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Deep Reinforcement Learning techniques demonstrate advances in the domain of
robotics. One of the limiting factors is a large number of interaction samples usually
required for training in simulated and real-world environments. In this work, we
demonstrate for a set of simulated dexterous in-hand object manipulation tasks that
tactile information can substantially increase sample efficiency for training (by up to more
than threefold). We also observe an improvement in performance (up to 46%) after adding
tactile information. To examine the role of tactile-sensor parameters in these
improvements, we included experiments with varied sensor-measurement accuracy
(ground truth continuous values, noisy continuous values, Boolean values), and varied
spatial resolution of the tactile sensors (927 sensors, 92 sensors, and 16 pooled sensor
areas in the hand). To facilitate further studies and comparisons, we make these touch-
sensor extensions available as a part of the OpenAI Gym Shadow-Dexterous-Hand
robotics environments.
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1 INTRODUCTION

Humans perform better in dexterous in-hand manipulation tasks than robotic systems. One of the
reasons is the rich tactile perception available to humans which allows them to recognize and
manipulate an object even without vision (Lederman and Klatzky, 1987). In such cases, tactile
perception is one of the key abilities for in-hand manipulation of objects and tool usage. Next to
vision, tactile sensing is a crucial source of information for the manipulation of objects and tool usage
for humans and robots (Johansson and Westling, 1984; Maycock et al., 2010; Dang et al., 2011;
Fritzsche et al., 2011). The importance of tactile sensing for object recognition was demonstrated on a
multi-fingered robotic hand (Schmitz et al., 2014) as well as for successful grasping on a two-fingered
gripper with high-resolution tactile sensors (Calandra et al., 2018).

Deep Reinforcement Learning (DRL) algorithms learn through interaction with an environment.
Touch is an important sense that mediates interactions in in-hand manipulation tasks. Here we will
focus on connecting DRL and tactile sensing in the context of dexterous in-hand manipulation of
objects with an anthropomorphic robotic hand (Figure 1) (OpenAI et al., 2020; Plappert et al., 2018).
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We demonstrate that the sample efficiency and performance can be
increased when tactile information is available to the agent. Different
from previous works with static interaction with objects (Merzić
et al., 2019), we present empirical results in a simulation that show
that including tactile information in the state improves the sample
efficiency and performance in dynamic in-hand manipulation tasks.
To fully examine the role of tactile sensing in the improvements, we
analyze the role of the spatial resolution of the tactile sensors on the
hand, sensor measurement accuracy (continuous vs. Boolean
values), and noise in sensory readings—a highly important aspect
in using tactile sensing on physical robots. To get a better idea of
useful sensor layouts and the optimal degree of sensor density, we
calculated the number of activations per sensor in the 92-sensors
layout (Figure 1) in the four Hand Manipulate environments: Egg,
PenRotate, BlockRotateXYZ, and Block (Table 3). To assess the
importance of individual tactile sensors, we also calculated the
difference in Q values when dropping out an active sensor (with
a Boolean sensor value). These results can guide robot engineers to
build robots with tactile sensors for manipulation. We selected well-
established and benchmarked simulated environments from
OpenAI Gym for robotics which include in-hand manipulation
of objects with anthropomorphic-hand tasks. To this end, we (i)
extended the OpenAI Gym Shadow-Dexterous-Hand robotics
environments with normal force touch sensors designed to
simulate the touch sensing of the robot hand developed in our
group (Koiva et al., 2013; Büscher et al., 2015) and (ii) compared
learning results for OpenAI Gym robotics environments with and
without normal force touch sensors. We find for all learning tasks a
significant increase in sampling efficiency along with an improved
performance of the trained agents.

An agent with a model-free policy can learn complex in-hand
manipulation tasks using just proprioceptive feed-back and visual
information about themanipulated object (Plappert et al., 2018). In
this work, we used a combination of Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2016) and Hindsight
Experience Replay (HER) (Andrychowicz et al., 2017). DDPG is
a model-free RL algorithm for continuous action spaces employing
two neural networks learning two different aspects: a target policy
(also called an actor) and an action-value function approximator
(called the critic). HER allows learning almost as much from

achieving an undesired outcome as from the desired one and
can be combined with any off-policy RL algorithm. Universal
policies (Tom et al., 2015) take as input not only the current state
but also a representation of the goal. The pivotal idea behind HER
is to replay each episode with a different goal than the one the agent
was trying to achieve, e.g. with the goals which occasionally
happened to be achieved in the episode. HER is applicable
when each time step has a representation in the state that can
be selected as a goal. HER improves the sample efficiency and
makes learning possible even if the reward signal is sparse and
binary (Andrychowicz et al., 2017).

Continuous haptic feedback provides a feedback modality that
can augment visual feedback, or compensate for reduced visual
information under insufficient lighting or in case of visual
occlusion (Korthals et al., 2019a). This can improve grasping in
terms of reliability in assessing the object’s pose under conditions
of uncertainty (Merzić et al., 2019). Multisensory fusion (Korthals
et al., 2019b) techniques may help at the level of geometry, contact,
and force physics. For example, an autoencoder can translate high-
dimensional sensor representations into a lower-dimensional,
compact space, easing for a reinforcement learner the task to
learn stable, non-linear policies (Van Hoof et al., 2016).

Recent works describe approaches to bring tactile sensing to
anthropomorphic hands like the Shadow-Dexterous-Hand, by
providing integrated tactile fingertips (Koiva et al., 2013) as
shown in Figure 2 and constructing a flexible tactile skin
(Büscher et al., 2015). The tactile skin comprises stretchable and
flexible, fabric-based tactile sensors capable of capturing typical
human interaction forces within the palm and proximal and distal
phalanges of the hand. This enables the hand to exploit tactile
information, e.g. for contact or slip detection (Meier et al., 2016;
Walck et al., 2017). Our segmentation of the simulated Shadow
Dexterous Hand into 92 tactile-sensitive areas resembles the
distribution of tactile sensors in these works. In Tian et al.
(2019), a deep tactile model-predictive control framework for
non-prehensile manipulation was proposed to perform tactile
servoing and to reposition an object to user-specified
configurations that were indicated by a tactile goal pattern,
using the learned tactile predictive model. Van Hoof et al.
(2015) studied how tactile feedback can be exploited to adapt to

FIGURE 1 | 92 virtual touch sensors covering the Shadow-Dexterous-Hand model. This is a technical visualization of our sensory model. The same tactile event is
shown from three different perspectives. Red sites represent activated touch sensors, where a block is pressing against the touch-sensitive area. Green sites represent
inactive touch sensors. Video: https://rebrand.ly/TouchSensors.
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unknown rollable objects located on a table and demonstrated the
possibility of learning feedback controllers for in-hand
manipulation using reinforcement learning on an
underactuated, compliant platform. The feedback controller was
hand-tuned to complete the tasks.

