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Nuclear energy will play a critical role in meeting clean energy targets worldwide. However,
nuclear environments are dangerous for humans to operate in due to the presence of
highly radioactive materials. Robots can help address this issue by allowing remote access
to nuclear and other highly hazardous facilities under human supervision to perform
inspection and maintenance tasks during normal operations, help with clean-up missions,
and aid in decommissioning. This paper presents our research to help realize humanoid
robots in supervisory roles in nuclear environments. Our research focuses on National
Aeronautics and Space Administration (NASA’s) humanoid robot, Valkyrie, in the areas of
constrained manipulation and motion planning, increasing stability using support contact,
dynamic non-prehensile manipulation, locomotion on deformable terrains, and human-in-
the-loop control interfaces.
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1 INTRODUCTION

As the worldwide energy demand is expected to increase by 50% within the next 3 decades, nuclear
energy will play a critical role in meeting clean energy targets worldwide. At the same time, many of
the world’s nuclear reactors are aging; from Japan to the United Kingdom to the United States,
scientists, engineers and regulators are counting on new innovative technologies that will make
decommissioning and clean-up missions safe for humans, environmentally-friendly and cost-
effective. Furthermore, industrializing countries are investing in building new nuclear power
plants to meet their growing energy demands.

Nuclear energy operations and nuclear disasters have great international impact with no
boundaries. Ensuring safe, efficient, and productive operations of facilities and improving
response to unplanned emergencies at any location around the globe is in the best interest of
the international community. Moreover, the urgency and scale of the problems identified in high-
consequence situations, such as the Fukushima (Japan) clean up and waste tank decommissioning in
Savannah River Site (United States), require an interdisciplinary team of scientists, engineers, and
technologists to solve similar yet sufficiently distinct challenges. For example, since 1989, the
United States Department of Energy has spent over $250 billion of public funds on cleanup. The
cleanup is less than half complete and the remaining mission scope is estimated to cost at least
another $250 billion more over a 40–50- year period. Similarly, the Japanese government estimated
the total costs for the Fukushima cleanup at $188 billion for the next 40 years.

It is now clear that robotics will play a key role in accelerating these cleanup timelines and
reducing the costs, by addressing operational needs and challenges in nuclear facilities. Robotics
technologies are needed to remotely access nuclear and other highly hazardous facilities under
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Taşkın Padır

t.padir@northeastern.edu

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 09 April 2020
Accepted: 10 May 2021
Published: 18 June 2021

Citation:
Wonsick M, Long P, Önol AÖ, Wang M
and Padır T (2021) A Holistic Approach

to Human-Supervised Humanoid
Robot Operations in

Extreme Environments.
Front. Robot. AI 8:550644.

doi: 10.3389/frobt.2021.550644

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 5506441

ORIGINAL RESEARCH
published: 18 June 2021

doi: 10.3389/frobt.2021.550644

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.550644&domain=pdf&date_stamp=2021-06-18
https://www.frontiersin.org/articles/10.3389/frobt.2021.550644/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.550644/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.550644/full
http://creativecommons.org/licenses/by/4.0/
mailto:t.padir@northeastern.edu
https://doi.org/10.3389/frobt.2021.550644
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.550644


human supervision to perform inspection and maintenance tasks
during normal operations. During decommissioning, robots will
become the eyes and hands of human operators in places no
human has gone for more than 50 years. However, using robots in
such environments is not without challenges, the Fukushima
disaster has shown that conventional robots must be significantly
modified, Nagatani et al. (2011b), to cope with highly radioactive
environments. This is typically achieved by equipping the system
with lead plates to protect electrical components, Nagatani et al.
(2011a), which in-turn add weight and may impair functionality.
Alternatively, the number of electronic components can be
minimized and used in conjunction with specifically hardened
parts, however high levels of radiation still can destroy such
systems in a matter of days, Funakoshi (2016), Urabe and
Stapczynski (2017), Yirmibeşoğlu et al. (2019). Nevertheless,
robots have already been deployed in less active nuclear
environments in commissioning and waste disposal task,
Bogue (2011), and on-going research is demonstrating
promising applications for human-supervised robotics in a
range of different tasks in the future, Marturi et al. (2016).
They will improve our ability to respond to and recover from
unplanned events or operational emergencies in such critical and
safety-significant applications. Nuclear environments are
dangerous for humans to operate in due to the presence of
highly radioactive materials. They are typically distant as the
facilities separate these dangerous environments from humans by
thick walls. And they present daring operational conditions by
size and configuration with tight passages, debris accumulated
over the years and cluttered internals.

Our research plan is motivated by the need for general purpose
robots in routine and emergency operations in nuclear facilities for:
1) Disaster response and environmental clean-up, such as more
than 175 waste tanks in Hanford (WA) or the F-canyon in
Savannah River (SC). These processes rely heavily on accurate
remote sampling and characterization before permanently
grouting the facilities, by collecting samples from different spots
for analyzing what and how much radioactive material remains.
The operating environment is unknown and cluttered with vertical
and horizontal piping, fallen debris and puddles and muck-like
material on the floors (in the waste tanks). 2) Operational
efficiencies—federal laws require nuclear facilities to develop
and maintain emergency preparedness plans to protect the
public. These emergencies include unusual events during
normal operations to black swan events such as Fukushima,
Chernobyl and Three Mile Island accidents. Furthermore, the
aging workforce in the energy sector requires the adoption of
technology to keep up with day-to-day operations. As a result,
human-supervised robot assets with robust manipulation
capabilities in these challenging environments and situations are
needed. 3) Worker safety—Before any work can begin, human
workers must enter a facility to characterize radioactive hazards,
such as type of radiation, dose rates, and location of sources. This
data is then used to determine the proper protective clothing and
stay time limits for personnel. Replacing personnel with robots
would be highly desirable in radioactive environments.

This paper discusses our approach to move towards utilizing
humanoid robots in nuclear energy operations and nuclear

disasters by furthering the development of human-supervised
robot control and manipulation capabilities. Section 2 presents a
method capable of handling manipulation and motion planning
in constrained environments, such as gloveboxes. Section 3
presents work in utilizing support contacts to increase stability
of a standing humanoid robot operating inside a glovebox.
Section 4 presents a method to plan dynamic non-prehensile
manipulation behaviors in a highly-constrained environment,
with focus on gloveboxes. Section 5 presents a way to estimate
in-situ deformable terrains in order to navigate in unknown
environments. Section 6 presents a human-in-the-loop user
interface for operating humanoid robots.

2 CONSTRAINED MANIPULATION AND
MOTION PLANNING

In hazardous environments it is crucial to perform manipulation
tasks effectively. Additionally, such environments often provide
constraints on the motions allowed, such as when operating
through glovebox ports. In order to accomplish effective
manipulation, different robot configurations should be
evaluated. This is particularly important for redundant systems
such as humanoid robots. A robot performance measure can be
classified as local, e.g., manipulability (Yoshikawa, 1984) or global
such as workspace analysis (Vahrenkamp and Asfour, 2015).
Local indexes are advantageous as they provide a more generic
solution and may be utilized in control frameworks without
workspace knowledge. Hence, they can be used to choose a
configuration based on a robot’s inherent capability. However,
local indexes study the system’s kinematic transformations from
configuration to task space, ignoring environmental constraints
that have significant effects on the robot’s admissible motions. In
particular, for operations in hazardous environments, the
workspace is often unstructured and uncontrolled. Moreover,
unscheduled contacts may lead to catastrophic results. For these
reasons, it is important to transmit an accurate measure of what
the robot can or cannot do in its current pose to a remote
operator/supervisor.

