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Collision prevention sets a major research and development obstacle for intelligent robots
and vehicles. This paper investigates the robustness of two state-of-the-art neural network
models inspired by the locust’s LGMD-1 and LGMD-2 visual pathways as fast and low-
energy collision alert systems in critical scenarios. Although both the neural circuits have
been studied and modelled intensively, their capability and robustness against real-time
critical traffic scenarios where real-physical crashes will happen have never been
systematically investigated due to difficulty and high price in replicating risky traffic with
many crash occurrences. To close this gap, we apply a recently published robotic platform
to test the LGMDs inspired visual systems in physical implementation of critical traffic
scenarios at low cost and high flexibility. The proposed visual systems are applied as the
only collision sensing modality in each micro-mobile robot to conduct avoidance by abrupt
braking. The simulated traffic resembles on-road sections including the intersection and
highway scenes wherein the roadmaps are rendered by coloured, artificial pheromones
upon a wide LCD screen acting as the ground of an arena. The robots with light sensors at
bottom can recognise the lanes and signals, tightly follow paths. The emphasis herein is
laid on corroborating the robustness of LGMDs neural systems model in different dynamic
robot scenes to timely alert potential crashes. This study well complements previous
experimentation on such bio-inspired computations for collision prediction in more critical
physical scenarios, and for the first time demonstrates the robustness of LGMDs inspired
visual systems in critical traffic towards a reliable collision alert system under constrained
computation power. This paper also exhibits a novel, tractable, and affordable robotic
approach to evaluate online visual systems in dynamic scenes.

Keywords: bio-inspired computation, collision prediction, robust visual systems, LGMDs, micro-robot, critical robot
traffic

1 INTRODUCTION

The World Health Organisation (WHO) reported that every year, approximately 1.35 millions
people worldwide die on road traffic with an increase of 0.11 million over only 5 years ago (WHO,
2018). Collision prevention is an old, but active topic in research communities since it is still
obstructing the development of intelligent robots and vehicles. For examples, the internet of vehicles
(IoV) systems and technologies are confronting huge challenges from traffic accidents where the
emergent strategies from deep learning (Chang et al., 2019) and cloud communication (Zhou et al., 2020)
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are improving the IoV’s reliability. The unmanned aerial vehicles
(UAVs) industries are also reflecting on how to enhance the
capability of obstacle detection and avoidance especially when
flying through unstructured, dynamic scenes (Albaker and
Rahim, 2009). On-road crashes usually occur randomly which are
difficult to predict and trace. The typical accident-prone places
include intersections, road junctions and highways, etc., where
collision prevention is difficult to tackle (Mukhtar et al., 2015).

Therefore, a critically important task is the development of
collision avoidance systems with ultimate reliability, which
nevertheless is faced with huge challenges (Zehang Sun et al.,
2006; Sivaraman and Trivedi, 2013; Mukhtar et al., 2015). The
cutting-edge techniques for collision prediction include global
positioning system (GPS), active (Radar, Laser, Lidar), and
passive (acoustic and optical) sensor strategies, as well as
combinations of these with sensor-based algorithms (Zehang
Sun et al., 2006; Mukhtar et al., 2015). More specifically, the
GPS has been used for predicting real time trajectory of vehicles
for collision risk estimation (Ammoun and Nashashibi, 2009).
The vision-based techniques have been implemented in passive
sensors, i.e., the different kinds of cameras (Sun et al., 2004;
Mukhtar et al., 2015). Compared to the active sensors like the
Radar, the main advantages of visual ones are lower price and
wider coverage of detection range up to 360°, which can provide
much richer description about the vehicle’s surroundings
including motion analysis (Sabzevari and Scaramuzza, 2016).
Compared to the IoV and GPS techniques, the optical
methods are not restricted by surrounding infrastructures
(Mukhtar et al., 2015). However, the visual approaches bring
about pronounced challenges upon fast implementation in real
time, and accurate extraction of colliding features from the
dynamic visual world mixed with many distractors. A reliable,
real-time, energy-efficient collision alert visual system has not yet
been demonstrated so far.

Fortunately, nature has been providing us with a lot of
inspirations to construct collision sensing visual systems.
Robust and efficient collision prediction system is ubiquitous
amongst the vast majority of sighted animals. As a source of
inspiration, the insects’ dynamic vision systems have been
explored as powerful paradigms for collision detection and
avoidance with numerous applications in machine vision, as
reviewed in (Franceschini, 2014; Serres and Ruffier, 2017; Fu
et al., 2018a, Fu et al., 2019b). As a prominent example, locusts
can migrate for a long distance in dense swarms containing
hundreds to thousands of individuals free of collision
(Kennedy, 1951). In the locust’s visual pathways, two lobula
giant movement detectors (LGMDs), i.e., the LGMD-1 and the
LGMD-2, have been gradually identified and recognised to play
crucial roles of collision perception, both of which respond most
strongly to approaching objects signalling a direct collision course
over other categories of visual movements like translating,
receding, etc. (O’Shea and Williams, 1974; O’Shea and Rowell,
1976; Rind and Bramwell, 1996; Simmons and Rind, 1997; Rind
and Simmons, 1999; Gabbiani et al., 2002, Gabbiani et al., 2004;
Fotowat and Gabbiani, 2011; Rind et al., 2016; Yakubowski et al.,
2016). More precisely, the LGMD releases bursts of energy
whenever a locust is on a collision course with its cohorts or a

predator bird. These energy by neural pulses leads to evasive
actions like jumping from the ground while standing, or sliding
while flying (Simmons et al., 2010). Surprisingly, the whole
process from visual processing to behavioural response takes
less than 50 milliseconds (Simmons et al., 2010; Sztarker and
Rind, 2014). Therefore, building artificial visual systems that
possess the similar robustness and timeliness like the locust’s
LGMDs can undoubtedly benefit collision avoidance systems in
intelligent robots and vehicles.

Learning from the locust’s LGMDs visual pathways and
circuits, there have been many modelling studies to investigate
either the LGMD-1 or the LGMD-2 against various visual scenes
including online, wheeled mobile robots (Blanchard et al., 2000;
Yue and Rind, 2005; Badia et al., 2010; Fu et al., 2016; Fu et al.,
2017; Fu et al., 2018b; Isakhani et al., 2018; Fu et al., 2019b),
walking robot (Cizek et al., 2017; Cizek and Faigl, 2019), UAVs
(Salt et al., 2017, Salt et al., 2019; Zhao et al., 2019), and off-line
car driving scenarios, e.g. (Keil et al., 2004; Stafford et al., 2007;
Krejan and Trost, 2011; Hartbauer, 2017; Fu et al., 2019a, Fu et al.,
2020a). These studies have demonstrated the effectiveness of
LGMDs models as quick visual collision detectors for machine
vision applications. However, due to high risk and price to
replicate extremely dangerous traffic scenarios including many
severe crashes, a vacancy is still there to investigate the capability
and robustness of LGMDs models for addressing collision
challenges from more critical scenarios where many physical
collisions will happen. Regarding off-line testing approach, there
is currently no comprehensive database covering real crash
situations from vehicle-mounted cameras.

