separately. Here, we simulated
attributes of the bone in order to gather data from experts during
a surgery. For more precise explanations, four main parts of a
required simulation, exclusively for bone drilling, are described
as follows:

First, as shown in Figure 1 it needs to simulate and render
a patient’s femur bone by considering physical properties. This
is obtained by using the patient’s specific CT images as the
input of the simulation (Figure 3). Since the goal is to model

the physical characteristics of the femur bone related to a
patient with femoral head necrosis, CT is more useful than MRI
images (Teo et al., 2006). Furthermore, as shown in Figure 4, a
segmentation method ascertains different layers such as cortical
bone, cancellous bone, and bone marrow in order to simulate
their thickness, stiffness, and physical traits while interacting with
a drill. The intensity values of the CT images are utilized to
segment the bone’s layers along with their mechanical properties.
Namely, the bright part of a CT image is cortical bone, whereas
the dark parts are cancellous bone.

Second, to make more actual sense of working with the
simulator, a method is employed to change the virtual shape of
the bone, whenever the drill touches or penetrates the tissue.
In other words, the method models stiffness of tissues based
on the bone’s depth and then assigns a specific value to every
voxel in each layer of the bone. Finding the relationship between
intensity of voxels and density of the bone in the images helps
the volume rendering operation to take an appropriate action. In
fact, the rendering operation decides to keep or remove a voxel
with respect to its density value and the drill status as well (Morris
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FIGURE 2 | Experimental setup: A volunteer is completing a required surgical drilling task while using a drill attached to the haptic device. It encompasses a haptic

device, a keyboard, and a computer mouse interacting with a simulation.

et al., 2004; Liu and Laycock, 2009; Sofronia et al., 2012; Bogoni
and Pinho, 2013).

Third, themechanical traits of the obtained layers are involved
to simulate haptic force feedback. As a result, cortical bone is
much more stiffer that cancellous bone (Compere, 1980). On
the other hand, the cancellous bone of the femur bone has
a wide range of density that affects drilling forces. In Brown
and Ferguson (1980), the distribution of stiffness and yield
strength have been investigated. Accordingly, we estimate the
force corresponding to each layer of the bone in order to
provide users with a tangible force, while penetrating through
the different layers. However, the acquired sense of the force is

not equal to the actual bone stiffness, and it makes the sense
of passing through the layers for users. It is worth to say that
the determined stiffness for the bone’s layers was limited to
the haptic device capability. Therefore, since the discrepancy of
estimated force feedback does not influence on the DHG, it can
be considered as the scaled stiffness of the real value.

Fourth, as shown in Figure 5, it needs to enable the user
to take X-ray images from different points of view. In other
words, in the real operation room, surgeons capture X-ray images
during a surgery to make sure whether the drill traverses through
the correct pre-defined path or not. With this in mind, the
simulation allows them to have the visualization of X-ray from
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FIGURE 3 | The image shows a rendered bone obtained from the CT data. The user is able to touch or drill the shape, visually by moving the object sticked the bone.

the bone, analogs to the real operation room, from three views:
the top, front, and the side. Eventually, a virtual environment
is built to simulate the actual process in the operation room.
Apart from provided facilities, the essential data are compiled
via the experimental setup. In fact, the simulation strives to
imitate real operation rooms as much as possible because it
leads expert surgeons to function naturally, thereby capturing
more meaningful data. It is good to say that the aforementioned
setup in conjunction with the simulation has contributed in other
studies in our research Lab at Kettering University (Safavi and
Zadeh, 2017; Zahedi et al., 2017, 2019).

2.2. Data Preparation
To train the DHG on experts’ behaviors, the aforesaid setup was
exploited and a drilling path was determined between two points
as a specific surgical task. The bone should be pierced from point
A to B in the straight direction. Since it was not possible to invite
surgeons, six engineering students who were familiar to the area
were asked to pretend as our experts’ reference and complete the
task using the experimental setup. They were required to pass
through all the layers of the bone and get to the target point.
The participants were guided to perform the task and instructed
to complete the task precisely and as quickly as possible. Every

subject had 5 min to get acquainted with the experimental setup
and then carry out the task. They were allowed to repeat the task
as many times as they preferred. Then the best completed task of
every attendee were selected based on his/her discretion. In the
process of collecting data, the force feedback in x, y, and z axes
as well as drill positions, drill penetration depth, the simulated
temperature of the drill, and the type of layers in the bone were
obtained in the format of a dataset. The data were collected with
the frequency of 10 Hz. Eventually, the time-varying data were
captured from six completed tasks and D ∈ Rn×9 constituted the
dataset, where n is the number of data records. It is noteworthy
that for the sake of preserving dynamic properties, the order of
records for every task of the dataset was retained.