The following section recalls the work presented in (Long and
Padır, 2018; Long and Padir, 2019; Long et al., 2019) in which a
new measure called the constrained manipulability polytope
(CMP) that considers the system’s kinematic structure,
including closed chains, composite sub-mechanisms, joint
limits, and the presence of obstacles is developed.

2.1 Related Work
The manipulability ellipsoid first defined (Yoshikawa, 1984)
measures the capabilities of a robot manipulator based on its
kinematic structure. Extensions to include positional joint limits
are proposed in (Tsai, 1986) using penalty functions and (Abdel-
Malek et al., 2004) using augmented jacobian matrices. Robots
with heterogeneous joint velocity limits are examined in (Lee,
1997), while dynamic constraints are considered (Bowling and
Khatib, 2005; Zollo et al., 2008). For humanoid robots,
improvements on local measures can be obtained by including
the effects of contact while evaluating the dynamic manipulability
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of a humanoid’s center of mass (Gu et al., 2015; Azad et al., 2017).
Moreover in (Azad et al., 2017) either joint torque and/or
acceleration limits are accounted for by using a scaling matrix.
In (Vahrenkamp et al., 2012, 2013) the manipulability ellipsoid is
augmented to include environmental constraints. The authors
include joint position limits and the detrimental effects of nearby
obstacles using a spatial decomposition referred to as the
hyperoctants approach. Manipulability polytopes (Kokkinis
and Paden, 1989) provide a more elegant and indeed exact
method for representing velocity limits in the Cartesian space.
There are several examples where diverse constraints, defined by
a set of inequality or equality equations, have been incorporated
into polytopes. For instance, mobile robot toppling constraints
have been integrated into the available wrench set for a cable-
driven parallel robot in (Rasheed et al., 2018). Alternatively,
friction constraints can be added after linearization (Caron
et al., 2017).

2.2 Manipulability
Consider an n degree-of-freedom (DOF) manipulator in m
dimensional space. Let νn denote the twist at the end effector,
comprising three translational and three angular velocities
defined, respectively, as v and ω. νn is obtained as

νn � [ v
ω
] � Jn _q, (1)

where Jn ∈ R6×n is the Jacobian matrix and _q � [ _q1, _q2 . . . _qn]T is
the joint velocity vector. An exact measure of the manipulator’s
capabilities can be obtained by studying the manipulability
polytope in conjunction with the joint velocity limits. A
polytope, P can be represented as the convex hull of its vertex
set (V-representation), i.e.,

PV � ⎧⎨⎩x : x � ∑
i�1

n

αiyi

∣∣∣∣∣∣∣∣∣αi ≥ 0,∑
i�1

n

αi � 1
⎫⎬⎭, (2)

where yi denotes the ith element of the vertex set and x is any
point inside P. Equivalently, P can be defined as the volume
bounded by a finite number of half-spaces (H-representation)

PH � Ax ≤ b, (3)

where A contains the half-spaces’ normals and b is the shifted
distance from the origin along the normal. Converting from V
and H is possible, for example, using the double description1

method (Fukuda and Prodon, 1996). The polytope representing
joint velocities for an n-DOF robot, denoted by Q, is written in
H-representation as

QH � [ In
−In ] _q≤[ _qmax

− _qmin
], (4)

where In is the n × n identity matrix and _qmax and _qmin denote the
robot’s maximum and minimum joint velocities respectively. The
equivalent polytope defined by its vertices is written as

QV � { _qv
1, _qv

2, . . . , _q
v
2n }, (5)

where _qvi denotes the i
th vertex ofQ. The convexity of a polytope is

preserved under affine transformation, i.e., a linear transformation
applied to QV is a convex combination of the same linear
transformation applied to the vertices. Thus, a manipulability
polytope (MP), denoted as P, representing the Cartesian-space
velocities can be obtained using the linear kinematic transform
defined by one. P’s vertex set representation is given as

PV � { νv1 . . . νv2n } � { Jn _qv
1 . . . Jn _q

v
2n } (6)

and its volume, denoted aswp, can be used as an indicator of robot
performance.

2.3 Constrained Manipulability
The manipulability polytope does not give a true picture of the
robot’s capabilities as theymay be reduced due to environmental or
joint limit constraints. Thus in our previous work (Long and Padır,
2018; Long and Padir, 2019), a method of considering obstacle and
joint position limits is given. To do so the kineostatic danger field
(Ragaglia et al., 2014) as an input which limits the maximum
attainable velocity in the direction of a potential collision. The
robot’s velocity is reduced until the danger-field value is below a
predefined threshold. The kineostatic danger field divides the
robot’s links into l control points (CPs) and the workspace into
c cells. The danger field for the jth (j � 1, . . . , c) cell is calculated as

ϕj � max
i�1...l

⎛⎝ 1����ri − rj
���� +

||vi||cos(∠(ri − rj, vi))∣∣∣∣∣∣∣∣ri − rj
∣∣∣∣∣∣∣∣2 ⎞⎠, (7)

where rj and ri denote the position vector of the jth cell and the robot’s
ith CP, respectively. The translational velocity of point i is denoted by
vi. To generate a set of inequality constraints, Eq. 7 is re-defined as

∀i ∈ CP, ϕj ≤
1∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ +

||vi||cos(∠(rij, vi))����rij����2 , (8)

where rij � ri − rj. Substituting the dot product

cos(∠(rij, vi)) � vTi rij
||vi||

∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣, (9)

(8) becomes

ϕj ≤
1∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ +

vTi rij∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣3, (10)

Finally, by introducing r̂ij the normalized unit vector of rij, Eq. 10
becomes

vTi r̂ij ≤ ϕj

∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣rij∣∣∣∣∣∣∣∣ (11)

The robot’s velocity is reduced until the danger field value at the
obstacle location, denoted as o is below a threshold, i.e., a desired
danger value. Eq. 11 is re-written as

1We use the C++ wrapper for Fukuda’s cdd library available here: https://github.
com/vsamy/eigen-cdd, while the MATLAB© computations used the Multi-
Parametric Toolbox 3.0 (Herceg et al., 2013).
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vTi r̂io ≤ ϕd||rio||2 − ||rio||, (12)

ro is the obstacle’s position vector with respect to the robot’s fixed
frame and ϕd denotes desired danger value. By introducing Eq. 1,
the following expression is obtained in configuration space

r̂Tio Ji _q ≤ ϕd‖rio‖2 − ‖rio‖, (13)

where Ji ∈ R3×n is the Jacobian matrix at point i. The Jacobian
matrix at any CP will have n columns. However, if a joint does not
contribute to the velocity at the ith CP, the ith column of contains
only zeros. Hence, Eq. 13 constrains the maximum velocity for
the ith CP in the direction toward the obstacle. Taking into
account the l CPs leads to the following set of inequalities

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r̂ T
1o J1

r̂T2o J2
«

r̂Tlo Jl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _q≤
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕd‖r1o‖2 − ‖r1o‖
ϕd‖r2o‖2 − ‖r2o‖

«

ϕd‖rlo‖2 − ‖rlo‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

rewritten, for the kth obstacle, as

Jok _q ≤ bo. (15)

Eq. 15 considers the reduced performance capabilities due to
nearby obstacles. It is similarly convenient to consider the effects
of joint limit proximity in the polytope before transformation to
the Cartesian space, thus avoiding improper penalization due to
redundancy (Tsai, 1986; Abdel-Malek et al., 2004). For the ith

joint, the penalization term is defined as

ψmax
i � 1 − (max(qi, qi) − qi

qmax
i − qi

)k

, ψmin
i � 1 − (min(qi, qi) − qi

qmin
i − qi

)k

,

(16)

where qi is given as qi � 1
2 (qmax

i + qmin
i ), k is a positive integer,

ψmax
i varies from 1 to 0 as the ith joint approaches its limit. Eq. 4 is

modified to consider the joint limits

[ In
−In ] _q≤[ Ψmax _qmax

−Ψmin _qmin
], (17)

where Ψmax � diag(ψmax
1 . . .ψmax

n ) and Ψmin �
diag(ψmin

1 . . .ψmin
n ).