To fill these gaps, the recently published robotic platform
named “ColCOSΦ” (Sun et al., 2019) can enrich the existing
experimenting “toolbox” in the context. The platform can be used
to physically implement different multi-robot traffic mimicking
real world on-road collision challenges for investigating the
proposed visual systems in a practical, affordable manner.
More precisely, an artificial pheromones module herein works
effectively to optically render different roadmaps involving lanes
and signals upon a wide LCD screen acting as the ground of an
arena for robots which can pick up these cues with light sensors at
bottom. Accordingly, the robots can tightly follow the paths in
navigation. Moreover, to focus on investigating the proposed
LGMDs inspired visual systems, we apply very basic switch
control to separate the states between normal navigation
(going forward) and collision avoidance (abrupt braking).
Here the more complex motion strategies resembling either
the locust’s evasive behaviours or the ground vehicle’s actions
are outside the scope of this study.

Therefore, the main contributions of this paper can be
summarised as follows:

• This research corroborates the robustness of LGMDs
neuronal systems model to timely alert potential crashes
in dynamic multi-robot scenes. To sharpen up the acuity of
LGMDs inspired visual systems in collision sensing, an
original hybrid LGMD-1 and LGMD-2 neural networks
model is proposed with non-linear mapping from network
outputs to alert firing rate, which works effectively.
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• This research complements previous experimentation on
the proposed bio-inspired computation approach to
collision prediction in more critical, real-physical scenarios.

• This paper exhibits an innovative, tractable, and affordable
robotic approach to evaluate online visual systems in
different dynamic scenes.

The rest of this article is structured as follows. Section 2
elaborates on the biological background, the formulation of
proposed model, and the robotic platform. Section 3 presents
the experimental settings on different types of robot traffic
systems. Section 4 elucidates the results with analysis. Section
5 discusses on limitations and future works. Section 6 concludes
this article.

2 METHODS AND MATERIALS

2.1 Biological Inspiration
Within this subsection, we firstly introduce the bio-inspiration,
i.e., characterisation of the locust LGMD-1 and LGMD-2 visual
neurons for the proposed computational modelling and
experimenting. Figure 1 illustrates the schematic neural
structures: the two neurons are physically close to each other.
In general, they have been discovered amongst a group of LGMDs
in the locust’s visual brain, a place called “lobula area” (O’Shea
andWilliams, 1974; O’Shea and Rowell, 1976). The LGMD-1 was
first identified as a movement detector, and gradually recognised
as a looming (approaching) objects detector, which responds
most strongly to direct, rapid approaching objects rather than any
other kinds of movements (Rind and Bramwell, 1996). In the
same place, the LGMD-2 was also identified as a looming objects
detector but with different selectivity to the LGMD-1, that is, the
LGMD-2 is only sensitive to darker objects that approach against

a relatively brighter background; whilst the LGMD-1 can detect
either lighter or darker approaching objects (Simmons and Rind,
1997; Sztarker and Rind, 2014).

More precisely, both the looming perception visual neurons
show increasing firing rates before the moving object reaching a
particular angular size in the field of vision. They are rigorously
inhibited at the end of objects approaching, the start of objects
receding, and during transient luminance change over a large
field of view. Against translating movements at constant speed,
they are only activated very briefly. Most importantly, through
our previous modelling and bio-robotic research (Fu et al., 2016;
Fu et al., 2018b; Fu et al., 2019b), we have found that though with
different selectivity, both the neurons could respond strongly to
movements with increasing motion intensity, such as fast
approaching and accelerating translating objects. Accordingly,
all these specific characteristics make the LGMD-1 and LGMD-2
unique neuronal systems to model for addressing collision
challenges for intelligent robots and vehicles.

2.2 Model Description
The collision selectivity, which indicates the neuron should
respond most strongly to approaching objects over other kinds
of movements, is a key feature to be realised in such looming
perception neural network models separating their functionality
from other categories of motion sensitive neural models (Fu et al.,
2019b). Through hundreds of millions of years evolution, the
locust’s LGMDs have been tuned with perfect collision selectivity,
whereas the current computational models are not. In this regard,
we have proposed a few effective methods to implement the
different selectivity between the two LGMDs, and to sharpen up
the selectivity via the modelling of bio-plausible ON/OFF
channels (Fu et al., 2016; Fu et al., 2017; Fu et al., 2019b), and
neural mechanisms like spike frequency adaptation (Fu et al.,
2017; Fu et al., 2018b), and adaptive inhibition (Fu et al., 2019a;
Fu et al., 2020b). However, the collision selectivity of current
models still needs to be enhanced especially in complex and
dynamic visual scenes.

Moreover, through previous studies, we have found the
LGMD-2’s specific selectivity can complement the LGMD-1’s
when detecting darker approaching objects, since the LGMD-1 is
shortly activated by the recession of darker object whereas the
LGMD-2 is not (Fu et al., 2019b). This well matches the situations
faced by ground mobile robots and vehicles since most on-road
objects are relatively darker than their backgrounds, particularly
in daytime navigation. An interesting question thus arises that
whether the two neuronal systems can coordinate in sculpting the
dark looming selectivity. Accordingly, building upon the two
state-of-the-art LGMDs neural network models (Fu et al., 2018b;
Fu et al., 2019b), we propose a hybrid visual neural networks
model combining the functionality of both the LGMD-1 and the
LGMD-2, and investigate the robustness in dynamic visual scene.
Compared to related networks, the proposed network features a
non-linear unit for the product of spikes elicited by the LGMD-1
and the LGMD-2 neurons to generate the hybrid firing rate. This
works effectively to sharpen up the selectivity to darker
approaching objects over other motion patterns like recession.
Consequently, a potential collision is detected only when both the

FIGURE 1 | Schematic illustration of the LGMD-1 and the LGMD-2
neuromorphology. Visual stimuli are received by the pre-synaptic dendrite
structures of both neurons. The feed-forward inhibition (FFI) pathway
connects the LGMD-1. The DCMD (descending contra-lateral
movement detector) is a one-to-one post-synaptic target neuron to the
LGMD-1 conveying spikes tomotion control neural system. The post-synaptic
partner neuron to the LGMD-2 yet remains unknown.
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LGMDs neurons are highly activated in the context. Figure 2
illustrates the schematic structure of the hybrid visual neural
networks. The nomenclature is given in Table 1.

2.2.1 Photoreceptors Layer
As shown in Figure 2, the LGMD-1 and the LGMD-2 possess the
same visual processing in the first two pre-synaptic layers. The
first layer is composed of photoreceptors arranged in a matrix
sensing time-varying, single-channel luminance (grey-scale in
our case). The photoreceptors compute temporal derivative of
every pixel to get motion information. Let L(x, y, t) ∈ R3 denote
the input image streams, where x, y, and t are spatial and temporal
positions, respectively. The current motion can be retrieved by

P x, y, t( ) � L x, y, t( ) − L x, y, t − 1( ) +∑np
i�1

aiP x, y, t − i( ), where
ai � 1 + ei( )−1. (1)

The motion persistence is constituted by np frames.
In addition, the P-layer also indicates the whole-field

luminance change with respect to time. This indicator is
applied as the FFI in the LGMD-1 neural network, which can
be obtained by averaging the overall luminance change at time t.
That is,

F t( ) � ∑R
x�1

∑C
y�1

|P x, y, t( )| · C · R( )−1, (2)

where C and R denote columns and rows of the visual field in
pixels. In addition to that, the FFI goes through a time delay unit
(see TD in Figure 2), defined as

̂F t( ) � α1F t( ) + 1 − α1( )F t − 1( ), α1 � τi/ τf + τi( ). (3)

τf stands for a time constant and τi is the time interval
between consecutive frames of digital signals, both in
milliseconds. Notably, here the FFI can directly shut
down the LGMD-1 neuron if it overshoots Tffi, i.e., a
predefined threshold.

