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Robot design to simulate interpersonal social interaction is an active area of research with
applications in therapy and companionship. Neural responses to eye-to-eye contact in
humans have recently been employed to determine the neural systems that are active
during social interactions. Whether eye-contact with a social robot engages the same
neural system remains to be seen. Here, we employ a similar approach to compare
human-human and human-robot social interactions.We assume that if human-human and
human-robot eye-contact elicit similar neural activity in the human, then the perceptual and
cognitive processing is also the same for human and robot. That is, the robot is processed
similar to the human. However, if neural effects are different, then perceptual and cognitive
processing is assumed to be different. In this study neural activity was compared for
human-to-human and human-to-robot conditions using near infrared spectroscopy for
neural imaging, and a robot (Maki) with eyes that blink and move right and left. Eye-contact
was confirmed by eye-tracking for both conditions. Increased neural activity was observed
in human social systems including the right temporal parietal junction and the dorsolateral
prefrontal cortex during human-human eye contact but not human-robot eye-contact. This
suggests that the type of human-robot eye-contact used here is not sufficient to engage
the right temporoparietal junction in the human. This study establishes a foundation for
future research into human-robot eye-contact to determine how elements of robot design
and behavior impact human social processing within this type of interaction andmay offer a
method for capturing difficult to quantify components of human-robot interaction, such as
social engagement.
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INTRODUCTION

In the era of social distancing, the importance of direct social
interaction to personal health and well-being has never been
more clear (Brooke and Jackson, 2020; Okruszek et al., 2020).
Fields such as social robotics take innovative approaches to
addressing this concern by utilizing animatronics and artificial
intelligence to create simulations of social interaction such as that
found in human-human interaction (Belpaeme et al., 2018;
Scassellati, et al., 2018a) or human-pet companionship (Wada
et al., 2010; Kawaguchi et al., 2012; Shibata, 2012). With our
experiences and norms of social interaction changing in response
to the COVID-19 pandemic, the innovation, expansion, and
integration of such tools into society are in demand. Scientific
advancements have enabled development of robots which can
accurately recognize and respond to the world around it. One
approach to simulation of social interaction between humans and
robots requires a grasp of how the elements of robot design
influence the neurological systems of the human brain involved in
recognizing and processing direct social interaction, and how that
processing compares to that during human-human interaction
(Cross et al., 2019; Henschel et al., 2020; Wykowska, 2020).

The human brain is distinctly sensitive to social cues (Di Paolo
and De Jaegher, 2012; Powell et al., 2018) and many of the roles
that robots could potentially fill require not only the recognition
and production of subtle social cues on the part of the robot, but
also recognition from humans of the robot’s social cues as valid.
The success of human-human interaction hinges on a mix of
verbal and non-verbal behavior which conveys information to
others and influences their internal state, and in some situations
robots will be required to engage in equally complex ways. Eye-to-
eye contact is just one example of a behavior that carries robust
social implications which impact the outcome of an interaction
via changes to the emotional internal state of those engaged in it
(Kleinke, 1986). It is also an active area of research for human-
robot interaction (Admoni and Scassellati, 2017) which has been
shown to meaningfully impact robot engagement (Kompatsiari
et al., 2019). Assessing neural processing during eye-contact is
one way to understand human perception of robot social
behavior, as this complex internal cascade is, anecdotally,
ineffable and thus difficult to capture via questionnaires.
Understanding how a particular robot in a particular situation
impacts the neural processing of those who interact with it, as
compared to another human in the same role, will enable
tailoring of robots to fulfill roles which may benefit from
having some but not all elements of human-human interaction
(Disalvo et al., 2002; Sciutti et al., 2012a). An additional benefit of
this kind of inquiry can be gained for cognitive neuroscience.
Robots occupy a unique space on the spectrum from object to
agent which can be manipulated through robot behavior,
perception, and reaction, as well as the development of
expectations and beliefs regarding the robot within the human
interacting partner. Due to these qualities, robots are a valuable
tool for parsing elements of human neural processing and
comparison of the processing of humans and of robots as
social partners is a fruitful ground for discovery (Rauchbauer
et al., 2019; Sciutti et al., 2012a).