2.3. Creating Models Using Deep Learning
Algorithm—DHG
By taking a closer look at the biological perception of human
in performing tasks, it is evident that the action taken in the
current time t has been concluded by the sequence of actions
that happened in the past. This fact can be generalized to the
current problem in such a way that “time” plays a significant
role in learning expert surgeons’ behaviors. On the other hand,
learning process evolves during the time by retrying experiences.
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FIGURE 4 | The surfaces corresponding to the bone’s layers extracted from CT data. From left to right: Cortical bone surface, bone marrow, and necrosis.

Accordingly, the DHG learns the experts’ demonstrations by
consuming the time-varying data, which has been gathered from
multiple duplicate tasks (section 2.2). The DHG employs a
recurrent neural network instead of a feed-forward one in order
to extract the dynamic temporal behaviors of data. In fact, it
models gestures of the surgeon in time t using a series of data
with a specified length. This type of network includes a feedback
signal as a loop to consider temporal effects of input data over
time. Moreover, the LSTM is a popular architecture for RNNs,
which has been proposed to address vanishing gradient problems
in Vanilla RNNs (Hochreiter and Schmidhuber, 1997; Hochreiter
et al., 2001). Figure 6 depicts the internal structure of LSTM.
The aforementioned architecture has been successfully applied in
different applications such as the vehicle trajectory prediction for
modeling temporal properties of data (Altché and de La Fortelle,
2018).

As mentioned in the previous section, the dataset D ∈ Rn×9

was prepared while surgeons were carrying out the task. Every
feature of the dataset is deemed as an independent data stream,
which has been emitted from a separate data source or sensor.
From another point of view, as a sensor fusion method, the
DHG receives a nine-dimensional vector of data and provides
the prediction on force feedback in a three-dimensional vector
in its output. Finally, the DHG uses an LSTM as the preferred
architecture for the deep recurrent neural network to model the
dynamic data.

The DHG is considered to have unequal inputs and outputs
size because of the sensor fusion concept. To this end, as
described in the following section, a partial modification was
applied in the original structure of the LSTM by adding a linear

layer (Equation 7). The LSTM’s basic is explained in detail,
although there are valuable sources in the literature as well.

As a recurrent neural network, the LSTM generates feedback
signals via a loop to exert the impact of previous data in the
current time instant t. Apart from the concept of hierarchical
layers in deep neural networks, every unit of the LSTM has four
exclusive layers (Figure 6). Cell state Ct keeps past experiences at
time t and gets updated over time. Forget gate ft removes data
from the memory by using both input xt and previous output
ht−1, while input gate it decides which value must be updated:

ft = σ (Wf xt + Uf ht−1 + bf ) (1)

it = σ (Wixt + Uiht−1 + bi) (2)

C̃ = tanh(Wc̃xt + Uc̃ht−1 + bc̃) (3)

where σ is a sigmoid activation function, Uf and Wf are weight
matrices, and bf denotes the bias vector. A hyperbolic tangent
layer calculates new values for update in cooperation with the
input gate and then replaces memory Ct with the new values
as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

where ∗ denotes the element-wise multiplication. Eventually, the
output ht is calculated by updated memory Ct and the previous
output via output gate ot as follows:

ot = σ (Woxt + Uoht−1 + bo) (5)
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FIGURE 5 | The simulation was equipped with X-ray view for providing users an environment more analogous to the real operating room. Similar to the real operation

room, it has three views: the top, front, and side.

ht = ot ∗ tanh(Ct) (6)

It is worth to say that, input xt ∈ Rn, weight matricesW ∈ Rh×h

and U ∈ Rh×h, and biases b ∈ Rh. n is the size of the input vector
and h is the size of the internal memory or cell state, which is
defined by designers.