FIGURE 2 | Schematic illustration of the proposed feed-forward collision prediction visual neural networks. There are three layers pre-synaptic to the two neurons,
the photoreceptor (P), lamina (LA) andmedulla (ME) layers. The pre-synaptic neural networks of LGMD-1 and LGMD-2 share the same visual processing in the first two, P
and LA layers. The processing yet differs in the third ME layer for the purpose of separating their different selectivity. The ME layer consists of ON/OFF channels wherein
the ON channels are rigorously suppressed in the LGMD-2’s circuit (dashed lines). The delayed information is formed by convolving surrounding non-delayed
signals in space. The FFI is an individual inhibition pathway to merely the LGMD-1. The PM is a mediation pathway to the medulla layer of the LGMD-2. The two LGMDs
pool their pre-synaptic signals respectively to generate spikes that are passed to their post-synaptic neurons. Notably, the non-linearly mapped, hybrid firing rate is the
network output deciding the corresponding collision avoidance response.

TABLE 1 | Nomenclature in the visual neural networks.

Acronym and full-name

LGMD Lobula giant movement detector
DCMD Descending contra-lateral movement detector
FFI Feed-forward inhibition
P Photoreceptor
LA/ME Lamina/medulla neuron
PM Photoreceptor mediation
TD Time delay unit
E/I Excitation/inhibition
S/G Summation/grouping
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While modelling the LGMD-2, we propose a temporal tuning
mechanism, the PM in Figure 2, to adjust local inhibitions in the
medulla layer of the LGMD-2. The computations of PM conform
to Eqs. 2, 3 which are not restated here.

2.2.2 Lamina Layer
Motion information inevitably induces luminance increment or
decrement over time. As shown in Figure 2, the second lamina
layer separates the relayed signals into parallel ON and OFF
channels, at each node. More precisely, the luminance increment
flows into the ON channel, whilst the decrement streams to the
OFF channel with a sign-inverting operation. Both the channels
retain positive inputs. That is,

Pon x, y, t( ) � P x, y, t( )[ ]+ + α2Pon x, y, t − 1( ),
Poff x, y, t( ) � − P x, y, t( )[ ]− + α2Poff x, y, t − 1( ). (4)

[x]+ and [x]− denote max (0, x) andmin (x, 0). In addition, a small
fraction (α2) of previous signal is allowed to pass through.

2.2.3 Medulla Layer
The medulla layer is the place where different collision selectivity
between LGMD-1 and LGMD-2 is shaped. The visual processing
thus differs in this layer. First, in the LGMD-1’s medulla, the
delayed information varies in different polarity pathways. More
precisely, in the ON channels, the local inhibition (Ion1) is formed
by convolving surrounding delayed excitations (Eon1). The whole
spatiotemporal computation can be defined as the following:

Eon1 x, y, t( ) � Pon x, y, t( ), (5)

E ̂
on1 x,y, t( ) � α3Eon1 x,y, t( )+ 1−α3( )Eon1 x,y, t −1( ), α3 � τi/ τ1 + τi( ),

(6)

Ion1 x, y, t( ) � ∑r
i�−r

∑r
j�−r

E ̂
on1 x + i, y + j, t( )W1 i + r, j + r( ). (7)

τ1 stands for the latency of excitatory signal. r indicates the radius
of convolving area [W1] denotes the convolution kernel in the
LGMD-1 that meets the following matrix:

W1 �
1/8 1/4 1/8
1/4 0 1/4
1/8 1/4 1/8

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (8)

In the LGMD-1’s OFF channels, the delay is nevertheless put
forth on the inhibitory signal; the excitation is thus formed by
convolving delayed lateral inhibitions. That is,

Ioff 1 x, y, t( ) � Poff x, y, t( ), (9)

I ̂off 1 x,y, t( ) � α4Ioff 1 x,y, t( ) + 1−α4( )Ioff 1 x,y, t−1( ), α4 � τ i/ τ2 + τi( ),
(10)

Eoff 1 x, y, t( ) � ∑r
i�−r

∑r
j�−r

I ̂off 1 x + i, y + j, t( ) ·W2 i + r, j + r( ). (11)

Here the convolution kernel [W2] is set equally to W1 in Eq. 8.
Second, in the LGMD-2’s medulla, much stronger local

inhibitions are put forth in all the ON channels forming a
biased-ON pathway in order to achieve its specific selectivity to

only darker objects (see dashed lines in Figure 2).More specifically,
the generation of local excitation (Eon2) and inhibition (Ion2) in the
LGMD-2’s ON channels conforms to the LGMD-1 yet with a
different latency τ3. To implement the ‘bias’, the convolution kernel
matrix [W3] is increased with self-inhibition as

W3 �
1/4 1/2 1/4
1/2 2 1/2
1/4 1/2 1/4

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (12)

In the LGMD-2’s OFF pathway, the neural computation is
defined as

Eoff 2 x, y, t( ) � Poff x, y, t( ), (13)

E ̂
off 2 x,y, t( )� α5Eoff 2 x,y, t( )+ 1−α5( )Eoff 2 x,y, t −1( ), α5 � τi/ τ4 + τi( ),

(14)

Ioff 2 x, y, t( ) � ∑r
i�−r

∑r
j�−r

E ̂
off 2 x + i, y + j, t( )W4 i + r, j + r( ). (15)

[W4] fits the following matrix:

W4 �
1/8 1/4 1/8
1/4 1 1/4
1/8 1/4 1/8

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (16)

As illustrated in Figure 2, following the generation of local
ON/OFF excitation and inhibition, there are local summation
units in either the medulla layer. For the LGMD-1, the calculation
is as the following:

Son1 x, y, t( ) � Eon1 x, y, t( ) − w1 · Ion1 x, y, t( )[ ]+,
Soff 1 x, y, t( ) � Eoff 1 x, y, t( ) − w2 · Ioff 1 x, y, t( )[ ]+. (17)

w1 and w2 are the local biases. Note that only the positive S unit
signals will pass through to the subsequent circuit. Compared to
the LGMD-1, the two local biases are time varying, adjusted by
the PM pathway in the LGMD-2. That is,

w3 t( ) � max 1,
PM t( )
Tffi

( ), w4 t( ) � max 0.5,
PM t( )
Tffi

( ), (18)

Son2 x, y, t( ) � Eon2 x, y, t( ) − w3 t( ) · Ion2 x, y, t( )[ ]+,
Soff 2 x, y, t( ) � Eoff 2 x, y, t( ) − w4 t( ) · Ioff 2 x, y, t( )[ ]+. (19)