The importance of such understanding for the development of
artificial social intelligence has long been recognized
(Dautenhahn, 1997). However, due to technological limitations
on the collection of neural activity during direct interaction, little
is known about the neurological processing of the human brain
during human-robot interaction as compared to human-human
interaction. Much of what is known has been primarily acquired
via functional magnetic resonance imaging (fMRI) (Gazzola et al.,
2007; Hegel et al., 2008; Chaminade et al., 2012; Sciutti et al.,
2012b; Özdem et al., 2017; Rauchbauer et al., 2019), but this
technique imposes many practical limitations on ecological
validity. The development of functional Near Infrared
Spectroscopy (fNIRS) has made such data collection accessible.
FNIRS uses absorption of near-infrared light to measure
hemodynamic oxyhemoglobin (OxyHb) and deoxyhemoglobin
(deOxyHb) concentrations in the cortex as a proxy for neural
activity (Jobsis, 1977; Ferrari and Quaresima, 2012; Scholkmann
et al., 2014). Advances in acquisition and developments in signal
processing and methods have made fNIRS a viable alternative to
fMRI for investigating adult perception and cognition,
particularly in natural conditions. Techniques for
representation of fNIRS signals in three-dimensional space
allows for easy comparison with those acquired using fMRI
(Noah et al., 2015; Nguyen et al., 2016; Nguyen and Hong, 2016).

Presented here are the results of a study to demonstrate how
fNIRS applied to human-robot interaction and human-human
interaction can be used to make inferences about human social
brain functioning as well as efficacy of social robot design. This
study utilized fNIRS during an established eye-contact paradigm to
compare neurological processing of human-human and human-
robot interaction. Participants engaged in periods of structured
eye-contact with another human and with “Maki”, a simplistic
human-like robot head (Payne, 2018; Scassellati et al., 2018b). It
was hypothesized that participants would show significant rTPJ
activity when making eye-contact with their human partner but
not their robot partner. In this context, we assume that there is a
direct correspondence of neural activity to perception and
cognitive processing. Therefore, if eye contact with a human
and with a robot elicit similar neural activity in sociocognitive
regions, then it can be assumed that the cognitive behavior is also
the same. If, however, the neural effects of a human partner and a
robot partner are different, then we can conclude that
sociocognitive processing is also different. Such differences
might occur even when apparent behavior seems the same.

The right temporoparietal junction (rTPJ) was chosen as it is a
processing hub for social cognition (Carter & Huettel, 2013)
which is believed to be involved in reasoning about the internal
mental state of others, referred to as theory of mind (ToM)
(Molenberghs et al., 2016; Premack and Woodruff, 1978; Saxe
and Kanwisher, 2003; Saxe, 2010). Not only has past research
shown that the rTPJ is involved in explicit ToM (Sommer et al.,
2007; Aichhorn et al., 2008), it is also spontaneously engaged
during tasks with implicit ToM implications (Molenberghs et al.,
2016; Dravida et al., 2020; Richardson and Saxe, 2020). It is active
during direct human eye-to-eye contact at a level much higher
than that found during human picture or video eye-contact
(Hirsch et al., 2017; Noah et al., 2020). This is true even in the
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absence of explicit sociocognitive task demands. What these past
studies suggest is that: 1) human-human eye-contact has a uniquely
strong impact on activity in the rTPJ; 2) spontaneous involvement of
the rTPJ suggests individuals engage in implicit ToMduring human-
human eye-contact; and 3) appearance, movement, and coordinated
task behavior—those things shared between a real person and a
simulation of a person—are not sufficient to engage this region
comparably to direct human-human interaction. These highly
replicable findings suggests that studying the human brain during
eye-contact with a robot may give unique insight into the successes
and failures of social robot design based on the patterns of activity
seen and their similarity or dissimilarity to that of the processing of
humans. Additionally, assessing human-robot eye-contact will shed
light on how the rTPJ is impacted by characteristics which are shared
by a human and a robot, but which are not captured by traditional
controls like pictures or videos of people.

METHODS AND MATERIALS

Participants
Fifteen healthy adults (66% female; 66% white; mean age of 30.1 ±
12.2; 93% right-handed; (Oldfield, 1971)) participated in the
study. All participants provided written informed consent in
accordance with guidelines approved by the Yale University
Human Investigation Committee (HIC #1501015178) and
were reimbursed for participation.