Furthermore, the RNN should be unrolled to establish
feedback signals in the internal structure and use the advantages
of engaging previous input data in the current time t.

So, we assume that the LSTM unit output ht depends on
{xt−e, xt−e−1, . . . , xt−1} where e is the number of the dataset
record used for unrolling the DNN. In another way, the loop of
RNN is unrolled over e latest inputs. Thus, the prediction at time
t relies on 0.1× e previous seconds of surgeons’ behaviors. These
unrolled units are defined as the system time steps.

As noted earlier, the DHG fuses multiple features and outputs
only force feedback. With this in mind, the size of outputs in the
network must be equal to the size of haptic force feedback vector,
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whereas in the conventional LSTM both input and output vectors
are equal in size. To this end, we add a linear output flattening
layer with a linear activation function to map inputs into the
output space as follows:

a = Wah
l
t + ba (7)

By utilizing the above linear transition function, the output at
last time step in the last layer is transferred to the force feedback
output space. In contrast to classification problems, since the
system attempts to generate force values in the output, transition
from the feature space d ∈ R9 to force feedback space r

p
t ∈ R3

is accomplished by a linear regression, where r
p
t is the predicted

force value in time t acquired from e previous number of the data
records. Figure 7 depicts the designed architecture for the DHG.
In addition, RMSE is the objective function of the DNN, which

attempts to learn the expected output rext in a supervised manner
as follows:

e(r
p
t , r

ex
t ) =

√

∑d
i=1(r

p
t,i − rext,i )

d
(8)

To optimize the above objective function, different optimizer
algorithms such as ADAMoptimizer can be applied (Kingma and
Ba, 2014).

3. EVALUATION AND DISCUSSION

The target of this section is preparing the data, which has been
captured in section 2.2 for training models as well as assessing
the performance of the DHG in predicting haptic force feedback.
In section 3.1, we revise the format of the dataset (section 2.2)

FIGURE 6 | The LSTM unit contains forget, input, and output gates along with cell state (further details in section 2.3).

FIGURE 7 | The diagram shows the intended architecture for the DHG. The input is a tensor containing the data from different sources (section 2.2). The LSTM is

unrolled over e previously generated data. The cell state h is the input of its corresponding unrolled unit in the next layer. However, using the latest LSTM unit’s output,

the DHG squeezes the prediction vector through a dense layer. Finally, the output of the network is a vector with three elements corresponding to forces in x, y, and z

direction.
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and make it compatible with the DHG’s input. Finally, we
investigate the result in the last subsection. In this work, we did
not conduct a human factor study in experiments to examine
the performance of the DHG. Instead, we evaluate the DHG
based on common assessment methods such as RMSE to show
the accuracy of predictions on the reference input. Obviously,
haptic force feedback is the reference of the DHG model. It
should be noted that we aim to thoroughly analyze the DHGwith
human-included experiments in a separate study in the future.

3.1. Dataset Revision and Model
Configuration
As mentioned in the previous sections, we defined a drilling
path in the virtual environment and asked six volunteers
to drill through that path. As shown in Figure 8, haptic
force feedback (Figure 8A), positions (Figure 8B), bone’s layers
(Figure 8D), depth of penetration (Figure 8E), and drill’s
temperature (Figure 8F) are the features of the dataset; “Drill’s
status” (Figure 8C) has not been involved in the dataset, though
its correlation with drill temperature is comparable in the figure.
This figure represents a time window of captured data from
all sensors with 1,000 data records. The values corresponding
to force feedback (Figure 8A), positions (Figure 8B), and
penetration depth (Figure 8E) has been normalized; in other
subplots, 0 means “deactivated” and 1 indicates “activated.”

For better visualization, the subplot related to bone’s layers
(Figure 8D) illustrates the presence of the drill’s tip in different
layers within a sequence of data with 30 records.

ri ∈ R9 is defined as the ith record of the prepared dataset,
which is sorted by time. To convert the dataset records to a
compatible format for an unrolled network, a modification is
needed in such a way that every input in time instant t should
be a set of e previous data records. Accordingly, the new dataset
contains the records as follows:

nd = {rn1 = r1 : e, rn2 = r2 : e+1, . . . , rni = ri : e+i−1} (9)

where rni ∈ Re×n, e is the time step and t = ld − e + 1 (ld is
the length of dataset before conversion). It is worth to point that
every input sample rni that encompasses data corresponding to e
previous data should be mapped to the output space of e + 1. In
this work, the dataset explained in section 2.2 was converted to
the new format with the time step e = 20 with the aim of being
compatible with the training phase. In fact, the system produced
haptic force feedback in the current time using 20 previous data
samples. Eventually, the dataset was divided into training and test
sets without shuffling (Table 1).