The combination of tactile data with reinforcement learning has
been explored in some previousworks. In the work that investigates
learning to use tactile sensing in object manipulation tasks
(Chebotar et al., 2014) authors faced the problem of the high
dimensionality of the tactile data. The authors showed how the
learning of tactile feedback can be made more efficient by reducing
the dimensionality of the tactile information through spectral
clustering and principal component analysis. Another study
Church et al. (2020) presented a challenging tactile robotics
environment for learning to type on a braille keyboard with
deep reinforcement learning algorithms. Preliminary results
showed that successful learning can take place directly on a
physical robot equipped with a biometric tactile sensor.

It has been shown that a model-free DRL can effectively
scale up to complex manipulation tasks with a high-
dimensional 24-DoF hand, and solve them from scratch in
simulated experiments. With the use of a small number of
human demonstrations, the sample complexity can be
significantly reduced, which enables learning with sample
sizes equivalent to a few hours of robot experience

(Rajeswaran et al., 2017). Another study described a
method for learning dexterous manipulation skills with a
pneumatically actuated tendon-driven 24-DoF hand (Kumar
et al., 2016). The method combined iteratively refitted time-
varying linear models with trajectory optimization and can be
seen as an instance of model-based reinforcement learning or as
adaptive optimal control. Its appeal lies in the ability to handle
challenging problems with surprisingly little data.

2 METHODS

2.1 Simulator
OpenAI Gym (Brockman et al., 2016) contains several simulated
robotics environments with the Shadow-Dexterous-Hand model.
Simulation is carried out using theMuJoCo physics engine (Todorov
et al., 2012). These are open-source environments designed for
experimental work and research with Deep Reinforcement
Learning. The anthropomorphic Shadow-Dexterous-Hand model,
comprising 24 degrees of freedom (20 actuated and four coupled),
has to manipulate an object (block, egg, or pen) so that it matches a
given goal orientation, position, or both position and orientation. For
the original environments without touch sensing, the state vector is
68-dimensional (Table 1) (Plappert et al., 2018). The state vector
includes the 24 positions and 24 velocities of the robot’s joints. It also
includes the Cartesian position and rotation of the object that is
being manipulated, represented by a unit quaternion as well as its
linear and angular velocities.

TABLE 1 | Neural Network Input Vector in the Hand Environments.

Type 92 sensors 16 sensors

Joint angles 24
Joint angles’ velocity 24
Object’s position XYZ 3
Object’s velocity XYZ 3
Object’s orientation (quaternion) 4
Object’s angular velocities 3
Target position of the object XYZ 3
Target orientation of the obj. XYZ (quaternion) 4

Vector length without touch sensors 68

Vector length with touch sensors 160 84

FIGURE 2 | Shadow-Dexterous-Hand equippedwith fabrics-based tactile sensors in the palm and finger phalanges (indicated green) and fingertip sensors realized
by Molded-Interconnect-Devices (indicated yellow) (Koiva et al., 2013; Büscher et al., 2015).

TABLE 2 | The 92 and 16 Touch-Sensor Environments.

Sensors-per-area × number-of-areas

Functional areas of
the hand model

92-Sens. Model 16-Sens. Model

Lower phalanx of the fingers (× 4) 7 sensors × 4 1 sensor × 4
Middle phal. of the fingers (× 4) 5 sensors × 4 1 sensor × 4
Tip phalanxes of the fingers (× 4) 5 sensors × 4 1 sensor × 4
Thumb phalanxes (× 3) 5 sensors × 3 1 sensor × 3
Palm (× 1) 9 sensors × 1 1 sensor × 1
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FIGURE 3 | Visualisation of touch-sensor values in a single episode rollout (upper plot), mean of 400 rollouts (middle plot), and a histogram of all touch-sensor
values in the 400 rollouts. IF - Index Finger, MF - Middle Finger, RF - Ring Finger, LF - Little Finger, DP - Distal Phalanx, MP - Middle Phalanx, PP - Proximal Phalanx, FL -
Front Left, FLB - Front Left Bottom, FLT - Front Left Top, FR - Front Right, FRB - Front Right Bottom, FRT - Front Right Top, BL - Back Left, BR - Back Right.
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2.2 Touch Simulation
We covered all five fingers and the palm of the Shadow-Dexterous-
Hand model with 92 (Figure 1; Table 2) and 927 virtual touch
sensors. For the agent, the only difference between the robotics
environments with and without touch sensors is the length of the
state vector that the agent receives as input at each time step (Table 1).
In the environments extendedwith 92 touch sensors, the state vector is
160-dimensional (68 + 92) (Table 1). In the environments extended
with 927 touch sensors, the state vector is 995-dimensional (68 + 927).

As an additional experiment, we grouped 92 sensors into
16 sub-groups (Table 2) to reduce the tactile sensory resolution
when using Boolean tactile signals. In the environments with
16 touch-sensor sub-groups the state vector is 84-dimensional
(68 + 16) (Table 1). If any of the sensors in a group has a greater
than zero value, then the tactile sub-group returns 1, otherwise 0.
The grouping was done per phalanx (3 phalanxes × 5 digits) plus a
palm resulting in 16 sub-groups (Table 2).

The MuJoCo (Todorov et al., 2012) physics engine provides
methods to mimic touch sensing at specified locations. This is
based on specifying the tactile sensors’ active zones by so-called
sites. Each site can be represented as either ellipsoid or box. In
Figure 1, the sites are visualized as red and green transparent
shapes attached to the hand model. If a body’s contact point falls
within a site’s volume and involves a geometry attached to the
same body as the site, the corresponding contact force is included
in the sensor reading. Soft contacts do not influence the above
computation except inasmuch as the contact point might move
outside of the site, in which case if a contact point falls outside the
sensor zone, but the normal ray intersects the sensor zone, it is
also included. MuJoCo touch sensors only report normal forces
using Minkowski Portal Refinement approach (Gary, 2008a;
Gary, 2008b; Michael and Newth, 2013), not the Separating
Axis Theorem, and friction does not play a role. The output
of the contact sensor is a non-negative scalar value of type float
that is computed as the sum of all contact normal forces that were
included for this sensor in the current time step (Todorov, 2019a;
Todorov, 2019b). Thus, each sensor of the 92 virtual touch
sensors has a non-negative scalar value (Figure 3). In
experiments E3 and E4, we applied a threshold and used
Boolean value for each sensor, i.e., in-contact and not-in-contact.