By repeating Eq. 15 form obstacles and including the position
constraints defined by Eq. 17, the following H-representation of
the joint-space polytope, denoted as QHp, is obtained

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jo1
Jo2
«
Jom
In
−In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
_q≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bo1
bo2
«

bom

Ψmax _qmax

−Ψmin _qmin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

QHp can be converted to V-representation using the double
description method. The vertex form can then be transformed
to the task space using Eq. 1 and in doing so the CMP, denoted as
P* that characterizes the constrained task-space performance,
is obtained. The volume of P*, denoted w*

p measures the robot’s

velocity capacities while also considering joint position and velocity
limits and the constraints imposed by the environment.

2.4 Applications of Constrained
Manipulability Polytope for Humanoid
Robots
In the following, applications for the performance measure
are demonstrated using NASA’s humanoid robot Valkyrie
(Radford et al., 2015) interacting with a glovebox for nuclear
decommissioning task.

2.4.1 Experiment 1: Right Arm Insertion
In the first experiment the right arm of Valkyrie is inserted into the
glovebox. The glovebox is considered as an obstacle that reduces the
manipulator’s performance, as unwanted collision could be dangerous.
Figure 1 shows the right arm insertion task, demonstrating how the
CMPchangeswith time.The initial reduction inmanipulability is due to
positional joint limits. As the right hand passes through the glovebox
port the system experiences a reduction of velocity capacity due to the
constrained space signifying that the hand cannotmove quicklywithout
increasing the likelihood of a collision. A partial recovery can be
observed as the right hand is fully inserted, meaning the system can
manipulate objects within the space.

2.4.2 Experiment 2: Dual Arm Insertion
Convex polytopes are geometric objects, thus can be combined
through standard geometric operations. These combinations can be
used to represent composite robotic chains both serial and parallel. In
(Long and Padir, 2019), we have shown how the manipulability of
mechanisms in series can be obtained from theminkowski sumof sub-
mechanisms, while manipulability mechanisms in parallel can be
obtained by a straightforward concatenation of inequality constraints.

In this experiment, we demonstrate the former, as Valkyrie inserts
both arms into the glovebox. It is assumed that the two arms form a
closed chain, in a scenario where the arms carry a common object or
tool. The goal is to show how the CMP can be combined to obtain
that of a closed chain system. To model the closed chain, we use the
virtual object procedure, i.e., a rigid straight link extending from the
left to the right hand (Long et al., 2015). Figure 2 shows the motion
associated with the dual-arm insertion task at four time instants and
the CMP for the closed-chain system evaluated at the right-arm end
effector. This is obtained by first calculating Pr and Pl , then
obtaining the intersection Pr ∩ l , while Pp

r ∩ l is calculated in the
same manner. In the third instant Pp

r ∩ l � ∅, as clearly it is
impossible for the arms to enter through individual ports while
holding a common object. In contrast, in the fourth instant, Pp

r ∩ l is
no longer empty demonstrating the ability to co-manipulate an
object within the glovebox.

2.4.3 Experiment 3: Reachability Analysis
Finally, a reachability study/workspace analysis is presented in
Figure 3. The environment is discretized into voxels. At each
voxel, an optimization procedure obtains a feasible IK solution
while trying to maximize the robot’s distance to obstacles. The
CMP is calculated in this configuration. The workspace
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discretization is shown in Figure 3. The voxel’s color is defined by
the volume of w*

p, red implys high volume while blue implies
empty set. Figure 3B shows the volume of Pr and Pl along the
x − axis, i.e., along the centerline of the glovebox ports, while
Figure 3C shows the reduced volume forPp

r andPp
l . The increase

in manipulator capacities can be observed as the arms align with
the glovebox ports.

3 INCREASING STABILITY USING
SUPPORT CONTACTS

As nuclear facilities reach the end of their life cycle they must be
decommissioned in a safe and efficient manner. A particularly
dangerous task is the decontamination of gloveboxes that have been
previously used to manipulate radioactive material. Although a
robotic system that is specifically designed for glovebox operations
may be the best solution, humanoid robots are an attractive option
since they can operate in a variety of environments and use tools
that are designed for humans. While conducting operations within
the glovebox, the constraints imposed by the ports, gloves, and the
external structure, which effectively fix the arms at the entry points,
must be considered. The inability to alter body configuration greatly
diminishes the robot’s capacity to take steps in arbitrary directions.
This in turn leads to a danger of toppling during task execution as
the system cannot easily change the support polygon’s location.

Toppling occurs when the ZMP leaves the support polygon
(SP) (Vukobratović and Borovac, 2004). If the SP cannot be
displaced, alternative methods to maintain stability must be
employed. For example, in (Rasheed et al., 2018), the ZMP

position for a cable-driven mobile robot is modified online by
a tension distribution algorithm. In (Khatib and Chung, 2014), it
is shown that the SP size can be increased by using supplementary
contact points. Similar to these approaches, we propose to exploit
the contacts in the glovebox (i.e., leaning on the entry ports) in
order to shift the ZMP towards the center of the SP while
performing manipulation tasks.

This section presents our work on planning kinematic
motions with support contacts without a predefined contact
schedule that maintains the stability of the ZMP. To
accomplish this, we model rigid-body contacts using
complementarity constraints and solve a nonlinear constrained
optimization for joint velocities and contact forces. Owing to the
differentiable contact model, gradient-based optimization can
reason about contacts between the robot arms and the
glovebox ports. This optimization also respects constraints that
ensure an object is grasped by the end effectors, the ZMP is in a
safe region, and the deviation of the object’s position from a
desired position is acceptable. Furthermore, we present a null-
space-based torque controller that prioritizes the stability,
i.e., generating the support forces, and projects the torques
needed for the manipulation task onto the null space of the
support forces. The proposed methodology is tested through
2.5D, quasi-static simulations by considering a humanoid
robot with two planar arms manipulating a relatively heavy
object on an elevated plane representing the glovebox.

3.1 Related Work
For planning amotion with contact interactions, both the discrete
contact events (e.g., making/breaking contacts at certain

FIGURE 1 | Valkyrie inserting right arm into a glovebox and the evaluation of the manipulability polytope (red) and constrained manipulability polytope (blue) of the
right arm. A video of the task is available here: https://www.youtube.com/watch?v�FzlhsLH5IPU.
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FIGURE 3 | The space is discretized into 3D voxels. (A) At each voxel, the IK solution is obtained for the left arm (left images) and the right arm (right images). The
corresponding volume of the CMP is calculated for each voxel, giving a good understanding of the robot’s workspace. A video is available here: https://youtu.be/
jc7X4WakdoE (B) The MP’s volume wp, i.e, for the left (left image) and the right (right image) end effectors. The black square shows the location of the glovebox front
edge. (C) The CMP’s volume w*

p for the left (left image) and the right (right image) end effectors. High manipulability is possible far from the glovebox, the
manipulability is extremely limited once either arm enters the glovebox.