In both the LGMDs, the polarity summation cells interact with
each other in a supra-linear manner as

S x, y, t( ) � Son x, y, t( ) + Soff x, y, t( ) + Son x, y, t( )Soff x, y, t( ).
(20)

Cascaded the S unit, a grouping unit is introduced to reduce
isolated motion and enhance the extraction of expanding edges
of colliding objects in cluttered backgrounds. This is
implemented with a passing coefficient matrix [Ce]
determined by another convolving process with an equally
weighted kernel [Wg]. That is,

Ce x, y, t( ) � ∑r
i�−r

∑r
j�−r

S x + i, y + j, t( ) ·Wg i + r, j + r( ), (21)
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Wg � 1
9

×
1 1 1
1 1 1
1 1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (22)

G x, y, t( ) � S x, y, t( )Ce x, y, t( )ω t( )−1, where ω t( )
� max Ce[ ]t( )C−1

ω + ΔC . (23)

ω is a scale parameter computed at every discrete time step.Cω is a
constant. ΔC stands for a small real number. Here only the non-
negative grouped signals can get through.

2.2.4 LGMD-1 and LGMD-2 Neurons
After the signal processing of pre-synaptic neural networks, the
LGMD-1 and LGMD-2 neurons integrate corresponding local
excitations from the medulla layer to generate membrane
potentials. Here we apply a sigmoid transformation as the
neuron activation function. The whole process can be defined as

k t( ) � ∑R
x�1

∑C
y�1

G x, y, t( ), K t( ) � 1 + e−k t( )· C·R( )−1( )−1, (24)

Subsequently, a spike frequency adaptation mechanism is
applied to sculpt the neural response to moving objects
threatening collision. The computation is defined as follows:

K ̂ t( ) � α6 K ̂ t−1( )+K t( )−K t−1( )( ), if K t( )−K t −1( )( )≤0
α6K t( ), otherwise,

{
(25)

α6 � τs/ τs + τi( ), (26)

where α6 is a coefficient indicating the adaptation rate to visual
movements calculated by the time constant τs. Generally
speaking, such a mechanism reduces neuronal firing rate to
stimuli with constant or decreasing intensity, e.g., objects
recede or translate at a constant speed; while it has little effect
on accelerating motion with increasing intensity like the
approaching.

2.2.5 Hybrid Spiking
As the time interval between frames of digital signals is much
longer than the reaction time of real visual neurons, we map the
membrane potentials exponentially to spikes by an integer-valued
function. That is,

Sspike t( ) � e α7 · K ̂ t( )−Tspi( )( )[ ], (27)

where Tspi denotes the spiking threshold and α7 is a scale
coefficient affecting the firing rate, i.e., raising it will bring
about more spikes within a specified time window.

As illustrated in Figure 2, the elicited spikes are conveyed to
their post-synaptic target neurons. Differently from previous
modelling on single neuron computation of either the LGMD-
1 or the LGMD-2, we herein put forward a non-linear hybrid
spiking mechanism aiming at improving the selectivity to
darker objects that only threaten direct collision by
suppressing the response to other categories of visual
stimuli. As a result, the specific selectivity of LGMD-2 well
complements the LGMD-1’s where the hybrid spiking

frequency will be amplified merely when both neurons are
activated. The computation is defined as

Sspikeh � Sspike2 , if F ̂ t( )≥Tffi

Sspike1 × Sspike2 , otherwise
{ (28)

Finally, the detection of potential collision threat can be
indicated by

Col t( ) � True, if ∑t
i�t−nt

Sspikeh i( )( ) × 1000/ nt · τi( )≥Tcol

False, otherwise

⎧⎪⎨⎪⎩
(29)

nt denotes a short time window in frames. Tcol stands for the
collision warning threshold.

2.2.6 Setting Network Parameters
Table 2 elucidates the parameters. In this study, we set up the
parameters of neural networks depending on 1) prior knowledges
from neuroscience (Rind and Bramwell, 1996; Simmons and
Rind, 1997; Rind et al., 2016), 2) previous experience on
modelling and experimenting of the LGMD-1 and the LGMD-
2 neuron models (Fu et al., 2018b; Fu et al., 2019b), 3)
considerations of fast implementation with optimisation as
embedded vision systems for online visual processing (Hu
et al., 2018). More concretely, the convolutional matrices W1,
W2, W3, and W4 are not only based on previous biological and
computational studies, but also optimised by “bitwise operation”
on the embedded system. There is currently no feedback
pathways and learning steps involved in the proposed hybrid
neural networks. The parameters given in Table 2 have been
systematically investigated in our previous bio-robotic studies
with optimisation (Fu et al., 2018b; Fu et al., 2019b; Fu et al.,
2017). In addition to that, the very limited computational
resources in the micro-robot is restricted for online learning
algorithms. Therefore, aligned with previous settings, the
emphasis herein is laid on investigating the integration of both
LGMDs inspired visual systems in robotic implementation of
dynamic visual scenes.

2.3 Robotic Platform
Within this subsection, we introduce the robotic platform, called
ColCOSΦ (Sun et al., 2019), used to simulate different traffic
scenarios in this research. As shown in Figure 3, the platform
mainly consists of artificial multi-pheromone module, and
autonomous micro-mobile robots.

2.3.1 Artificial Pheromones Module
Firstly, the multiple pheromones module was originally
developed to conduct the swarm robotic experiments
mimicking behaviours of social insects with interactions
between multiple pheromones representing different
biochemical substances (Sun et al., 2019). More specifically, as
illustrated in Figure 3, the module consists of a camera system, a
computer, and an arena with an LCD screen acting as the ground.
The computer runs a pattern recognition algorithm in real time
(Krajník et al., 2014), which is feasible to track and localise many
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ID-specific patterns with images at 1920 (pixels in width) × 1,080
(pixels in height) from the top-down facing camera,
simultaneously, so as to record coordinates of robots with
respect to time. In addition, the computer can render the
virtual pheromone components, optically, represented by
colour tracks or spots on the LCD screen indicating
meaningful fields for mobile robots. Here the virtual
pheromones are applied to render road maps and signals in
the context. As shown in Figure 4, since the nature of pheromone
field displayed on the LCD screen is a colour image, different

traffic paradigms can be formed in which the roads are drawn by
white tracks with boundaries, and the traffic lights and signals are
embodied by green/red colour spots with appropriate size on the
roads. Accordingly, different traffic sections like intersections,
junctions, and even more complex road network can be
established with scalability. Figure 4 shows some examples in
our experiments. Together with periphery patterned walls (urban
skyline), the arena is well constructed for our specific goal of
simulating robotic traffic to test the proposed bio-inspired visual
systems.

TABLE 2 | Setting network parameters.