Experimental Eye-Contact Procedure
Participants completed an eye-contact task. See Figure 1A for a
schematic of the room layout during the task. The eye-contact

task used in this experiment is similar to previously published
studies (Hirsch et al., 2017; Noah et al., 2020). The task was
completed while the participant was seated at a table facing a
partner—either the human or the robot (Figure 1B)—at a
distance of 140 cm. At the start of each task, an auditory cue
prompted participants to gaze at the eyes of their partner.
Subsequent auditory tones cued eye gaze to alternatingly move
to one of two light emitting diodes (LEDs) or back to the partner’s
eyes, according to the protocol time series (Figure 1C). Each task
run consisted of six 30 s epochs, with one epoch including one
15 s event block and one 15 s rest block, for a total run length of
3 min. Event blocks consisted of alternating 3 s periods of gaze at
partners eyes and gaze at an LED. Rest blocks consisted of gaze at
an LED.

Every participant completed the task twice each with two
partners: another real human—a confederate employed by the
lab—and a robot bust (Figure 1B). The order of partners was
counter balanced. In both partner conditions, the partner
completed the eye-contact task concurrently with the
participant, such that the participant and the current partner
had gaze diverted to an LED and gaze towards partner at the same
time. The timing and range of motion of participant eye
movements were comparable for both partners. This task was
completed twice with each partner, for a total of four runs. During
the task, hemodynamic and behavioral data were collected using
functional Near Infrared Spectroscopy (fNIRS) and desk
mounted eye-tracking.

Robot Partner
The robot partner was a 3D-printed humanoid bust named Maki
(HelloRobo, Atlanta, Georgia) (Payne, 2018; Scassellati et al.,

FIGURE 1 | Paradigm. (A) Schematic (view from above) showing the experimental setup. Participants were seated approximately 140 cm from their partner. On
either side of the participant’s and the partner’s head were LEDs (green circles). Participants (n � 15) alternated between looking into the eyes of their partner and
diverting their gaze 10° to one of the lights. (B) Participants completed the eye-contact task with two partners: a human (left) and a robot (patient view: center, schematic:
right). Red boxes was used to analyze eye-tracking data in order to assess task compliance. Eye boxes took up approximately the same area of participant visual
angle. Schematic source: HelloRobo, Atlanta, Georgia. (C) Paradigm timeline for a single run. Each run consisted of alternating 15-second (S) event and rest blocks.
Event blocks consisted of alternating 3-S periods of eye contact (orange) and no eye contact (blue). Rest blocks consisted of no eye contact. (D)Hemodynamic data was
collected during the task. This included 134 channels spread across both hemispheres of the cortex via 80 pairs of optodes placed against the scalp. Blue dots represent
points of data collation relative to the cortex.
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2018b) which can simulate human eye-movements but which
otherwise lacks human features, movements, or reactive
capabilities. Maki’s eyes were designed to have comparable
components to that of human eyes: whites surrounding a
colored iris with a black “pupil” in the center (Figure 1B).
Maki’s movements were carried out using an Arduino IDE
controlling six servo motors, giving it six degrees of freedom:
head turn left-right and tilt up-down; left eye move left-right and
up-down; right eye move left-right and up-down; and eye-lids
open-close. This robot was chosen due to the design emphasis on
eye movements, as well as its simplified similarity to the overall
size and organization of the human face which was hypothesized
to be sufficient to control for the appearance of a face (Haxby
et al., 2000; Ishai, 2008; Powell et al., 2018).

Participants were introduced to each partner immediately
prior to the start of the experiment. For Maki’s introduction,
it was initially positioned such that its eyes were closed, and its
head was down. Participants then witnessed the robot being
turned on, at which point Maki opened its eyes, positioned its
head in a neutral, straightforward position, and began blinking in
a naturalistic pattern (Bentivoglio et al., 1997). Participants then
watched as Maki carried out eye-movement behaviors akin to
those performed in the task. This was done to minimize any
neural effects related to novelty or surprise at Maki’s movements.
Participants introduction to Maki consisted of telling them its
name and indicating that it would be performing the task along
with them. No additional abilities were insinuated or addressed.
Introduction to the human partner involved them walking into
the room, sitting across from the partner and introducing
themselves. Dialogue between the two was neither encouraged
nor discouraged. This approach to introduction was chosen to
avoid giving participants any preconceptions about either the
robot or human partner.