3.2. Result and Discussion
We complied a dataset containing the demonstrations of six
volunteers during accomplishing a drilling task. These data

FIGURE 8 | The diagram shows the data captured from different sources in a window of 1,000 data samples. Panels (A,B) show the force feedback and positions,

receptively. They have been plotted in 3 dimension (x, y, and z). In addition, all values corresponding to force feedback, positions, drill’s temperature (F), and

penetration depth (E) have been normalized (between 0 and 1). Also, for both drilling status (C) and bone’s layers (D), 0 denotes “inactivated” and 1 means

“activated.” Panel (D) illustrates the layer of the bone, in which drill is located. For a better visualization in this subplot, the 30 first data corresponding to the

aforementioned window are plotted.
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TABLE 1 | The result obtained from different configurations of the DNN.

Configuration Input size Output size Time steps Layers Memory Training sample Test sample Batches RMSE

1 9 3 20 1 128 9,133 1,442 50 0.0551

2 9 3 20 2 256 9,133 1,442 50 0.0249

3 3 3 20 2 256 9,133 1,442 50 0.0335

4 9 9 20 2 256 9,133 1,442 50 0.0626

The configuration related to the sensor fusion is shown in the first and second row. Increasing both memory and layer of the network caused to improve the DHG’s performance. The

superiority of the DHG with a sensor fusion setup (second row) is obvious in comparison with the third and last row. The third setup is the reproduction of the LSTM configuration used

(Khatami et al., 2017).

are regarded as the reference behaviors for the input in the
training phase. The DHG is supposed to mimic the gestures
and act as a professional surgeon in that specific task. In other
words, the DHG predicts appropriate force feedback signals
in every time instant t. The more accurate prediction on the
force feedback causes to obtain the more authentic discrepancy
between the gestures of novices and experts (Figure 1). For
better clarification, there are two types of signal: haptic force
feedback and haptic guidance force. The DHG learns how to
anticipate the haptic force feedback in different situations. In fact,
it assumes that if the DHG is capable of imitating the reference
force feedback properly, then it is possible to make a meaningful
haptic guidance by extracting the difference between the output
of the DHG and the emitted force feedback, while a user (novice)
performs a task.

Hence, we set four different configurations of the DHG so as
to evaluate the performance of predictions. Table 1 represents
the throughput of models. Also, we reproduced the proposed
architecture of the LSTM in Khatami et al. (2017) in order to
compare the DHG with one of the latest work in the literature.
All configurations consumed a same training and test set and
the networks were unrolled in 20 time steps with 50 samples
of data in each data batch. The size of memory or neurons for
the LSTM units is listed for every configuration. Moreover, all
configurations were trained in 10,000 epochs and the learning
rate was 0.004.

Configuration 1 had 128 memory size through a one-layer
LSTM network. The aim of this setup was mapping the input
vector of size nine to an output vector with three elements related
to the haptic force feedback prediction. Configuration 2 is the
intended architecture for the DHG. This setup reached to the best
result in comparison with the others. Figure 7 demonstrates the
architecture of the DHG. The prepared data (section 3.1) is fed
to an LSTM, which is unrolled over e = 20. Every hidden state
of the unrolled unit enters to another LSTM unit in layer 2. In
this unit, only the output of the hidden state in time t goes to
a dense layer. Since the DHG aims at estimating the forces as a
regression problem, the activation function for the dense layer is
a linear one.