2.3 Reinforcement Learning and Training
We evaluate learning using Deep Deterministic Policy Gradients
(DDPG) (Lillicrap et al., 2016) and Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) techniques. For a given state
of the environment, a trained policy outputs an action vector of
20 continuous values ranging from -1 to 1 used for position-
control (actuation center + action × actuation range/2) for 20
actuated degrees of freedom (non-coupled joints). The learning
agent in the environment is an Actor and Critic network. All
experiments in this paper use the following hyperparameters:

• Actor and critic networks: 3 layers with 256 units each and
ReLU non-linearities

• Adam optimizer (Kingma and Jimmy, 2014) with 10− 3 for
training both actor and critic

• Buffer size: 106 transitions

• Polyak-averaging coefficient: 0.95
• Action L2 norm coefficient: 1.0
• Observation clipping: [−200, 200]
• Batch size: 256
• Rollouts per MPI worker: 2
• Number of MPI workers: 19
• Cycles per epoch: 50
• Batches per cycle: 40
• Test rollouts per epoch: 10
• Probability of random actions: 0.3
• Scale of additive Gaussian noise: 0.2
• Probability of HER experience replay: 0.8
• Normalized clipping: [−5, 5]

These hyperparameter values and the training procedure are
the same as in Plappert et al. (2018) and described there in greater
detail, also available as a part of the OpenAI Baselines1. However,
experiments in Plappert et al. (2018) were conducted without
tactile information.

Following Plappert et al. (2018), in all tasks, rewards are sparse
and binary: At each timestep, the agent receives a reward of 0 if
the goal has been achieved (within some task-specific tolerance),
and −1 otherwise. An episode is considered successful if, at the
last time step of the episode, the manipulated object is in the goal
state (within some task-specific tolerance).

For all environments, we train on a single machine with 19
CPU cores, one worker per CPU core. Workers use Message
Passing Interface (MPI) for synchronization. Each MPI worker
generates two rollouts of experience per cycle. MuJoCo parallel
simulation environments were the main time-limiting factor and
not the DRL algorithm computation, therefore the experiments
were done on a CPU cluster. One epoch consists of 2 (rollouts per
worker) × 50 (cycles) × 19 (CPUs) � 1,900 full episodes. One
episode consists of 100 timesteps, thus, one epoch contains
190,000 samples. In “HandManipulateEgg” and
“HandManipulatePenRotate” environments we train for 1,000
epochs, which amounts to a total of 19 × 107 timesteps. In the
“HandManipulateBlockRotateXYZ” environment we trained the
agent for 300 epochs, which amounts to a total of 5.7 × 107

timesteps. In the “HandManipulateBlock” environment we
trained the agent for 2000 epochs, which amounts to a total of
38 × 107 timesteps. All environments ran at 500 frames per
second (FPS). We apply the same action in 20 subsequent
simulator steps (frameskip � 20), with Δt � 0.002 s each,
before returning control to the agent, i.e., the agent’s action
frequency is f � 25 Hz (25 timesteps per second). In all cases,
we repeat an experiment with 5 different random seeds and
report results by computing the median test success rate as well as
the interquartile range. We evaluate the performance after each
epoch by performing 10 deterministic test rollouts per MPI
worker and then compute the test success rate by averaging
across rollouts and MPI workers.

1OpenAI Baselines. URL: https://github.com/openai/baselines.
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2.4 Task Environments
As a step toward touch-augmented RL, we extended the Shadow-
Dexterous-Hand model with touch sensors and made it available
in new “TouchSensors” environments (Table 3) in the OpenAI
Gym (Brockman et al., 2016)2. “. . .TouchSensors-v0”
environments contain a vector of 92 Boolean values
representing tactile information. If a sensor has a greater than
zero value, then for this sensor the environment returns 1,
otherwise 0. “. . .TouchSensors-v1” environments contain a
vector of 92 continuous values representing tactile information.

For evaluation of sample efficiency and performance with
and without tactile information, we selected four
environments: ”HandManipulateEgg”, “HandManipulatePenRotate”,
“HandManipulateBlock”, and “HandManipulateBlockRotateXYZ”. On
the one hand, we intended to cover a wide range of environments
with different learning complexities and various objects for
manipulation. On the other hand, we had limited
computational resources, and therefore we could not conduct
experiments for all possible “TouchSensors” environments and
combinations of various factors and parameters. Themain limiting
factor is to run theMuJoCo simulator, which runs on the CPU. For
one machine with 20 CPU cores, it takes more than one year of
compute time for experiments (E1-E10) in the paper. In Figure 4:
approximately 358 days � 3 min per epoch × 5 seeds × 7
experiments × (300 + 1,000 + 1,000 + 2,000) epochs in four
environments. In Figure 6: approximately 134 days � 3 min per
epoch × 5 seeds × 3 experiments × (300 + 1,000 + 1,000 + 2,000)
epochs in four environments.

2.4.1 HandManipulateEgg (HME)
The task is to manipulate the egg so that the egg reaches its target
pose. The goal is represented as a 7-dimensional vector and
includes the target position (3 Cartesian coordinates) and target
rotation (4 quaternion values) of an egg-shaped object. Thus, the
goal has six independent degrees of freedom, as one of the
quaternion components is not independent. The rotational
symmetry of the egg does not count in this case, as the
surface of the egg is marked with letters. At the beginning of
each episode, a random target rotation for all axes of the object
and a random target position are selected. The goal is considered
achieved if the distance between the manipulated objects position

and its desired position is less than 1 cm and the difference in the
rotation is less than 0.1 rad.

2.4.2 HandManipulatePenRotate (HMPR)
The task is to manipulate the pen so that the pen reaches its target
pose. The goal is represented as a 4-dimensional vector and
includes the target rotation (4 quaternion values) of a pen-shaped
object. The pen has rotational symmetry. Thus, the goal has 2
independent degrees of freedom, as two of the quaternion
components are not independent. At the beginning of each
episode, a random target rotation of the object for x- and y-
axes and no target rotation around the z-axis is selected. No target
position is selected. The goal is considered achieved if the
difference in rotation, ignoring the z-axis, is less than 0.1 rad.

2.4.3 HandManipulateBlock (HMB)
The task is to manipulate the block so that the block reaches its
target pose. The goal is represented as a 7-dimensional vector
and includes the target position (3 Cartesian coordinates) and
target rotation (4 quaternion values) of a block-shaped object.
Thus, the goal has six independent degrees of freedom, as one
of the quaternion components is not independent. At the
beginning of each episode, a random target rotation for all
axes of the object and a random target position are selected.
The goal is considered achieved if the distance between the
manipulated objects position and its desired position is less
than 1 cm and the difference in the rotation is less than
0.1 rad.

2.4.4 HandManipulateBlockRotateXYZ (HMBRXYZ)
The task is to manipulate the block so that the block reaches its target
rotation. The goal is represented as a 4-dimensional vector (4
quaternion values) of the target rotation of a block-shaped object.
Thus, the goal has 3 independent degrees of freedom, as one of the
quaternion components is not independent. At the beginning of each
episode, a random target rotation for all axes of the object and no
target position are selected. The goal is considered achieved if the
difference in the rotation is less than 0.1 rad.

For the sake of brevity, further details about training
procedure, reward function, goal-aware observation space, and
neural network parameters are available in Plappert et al. (2018).
Our main contribution focuses on the extension of the existing
Shadow-Dexterous-Hand model by tactile sensors and providing
insights about how different aspects of tactile information
(accuracy, tactile resolution, noise) influence learning and
performance in the object manipulation tasks. To this end, we
have reproduced the experiments without touch sensors
(Plappert et al., 2018) and conducted new experiments with
touch-sensor readings.