FIGURE 2 | Valkyrie inserting both arms into a glovebox shown at four timesteps along with the coordinating polytopes, Pr ∩ l and Pp
r ∩ l evaluated at the right end

effector. A video of the task is available here: https://youtu.be/1Nouc4f_rIY.
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locations) and the continuous variables (e.g., joint positions,
contact forces, stability constraints) must be considered. One
approach is to use a contact-before-motion planner such as those
presented in (Hauser et al., 2005; Escande et al., 2013). In this
case, first, a sequence of contacts at predefined locations is
determined, then a continuous motion is planned subject to
contact constraints. In contrast, in a motion-before-contact
planner, the contacts are obtained as a result of the motion
planning (Escande et al., 2013). Alternatively, contact-implicit
motion planning (also known as, motion planning through
contacts) can be used to plan for smooth motions and contact
events at the same level.

In contact-implicit motion planning, a differentiable contact
model is used to enable gradient-based optimization to reason
about contacts. Complementarity constraints are widely used to
model rigid-body contacts with friction, as proposed in (Stewart
and Trinkle, 1996; Anitescu and Potra, 1997). (Yunt and Glocker,
2005; Posa et al., 2014) use complementarity constraints to model
contacts in a trajectory optimization problem. The main idea here
is to consider the contact-related parameters as additional
optimization variables such that the contact events evolve
along with continuous motion variables. Such an optimization
problem can be solved locally through constrained nonlinear
optimization algorithms such as sequential quadratic
programming (Anitescu and Potra, 1997; Fletcher and Leyffer,
2004).

Once a kinematic motion with contact interactions is planned,
it can be executed using a null-space-based controller. Park and
Khatib (Park and Khatib, 2006) proposed a torque control
framework for humanoid robots with multiple contacts and
verified the method experimentally in (Park and Khatib,
2008). Moreover, they extended this method to a unified
hierarchical whole-body control framework for humanoid
robots in (Khatib et al., 2008). In this framework, tasks are
hierarchically ranked. Thus, the torques required for a lower-
priority task are projected onto the null-space of the Jacobian
matrix associated with a higher-priority task. In (Henze et al.,
2016a), a whole-body torque controller for humanoid robots is
proposed that combines passivity-based balancing proposed in
(Henze et al., 2016b) with a hierarchical null-space-based control
that is similar to (Khatib et al., 2008).

3.2 Methodology
3.2.1 Static Equilibrium
For being balanced, the robot needs to be in static equilibrium
(Vukobratović and Borovac, 2004). In this case, the static
equilibrium of the system can be evaluated considering the
following wrenches: the wrench due to the robot’s mass, the
wrenches at the end effectors due to the object wrench, and the
wrenches at the support contact points. Henceforward, we
enumerate the left and right arms as the first and second
arms, respectively.

In the static equilibrium, the net force must be zero:

∑ f � 00f r +mg +∑2
i�1

f si +∑2
i�1

f ci � 0, (19)

wherem is the total mass of the robot, gb[0, 0,−g]T is the gravity
vector, f si ∈ R3 is the force at the support point between the ith

arm and the glovebox port, f ci ∈ R3 is the force at the contact
point between the object and the ith end effector, and f r ∈ R3 is
the ground reaction force.

Additionally, the projection of the net moment, M onto the
horizontal xy plane must be zero, i.e., Mx � 0 and My � 0:

∑MH � 00(pr × f r)H + (pCoM ×mg)H +∑2
i�1

(psi
× f si +Ms,i)H

+∑2
i�1

(pci
× f ci +Mc,i)H � 0, (20)

where aH denotes the horizontal projection of a vector a,
pr , pCoM , psi, pci ∈ R3 are the positions of the ground reaction
force (i.e., the ZMP), the robot’s center of mass (CoM), the
support points on the glovebox ports and the contact points on
the object, with respect to the world frame. Ms,i,Mc,i ∈ R3 are
the moments at the support and grasp points. The position of
the ZMP, pr , is obtained by solving (Eq. 19, 20)
simultaneously. In order to avoid toppling, the ZMP must
lie in the support polygon (SP), namely, the convex hull of the
robot’s feet. The object wrench ho ∈ R6 can be obtained in
terms of the wrenches applied by the end effectors as follows
(Caccavale and Uchiyama, 2016):

ho � [Wc1 Wc2 ][ hc1

hc2
] � Whc, (21)

using the wrench matrix Wci ∈ R6×6 that transforms the wrench
at the ith contact point, hci ∈ R6, to the wrench at the origin of the
object frame, that is the center of the object in this case, and
given by:

Wci � [ I3 03
−r̂ci I3

⎤⎦
,

(22)

where r̂ci is the skew-symmetric matrix representation of the
vector from the ith contact point ci to the origin of the
object frame, and I3 and 03 are 3 × 3 identity and zero
matrices. Then, given the object wrench, the wrenches at
the end effectors can be calculated from hc � W+ho, where
W+ is the Moore-Penrose pseudo-inverse of the matrix
W ∈ R6×12.

3.2.2 Motion Planning
In this work, we ignore the dynamic effects and investigate the
quasi-static case for dual-arm manipulation of an object in a
confined space, i.e., a glovebox. In the following, robot’s joint
positions and velocities are denoted by q and _q, while those of the
ith arm are referred to as qi and _qi. The objective is to preserve the
robot’s balance during the manipulation task. In other words, our
goal is to find the joint positions that would keep the robot’s ZMP
in a safe region by leaning on the glovebox ports while
simultaneously maintaining the manipulated object’s desired
position. For this purpose, we form a nonlinear constrained
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optimization and solve it for the joint displacements and the
support contact forces.

In order to take into account the rigid-body contacts between
the robot and the glovebox ports, we use the following
complementarity constraints, as in (Anitescu and Potra, 1997;
Posa et al., 2014):

ϕ(q)≥ 0, (23a)

γ≥ 0, (23b)

γTϕ(q) � 0, (23c)

where ϕ(q) ∈ Rnp is the vector of signed distance for np contact
pairs, i.e., each pair comprises of a robot’s link and a contact
candidate in the environment; and γ ∈ Rnp is the vector of the
magnitude of normal support force. (Eq. 23a) prevents any
interpenetration, (Eq. 23b) ensures that the bodies can only push
each other, and (Eq. 23c) allows force generation only when bodies
are in contact. Thus, only one of these variables (either ϕ(q) or γ)
can be non-zero for a given time and contact pair. We relax the
complementarity condition (Eq. 23c) by converting it into an
inequality constraint through a slack variable and penalizing the
slack variable in the cost so that potential numerical issues are
mitigated, as described in (Fletcher and Leyffer, 2004; Manchester
and Kuindersma, 2017). For numerical efficiency, the
complementarity constraints, including the relaxation, are
evaluated elementwise, i.e., separately for each contact pair.