The robot completed the task via pre-coded movements timed
to appear as if it was performing the task concurrently with the
participant. Robot behaviors during the task were triggered via
PsychoPy. The robot partner shifted its gaze position between
partner face and light at timed intervals which matched the task
design such that the robot appeared to look towards and away
from the participant at the same time that the participant was
instructed to look towards or away from the robot. The robot was
not designed to nor capable of replicating all naturalistic human
eye-behavior. While it can simulate general eye movements, fast
behaviors like saccades and subtle movements like pupil size
changes are outside of its abilities. Additionally, the robot did not
perform gaze fixations due to lack of any visual feedback or input.
In order to simulate a naturalistic processing delay found in
humans, a 300-ms delay was incorporated between the audible
cue to shift gaze position and the robot shifting its gaze. The robot
also engaged in a randomized naturalistic blinking pattern.

FNIRS Data Acquisition, Signal Processing
and Data Analysis
Functional NIRS signal acquisition, optode localization, and
signal processing, including global mean removal, were similar
to methods described previously (Dravida et al., 2018; Dravida

et al., 2020; Hirsch et al., 2017; Noah et al., 2015; Noah et al., 2020;
Piva et al., 2017; Zhang et al., 2016; Zhang et al., 2017) and are
summarized below. Hemodynamic signals were acquired using
an 80-fiber multichannel, continuous-wave fNIRS system
(LABNIRS, Shimadzu Corporation, Kyoto, Japan). Each
participant was fitted with an optode cap with predefined
channel distances, determined based on head circumference:
large was 60 cm circumference; medium was 56.5 cm; and
small was 54.5 cm. Optode distances of 3 cm were designed
for the 60 cm cap layout and were scaled linearly to smaller
caps. A lighted fiber-optic probe (Daiso, Hiroshima, Japan) was
used to remove hair from the optode holders prior to optode
placement, in order to ensure optode contact with the scalp.
Optodes consisting of 40 emitter-detector pairs were arranged in
a matrix across the scalp of the participant for an acquisition of
134 channels per subject (Figure 1D). This extent of fNIRS data
collection has never been applied to human-robot interaction. For
consistency, placement of the most anterior optode-holder of the
cap was centered 1 cm above the nasion.

To assure acceptable signal-to-noise ratios, attenuation of light
was measured for each channel prior to the experiment, and
adjustments were made as needed until all recording optodes
were calibrated and able to sense known quantities of light
from each wavelength (Tachibana et al., 2011; Ono et al., 2014;
Noah et al., 2015). After completion of the tasks, anatomical
locations of optodes in relation to standard head landmarks
were determined for each participant using a Patriot 3D
Digitizer (Polhemus, Colchester, VT, USA) (Okamoto and Dan,
2005; Eggebrecht et al., 2012).

Shimadzu LABNIRS systems utilize laser diodes at three
wavelengths of light (780 nm, 805 nm, 830 nm). Raw optical
density variations were translated into changes in relative
chromophore concentrations using a Beer-Lambert equation
(Hazeki and Tamura, 1988; Matcher et al., 1995). Signals were
recorded at 30 Hz. Baseline drift was removed using wavelet
detrending provided in NIRS-SPM (Ye et al., 2009). Subsequent
analyses were performed usingMatlab 2019a. Global components
attributable to blood pressure and other systemic effects
(Tachtsidis and Scholkmann, 2016) were removed using a
principal component analysis spatial global-component filter
(Zhang et al., 2016; Zhang et al., 2017) prior to general linear
model (GLM) analysis (Friston et al., 1994). Comparisons
between conditions were based on GLM procedures using the
NIRS-SPM software package (Ye et al., 2009). Event and rest
epochs within the time series (Figure 1D) were convolved with
the canonical hemodynamic response function provided in SPM8
(Penny et al., 2011) and were fit to the data, providing individual
‘‘beta values’’ for each channel per participant across conditions.
Montreal Neurological Institute (MNI) coordinates (Mazziotta
et al., 1995) for each channel were obtained using NIRS-SPM
software (Ye et al., 2009) and the 3-D coordinates obtained using
the Polhemus patriot digitizer.