Parameter Description Value

np Number of persistent frames 0
{C, R} Columns, rows of the robot visual field {99, 72}
τ i Time interval in digital signal 1,000/30
τf Time constant in FFI-TD 90
α2 Small coefficient in LA 0.1
r Radius of convolution kernel 1
τ1 Delay in LGMD-1 ON channels 30 in nearest cells, 60 diagonal
τ2 Delay in LGMD-1 OFF channels 30 in nearest cells, 60 diagonal
τ3 Delay in LGMD-2 ON channels 15 in centre, 30 nearest, 45 diagonal
τ4 Delay in LGMD-2 OFF channels 60 in centre, 120 nearest, 180 diagonal
{w1, w2} Local inhibition biases in LGMD-1 {0.3, 0.6}
Cω Constant in G units 4
ΔC Small real number in G units 0.01
τs Time constant in spike frequency adaptation 500 ∼ 1,000
Tffi Local threshold in activation of FFI 10
α7 Scale parameter in spiking mechanism 3 ∼ 6
Tspi Spiking threshold 0.7
Tcol Collision warning threshold 40
nt Time window to update spike frequency 10

FIGURE 3 |Overview of the robotic platform consisting of multiple-pheromonemodule andmicro-mobile robots. The pheromonemodule is composed of a camera
system connecting a computer and a TV arena. The micro-mobile robot comprises a visual sense board implementing the proposed visual systems, and a motion board
for route following and emergency braking. Four colour sensors are marked in the bottom view of the robot used for sensing optically rendered pheromone cues
displayed upon the LCD screen. The ID-pattern on top of robot is used to run a real time localisation system.
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2.3.2 Micro-Mobile Robot
As illustrated in Figure 3, the autonomous mobile robot used in
this study is called Colias-IV (Hu et al., 2018), which includes
mainly two components that provide different functions, namely
the Colias Basic Unit (CBU), and the Colias Sensing Unit (CSU).

The CBU serves preliminary robot features such as motion,
power management and some basic sensing like the bumper
infra-red (IR) sensors in Figure 3. The more detailed
configuration can be found in our recent paper (Hu et al.,
2018), which is not reiterated here. Specifically for the
proposed tasks, the CBU is assembled with four colour sensors
with high sensitivity on its bottom (see Figure 3). When the robot
is running in the arena, these sensors can pick up optical
pheromone information on the LCD screen, and then the
robot behaviours are adjusted accordingly.

A key factor herein is tightly following the paths.We propose a
control strategy that the two-side colour sensors are applied to
bind the robot trajectory on the roads, as explained in Figure 5.
Moreover, the front and rear light sensors play roles of
recognising traffic signals including red (stop) and green (go)
lights in the city traffic system, as well as accelerating and
decelerating fields in the highway traffic system. More
concrete control logic will be presented in the following Section 3.

The proposed LGMDs inspired visual systems are
implemented for online visual processing. Here the CSU
supports this where an ARM Cortex-M4F core micro
controller is deployed as the main processor to handle
intensive image processing. A monocular camera system with
a low voltage CMOS image sensor OV7670 module is utilised in
the CSU. With compact size, the camera is capable of operating
up to 30 frames per second (fps) in VGA mode with output
support for various colour formats. The horizontal viewing angle
is approximately 70°. As a trade-off between processing efficiency
and image quality, the resolution is configured at 72 × 99 pixels
on 30 fps, with output format of 8-bit YUV422. Since the LGMDs
only process grey-scale images, the camera setting fits it well,
i.e., the proposed image format separates each pixel’s colour
channels from the brightness channel; thus no additional
colour transformation is required. More details of the CSU
can be found in (Hu et al., 2018). Importantly, when assessing
the proposed LGMDs inspired visual systems, the optical sensor
is applied as the only collision detector.

Furthermore, the micro-robot can communicate with a host
computer via a Bluetooth device connecting the CSU (Hu et al.,
2018). Here we use it for retrieving the hybrid spiking frequency.
With limited processing memory space and transmission ability,

FIGURE 4 | Using virtual pheromones to mimic roads and traffic lights: arrows indicate steering directions of robots. The roads are unidirectional.

FIGURE 5 | Robot route following strategy: keeping two-side colour sensors between road boundaries.

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 5298728

Fu et al. Collision Prediction in Robot Traffic

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


a current drawback of the robot is that it cannot send back real-
time image views accompanied by motion.

3 SETTING EXPERIMENTS

Within this section, we introduce the experimental settings onmulti-
robot traffic scenarios. Generally speaking, the proposed LGMDs
inspired visual systems are tested in two types of roadmaps: the city
ring roads, and the highway. With regard to the primary goal of this
research to corroborate the LGMDs’ robustness in critical robot
traffic, the roadmaps are designed with accident-prone sections
resembling real world circumstances where crash often happens,
e.g., the intersection challenge (Colombo and Vecchio, 2012). In
addition, we also carry out comparative experiments on different
densities of moving agents in the arena, and two collision sensing
strategies between the bio-inspired vision and the assembled IR
bumper.

Regarding the avoidance, the robot brakes abruptly once
detecting potential crash and then resumes moving forward
after a short break. Since we herein focus on corroborating the
robustness of visual systems, the mechanical control for
collision avoidance is out of the scope. Notably, the evasive
behaviour matches neither the locust’s jumping/hiding, nor the
many on-road situations of ground vehicles. It is also worth to
emphasise that there are no human interventions in the
autonomous running of multiple mobile robots unless the
incidents that robot fails on route following. Each kind of
robot traffic lasts for 1 hour. Figures 6, 7 and show the
experimental settings from the top-down view. Figure 8
displays some arena inside views in experiments. Algorithm
1 and Algorithm 2 articulate the agent control strategies in the
two kinds of traffic systems, respectively.

Here we also elucidate the relations between proposed visual
systems model and control strategy. First, the model is treasured
as internal component of the robot for real-time collision sensing.
As presented in Algorithm 1 and Algorithm 2, the model is
solely responsible for detecting potential collision; once a danger
is alerted (Eq. 29), a corresponding avoidance command is sent to
the motion control of robot which is prioritised over any other
control logic conducted by environment. Second, the pheromone
module herein is applied only to render the external “environment”
for multi-robots, in order to construct roads, signals that followed,
recognised by robot. Compared to other pheromone based swarm
robotic studies, e.g., (Sun et al., 2019; Liu et al., 2020), the
pheromones here are not released by engaged robots. More
specific traffic set-ups are introduced in the following subsections.

3.1 Setting the City Traffic System
Firstly, the city robot traffic consists of the roadmaps without
traffic lights control, and mixed by red (stop) and green (go) spot
signals. Both roadmaps include straight and curving roads, and many
intersections (see Figure 6). In addition, all the roads are
unidirectional loops. As introduced previously, the robot navigation
obeys the optical routes where the two boundaries confine its
trajectory. In addition to that, the traffic lights also play roles of
robot motion control. Algorithm 1 presents this kind of control logic.
More concretely, if either the front or rear light sensor detects the red
light, the robot will stop for a while until the light switches to green.
The robot behaviour is set to go forward as default until potential crash
or red light detected. The red and green lights switch every several
seconds, constantly. Most importantly, all the robot agents prioritise
the reaction to collision alert over traffic lights control.

In the city traffic without lights control, we also investigate the
density of mobile robots at two different populations (see
Figure 6). The visual scene undoubtedly becomes more

FIGURE 6 | Illustration of two kinds of city ring road maps (with and without signals) from the top-down camera’s view including lanes, intersections, robot vehicles
and red-green switching lights control at every crossroad. All the robots navigate unidirectionally.
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complex and dynamic with more robot agents participating in
the traffic system. In case of scenarios with lights control, we
also set up the traffic that consists of unruly agents in half
population to break the red-light control. Therefore, the
intersections turn out to be the most dangerous zones
resembling real-world intersection challenge (Colombo and
Vecchio, 2012).