As mentioned earlier, to compare the influence of the sensor
fusion (DHG) with the conventional multi-dimensional time

series prediction in providing haptic force feedback, we set a
DNN to anticipate force values in three axes while receiving
the same feature vector (force feedback) solitary in the input.
Configuration 2 is the implementation of with the same dataset
and layers (Khatami et al., 2017). Comparing configurations 2
and 3 of Table 1, it can be seen that the sensor fusion setup has
had a positive impact on reducing the error of force-feedback
predictions. In fact, configuration 2 (Khatami et al., 2017) has
hypothesized that the applied forces in the past is the only
parameter, which influences on the currently yielded haptic force
feedback. From that perspective, some effective parameters in the
surgery such as time of completion, drilling speed, and tissue
layer types should be assumed as fixed values or in some way,
they have been overlooked.

In contrast, the DHG has attempted to include those
parameters in the process of force estimation so as to investigate
the effect related to not only physical properties of the bones but
also the status of the actuator and its workspace environment on
forces. In reality, the expert surgeons’ maneuver in time t not only
depends on the previously taken actions, but also is influenced
by the status of the drill and environment it pierces through.
The last row (configuration 4) shows the RMSE while the DHG
was configured to predict features as same as the input vector.
As mentioned before, this is the conventional multi-dimensional
time series. Although the output vector contains force feedback,
drill’s positions, temperature, bone’s layer, and penetration depth,
the RMSE was computed just by using the elements of output
vector related to the force feedback data. Finally, we showed
that not only a deep recurrent neural network is capable of
learning surgical gestures aptly but also having a sensor fusion
mechanism through the network structure can impact on the
prediction positively.

Figure 9 visualizes the performance of the DHG while using
second configuration in Table 1 to predict the unforeseen test
data. There are two types of signals in the plot: reference and
predicted. Every dimension of a force-feedback reference (x,
y, z) was normalized. The plot demonstrates the prediction of
the DHG for every reference of force-feedback dimensions in a
specific time window with 1,000 sample. In other words, it was
fed by 20 previous data samples for making anticipations on
force feedback in every time t. Although the reference signal in
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FIGURE 9 | The diagram depicts the performance of the DHG in a specified window with 1,000 data samples. Every dimension of force-feedback signals (x, y, and z)

has a reference and a predicted demonstration. The value of the references has been normalized and also the model has been trained by normalized training set as

well. The DHG makes predictions on force feedback in every time t using 20 previous data samples.

both test and training set was normalized, in some points the
prediction has exceeded above 1 because of generalization that
causes model to have margin around actual data and avoid facing
with over-fitting.

It is worth noting that to use predicted guidance signals
in the haptic device it should be denormalized regarding to
the minimum and maximum of the samples in the dataset
prior to dividing data into test and training sets. Estimating
force feedback values in the data preparation phase along with
normalization and denormalization process may cause to reduce
the accuracy of trained models in practice. However, having a
more precise guidance signal leads to effectively instruct trainees,
but using directions of the force regardless of its value can make
an acceptable feeling of haptic feedback, whenever a distraction
occurs. All in all, the DHG is a modified version of RNNs with an
LSTM architecture, which is a general solution for any problems
using time-varying data. Since most of surgical tasks are carried
out by surgeons’ movements and their corresponding data has
similar properties to our dataset, the DHG can be generalized to
other specific surgical tasks as well.

4. CONCLUSION

In this work, we presented a deep learning based system in
order to explore improvements in the performance of surgeons
in surgical drilling operations. The proposed system strives to
enhance the skill transfer system for instructing surgeons either
the experts or novices via generating haptic guidance signals

during the surgery. The system can address the limitations due
to especial circumstances such as the COVID-19 pandemic, in
which trainees cannot practice surgical tasks. This was achieved
by designing a deep recurrent neural network with an LSTM
architecture that models the behavior of experts. As a sensor
fusion method, the DNNwas trained using the data emitted from
different sources such as drill’s temperature, penetration depth,
and the type of bone’s layer. This led to have a robust model,
which predicts demonstrations precisely. Since the experimental
setup is not equippedwith a force sensor, the simulation estimates
different data values such as stiffness based on the physical
properties of simulated bones. Finally, the experimental result
showed that the proposed system was able to predict accurately
haptic force feedback. Although the proposed method performed
effectively in the evaluations, we did not apply the method in
a human factor study. In fact, the significant purpose of this
work was to inspect the possibility and performance, mostly by
regular machine learning methods. Therefore, as a future work,
we intend to exert the method in a practical experiment and
examine it by surgeons.
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