Once in normalized space, the individual channel-wise beta
values were projected into voxel-wise space. Group results of voxel-
wise t-scores based on these ‘‘beta values’’ were rendered on a
standard MNI brain template. All analyses were performed on the
combined OxyHb + deOxyHb signals (Silva et al., 2000; Dravida
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et al., 2018). This was calculated by adding the absolute value of the
change in concentration of OxyHb and deOxyHb together. This
combined signal is used as it reflects through a single value the
stereotypical task-related anti-correlation between increase in
OxyHb and decrease in deOxyHb (Seo et al., 2012). As such,
the combined signal provides a more accurate reflection of task
related activity by incorporating both components of the expected
signal change as opposed to just one or the other.

For each condition—human partner and robot partner—task
related activity was determined by contrasting voxel-wise activity
during task blocks with that during rest blocks which identifies
regions which are more activated during eye-contact than
baseline. The resulting single condition results for human eye-
contact and robot eye-contact were contrasted with each other to
identify regions which showed more activity when making eye-
contact with one partner or the other. A region of interest analysis
was performed on the rTPJ using a mask from a previously
published study (Noah et al., 2020). Effect size (classic Cohen’s d)
was calculated using ROI beta values for all subjects to calculate
mean and pooled standard deviation. Whole cortex analyses were
also performed, as an exploratory analysis.

Eye-Tracking Acquisition
Participant eye-movements during the experiment were recorded
using a desk-mounted Tobii X3-120 (Stockholm, Sweden) eye-
tracking system. The eye-tracker recorded eye behavior at 120 Hz.
The reference scene video was recorded at 30 Hz from a scene
camera positioned directly behind and above the participants’
head at 1280 x 720 pixels using a Logitech c920 camera
(Lausanne, Switzerland). Eye-tracking data was analyzed using
an “eye-box” which was determined via the anatomical layout of
the partners face (Figure 1B, red boxes). When the eyes of the
participant fell within the bounds of the eye-box of their partner,
it was considered a “hit”. To assess results, the task time was
divided into 3 s increments, which reflects the length of a single-
eye-contact period. The percentage of frames with a hit were
calculated for every 3 s period of the task. Data points in which at
least one eye was not detected (due to technical difficulties or eye-
blinks) were considered invalid and excluded from this
calculation. Datasets which resulted in more than 1/3 of data
points being invalid due to these dropped signals, blinks, or noise
were excluded from analyses. Due to collection error, researcher
error, or technical difficulties, 17 of 60 eye-tracking datasets were
excluded. These were equally distributed between the two trial
types (9 from human and 8 from robot) and therefore do not
differentially impact the two conditions. If the participant
complied with the task, then the proportion of eye-box hits
per increment should reflect a pattern similar to that shown in
Figure 1D, where eye-contact periods show a high proportion of
hits and no eye-contact periods show few or no hits.

RESULTS

Behavioral Eye-Tracking Results
Figure 2 shows a colormap of eye-tracking behavioral results for
subjects that had at least one valid eye-tracking data set per

condition. The proportion of time per 3 s period spent looking at
the eye-box of the partner is indicated by the color of the block
with warmer colors indicating more hits and cooler indicating
fewer. The figure shows that each participant engaged in more
eye-contact during eye-contact periods of the task block than
during no eye-contact periods. This demonstrates task
compliance regardless of partner. Two participants appeared
to make less eye-contact with their robot partner than they
did with their human partner (subjects 2 and 4), though both
still showed task compliance with the robot. In order to ensure
that hemodynamic differences in processing the two partners
were not confounded by the behavioral differences of these two
subjects, contrasts were performed on the group both including
(Figure 3, n � 15) and excluding the two subjects. Results were
not meaningfully changed by their exclusion.