Algorithm 1: Agent Control Strategy in the City Traffic System.

1 while Power on do
2 Set initial forward speed randomly between 10 ∼ 14 cm/s;
3 if Two-side colour sensors are between road boundaries then
4 Follow route and go forward;
5 if Potential collision sensed then
6 Brake abruptly then stop for approaximately 2 s;
7 else
8 If red light detected by front or rear light sensor then
9 Halt the movement until green light detected;
10 else
11 Move forward and follow path;
12 else
13 Agent is derailed in collision or route following;
14 agent is manually replaced on the path
15 end

3.2 Setting the Highway Traffic System
Compared to the city traffic system that consists of many
intersections as critical zones to challenge the proposed

LGMDs inspired visual systems, the highway traffic system
includes two lanes, i.e., low-speed and high-speed ring roads
in loop, a junction where two lanes merge, a shunting mechanism
to regularly separate robot vehicles into different lanes, and two light
signals as the acceleration and deceleration indicators for agents, as
illustrated in Figure 7. As a result, here the road junction and high
speed are two leading factors of collision. Algorithm 2 presents this
type of control logic. Both the two lanes are also configured as uni-
directional with a shunting mechanism to separate robots with equal
opportunities to follow either lanes. To change the robot’s speed, two
types of signals are rendered by pheromones at the entrance and exit
of low-speed lane, respectively (see Figure 7). Accordingly, the robot
accelerates to enter the high-speed lane whilst decelerates preceding
the low-speed lane.

Algorithm 2: Agent Control Strategy in the Highway Traffic
System.

1 Navigation begins at the entrance of low-speed lane
2 Initial forward speed is randomly set between 10 ∼ 14 cm/s
3 While Power on do
4 IfTwo-side colour sensors are between road boundaries then
5 Follow route and go forward
6 If potential collision sensed then
7 Brake abruptly then stop for approaximately 2 s;
8 resume going forward and following route
9 else__
10 If Acceleration signal detected by front or rear light

sensor then
11 Entrance of high-speed lane reached;

FIGURE 7 | Illustration of highway traffic system including two lanes with distinct speed settings. The red signals indicate a deceleration zone as the entrance of low-
speed lane. The green spot is an acceleration signal as the exit of low-speed lane. The switcher changes every 6 s. Both the two lanes are unidirectional.

FIGURE 8 | Illustration of arena inside views. The surroundings are decorated with urban skyline patterns.
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12 Agent forward speed increases to around 21 cm/s
within 2 s

13 else__
14 If Deceleration signal detected by front or rear light

sensor then
15 Entrance of low-speed lane reached
16 Agent forward speed decreases back to the origin

within 2 s
17 else__
18 else
19 Agent is derailed in collision or route following
20 Agent is manually replaced on the path
21 end

4 RESULTS AND ANALYSIS

Within this section, we present the experimental results with
analysis. Firstly, we demonstrate typical events of robot-to-
robot interaction in the traffic systems, and visual systems
output, i.e., the spike frequency of the hybrid LGMDs neural
networks in the three types of investigated robot traffic
scenarios. Secondly, the statistical results are given with
event density maps. Lastly, we compare the proposed bio-
inspired vision with another physical collision sensor in
critical robot traffic. A video demo to illustrate our
experiments is given in Supplementary Video.

4.1 Metrics
Regarding the statistical results, the overall collision avoidance
rate (CAR) herein is used to evaluate the interactions between
robot vehicles via the aforementioned localisation system, which
is calculated by the following equations:

CAR � Nca

NE
, where NE � ∑T

t�1
E t( ), Nca � ∑T

t�1
ca t( ). (30)

E and ca stand for the total robot-to-robot events and the
collision avoidance with respect to time, respectively. T indicates
the total running time of the localisation system in experiments.
In this work, stop of the agent indicates a robot-to-robot event,
thus:

E t( ) � 1, if agent stops
0, otherwise

{ (31)

With regard to the multi-robot localisation system (see Figure 3),
an accomplishment of collision avoidance should satisfy the
following criterion:

ca t( ) � 1, if agent stops and dp,q t( )> � c
0, otherwise

{ (32)

where dp,q t( ) �
����������������������������
xp t( ) − xq t( )( )2 + yp t( ) − yq t( )( )2√

. (33)

d is the Euclidean distance between robot p at position (xp, yp)
and robot q at position (xq, yq) in the two-dimensional image
plane, and p, q denote the time-varying coordinates of every
two mobile robots given time t. c � 20 (in pixels) is the
predefined distance threshold to decide a successful
collision avoidance in the critical robot traffic. Moreover,
since the intersections and junctions are the most
challenging zones for the robots that resemble the real
world on-road situations, we also compare the safe passing
rates (PR) on the intersections and junctions (PR1), as well as
other road sections including the straight and curving roads
(PR2). The calculations are comparable to the CAR with
regional information as follows:

PR1 � Nca1

NE × EPro1
, PR2 � Nca2

NE × EPro2
, (34)

where EPro1 + EPro2 � 1, Nca1 + Nca2 � Nca. (35)

EPro1 and EPro2 denote the probability for critical events of
interactions between engaged robots at the intersections/
junctions and the other road sections, respectively.

4.2 Robot-to-Robot Interactions
To illustrate how the autonomous micro-robots behave in the
simulated traffic systems guided by the collision prediction
visual systems, some typical robot-to-robot interactions are
depicted in Figure 9. It appears that the avoidance
behaviours are most likely aroused at some critical moments,
for example, two robots meeting at the junction (see Figure 9C),
queueing effect by robots on the same lane, yet at different
speeds (see Figure 9D). In other normal situations (see Figures
9A,B), the robots navigate smoothly without collision
avoidance. Interestingly, when the robot on curving road is
facing a nearby-lane oncoming agent, there is usually an alert for
a potential crash that well matches the real world driving
behaviour (Sivaraman and Trivedi, 2013) (see Figure 9E). In
the city traffic system, intersections are the most challenging
places for robots to predict imminent crashes. When two
vehicles meeting at an intersection, the urgent crossing of
one agent in a very short distance could excite both the
LGMDs to fire together for a positive alert (see Figure 9F).
In this regard, the mimicked red-green light signals can help to
alleviate the risk at intersections to a large extent like the real
world on-road situations. Here we nevertheless query whether
the proposed visual systems, on their own, can cope with such
dangerous circumstances without the traffic signal control. The
comparative experiments will be carried out in the following
subsection.

4.3 Neural Network Response
To articulate the responses of LGMDs hybrid neural networks in
different robot traffic scenes, Figure 10 illustrates three sets of
model output, that is, the hybrid firing rate. Considering the
introduced two types of traffic scenarios, we remotely collected
the data from a robot agent interacting with others. It can bee seen
from the results that a large number of collision alerts have been
signalled by the LGMDs model in the embedded vision of tested
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robot during navigation. In addition, the neural networks
respond much more constantly in the highway traffic system
that consists of high-speed robot vehicles and junction.