2.5 Experimental Analysis Techniques
To measure performance in the experiments, we calculated a
histogram of success-rate values of the median curve of five seeds
(per experiment and per environment). You can imagine it as all
points of the curves are projected onto the Y axis in Appendix
Figure A1 to calculate the histograms. For HME, HMBRXYZ,
HMPR, and HMB tasks we used 1,000, 300, 1,000, and

TABLE 3 | New OpenAI Gym Robotics Environments with 92 Touch Sensors:
–v0 (Boolean), –v1 (Continuous-Value).

Environment name

HandManipulateBlockRotateZTouchSensors
HandManipulateBlockRotateParallelTouchSensors
HandManipulateBlockRotateXYZTouchSensors
HandManipulateBlockTouchSensors
HandManipulateEggRotateTouchSensors
HandManipulateEggTouchSensors
HandManipulatePenRotateTouchSensors
HandManipulatePenTouchSensors

2OpenAI Gym. URL: https://github.com/openai/gym.
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FIGURE 4 | Median Success Rate curves (vertical axes) vs. training epochs (horizontal axes) for tasks HME, HMBRXYZ, HMPR, HMB and experiments E1–E7
(colored curves–see HME figure legend). See Figure A1 in Appendix for the full convergence tails. Each curve shows the median success rate across five different
training trials with a different random seed. The success rate value in each training trial is themean of 10 tests after each training epoch. Themedian smoothing window of
plotted curves is equal to five epochs. Shaded areas represent the interquartile range. Horizontal dotted lines highlight the success-rate-convergence level of
corresponding (color) curves (Table 4). The blue horizontal dashed line highlights the success-rate-convergence level of learning without touch sensors (No sensors)
(Table 5). Vertical dashed lines (blue, black, yellow, red, and green) highlight the intersection of corresponding curves (color) with the blue dashed line (Table 5).
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FIGURE 5 | Mean Q value curves (vertical axes) vs. training epochs (horizontal axes) for tasks HME, HMBRXYZ, HMPR, HMB and experiments E1-E7 (colored
curves–see HME figure legend). See the full version of this figure in Appendix Figure A2. Each curve shows the median Q-value across five different training trials with a
different random seed. The Q-value in each training trial is the mean of 10 tests after each training epoch. The median smoothing window of plotted curves is equal to five
epochs. Shaded areas represent the interquartile range. Horizontal dotted lines highlight the mean-Q-value convergence level of corresponding (color) curves.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 5387738

Melnik et al. Deep Reinforcement Learning & Tactile Sensing

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


TABLE 4 | Experiments E1–E7 (Figure 4): Success Rate Convergence Levels (columns 2–8) and Performance Ratio (columns 9–15).

(E1)
No

sensors

(E2)
92

sensors
continuous

(E3)
92

sensors
continuous

+
noise

(E4)
92

sensors
Boolean

(E5)
16

sensors
Boolean

(E6)
927

sensors
continuous

(E7)
92

sensors
continuous

+
no proprio

(E1)
No

sensors

(E2)
92 sensors
continuous

(E3)
92

sensors
continuous

+
noise

(E4)
92

sensors
Boolean

(E5)
16

sensors
Boolean

(E6)
927

sensors
continuous

(E7)
92

sensors
continuous

+
no proprio

HandManipulate Egg 0.82 0.83 0.84 0.85 0.85 0.86 0.05 1.0 1.01 1.02 1.03 1.04 1.05 0.06

HandManipulate
BlockRotateXYZ

0.92 0.93 0.93 0.93 0.92 0.94 0.2 1.0 1.01 1.01 1.01 1.0 1.01 0.21

HandManipulate
PenRotate

0.27 0.32 0.32 0.31 0.3 0.31 0.18 1.0 1.18 1.17 1.15 1.09 1.15 0.65

HandManipulate
Block

0.3 0.43 0.41 0.44 0.38 0.44 0.01 1.0 1.42 1.38 1.46 1.25 1.46 0.04

Mean 1.0 1.16 1.15 1.16 1.09 1.17 0.24

TABLE 5 | Experiments E1–E7 (Figure 4): Convergence Epoch (columns 2–8) and Sample-Efficiency Ratio (columns 9–15).

(E1)
No

sensors

(E2)
92

sensors
continuous

(E3)
92

sensors
continuous

+
noise

(E4)
92

sensors
Boolean

(E5)
16

sensors
Boolean

(E6)
927

sensors
continuous

(E7)
92

sensors
continuous

+
no proprio

(E1)
No

sensors

(E2)
92

sensors
continuous

(E3)
92

sensors
continuous

+
noise

(E4)
92

sensors
Boolean

(E5)
16

sensors
Boolean

(E6)
927

sensors
continuous

(E7)
92

sensors
continuous

+
no proprio

HandManipulate Egg 355 115 110 98 108 115 nan 1.0 3.09 3.23 3.62 3.29 3.09 nan

HandManipulate
BlockRotateXYZ

129 56 64 79 88 47 nan 1.0 2.3 2.02 1.63 1.47 2.75 nan

HandManipulate
PenRotate

125 41 48 58 60 51 nan 1.0 3.05 2.6 2.15 2.08 2.45 nan

HandManipulate
Block

373 181 165 156 182 153 nan 1.0 2.06 2.26 2.39 2.05 2.44 nan

Mean 1.0 2.62 2.53 2.45 2.22 2.68 nan
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2,000 success-rate values (epochs) respectively to calculate the
histograms (Figure 4 and Figure A1). Each histogram has 50 bins
between min and max success-rate values. The bin with the
maximal number of success-rate values (epochs) was selected
as the convergence success-rate level (horizontal dotted and
dashed lines in Figure 4). These values are shown in Table 4.

To measure sample efficiency, we defined convergence
epochs at which curves (after smoothing to avoid early
single-epoch spikes) first intersect with the convergence
success-rate level of the E1 experiment without tactile
sensors (blue horizontal dashed lines in Figure 4). For the
smoothing, we used the median curves of the five seeds with a
median smoothing window of five epochs (the smoothed
curves are plotted in Figure 4). The resulting convergence
epochs are shown by vertical dashed lines in Figure 4 and
represented as numerical values in Table 4.