Hemodynamic Results
Results in the right hemisphere of hemodynamic contrasts are shown
in Figure 3, Supplementary Figure S1 and Table 1. The black circle
indicates the rTPJ region of interest. Eye-contact with another human
contrasted with baseline (Supplemenatry Figure S1, left) resulted in
significant activity in the rTPJ (peak T-score � 4.27; p <0.05 FDR-
corrected). ROI descriptive statistics: beta value x ̄ � 5.12x10−4; σ �
9.31x10−4; 95% confidence interval: 4.87x10−4–5.38x10−4. Eye-
contact with a robot contrasted with rest (Supplementary Figure
S1, right) resulted in no significant activity in the rTPJ. ROI
descriptive statistics: beta value x ̄ � -4.25x10−4; σ � 0.002; 95%
confidence interval: -4.81x10−4 — -3.69x10−4.

A comparison of the two partners (Figure 3) resulted in significant
differences in the rTPJ (peak T-score: 2.8, p <0.05 FDR-corrected).
Effect size: Cohen’s d � 0.5844. Exploratory whole brain analyses were
also performed to identify other regions that might be of interest in
future studies. Un-hypothesized significant differences were found in
the right dorsolateral prefrontal cortex (rDLPFC) in a comparison of
human eye-contact and rest (peak T-score: 3.96, p � 0.007,
uncorrected) as well as human eye-contact compared to robot eye-
contact (peak T-score � 2.84; p <0.001, uncorrected). A list of all
regions that reached significance in the exploratory analyses can be
found in Table 1.

CONCLUSION AND DISCUSSION

The paradigm utilized here demonstrates how assessment of neural
activity can give insight which may not be available through assessing
behavior alone and offers an effective way to address some questions
about naturalistic interaction between both humans and robots. Past
attempts to apply fNIRS to human-robot interaction have explored its
use as a signal transducer from human to robot as well as an
evaluation tool (Kawaguchi et al., 2012; Solovey et al., 2012;
Canning and Scheutz, 2013; Strait et al., 2014; Nuamah et al.,
2019). This study builds on these by expanding data collection to
the full superficial cortex and comparing neural processing during
human-robot interaction to human-human interaction. It establishes
a foundation for novel approaches to assess social robot design which
may complement existing approaches (Gazzola et al., 2007; Sciutti
et al., 2012a; Sciutti et al., 2012b).
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As hypothesized, differences in rTPJ activity were found
between processing of the human and robot partner, and these
differences shed light on human social processing as well as
Maki’s success in engaging it. While Maki’s simplified appearance
was enough to control for low level visual features of making eye-
contact with a human, as demonstrated by the lack of significant

differences in occipital visual face processing areas (Dravida et al.,
2019; Haxby et al., 2000; Ishai et al., 2005), Maki’s performance
was not able to engage the rTPJ (Figure 3, black circle). This
suggests that the combination of features that Maki shares with
another human—superficial appearance, dynamic motion,
coordinated behavior, physical embodiment (Wang and Rau,

FIGURE 2 | Eye tracking and task compliance. Behavioral results are shown indicating task compliance for both partners. The task bar was divided into 3 s
increments (x-axis) and the proportion of hits on the partner’s eye box were calculated per increment. Subjects which had at least one valid eye-tracking data set per
condition are shown (y-axis). Color indicates the proportion of the 3 seconds spent in the partners eye-box, after excluding data points in which one or more eyes were
not recorded (e.g., blinks). Subjects showed more eye-box hits during the eye-contact periods (every other increment during task blocks) then during no eye
contact periods (remaining task blocs increments as well as all rest block increments). Two subjects, S02 and S04, appear to have made less eye-contact with the robot
than with the human partner. In order to ensure that this did not confound results, hemodynamic analyses were performed with both the inclusion and exclusion of those
two subjects.

FIGURE 3 |Cortical hemodynamic results. The rTPJ (black circle, the region of interest) was significantly more active during human than robot eye-contact (peak T-
score � 2.8, uncorrected significance value p � 0.007, reaches FDR-corrected significance of p <0.05). rTPJ � right temporoparietal junction; DLPFC � right dorsolateral
prefrontal cortex; SMA �supplementary motor area; SMG � supramarginal gyrus; STG � superior temporal gyrus.”
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2019), and co-presence (Li, 2015)—are not sufficient to engage
the rTPJ. These results also give insight into Maki’s success in
simulating a human partner: this robot, engaged as a novel
partner with no preconceptions about abilities, and engaging
in simulated eye-contact is not effective at engaging the
naturalistic social processing network, and this difference was
found despite comparable behavior with both partners.