4.4 Performance in Critical Robot Traffic
This subsection reports on the performance of the proposed
collision prediction visual systems under constrained

FIGURE 9 | Illustrations of typical traffic phases of robot-to-robot interactions. Each phase is shown by three subsequent snapshots. The trajectories are depicted
in colour lines each representing an ID-identified agent. The sites of crash avoidance are marked by green circles.

FIGURE 10 | The outputs of proposed hybrid neural network model, i.e., the spike rate from a robot agent interacting within three multi-agent traffic systems, each
lasting for 8 min: the horizontal dashed line indicates the alert level of firing rate.
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computation power against different robot traffic challenges. The
overall CAR is given in Table 3. The comparative results on
specific PR are given in Table 4.

4.4.1 Performance in the City Traffic System
In the city traffic system, we carry out systematic and comparative
experiments involving several cases. In the first case, the robot
traffic has no signal controls at intersections. We also look deeper
into the density effect on collision prediction performance.
Figure 11 illustrates the event and density maps of all micro-
robot agents engaging in the ring road traffic for 1-h
implementation.

In the second case, the red and green switching traffic lights are
used as the auxiliary signals for robot flows control at
intersections. An interesting episode is plotted in this case by
mixing unruly robot agents not obeying the law of traffic signals,
i.e., red to stop and green to go, that mimic the drivers who always
break the traffic rules at intersections leading to immense on-road
safety issue. Figure 12 illustrates the corresponding results at
this point.

Together with the statistical results in Tables 3, T4, we have
the following observations on the experiments of city traffic
system:

1) Table 4 shows that more than half critical events take place
at intersections in all the imitations of city ring road traffic
(see EPro1 in Table 4) indicating that our robot traffic
could reflect real world road challenges (Colombo and
Vecchio, 2012).

2) Compared to the performance at intersections, the PR is quite
higher in the straight and curving road (all above 80%). To be
more intuitive, Figures 11, 12 also demonstrate that the crash
most frequently occurs at intersections with relatively lower
PR, which show higher crash densities there; on the other
hand, the PR is fairly higher in other road sections
corresponding to higher avoidance densities.

3) The overall CAR peaks in case of the city traffic system with
lights, and without unruly agents (92.84%). Compared to that,
the CAR reaches valley once lacking red-green signals to
relieve the traffic flows at intersections (80.94%).

4) On the aspect of density comparison, there is merely tiny
difference on both the CAR and PR of two investigated
populations, which reveal that the proposed visual systems
perform robustly for collision prediction even in more
dynamic environment.

Generally speaking, the proposed bio-inspired hybrid neural
networks work effectively and consistently on collision prediction
in the city traffic system despite that the intersections are still
posing challenges on timely detection-and-avoidance using the
visual approach as the only modality. However, we believe this
can be improved by increasing the view angle of optical sensor as
the current view of frontal camera can only reach approximately
70°. The risk of intersection could also be alleviated by sensor
fusion strategy, or other algorithms in intelligent transportation
system (Colombo and Vecchio, 2012). With discrepancies
amongst forward velocities of multi-robots (refer to the setting
in Algorithm 1), the robot vehicles well demonstrate queueing
effect guided by the collision prediction systems. On the straight
and curving roads, the LGMDs inspired visual systems perform
more robustly and consistently on collision alert in comparison
with the intersections. Additionally, the robot density in the
traffic system dose not greatly affect the overall performance
of visual systems, which imply the proposed bio-inspired
computation is robust and flexible to more dynamic visual scenes.

4.4.2 Performance in the Highway Traffic System
In the critical highway traffic system, two lanes separate the speed
of robots into two ranges, as presented in Section 3. The overall
CAR and PR are given in Tables 3, T4. In addition, Figure 13
illustrates the results with event and density maps. Here the most
noticeable observation is that in comparison with the city traffic

TABLE 3 | CAR in multi-robot traffic.

Traffic system type Total events Crash CAR (%)

City traffic: No signals (5 agents) 425 81 80.94
City traffic: No signals (10 agents) 1,239 248 79.98
City traffic: Red-green lights (5 agents) 545 39 92.84
City traffic: Red-green lights (2/5 unruly agents) 737 129 82.50
Highway traffic (5 agents) 1,199 240 79.98

TABLE 4 | PR in multi-robot traffic.

Intersection and junction: EPro1 and PR1, other sections: EPro2 and PR2

Traffic system type EPro1 (%) PR1 (%) EPro2 (%) PR2 (%)

City traffic: No signals (5 agents) 53.65 71.49 46.35 91.88
City traffic: No signals (10 agents) 55.21 73.54 44.79 87.93
City traffic: Traffic lights (5 agents) 60.0 91.74 40.0 94.50
City traffic: Traffic lights (2 unruly in 5) 59.43 77.85 40.57 89.30
Highway traffic (5 agents) 43.20 75.29 56.80 83.55
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system barring the 10-agents case, more than twofold critical
events take place in the highway traffic within the 1-h
implementation. Table 4 clearly shows that nearly half (43.2%)
critical events concentrate at the junction where the high-speed
and low-speed robot flowsmerge. In spite of that, the overall CAR
remains fairly high that is in consistent with the city traffic system
without signals control (79.98%); the PR at either the junction
(75.29%) or the other road sections (83.55%) is slightly lower than
the city traffic results. In general, the LGMDs inspired visual
systems are robust to cope with collision prediction in high-
speed, dynamic visual scene, in the micro-robot under
constrained computation cost.

On the other hand, we also find challenges through the
experiments. The event density maps in Figure 13
demonstrate that it is still difficult to address the crash
avoidance problems at the junction where the low-speed robot
vehicles are accelerating tomerge into the high-speed flow. At this
point, the robots are required to form a queue to pass the junction
free of collision. The similar situations happen at the deceleration
zone where the high-speed vehicles are shunted to queue into the
low-speed flow. In addition to that, compared to the city traffic
results, the PR in other sections is relatively lower, i.e., more
crashes between robots occur on the high-speed curving road (see
Figure 13C).

FIGURE 11 | Illustration of event and density maps from top-down view of camera including avoidance and crash in the city traffic system at two comparative
populations of robot vehicles without light signals at intersections. (A, B) Event maps: red and green circles indicate the positions of crash and avoidance events between
robot vehicles, respectively. (C–F) Density maps: X-Y plane denotes the image coordinates.
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4.5 Sensor Comparison
Through the previous experiments, we have shown the
effectiveness and robustness of LGMDs inspired visual
systems for timely collision prediction in critical robot
traffic. The energy efficiency have also been verified via the
successful implementation on the micro-robot under
extremely constrained computation power. As an
alternative, optical approach to collision detection, the
proposed bio-inspired computation could be scalable across
various platforms and scenarios. In the last type of
experiments, we also compare this visual approach with
another classic physical sensor strategy–the IR bumper
sensors used extensively in robotics for collision sensing
and avoidance.