As a result, the following optimization problem is solved for the
joint displacements Δqbqk+1 − qk, the magnitudes of the normal
contact forces at the support points γ, and the slack variables s:

minimize
Δq,γ,s

w1

����pe
o

����2 + w2

����Δq����2 + w3‖s‖2 (24a)

subject to :

ϕ(q), γ, s≥ 0, (24b)

γTϕ(q)≤ s, (24c)

cg(q) � 0, (24d)����pd
r − pr

���� ≤ rs, (24f)����pe
o

���� ≤ ro, (24g)

where ‖ · ‖ is the Euclidean norm, wi is the weight (a positive
scalar) associated with the ith term of the cost function, peo is the
deviation of the object’s position from the desired position,
cg(q) � 0 ensures that the end effectors are grasping the
object, pdr is the desired position of the ZMP (i.e., the center
of the SP), and rs and ro are the radii of the safe circle (SC) for the
ZMP and the admissible sphere for the object position.

3.2.3 Torque Control
Using this optimization procedure, the robot configuration and
the support forces’ magnitude are obtained. Nevertheless, a
torque controller is necessary to execute the planned motions.

The torques necessary to generate the desired object wrench τh
can be obtained as:

τh � [ JT1 0
0 JT2

]W+ho � JTW+ho (25)

Ji ∈ R3×4 is the kinematic Jacobian matrix that maps the joint
velocities to the translational end-effector velocities for
the ith arm.

The support forces are oriented normal to the contacting robot
geometry. Hence, using the contact angle βi and the normal force
magnitude γ, the support force for the ith arm can be calculated as:

f si � [ cicos(βi) cisin(βi) 0 ]T . (26)

Similarly, the joint torques required to generate these forces,
denoted as τs, can be calculated as described in (Park and Khatib,
2008). In our case, there is a maximum of two supports points at a
given time, therefore:

τs � [ JTs1 0
0 JTs2

][ f s1
f s2

] � JTs f s. (27)

Jsi ∈ R3×4 is the Jacobian matrix that maps the joint velocities
of the ith arm to the translational velocities at the support point.

For the glovebox task, the support forces are crucial to
maintain the stability of the robot, while generating the
desired object wrench has a lower priority. Thus, we compose
the joint torques, τ such that the manipulation torques τh are
projected onto the null space of the stability torques:

τ � τs +Nsτh, (28)

where

Ns � Ind − JTs (J+Ts ) (29)

is the null space projector of the support forces, and nd is the DOF
of the whole robot. Consequently, the resulting joint torques
would generate the desired support forces to ensure the balance of
the robot and create an object wrench using the redundancy of
the robot.

3.3 Results
To test the proposed framework, we run simulation experiments
in which a humanoid robot that has two planar 4-DOF arms with
revolute joints manipulates a relatively heavy rigid bar on an
elevated plane. The robot’s arms pass through two ports
representing the glovebox. We neglect the dynamics
(i.e., velocities and accelerations) and assume point contacts
without friction. The weights are selected as w1 � 103,
w2 � 102, and w3 � 106. The initial values for all the decision
variables are zero. The radii of tolerance circles for the ZMP and
the object position are selected as rs � 0.15 m and ro � 0.1 m. The
masses of the robot and the object are 54 kg and 12 kg. The
desired motion of the object is in +y direction; hence, the desired
object wrench to generate an acceleration in this direction is given
as ho � [0, 10,−117.72, 0, 0, 0]T .

We investigate the task of moving the object 40 cm forward on
a straight path that consists of nine equally spaced waypoints. The
results are depicted in Figure 4. Each step of the motion is
indicated by a color from blue to red. In the initial configuration
(indicated by blue), the robot grasps the object from both ends.
During the simulation, the position of the ZMP is calculated with
and without the effect of the support contacts on the glovebox
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frame. The latter is known as the fictitious ZMP (FZMP)
(Vukobratović and Borovac, 2004) and may fall outside of the SP.

The results show that the contact-implicit motion planning
method can increase the stability of the robot using support
contacts while performing the manipulation task. The robot
makes contacts with the glovebox to maintain its balance
while moving the object on the desired path. As soon as the
FZMP leaves the SR in the second step, the right arm makes a
contact with the left end of the port to push the ZMP into the SR.
As the object moves further away from the base, the contact angle
is varied so that the magnitude of the support force in
−x-direction is larger. This is required due to the circular
shape of the SR. However, as object moves further from the
base, simply changing the contact angle is no longer sufficient,
thus the left arm also makes contact with the right end of the left
port. As a result, the object is successfully transported along the
desired path with a position error of 0.1 m (i.e., the allowed
deviation) in each step after the initial configuration.

A zoomed-in version of the SP area is depicted in Figure 4B to
show the change of the ZMP and the FZMP throughout the
simulation. Even though the FZMPmoves forward along with the
object’s position and leaves the SP eventually, the ZMP does not
leave the SR owing to the support forces. It is also noted that, in
Step 7 (indicated by yellow), the ZMP is more centralized with
respect to the y axis compared to the other steps due to the
symmetry of the support forces.

Figure 5 show the magnitudes of the support forces and the
joint torques with respect to the distance between the object and
the robot’s base. The magnitudes of the support forces are much
larger than the magnitude of the object wrench, and therefore the
torques are much more affected by the support forces than the
object wrench. This is why force and torque vs. distance
characteristics are quite similar—i.e., the torque is dominated
by the support forces (especially after Step 5). Moreover, the
changes of

����f s���� and ‖τ‖ with the distance are almost linear, as one

may anticipate. Apart from this, the magnitude of the support
force on each arm is quite similar to each other in Step 7, as
consistent with the observation regarding the more centralized
ZMP in this step. Except for Steps 1 and 7, the magnitude of the
support force on the right arm is always bigger than the one on
the left arm, which shifts the ZMP in +x direction. Such an
unbalanced distribution of forces might be undesirable since
higher joint torque limits would be required. Thus, enforcing a
more uniform distribution of the support forces may be a
future work.

4 DYNAMIC NON-PREHENSILE
MANIPULATION

There is an increasing need to carry out decontamination and
decommissioning tasks in safe and effective manner. A
particularly dangerous task is glovebox decontamination and
decommissioning that typically involves transporting debris
and objects from the interior of the glovebox to an exit port,
where they are bagged and removed (Long et al., 2018; Önol et al.,
2018). Such tasks do not always require dexterous manipulation
behaviors and instead simply require objects to be push from the
interior to the exit port of a glovebox.

Contact-implicit trajectory optimization (CITO) is a
promising method to generate contact-rich behaviors given
only a high-level definition of a task. In this approach, a
differentiable contact model is used to enable gradient-based
optimization to reason about contacts such that discrete contact
events and continuous trajectories are found simultaneously as a
result of smooth optimization.

In this section, we present a CITO method based on a variable
smooth contact model to plan dynamic non-prehensile
manipulation behaviors for a 7-DOF robot arm in a highly-
constrained environment. We demonstrate that the proposed

FIGURE 4 | (A) Planned motion for carrying an object on a straight path. (B) Zoomed in change of the ZMP and the FZMP (i.e., fictitious ZMP without supporting
contacts). throughout the task.
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method can solve complex tasks despite tight constraints imposed
by the environment by exploiting the smooth virtual forces.
Moreover, we experimentally verify that the physical
inaccuracy introduced by the residual virtual forces is
admissible and the motions found by this framework are
realistic enough to be run on the hardware.