These results inspire many questions: What in robot design is
necessary and sufficient to engage the human rTPJ? Is it possible for
Maki to engage it, and if so, what characteristics would do so? What
impact would rTPJ engagement have on interpersonal relationship
building with and recognition of Maki as “something like me”
(Dautenhahn, 1995)? How does rTPJ engagement and any
corresponding differences in impression and interaction relate to
short- and long-term individual and public health, such as
combatting loneliness?

Additional insight can be gleaned from the presented data: in
addition to hypothesized rTPJ differences, the right dorsolateral
prefrontal cortex (rDLPFC) also showed significant differences

during human-human interaction and human-robot interaction,
though these results were exploratory and thus do not reach FDR-
corrected significance. The rDLPFC has been hypothesized to be
critical for evaluating “motivational and emotional states and
situational cues” (Forbes and Grafman, 2010), as well as
monitoring for errors in predictions for social situations
(Burke et al., 2010; Brown and Brüne, 2012) and implicit
theory of mind (Molenberghs et al., 2016). This suggests that
participants are spontaneously engaging in prediction of their
human but not their robot-partners mind set, and are monitoring
for differences in their expectations about their partner. RDLPFC
activity has been tied to processing of eye-contact during human-
human dialogue (Jiang et al., 2017) and to disengagement of
attention from emotional faces (Sanchez et al., 2016). This
suggests that candidate features to influence this system
include subtle facial features meaningful for communication
and reciprocation like eyebrows or saccades, or behavioral
cues such as moving the gaze around the face during eye-
contact. Activity in the rDLPFC has also been tied to
strategizing in human-human but not human-computer
competition (Piva et al., 2017). This suggests that top-down
influences, such as preconceptions that people have of other
people and of robots relating to agency, ability, or intention,
are also important, and past research suggests that both bottom-
up and top-down features are likely at play (Ghiglino et al., 2020a;
Ghiglino et al., 2020b; Klapper et al., 2014). Lack of prior
experience—which would create such preconceptions—may
also be driving this difference.

The opportunities offered by the application of fNIRS to
human-robot interaction are mutually beneficial to both social
neuroscience and social robotics (Henschel et al., 2020). FNIRS to
assess human-robot interaction can be used to interrogate
whether robot interaction can incur naturalistic sociocognitive
activity, how different elements of robot design impact that
neurological processing, and how such differences relate to
human behavior. It can also be used to parse the relationship
between stimuli and human social processing. The data presented
here offers a starting point for research to explore how the
complex whole of appearance and behavior is brought to bear
on social processing during direct eye-to-eye contact in human-
human and human-robot interaction. Future studies may explore
the impact of dynamic elements of robot design; subtle
components of complex robot behavior; and pre-existing
experience with or belief about the robot on human
processing. This would give insight into the function of the
human social processing system and answer the question of if
it is possible for a robot to engage it. Processing during eye-
contact should also be related to self-reported changes in
impression of and engagement with the robot during various
situations. Behavioral studies have shown that participants report
greater engagement with a robot if it has made eye-contact with
them prior to performance of a task (Kompatsiari et al., 2019).
Whether these differences correlate with neural behavior remains
to be seen. There are also other behaviors and brain regions that
these techniques can be applied to. For instance, humans engage
in anticipatory gaze when viewing goal directed robot behavior in
a way more similar to viewing other humans than to viewing self-

TABLE 1 | Activity clusters in the right hemisphere.

Human eye-contact > rest

Anatomical name Peak
T-Score

p-value X Y Z Voxel
#

R superior temporal
gyrus (STG)

4.27 <0.001 70 −42 10 697

R occipital visual area II 3.97 <0.001 22 −98 8 275
R occipital visual area III 3.79 <0.001 0 −98 28 119
R dorsolateral prefrontal
cortex (dlPFC)

2.84 0.007 28 56 28 46

Robot eye-contact > rest

Anatomical name Peak
T-Score

p-value X Y Z Voxel #

R occipital visual area II 3.02 0.005 12 −96 6 28
R occipital visual area II 4.53 <0.001 30 −96 6 778
R occipital visual area III 3.00 0.005 50 −68 −4 35
R premotor cortex 3.58 0.002 58 8 40 46