The micro-robot possesses three IR sensors as short-range
obstacle sensing technique. Figure 14 compares the detection
range between the two physical sensor strategies. It appears that
the combination of three bumper sensors has wider coverage in
space up to approximately 90° than the monocular camera which
could reach only 70°. On the other hand, the optical sensor has
much longer sensing distance with respect to the advantage of
optical methods. In this kind of experiments, the robot vehicle
applies the same braking avoidance behaviour guided by the
bumpers. The other experimental setting is in accordance with
the earlier experiments. Each type of traffic system
implementation lasts for 1 hour, the same duration.

Table 5 lists the CAR of IR based technique in the two traffic
systems. Though with wider coverage in front, here the CAR of IR

FIGURE 12 | Illustration of event and density maps in the city traffic system (5 robot vehicles) with signals control and engaged unruly agents at intersections.
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based technique is much lower in both types of traffic system
(66.81% in city traffic without lights and 48.30% in highway),
compared with the performance of LGMDs inspired visual
systems (80.94% in city traffic without lights and 79.98% in
highway). Compared to the proposed optical approach, the
short-range technique can not fulfil the timely crash
prediction in the critical robot traffic. The short distance
between interactive robots brings about a smaller amount of
critical events within an identical time window. Besides that, the
CAR is even lower in the highway scenario, which points out that
the IR short-range detector is unsuitable to predicting high-speed
approaching objects very timely; whilst the proposed approach

can signal an impending crash quite earlier. With more abundant
features extracted, filtered from the dynamic visual scene, the
hybrid LGMDs inspired visual systems are more robust in
collision prediction.

5 DISCUSSION

In this section, we discuss further on observed problems through
the experiments, and point out corresponding future works.
Firstly, we have seen some limitations of the proposed
approach for quick collision detection in the context of robot
traffic. Some critical conditions are still challenging the proposed
LGMDs inspired visual systems. In the city traffic system
particularly without signals control, crashes generally take
place at intersections (see Figure 11). During the experiments,
we have observed that there is a possibility that two robot vehicles
are arriving at the intersection, simultaneously. The current
approach as frontal collision sensing technique can not well
cope with such a problem. On the other hand, crashes are
significantly reduced if the robots reached intersection in
succession, such as the example shown in Figure 9F; the
successful avoidance density is fairly high near the intersections
in the city traffic system, as shown in Figures 11, 12. The proposed
approach can predict a danger by nearby object crossing the field of

FIGURE 13 | Illustration of event and density maps in the highway traffic system.

FIGURE 14 | Schematic comparison on sensing range of two physical
sensor strategies between the combination of three IR bumper sensors and
the frontal monocular camera.

TABLE 5 | CAR of IR sensors in multi-robot traffic.

Traffic system type Total events Avoidance CAR (%)

City traffic: No signals (5 agents) 226 151 66.81
Highway traffic (5 agents) 176 85 48.30
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vision, very robustly and timely. In this research, a possible
restriction is the limited view angle of the monocular camera
system in the micro-robot. Therefore, we will develop binocular
and panoramic camera systems for future scientific study.

In the highway traffic system, we have noticed that the very
high speed movement, i.e., robot velocity over 20 cm/s in the
context, is another problem to the LGMDs inspired visual
systems embedded in the micro-robot vision. In our previous
studies on LGMD-1 (Fu et al., 2018b) and LGMD-2 (Fu et al.,
2019b), we have figured out that the LGMDsmodels demonstrate
speed response to approaching object, i.e., the neural networks
deliver stronger output against faster approaching object at higher
angular velocity. The speed response and looming selectivity of
LGMDs models is achieved by the competition between excitation
and two kinds of inhibitions–the lateral inhibition, and the FFI.
Most importantly, the former inhibition works effectively to sculpt
such selectivity when objects expanding on the field of vision before
reaching a particular angular size. Otherwise, the FFI (or PM in the
LGMD-2) mechanisms could immediately suppress the LGMDs at
some critical moments like the end of approaching, the start of
receding. Accordingly, the proposed visual systems in the high-
speedmoving robot have always confronted such difficult situation.
This gives reasonable explanation on the higher crash density near
the junction where the two lanes merge (see Figure 13). In another
word, the high-speed agent could not appropriately predict a crash
with the emerged low-speed agent at the junction. In this regard,
future effort is in demand to enable the visual systems to well cope
with ultra-fast approaching movements.

Regarding the control strategy, as it is not the focus of this
research, we have applied very basic switch control between two
states, i.e., move and stop, in order to enable the robots to tightly
follow paths in all kinds of traffic systems. As a result, the
potential crash avoidance is led by abrupt braking which can
not fulfil the very complicated, real world emergency actions of
vehicles. For example, the deceleration earlier to urgent stop has
not been involved in the control of micro-robots. We will
incorporate in the robotic motion system more advanced
control method, e.g., the fuzzy control, to enrich the robot
avoidance reaction corresponding to more realistic behaviours
(Sivaraman and Trivedi, 2013).

Secondly, in comparison with previous robot arena
experiments on the LGMDs inspired visual systems, in which
the robot motion was not confined by specific trajectories (Fu
et al., 2017; Fu et al., 2019b), this study strictly binds the robot
motion in navigation (see Figure 5, Algorithms 1, 2). The
prioritised goal of robot motion is to tightly follow the paths
desired by the robot traffic implementation. However, the current
motion strategy has the flaw that the robots usually experience
yaw rotations in route following. This sometimes results in false
positives of collision alert. We will explore new methods in the
LGMDs neuronal system model to habituate such visual
movements, and also improve the robot route following strategy.

Last but not least, the robot vehicles currently are not fully
autonomous in traffic systems. Despite human interventions
in merely specific conditions during experiments (e.g., the
robot fails in route following or collide with other agents), the
human-robot interactions have still influenced the robot traffic

implementation, e.g., manually replacing the robot on routes after
crash. Accordingly, the different robot traffic systems need to be
verified with respect to (Fisher et al., 2021). The safety and
functional correctness of the robot traffic reflecting some real
world scenes also need to be further validated according to
(Webster et al., 2020).

6 CONCLUDING REMARKS

This paper has presented a novel study on investigating bio-
inspired computation approach to collision prediction in
dynamic robot traffic reflecting some real world on-road
challenges. To fill the scientific study gap on evaluating online
artificial visual systems in dangerous scenarios where physical
crashes are prone to happen, we have applied a recently published
robotic platform to construct traffic systems including the city
roadmap with many intersections, and the highway with
junctions. To sharpen up the acuity of collision detection
visual systems to darker objects approaching over other
categories of movements like recession, we have integrated two
LGMDs neuronal models, i.e., the LGMD-1 and LGMD-2 neural
networks, as a hybrid model outputting alert firing rate. A
potential collision is predicted only when both the LGMDs are
highly activated. To focus on investigating the proposed collision
prediction visual systems, we have applied the simple bang-bang
control to allow the robot to tightly follow paths and brake
abruptly corresponding to the avoidance action. The arena
experiments have verified the robustness of the proposed
approach to timely collision alert for engaged robot vehicles in
the traffic systems. This research has complemented the previous
experimentation on such bio-inspired visual systems in more
critical real-physical scenarios, under extremely constrained
computation power. This also has provided an alternative,
energy-efficient technique to current collision alert systems.
The propose visual systems can be transformed into
neuromorphic sensing paradigms which could be prevalent for
future autonomous machines.
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