3 RESULTS

In the first experiment (E1), we reproduced the original
experiment without touch sensors (“No sensors” in Figure 4)
from Plappert et al. (2018). This experiment can be reproduced
using the following OpenAI Gym robotics environments:

• “HandManipulateEgg-v0”
• “HandManipulatePenRotate-v0”
• “HandManipulateBlock-v0”
• “HandManipulateBlockRotateXYZ-v0”

In the second experiment (E2), we added continuous-valued
sensor readings from 92 sensors to the state (“92 sensors
continuous” in Figure 4). The continuous variables have the
magnitude of the force detected by the tactile sensors. This
experiment can be reproduced using the new OpenAI Gym
robotics environments:

• “HandManipulateEggTouchSensors-v1”
• “HandManipulatePenRotateTouchSensors-v1”
• “HandManipulateBlockTouchSensors-v1”
• “HandManipulateBlockRotateXYZTouchSensors-v1”

In the third experiment (E3), we added noise and distortion to
the continuous-valued sensor readings using a model with three
sources of noise and distortion (“92 sensors continuous + noise”
in Figure 4). The first source is a deterministic smoothing of
influence of neighboring sensors. Each active sensor distributes
20% of its continuous-valued sensor reading to neighboring
sensors in equal proportions. For example, if a tactile sensor
has four neighbors, then each of the neighbors accumulates 5% of
the continuous-value of the tactile sensor, and the tactile sensor
itself gets a reduction of its continuous-value by 20%. The second
source is a random noise (standard normal distribution) with
standard deviation equal to 1% of the median amplitude of non-
zero continuous-value sensor readings. The third source of
distortion is the natural logarithm log(V+1) function, where V
is a vector of touch values after the deterministic smoothing and

random noise distortions. The V values are always greater or
equal to zero.

In the fourth experiment (E4), we added Boolean-value sensor
readings from 92 sensors to the state (“92 sensors Boolean” in
Figure 4). If the tactile sensor detected the force value greater
than zero, then for this sensor the environment returns 1,
otherwise 0. This experiment can be reproduced using the new
OpenAI Gym robotics environments:

• “HandManipulateEggTouchSensors-v0”
• “HandManipulatePenRotateTouchSensors-v0”
• “HandManipulateBlockTouchSensors-v0”
• “HandManipulateBlockRotateXYZTouchSensors-v0”

In the fifth experiment (E5), we grouped 92 sensors into
16 sub-groups (Table 1) to reduce the tactile sensory
resolution when using Boolean tactile signals. If any of the
sensors in a group has a greater than zero value, then the
tactile sub-group returns 1, otherwise 0. The grouping was
done per phalanx (3 phalanxes × 5 digits) plus a palm
resulting in 16 sub-groups (Table 1). Thus in the fifth
experiment, we added Boolean-value readings from the
16 sub-groups to the state (“16 sensors Boolean” in Figure 4).

In the sixth experiment (E6), we added continuous-valued
sensor readings from 927 sensors to the state (“(E6) 927 sensors
continuous” in Figure 4). The continuous variables have the
magnitude of the force detected by the tactile sensors.

In the seventh experiment (E7), we excluded joint angles
(24 values, Table 1) and joint angles’ velocity (24 values,
Table 1) information from the state and added continuous-
valued sensor readings from 92 sensors to the state (“92
sensors continuous, no proprioception” in Figure 4). The
continuous variables have the magnitude of the force detected
by the tactile sensors.

Figures 4, 5 and results in Table 4 demonstrate that tactile
information increases the performance of the agent in the tasks.
Results in Table 5 demonstrate sample-efficiency increase while
training when tactile information is available. To compare the
sample efficiency for learning with and without tactile
information, we measured how many training epochs were
necessary to reach the performance level of an agent trained
without tactile information in an environment. The results
indicate more than 2 times faster convergence when tactile
information is available (Table 5).

When introducing tactile data (92 touch sensors), the
dimensionality of the state increases from 68 to 160. This
increases the number of parameters in the first layer of the
neural network (92 (tactile sensors) × 256 (first hidden layer)
× 2 (actor, critic) � 47,104). To address a possible hypothesis that
the improvement from tactile data could be partially or
completely related to the extra parameters in the neural
network, we conducted the following three experiments E8-
E10 (Tables 6 and 7, Figure 6), which did not confirm this
hypothesis:

• E8: ”92 sensors zero” all sensor values are substituted
with zeros.
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• E9: ”92 sensors copy” all sensor values are substituted by
several copies of Joint angles and Joint angles’ velocity
(Table 1).

• E10: ”92 sensors noise” all sensor values are substituted by
random noise (numpy.random.rand(92))

To obtain some insight about the influence of sensor
layouts and sensor density, in the eleventh experiment
(E11), we calculated the number of activations per sensor
in the 92-sensors layout in the four tasks (Egg-,
BlockRotationXYX-, PenRotation-, Block-TouchSensors-
v0). To assess the importance of sensory information on
different sensors, we also calculated the difference in Q
values when dropping out an active sensor (with a Boolean
sensor value) (Table 8, Figure 7). We ran 100 episodes per task,
with five different trained weights (5 × 20). In the dropping out
procedure, we modified the activation value of an active sensor
from 1 to 0 and measured the absolute Q-value difference for that
modification

∣
∣
∣
∣
∣
Q(sorig , aorig) − Q(smod, aorig)

∣
∣
∣
∣
∣
. Thus, delta Q arises

from the changed input state smod with the deactivated touch
sensor. We set the Q-difference value to nan in Table 8 if a
sensor had less than 25 activations in 100 episodes of a task (one
activation per four episodes), or if a sensor had less than 50
activations in 400 episodes in all four tasks.

4 DISCUSSION

In this work, we examined the inclusion of tactile information
in model-free deep reinforcement learning and found that
tactile information improves sample efficiency of learning and
the performance. We take this as corroborating believe that
tactile sensing provides information about geometry and
contact physics of manipulated objects that is valuable for

learning. The exact geometry of the manipulated objects and
actuators was not explicitly represented in the state vector of
the hand model without tactile sensors. Information about
object state was represented via 13 continuous values
(Table 1), information about the actuators via 48
continuous values. Touch information may facilitate
learning a latent representation that connects this state
information with information about object geometry and
physics gathered from sensed contacts. Such representation
should be useful in in-hand manipulation tasks. Lower tactile-
sensor resolution corresponds to lower accuracy of inference
for the object’s geometry and contact physics. This
assumption fits the observed negative effect of lower
tactile-sensors resolution on DRL performance (Table 5).

Boolean-valued sensor readings appear to lead to a final
performance and sample efficiency of learning similar to that
obtained using continuous sensor values. This may indicate that
contact information is most informative in the experiments and
force value adds relatively little information to aid the learning
process. Likewise, added noise and distortion to sensory
readings do not seem to affect learning and performance,
although the noise and distortion were moderate, as we set
the noise and distortion parameters close to real-world
implementations (Figure 2). As we demonstrated in ablation
experiments (E8–E10), 100% noise in the tactile signal makes
performance similar to the experiments without tactile
information and learning less sample efficient (Tables 6 and
7, Figure 6).

The inclusion of additional tactile data increases the
dimensionality of the state from 68 to 160. This leads to an
increase in the number of parameters in the neural network by
16% or 47,104 parameters (92 (tactile sensors) × 256 (first
hidden layer) × 2 (actor, critic)). This marginally increases
computation time for DRL training, however, the sample

TABLE 6 | Experiments E8–E10 (Figure 6): Success Rate Convergence Levels (columns 2–5) and Success Rate Convergence Level Ratio (columns 6–9).