Human eye-contact > robot
eye-contact

Anatomical name Peak
T-Score

p-value X Y Z Voxels #

R supramarginal
gyrus (SMG)

2.80 0.007 68 −38 32 68

R dorsolateral prefrontal
cortex (dlPFC)

3.96 <0.001 20 58 34 227

R supplementary motor
area (SMA)

3.95 <0.001 20 −4 74 160

Statistics of hemodynamic results. The table shows statistics for positive clusters of
significant fNIRS hemodynamic activity in the right hemisphere for three contrasts:
human eye-contact > baseline (top); robot eye-contact > baseline (middle); and human
eye-contact > robot eye-contact (bottom). (Column 1) the name of the cortical feature
where the cluster is located. (Column 2) the maximum T statistic found within the cluster.
(Column 3) the significance p-value, shown uncorrected. (Column 4–6) three dimensional
coordinates in X, Y, and Z dimensions, given in Montreal Neurological Institute (MNI)
space. X indicates right-left; Y indicates front-back; Z indicates up-down. (Column 7) the
number of voxels in that cluster that reach significance. The superior temporal gyrus and
supramarginal gyrus are the anatomical features of the temporoparietal junction (rTPJ).
Analyses utilized a cluster size threshold of 20.

Frontiers in Robotics and AI | www.frontiersin.org January 2021 | Volume 7 | Article 5995817

Kelley et al. fNIRS During Human-Robot Eye-Contact

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


propelled objects (Sciutti et al., 2012b). Additionally, the rTPJ is
just one system with implications on social perception of a robot.
Motor resonance and the mirror neuron system are influenced by
goals of behavior and show comparable engagement when
human and robot behavior imply similar end goals, even when
the kinematics of behavior are not similar (Gazzola et al., 2007).
Future studies can explore how robot eye-contact behavior
impacts this system and other such systems (Sciutti et al.,
2012a). This approach may also be valuable for assessing
nebulous but meaningful components of social interaction
such as social engagement (Sidner et al., 2005; Corrigan et al.,
2013; Salam and Chetouani, 2015; Devillers and Dubuisson
Duplessis, 2017).

The promise of robots as tools for therapy and companionship
(Belpaeme et al., 2018; Kawaguchi et al., 2012; Scassellati et al.,
2018a; Tapus et al., 2007) also suggests that this approach can give
valuable insight into the role of social processing in both health
and disease. For instance, interaction with a social seal robot
(Kawaguchi et al., 2012) has been linked to physiological
improvements in neural firing patterns in dementia patients
(Wada et al., 2005). This suggests a complex relationship
between social interaction, social processing, and health, and
points to the value of assessing human-robot interaction as a
function of health. Social dysfunction is found in many different
mental disorders, including autism spectrum disorder (ASD) and
schizophrenia and social robots are already being used to better
understand these populations. Social robots with simplified
humanoid appearances have shown improvements in social
functioning in patients with ASD (Pennisi et al., 2016; Ismail
et al., 2019). This highlights how social robots can give insight
which is not accessible otherwise as ASD patients regularly avoid
eye-contact with other humans but seem to gravitate socially
toward therapeutic robots. Conversely, patients with
schizophrenia show higher amounts of variability than
neurotypicals in perceiving social robots as intentional agents
(Gray et al., 2011; Raffard et al., 2018) and show distinct and
complex deficits in processing facial expressions in robots
(Raffard et al., 2016; Cohen et al., 2017). Application of the
paradigm used here to these clinical populations may thus be
valuable for identifying how behaviors and expressions associated
with eye-contact in robots and in people impact processing and
exacerbate or improve dysfunction.

There are some notable limitations to this study. The sample
size was small and some results are exploratory and do not reach
FDR-corrected significance. As such, future studies should
confirm these findings on a larger sample size. Additionally,
fNIRS in its current iteration is unable to collect data from
medial or subcortical regions. Past studies have shown that,
for example, the medial prefrontal cortex is involved in aspects
of social understanding (Mitchell et al., 2006; Ciaramidaro
et al., 2007; Forbes and Grafman, 2010; Bara et al., 2011;
Powell et al., 2018) and thus is hypothesized to be important

to the paradigm utilized here. Such regions are important for
gaining a comprehensive understanding of this system and
thus some details of processing are being missed when using
fNIRS.
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