4.1 Related Work
Complementarity constraints are widely used to model rigid-
body contacts in trajectory optimization (Yunt and Glocker,
2005; Posa et al., 2014; Gabiccini et al., 2018). This approach
can find complex motions, but it typically suffers from poor
convergence speed. Thus (Tassa et al., 2012; Mordatch et al., 2015;
Mastalli et al., 2016; Neunert et al., 2016; Manchester and
Kuindersma, 2017), use smoother fragments of the
complementarity constraints. (Neunert et al., 2017; Giftthaler
et al., 2017; Marcucci et al., 2017; Neunert et al., 2018), on the
other hand, define contact forces as a smooth function of
distance, i.e., a smooth contact model. Using such a contact
model, highly-dynamic complex motions for a quadruped robot
are planned and executed in real-time in (Neunert et al., 2018).
However, it is difficult to tune smooth contact models (Carius
et al., 2018), and the resulting motions may be physically
inaccurate due to the non-physical contact forces that act
from distance. In order to address these problems, we have
recently proposed a variable smooth contact model (VSCM)
(Önol et al., 2018) that injects virtual forces to the
underactuated dynamics with frictional rigid-body contact
mechanics, such that the states of the manipulator and the
objects are coupled in a smooth way. Furthermore, the
smoothness of the contact model is adjusted by optimization
such that large virtual forces are permitted in the initial phases of
optimization but vanish as the optimization converges. As a
result, the VSCM improves the convergence of CITO without
compromising the physical fidelity of resulting motions.

CITO has been used for animated characters (Mordatch et al.,
2021a; Mordatch et al., 2012b) and in robotics (Tassa et al., 2012;
Posa et al., 2014; Mordatch et al., 2015; Mastalli et al., 2016;
Manchester and Kuindersma, 2017; Neunert et al., 2017; Carius
et al., 2018; Neunert et al., 2018; Winkler et al., 2018). Although
this method is task independent and can be generalized to both
locomotion and manipulation problems, the majority of the

related literature considers only the former. On the other
hand, in (Mordatch et al., 2012a; Posa et al., 2014; Gabiccini
et al., 2018), manipulation tasks are investigated but their analyses
are either limited to a planar case or based on animated characters
where physical fidelity is not critical. Recently (Önol et al., 2018,
2019, 2020; Sleiman et al., 2019), used CITO for non-prehensile
manipulation tasks. Yet, they consider only tabletop pushing
scenarios. Moreover, in general, experimental results in this
domain are very limited, albeit with some notable exceptions
(Mordatch et al., 2015; Mastalli et al., 2016; Neunert et al., 2017,
2018; Giftthaler et al., 2017; Carius et al., 2018; Winkler et al.,
2018; Sleiman et al., 2019). Nonetheless, to the best of our
knowledge, there is no experimental verification of CITO for
constrained dynamic manipulation.

4.2 Methodology
4.2.1 Dynamic Model
The dynamics of an underactuated system consisting of an
na-DOF manipulator and nu-DOF objects that are subject to
frictional rigid-body contacts and virtual forces is given by

M(q)€q + c(q, _q) � STa τ + JTc (q)λc + STuλv , (30)

where qb[qTa , qTu ]T ∈ Rna+nu is the configuration vector;
M(q) ∈ R(na+nu)×(na+nu) is the mass matrix; c(q, _q) ∈ Rna+nu is
the bias term comprising of the Coriolis, centrifugal, and
gravitational effects; Sa � [Ina×na 0na×nu] is the selection matrix
for the actuated DOF and Su � [0nu×na Inu×nu] is the selection
matrix for the unactuated DOF; τ ∈ Rna is the vector of
generalized joint forces; λc ∈ R6nc is the vector of generalized
contact forces at nc external contact points and
Jc(q) ∈ R6nc×(na+nu) is the Jacobian matrix mapping the joint
velocities to the Cartesian velocities at the contact points, and
λv ∈ Rnu is the vector of generalized virtual forces on the
unactuated DOF. For nf free bodies in SE (Eq. 3) (e.g.,
objects), nu � 6nf . The state of the system is represented by
xb[qT _qT ]T ∈ Rn where n � 2(na + nu).

In this study, τ is decomposed as τ � τu + ~c, where ~c ∈ Rna is
an estimation of the non-zero part of STa c(q, _q) and τu ∈ Rna is
the vector of control variables in terms of generalized joint forces.
As a result, the control term τu is linearly related to the joint
accelerations in the absence of external contact.

FIGURE 5 | The magnitudes of (A) the support forces vs. the distance of the object from the base, and (B) the joint torques vs. the distance of the object from
the base.
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4.2.2 Contact Model
The virtual forces generated by the contact model acts upon the
unactuated DOF in addition to the external rigid-body contacts.
Consequently, the robot’s and objects’ dynamics are related
through the virtual forces. We assume an exponential
relationship between the magnitude of the normal contact
force c and the signed distance between paired contact
geometries ϕ, as depicted in Figure 6. While frictional forces
are not considered in this contact model, the rigid-body contact
mechanics [i.e., λc in (Eq. 30)] are frictional. Hence, the resulting
motions include frictional contacts once the virtual forces vanish.

For the ith contact candidate, the magnitude of the normal
contact force is calculated from the virtual stiffness ki and αi that
determines the curvature:

ci(x) � kie
−αiϕi(x). (31)

This model is analogous to a spring model and (Marcucci
et al., 2017) lists several reasons for not using damping (i.e., a
velocity term) in such a contact model. The corresponding virtual
force effective at the center of mass of the free body associated
with the contact candidate λv,i ∈ R6 is:

λv,i(x) � ci(x)[ I3
l̂i
]ni(x), (32)

where I3 is 3 × 3 identity matrix; li is the vector between the end
effector and the center of mass of the object that is associated with
the contact candidate; l̂i is the skew-symmetric matrix form of li;
and ni ∈ R3 is the unit vector that is normal to the contact surface
on the object. Hence, the net virtual force on an object is the sum
of the virtual forces associated with the contact candidates on that
object.

In the variable smooth contact model, the virtual stiffness k for
each time step and contact pair is a decision variable of
optimization and initialized with a large value such that there
is a non-zero virtual force on each contact candidate.

Nonetheless, the virtual forces are penalized as an integrated
cost, so that they vanish as the optimization converges, see
Figure 6. This approach helps to discover contact candidates
that are initially distant.

4.2.3 Trajectory Optimization
In this study, the optimal control problem is transcribed into a
finite-dimensional nonlinear constrained optimization by
assuming constant control inputs over N discretization
intervals. Final cost terms penalize the deviations of the
objects’ poses from desired poses, peo and θeo. Integrated cost
terms are defined in terms of the velocities _x and the virtual forces
γ. As a result, the final and integrated components of the cost (cF
and cI) are calculated in terms of the weights w1,...,4, the control
sampling period tc by:

cF � w1

����pe
o

����2 + w2

����θeo����2, (33a)

cI � tc∑
i�1

N (w3‖ _xi‖2 + w4

����γi����2). (33b)

The following optimization problem is solved by a sequential
quadratic programming (SQP) algorithm by rolling out the
dynamics:

minimize cF + cI
τu,1,...,N , k1,...,N

(34a)

subject to : τu,L ≤ τu,1,...,N ≤ τu,U , 0≤ k1,...,N ≤ k0. (34b)

The lower and upper bounds for the control variables τu,L and
τu,U are determined from the torque limits of the robot. However,
it is noted that the bias in the torque decomposition, ĉ, is not
considered while setting the torque limits. The virtual stiffness
variables are bounded above by their initial values k0, which is
selected as a large value to facilitate convergence.