(E1)
No sensors

(E8)
92 sensors

zero

(E9)
92 sensors

copy

(E10)
92 sensors

noise

(E1)
No sensors

(E8)
92 sensors

zero

(E9)
92 sensors

copy

(E10)
92 sensors

noise

HandManipulate Egg 0.82 0.82 0.80 0.84 1.0 1.00 0.98 1.02
HandManipulate BlockRotateXYZ 0.92 0.92 0.92 0.92 1.0 1.00 0.99 0.99
HandManipulate PenRotate 0.27 0.28 0.29 0.27 1.0 1.01 1.06 1.00
HandManipulate Block 0.30 0.34 0.29 0.27 1.0 1.14 0.98 0.89
Mean 1.0 1.04 1.00 0.97

TABLE 7 | Experiments E8–E10 (Figure 6): Convergence Epoch (columns 2–5) and Convergence-Epoch Ratio (columns 6–9).

(E1)
No sensors

(E8)
92 sensors

zero

(E9)
92 sensors

copy

(E10)
92 sensors

noise

(E1)
No sensors

(E8)
92 sensors

zero

(E9)
92 sensors

copy

(E10)
92 sensors

noise

HandManipulate Egg 355 428 497 280 1.0 0.83 0.71 1.27
HandManipulate BlockRotateXYZ 129 164 152 294 1.0 0.79 0.85 0.44
HandManipulate PenRotate 125 93 81 144 1.0 1.34 1.54 0.87
HandManipulate Block 373 411 494 701 1.0 0.91 0.76 0.53
Mean 1.0 0.97 0.97 0.78
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FIGURE 6 | Similar to Figure 4, but for Experiments E8 (black—92 sensors zero), E9 (green—92 sensors copied) and E10 (red—92 sensors noise), with
Experiment E1 (blue–no sensors) included again for reference. Median Success Rate curves (vertical axes) vs. training epochs (horizontal axes). Each curve shows the
median success rate across five different training trials with a different random seed. The success rate value in each training trial is the mean of 10 tests after each training
epoch. Themedian smoothing window of plotted curves is equal to five epochs. Shaded areas represent the interquartile range. Horizontal dotted lines highlight the
success-rate-convergence level of corresponding (color) curves (Table 6). The blue horizontal dashed line highlights the success-rate-convergence level of learning
without touch sensors (No sensors) (Table 7). Vertical dashed lines (blue, black, green, and red) highlight the intersection of corresponding curves (color) with the blue
dashed line (Table 7).
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TABLE 8 | Experiment E11. See the visualization of the values in Figure 7.

Sensor
name

Activations
all

Activations
PenRotate

Activations
Egg

Activations
Block

Activations
BlockRotateXYZ

Mean Q
diff all

Mean Q diff
PenRotate

Mean Q
diff Egg

Mean Q diff
Block

Mean Q diff
BlockRotateXYZ

Palm 0 80 36 0 22 22 0.12 0.22 nan nan nan
Palm 1 99 16 0 50 33 0.15 nan nan 0.18 0.18
Palm 2 270 0 0 144 126 0.11 nan nan 0.11 0.11
Palm 3 234 0 0 162 72 0.14 nan nan 0.18 0.07
Palm 4 489 0 0 266 223 0.09 nan nan 0.09 0.08
Palm 5 875 0 210 358 307 0.08 nan 0.08 0.08 0.08
Palm 6 1806 538 91 675 502 0.09 0.11 0.08 0.08 0.07
Palm 7 58 56 0 1 1 0.22 0.22 nan nan nan
IF PP FLB 689 4 156 323 206 0.1 nan 0.1 0.11 0.06
IF PP FRB 884 453 108 235 88 0.11 0.09 0.13 0.2 0.11
IF PP FLT 1,669 71 503 750 345 0.11 0.12 0.08 0.14 0.07
IF PP FRT 1,021 103 146 525 247 0.19 0.54 0.11 0.18 0.1
IF PP BL 309 83 43 132 51 0.16 0.21 0.05 0.15 0.15
IF PP BR 62 60 0 2 0 0.29 0.28 nan nan nan
IF PP Tip 1,235 133 118 703 281 0.12 0.2 0.05 0.11 0.05
IF MP FL 1,517 3 133 845 536 0.11 nan 0.06 0.13 0.07
IF MP FR 809 51 38 519 201 0.13 0.23 0.11 0.14 0.07
IF MP BL 7 5 0 1 1 nan nan nan nan nan
IF MP BR 27 20 0 4 3 nan nan nan nan nan
IF MP Tip 570 41 25 395 109 0.1 0.17 0.23 0.1 0.06
IF DP FL 2,267 193 698 929 447 0.16 0.22 0.07 0.22 0.14
IF DP FR 1,604 233 217 778 376 0.19 0.28 0.09 0.25 0.13
IF DP BL 21 4 1 12 4 nan nan nan nan nan
IF DP BR 113 49 0 49 15 0.33 0.31 nan 0.44 nan
IF DP Tip 2,913 415 657 1,197 644 0.14 0.18 0.06 0.19 0.12
MF PP FLB 327 4 101 132 90 0.08 nan 0.12 0.07 0.04
MF PP FRB 517 10 207 196 104 0.1 nan 0.06 0.14 0.06
MF PP FLT 828 51 103 437 237 0.07 0.16 0.07 0.07 0.04
MF PP FRT 1,609 87 330 789 403 0.11 0.16 0.07 0.14 0.09
MF PP BL 253 83 17 128 25 0.17 0.2 nan 0.14 0.1
MF PP BR 426 75 88 216 47 0.14 0.11 0.11 0.18 0.16
MF PP Tip 1,501 177 190 816 318 0.05 0.06 0.05 0.06 0.03
MF MP FL 552 0 3 289 260 0.07 nan nan 0.08 0.05
MF MP FR 1,109 0 93 693 323 0.1 nan 0.08 0.12 0.06
MF MP BL 0 0 0 0 0 nan nan nan nan nan
MF MP BR 68 0 0 68 0 0.17 nan nan 0.17 nan
MF MP Tip 324 0 9 279 36 0.1 nan nan 0.1 0.12
MF DP FL 1,280 3 115 676 486 0.11 nan 0.12 0.12 0.09
MF DP FR 2,654 17 883 1,201 553 0.12 nan 0.07 0.17 0.12
MF DP BL 167 3 14 86 64 0.08 nan nan 0.09 0.06
MF DP BR 234 2 25 202 5 0.18 nan 0.12 0.18 nan
MF DP Tip 3,377 12 760 1,694 911 0.08 nan 0.05 0.11 0.07
RF PP FLB 146 0 0 81 65 0.12 nan nan 0.12 0.12
RF PP FRB 262 7 13 137 105 0.06 nan nan 0.05 0.04
RF PP FLT 154 48 13 62 31 0.18 0.14 nan 0.19 0.14
RF PP FRT 613 92 88 299 134 0.1 0.15 0.06 0.1 0.07
RF PP BL 22 18 0 4 0 nan nan nan nan nan
RF PP BR 355 62 78 187 28 0.12 0.2 0.08 0.12 0.05
RF PP Tip 705 150 107 367 81 0.09 0.1 0.08 0.09 0.06
RF MP FL 191 62 47 61 21 0.15 0.13 0.15 0.22 nan
RF MP FR 522 15 115 245 147 0.13 nan 0.08 0.1 0.06
RF MP BL 41 37 0 4 0 nan 0.25 nan nan nan
RF MP BR 45 2 7 35 1 nan nan nan 0.14 nan
RF MP Tip 311 82 63 108 58 0.12 0.15 0.08 0.14 0.08
RF DP FL 2046 297 301 892 556 0.06 0.05 0.06 0.07 0.05
RF DP FR 1,586 66 515 685 320 0.06 0.12 0.05 0.07 0.05
RF DP BL 124 67 3 30 24 0.06 0.06 nan 0.06 nan
RF DP BR 156 8 10 137 1 0.24 nan nan 0.22 nan
RF DP Tip 2,988 364 639 1,307 678 0.03 0.05 0.03 0.04 0.02
LF M F 331 171 0 90 70 0.09 0.07 nan 0.14 0.12
LF PP FLB 8 3 0 3 2 nan nan nan nan nan
LF PP FRB 251 14 1 141 95 0.12 nan nan 0.14 0.09
LF PP FLT 3 0 0 2 1 nan nan nan nan nan
LF PP FRT 1,326 64 407 542 313 0.13 0.29 0.1 0.16 0.09
LF PP BL 21 7 0 7 7 nan nan nan nan nan
LF PP BR 486 65 98 254 69 0.22 0.2 0.2 0.25 0.15
LF PP Tip 975 42 319 452 162 0.11 0.16 0.08 0.14 0.1
LF MP FL 43 13 1 17 12 nan nan nan nan nan
LF MP FR 1,669 73 395 700 501 0.09 0.09 0.07 0.12 0.08
LF MP BL 1,120 96 292 494 238 0.07 0.11 0.06 0.07 0.05
LF MP BR 2,839 345 536 1,325 633 0.07 0.05 0.07 0.09 0.05

(Continued on following page)
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efficiency of learning increases by more than twofold
(Table 5).

The reported performance gains with tactile sensors are
dependent on the success-rate level without tactile sensors. The
better the task can be solved without tactile information, the less is
the impact of tactile information on the performance gains
(Table 4). For example, in the “HandManipulateBlock”
environment the success-rate convergence level without tactile
information is equal to 0.3 (E1), and equal to 0.43 (E2) with
92 continuous-value sensors, which gives an about 42%
performance gain. In the “HandManipulateBlockRotateXYZ”
environment the success-rate convergence level without tactile
information is equal to 0.92 (E1), and equal to 0.93 (E2) with
92 continuous-value sensors, which gives an about 1%
performance gain. Thus, our results show that when an object-
manipulation task can be solved without tactile information,
tactile information can only add marginal performance gain.
However, when information about the position, orientation,
velocities of the object is not enough for a confident solution
of the task, tactile information can provide a significant
improvement to the performance.

Moving from the dimension of performance to sample
efficiency, we observe that even in cases where tactile
information is unable to significantly contribute to
performance (since the task can be solved well in the absence
of tactile information already), tactile information can still more
than double sampling efficiency (see Table 5).

Finding accurate numeric values for convergence levels of
DRL curves within a limited number of training epochs and
determining the epoch of the first intersection of the convergence
curve with the convergence level is not trivial. The issues include
local spikes in convergence curves, low-frequency oscillations
around a convergence level, and temporal performance drops. A

wide smoothing window may help to remove spikes, but it does
not help to remove low-frequency oscillations and temporal
performance drops. Moreover, it shifts the first intersection
with the convergence curve with the convergence level. Also, it
does not solve the issue of how to select the numeric value of the
convergence level, for example, it can be the highest value of the
smoothed convergence curve. However, the value will depend on
the smoothing window width parameter, and the curve does not
reach this highest point again in the experiment, thus it is
arguable whether it is the convergence level. Another approach
is statistical metrics to select the convergence level. One approach
would be to find the median value of all success-rate values, but in
this case, the duration of the initial slope will influence the level.
Thus, we decided to use the histogram of all success-rate values of
the convergence curve to find the bin with the most number of
samples. You can imagine it as all points of the curves are
projected onto the Y axis in Appendix Figure A1 to calculate
the histograms. We assume that this approach solves the issues of
spikes, low-frequency oscillations, and temporal performance
drops. However, one of the issues of this approach is the bin
width. One the one hand we want to have narrow bins to have a
higher precision of the convergence level. On the other hand, too
narrow bins will result in a small number of samples per bin
leading to a spiky histogram making the identification of the true
level less reliable. We decided to use 50 bins, as a good trade-off
between the smoothness of the histogram and the narrowness of
the bin size. The so-defined numeric convergence levels are in good
visual accordance with the shape of the plotted convergence curves.

The experiment E11 tests the effect of replacing a positive
scalar value of an active sensor in a state-action pair, with a scalar
value of zero for that sensor (averaged over a lot of state-action
pairs and tactile sensors). The results of experiment E11
(Table 8, Figure 7) show that the most frequently activated

TABLE 8 | (Continued) Experiment E11. See the visualization of the values in Figure 7.

Sensor
name

Activations
all

Activations
PenRotate

Activations
Egg

Activations
Block

Activations
BlockRotateXYZ

Mean Q
diff all

Mean Q diff
PenRotate

Mean Q
diff Egg

Mean Q diff
Block

Mean Q diff
BlockRotateXYZ

LF MP Tip 3,106 321 536 1,482 767 0.04 0.05 0.04 0.06 0.03
LF DP FL 60 47 5 5 3 0.31 0.33 nan nan nan
LF DP FR 2,188 105 427 906 750 0.12 0.1 0.1 0.14 0.13
LF DP BL 90 16 22 34 18 0.14 nan nan 0.08 nan
LF DP BR 1,616 63 283 777 493 0.11 0.06 0.08 0.15 0.1
LF DP Tip 1918 79 188 918 733 0.08 0.11 0.05 0.1 0.08
TH PP FL 1,670 68 273 759 570 0.14 0.53 0.08 0.18 0.09
TH PP FR 33 8 0 13 12 nan nan nan nan nan
TH PP BL 430 4 36 274 116 0.2 nan 0.17 0.25 0.12
TH PP BR 0 0 0 0 0 nan nan nan nan nan
TH PP Tip 1,699 74 297 785 543 0.13 0.33 0.08 0.15 0.09
TH MP FL 2017 375 349 831 462 0.14 0.19 0.09 0.15 0.09
TH MP FR 17 5 2 8 2 nan nan nan nan nan
TH MP BL 621 68 35 378 140 0.2 0.12 0.16 0.23 0.15
TH MP BR 8 0 0 8 0 nan nan nan nan nan
TH MP Tip 982 163 169 483 167 0.12 0.12 0.11 0.15 0.08
TH DP FL 2,273 313 496 1,035 429 0.19 0.21 0.1 0.28 0.15
TH DP FR 169 18 80 62 9 0.23 nan 0.12 0.53 nan
TH DP BL 1,668 401 120 896 251 0.29 0.2 0.12 0.36 0.26
TH DP BR 223 2 17 162 42 0.3 nan nan 0.35 0.13
TH DP Tip 2,787 329 575 1,467 416 0.19 0.3 0.08 0.25 0.17