4.3 Experiments
4.3.1 Application: Non-Prehensile Manipulation in a
Glovebox
Our overall objective is to enable a robot to carry out such
manipulation tasks with only high-level commands such as
desired object poses. Figure 7D shows Sawyer, a 7-DOF robot
arm, and a mock-up glovebox environment. Non-prehensile
manipulation is advantageous in this case, as the highly-
constrained environment means that grasp configurations are
difficult to obtain. Thus, we consider non-prehensile
manipulation tasks in a glovebox.

The proposed method is tested in three different scenarios of
increasing complexity: 1) pushing an object on a table, Figure 7A-
C 2) pushing an object in a glovebox, Figure 7D-F, and 3) ejecting
an unreachable object from the glovebox by exploiting physical
interactions in the environment, Figure 7G-I. In the first case,
there is a (red) box on a table and the task is to move it 20 cm
along the x axis, see Figure 7A for the reference frame. In the
second case, the task is to move the object 10 cm along the −y axis
in the glovebox, Figure 7D. In the last case, two boxes that are
placed next to each other are considered, as shown in Figure 7G,
and the task is to eject the one that is further away from the robot
(i.e., the blue box) from the glovebox. In other words, this task

FIGURE 6 | The relationship between the virtual force and the distance.
k0 represents the initial value of the virtual stiffness k, and the arrow shows the
evolution of the virtual forces throughout optimization.
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requires moving the blue box at least 15 cm along the −y axis so
that it will leave the glovebox through the exit port. In all cases,
the desired rotation is zero.

4.3.2 Experimental Setup
In the experiments, standard and commercially-available
hardware2 is used in order to facilitate reproducibility. The
dynamics is modeled using MuJoCo physics engine (Todorov
et al., 2012) with time steps of 5 ms while the control
sampling period is 50 ms. The SQP solver SNOPT (Gill
et al., 2005) is used to solve the optimization problem. As an
interface between MuJoCo and SNOPT, IFOPT (Winkler et al.,
2018) is employed. The planned position, velocity, and
acceleration trajectories are interpolated with 10 ms steps
and executed on the robot by using the built-in inverse
dynamics feed-forward controller of Sawyer. For detecting
the poses of the objects and the glovebox through the head
camera of Sawyer, AprilTag 2 algorithm (Wang and Olson,
2016; Malyuta, 2017) is used.

For all cases, the weights are w1 � 103, w2 � 103, w3 � 1, and
w4 � 1. The initial trajectory is set at zero torque values. The initial
value and the upper bound for the virtual stiffness is 5 N/m for the
red box and 1 N/m for the blue box, since the blue box is lighter
than the red box. α in Eq. 31 is selected such that c � k0 × 10−2 for
each contact candidate in the initial configuration. Namely, the
optimization is started with a trivial initial guess in which the robot
stands still for the whole simulation, and there is no heuristic
regarding the contact interactions for any task.

4.4 Results
Figure 7 demonstrates initial, intermediate, and final snapshots
from the experiments. Table 1 shows the position and orientation
deviations for the object (

����peo���� and ����θeo����) for the simulation and
hardware experiments and the discrepancy between them.
Additionally, the physical inaccuracy caused by the residual
virtual forces ψ � tc∑

i

����γi���� is shown for the simulations. For the
last case, only δ

����peo���� and δ����θeo���� for the red box are shown since the
blue box is ejected (i.e., could not be tracked) and there is no
desired pose for the red box.

Despite the trivial initial guess and no additional tuning for
different tasks, the proposed method is capable of finding a
motion that successfully completes each task in simulation.
That is, the object is moved to within 1-cm radius of the
desired position while the change of orientation is negligible

FIGURE 7 | Snapshots from the hardware experiments: pushing an object on a table (A–C), pushing an object within a glovebox (D–F), manipulating an
unreachable object by exploiting inter-object contacts (G–I).

2Information regarding the glovebox (https://www.belart.com/bel-art-h50026-0000-
sidentry-glove-box-30-x-24-x-24.html): and the objects (http://www.melissaanddoug.
com/deluxe-jumbo-cardboard-blocks—40-pieces/2784.html): are available online.
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(i.e., smaller than 15°). It is noteworthy that in the second and
third cases, the glovebox port imposes tight constraints on the
motion and the workspace of the robot, yet still our method can
handle this without any additional penalties or constraints for
collisions with the glovebox or tuning. Moreover, the last task
requires the blue box to have a high velocity when the contact
between it and the red box is broken because when the red box
collides with the yellow box that is under the blue box, the red box
cannot apply a force on the blue box anymore and the blue box
would still be in the glovebox. Thus, using a non-dynamic planner
or running the resulting motions through a position controller
without velocities and accelerations would not work in this case.

A more detailed numerical analysis of the experiments is given
in the following. In the simulation for Task 1, the box is moved
19.8 cm along the x axis and 0.7 cm along the y axis; whereas, in
the hardware experiment, the box is pushed only 15 cm along the
x axis and 0.5 cm along the y axis. For Task 2, the displacements
of the box along the −y and x axes are 9.8 and 0.8 cm in the
simulation. In the experiment, the box is moved 8 cm along the
−y axis, which is satisfactory, but also 7 cm along the −x axis due
to the relatively large rotation (ca. 20°) about the z axis. In Task 3,
the blue box is ejected from the glovebox, namely the task is
completed, both in the simulation and the hardware experiment.
Since the final position of the blue box could not be detected in
the experiment, only the final positions of the red box are
compared here. In the simulation, the red box is moved
10.8 cm along the −y axis and 0.4 cm along the −x axis, and
these quantities are 7.5 and 0.3 cm for the hardware experiment.

On average, the position and orientation discrepancies
between the simulation and hardware experiments are 5 cm
and 12°. Such differences can be deemed reasonable since we
playback the planned trajectories on the robot using a naive joint-
level controller, i.e., without a closed-loop controller that tracks
and compensates for the deviation of the object’s trajectory from
the planned one. The deviations of the executed motions from the
planned motions are expected considering errors caused by
modeling and perception. The main goal of this study is to
show that the proposed method can solve for complex tasks
by exploiting the smooth virtual forces and the residual non-
physical forces do not hinder the task performance.

5 IN-SITU TERRAIN CLASSIFICATION AND
ESTIMATION

Robust locomotion on deformable terrains is necessary for biped
humanoid robots to perform tasks effectively in unstructured

environments. The knowledge of deformable terrain properties,
particularly the stiffness, has major implications in modeling the
robot walking dynamics, which is the key to achieve stable gait
patterns. Prior studies on walking stabilization chose to model
such walking dynamics using pre-identified stiffness or damping
constants (Wittmann et al., 2016; Wu et al., 2018; Hashimoto
et al., 2012). However, it is unlikely for robots to access such
terrain properties in advance when deployed to unknown
environments.

In this section, we present an in-situ ground classification and
estimation method that can be used to improve the stability of the
robot while traversing unknown terrain, utilizing NASA’s
humanoid robot Valkyrie (Radford et al., 2015). The terrain
estimation works in two steps: i) The robot tries to identify
the terrain type from a database. If the terrain is recognized, all
needed data can be retrieved and used by the controller. ii) If the
terrain is classified as an unknown type, the robot then estimates
its stiffness by using Bernstein-Goriatchkin (Ding et al., 2013;
Caurin and Tschichold-Gurman, 1994) pressure-sinkage model.
The estimated stiffness can then be fed to stabilizers such as the
one proposed in (Hashimoto et al., 2012).