Sensors activation (col. 2–6) and Q-difference value (col. 7–11).
IF - Index Finger, MF - Middle Finger, RF - Ring Finger, LF - Little Finger, DP - Distal Phalanx, MP - Middle Phalanx, PP - Proximal Phalanx, FL - Front Left, FLB - Front Left Bottom, FLT -
Front Left Top, FR - Front Right, FRB - Front Right Bottom, FRT - Front Right Top, BL - Back Left, BR - Back Right.
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sensors are not always the most informative in terms of the Q
value. However, the thumb and index finger provide the most
informative sensory information for in-hand manipulation of
objects type of tasks. Of course, this information is only
relevant to the degree that the learnt Q-values do indeed
contribute to successful trajectories. While the experiment
cannot guarantee this for each single case, our employed
averaging over a set of tasks that contained a significant
proportion of accurately trained trajectories makes us
expect that the observed correlations are meaningful.

In a study of a learning dexterous in-hand manipulation
(OpenAI et al., 2020) authors used reinforcement learning to

learn dexterous in-hand manipulation policies and transferred
them to a physical robot despite being trained entirely in
simulation. The training was conducted in a simulated
MuJoCo environment. In that work, the authors avoided
providing the fingertip tactile sensor measures as observations
to the policy because that would have been difficult to model
provided tactile sensors in the simulator. Indeed, accurate
modeling of tactile sensors in a simulator can be a challenging
problem. However, simplifications or embedding of tactile
information may allow a transfer between real and simulated
tactile information. Specifically, our results in experiments E3–E4
demonstrate that noisy or Boolean tactile information provides

FIGURE 7 | Visualisation of sensors activation (red) and Q-difference (green) values from Table 8. Values are normalized for each hand image.
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significant improvements in sample-efficiency of training and
performance.

In theHandManipulatePenRotate task, a relatively lowmedian test
success rate was obtained, compared to other tasks. The reason for this
is that, depending on the combination of initial and goal pen
orientation, we get different degrees of difficulty, where in the
simplest case the task leads to a moderate adjustment of the pen
angle, and in themost difficult case the pen needs to be rotated 180°. In
this more difficult case, the agent failed to learn the necessary
manipulation. Consequently, the agent was unable to solve about
half of the initial conditions, but was able to fulfill most cases with
moderate pen orientation adjustments. In the HandManipulateBlock
task, we also got a relatively low median test success rate compared to
HandManipulateBlockRotateXYZ. The reason for this is that,
depending on the combination of the initial and goal positions of
the block, we get a different degree of manipulation complexity, while
in the HandManipulateBlockRotateXYZ task, the agent was able to
choose the most reliable position for the manipulated block, given a
fixed wrist.

Computational resources are the main limiting factor of this
study. The shown convergence curves are approximately equal
to one year of computing time for one machine with 20 CPU
cores (see Section 2.4). With more processing power, more
experiments could be done to reveal the effect of tactile
information on DRLs in dynamic in-hand manipulation
tasks. Interesting directions for future work include:
hierarchical (Schilling and Melnik, 2018), causal (Melnik
et al., 2019a), and modular (Konen et al., 2019; Melnik et al.,
2019b) tactile representations; sensor ablation studies to shed
light on the role of sensor placement; the impact of different
types of noise; improvements with tactile sensors using various
DRL algorithms (Bach et al., 2020; Kidzinski et al., 2018) such as
soft actor-critic (SAC) (Haarnoja et al., 2018) or twin delayed
deep deterministic (TD3) (Fujimoto et al., 2018). It would also
be interesting to draw connections to tactile representations in
terms of embodied cognition (Peter et al., 2018) and theories of
sensorimotor processing (Melnik et al., 2017; Melnik, 2017) in
the human brain.

5 CONCLUSION

The paper investigates the learning performance of DRL
algorithms with and without touch information for the
dexterous in-hand object manipulation tasks. The DRL
algorithms investigated in the work are DDPG and HER
techniques, and the robot hand used in the work is a
simulation of the Shadow Dexterous Hand in the OpenAI
Gym robotics environment, which we extended by an
arrangement of touch sensors (Koiva et al., 2013; Büscher
et al., 2015). We concatenated all experiments using the
MuJoCo physics engine (Todorov et al., 2012). It was found
that the touch information can increase sample efficiency and
performance of the DRL algorithms.

In this work, we introduce the touch-sensors extensions toOpenAI
Gym (Brockman et al., 2016) () robotics Shadow-Dexterous-Hand
environments (Plappert et al., 2018) modeled after our touch sensor

developments (Koiva et al., 2013; Büscher et al., 2015). We
concatenated tactile, proprioceptive, and visual information at the
input level of a neural network. We find that adding normal-force
tactile sensing data can produce a more than threefold increase in
sample efficiency (Table 5) and performance gains of up to 46%
(Table 4: E4-, E6-HandManipulateBlock) when training with DDPG
+ HER on several simulated manipulation tasks. To examine the role
of tactile-sensor parameters in these improvements, we conducted
experiments (Figure 4) with varied sensor-measurement accuracy
(ground truth continuous values, noisy continuous values, Boolean
values), and varied spatial resolution of the tactile sensors (92 sensors
vs. 16 pooled sensor areas on the hand). We conclude that the
observed benefits of tactile input on sample efficiency are rather
robust against changes in resolution, signal binarization,
distortion, or (limited) noise. As a remarkable result, we
found binary contact detection on par with providing
accurate continuous contact-normal-force values when
training with deep reinforcement learning techniques.
However, dense tactile resolution may help to improve
performance and sample efficiency. These findings may
provide guidance for those looking to build robots with
tactile sensors for object manipulation.

A possible further extension of this work is multi-modal
sensor fusion. The multi-modal sensor fusion (Korthals et al.,
2019b) allows end-to-end training of Bayesian information
fusion on raw data for all subsets of a sensor setup. It can
potentially deliver better performance and more sample efficient
training with model-free deep reinforcement learning
approaches.
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APPENDIX

FIGURE A1 | Full version of Figure 4.
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FIGURE A2 | Full version of Figure 5.
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