5.1 Related Work
Our study on robot foot-terrain interaction is inspired by
(Skonieczny et al., 2014), where the interaction between soil
and single wheel is analyzed using optical flow techniques.
Computer vision techniques have been widely used for terrain
classification in the past (Weiss et al., 2008; Brandão et al., 2016).
However, due to the poor lighting conditions in the outer space, it
is desirable to augment vision-based techniques with a terrain
classification approach that relies on physical contacts between
the robot foot and the terrain. We thus aim at providing a “sense-
of-walking” to the robot by using on-board sensors. In (Walas
et al., 2016; Otte et al., 2016), ankle mounted force/torque sensors
and accelerometers are used, respectively, to achieve terrain
classification. Our approach is comparable to (Otte et al.,
2016) as Recurrent Neural Networks (RNNs) are used but
they differ in the aspect that we perform terrain classification
with a bipedal robot while (Otte et al., 2016) uses a wheeled
mobile robot. To describe terrains’ properties under pressure,
various pressure-sinkage models have been studied in the past
(Komizunai et al., 2010; Ding et al., 2013). There is no common
opinion on which model is better than others. We choose
Bernstein-Goriatchkin model considering it is one of the most
commonly used models and it is relatively easy to implement. The
method we developed for terrain estimation can be viewed as an
extension of (Will Bosworth1 and Hogan, 2016), where spring

TABLE 1 | Numerical results from simulation and hardware experiments for all cases.

Task Simulation Experiment Discrepancy

ψ [N-s]
����pe

o

���� [m]
����θeo���� [rad]

����pe
o

���� [m]
����θeo���� [rad]

����pe
o

���� [m]
����θeo���� [rad]

1 0.8847 0.0025 0.2772 0.0495 0.0112 0.0470 0.2660
2 1.0698 0.0085 0.1222 0.0777 0.3404 0.0692 0.2182
3 0.1466 N/A N/A 0.0336 0.1562
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model is used to estimate the ground stiffness by measuring the
force and leg displacement during the interaction between a
quadrupedal robot, Super Mini Cheetah (SMC), and the
ground. Since SMC has spherical shaped feet, point contacts
are used when modeling the foot-terrain interaction. This is not
applicable for bipedal robots with flat soles because the support
force on sole is distributed unevenly. To overcome this challenge
(Caurin and Tschichold-Gurman, 1994), develops a special
sensor system consisting of multiple sensor cells to measure
the force distribution. Instead of using additional sensors, our
approach achieves estimation for stiffness using a single load cell
which provides only a net force measurement.

5.2 Terrain Classification
To study the foot-ground interaction, we designed a set of
experiments involving Valkyrie interacting with four types of
terrains, including wood mulch, rubber mulch, mason sand, and
gym foam mats. A custom sandbox, as seen in Figure 8, was built
for Valkyrie to stand in and perform a set of pre-designed
motions. Half of the sandbox is covered by a wood plate,
where Valkyrie can stand stably, and the other half is filled
with specified deformable ground materials to be tested. The
sandbox is not used when testing on the gym foam mat, which
Valkyrie can stand on directly. The data for terrain classification
and estimation is collected by commanding Valkyrie to perform a
touch-land motion.

Valkyrie starts from standing on the wood plate of the sandbox
and then moves the right foot onto the terrain. During this
motion, Valkyrie slowly moves the center of mass (CoM) from
the left foot to the center of the two feet (Figure 8). The support
force on the right foot increases from zero to approximately

650 N, which is about half the weight of Valkyrie, in this process.
Valkyrie then moves the right foot back onto the wood plate and the
motion is finished. The right foot force and torque changes during
this motion are measured by the load cell. Meanwhile, the right foot
sinkage in the terrain is also calculated using joint positions.

One method to calculate the foot sinkage, δ, is to use the
kinematic chain of the robot. Transformation matrix from
coordinate frame RightFoot1 to RightFoot2 is denoted with
R1TR2 representing the transformation of the right foot at two
different poses. RightFoot1 corresponds to the foot pose when the
foot makes contact with the terrain. Since Valkyrie keeps its foot
flat during the swing, it is reasonable to take RightFoot1 as the
fixed ground frame. RightFoot2 is the frame when the foot sank in
the soft terrain. There could be many different choices for
RightFoot2. Using the transformation R1TR2, we can attain the
position for each specific point of the sole relative to ground as
R1TR2 · P, where P � [x, y, 0, 1]T is the coordinates in RightFoot2
frame. The sinkage δxy can then be represented as the third
element of R1TR2 · P, denoted as R1TR2 · P · P(3). To get R1TR2, we
introduce a third coordinate frame LeftFoot. Since Valkyrie’s left
foot is stationary during the experiments (right foot taking the
step), we take LeftFoot as the reference coordinate frame. Using
the robot’s kinematic chain, we can get LTR1,

LTR2, and thus
R1TR2.

We use RNNs, particularly Long Short-Term Memory
(LSTM) network, to classify the terrain. Comparing to other
classification methods such as Support Vector Machine (SVM),
the use of RNNs gains us two advantages. First, our method can
be applied to a raw data stream rather than accumulated data over
time, thus, we can achieve terrain classification in real-time.
Second, it has been shown that RNNs have better performance

FIGURE 8 | Valkyrie is performing the touch-land motion. The red arrow represents CoM and yellow arrow represents support force on each foot.
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than SVM (Otte et al., 2016) and we achieved 95% accuracy on
average during experiments.

Fifteen features are selected as input for the LSTM network,
which are: right foot force in X, Y, Z directions, right foot torque in
X, Y, Z directions, pitch/roll angular displacement/acceleration of
the right ankle, pitch/roll angular torque of the right ankle, and the
right foot sinkage, represented by the first three elements on third
row of the transformation R1TR2. One data set is collected when
Valkyrie performs one touch-land motion for one specific terrain.
In total, we collected 30 data sets for the foam mat, 30 data sets for
the wood mulch, 34 data sets for the rubber mulch, and 42 data sets
for the sand. 90%of the data sets (118 data sets) are used for training
and the rest (18 data sets) are used for testing. The LSTM network
thus has 15 input neurons, one hidden layer with 64 hidden blocks
and one linear output layer with four neurons. A softmax function
is used to determine the terrain type. For each experiment run, the
model is trained with a fixed learning rate of 0.0005 for 16 epochs.
To track the performance of our model, the prediction accuracy is
calculated using the test data set after each training epoch. Out of
the five experiment runs, we achieved 100% prediction accuracy for
four runs and 89% accuracy for the remaining one.

5.3 Terrain Estimation
Although the RNN based classification method works well, there
are chances that Valkyrie may encounter with terrains of
unknown type. To handle such situations, a method that can
estimate an unknown terrain’s stiffness, which governs the foot
sinkage behavior under load, is desired.

5.3.1 Terrain Stiffness Model
To describe the terrain’s stiffness, the well-known pressure-
sinkage model developed by Bernstein-Goriatchkin (Caurin
and Tschichold-Gurman, 1994; Ding et al., 2013) is used:

σ � k · δn (35)

where σ(Pa) is the normal pressure, k(Pa/mn) and n(non −
dimensional) are the terrain parameters and δ(m) is the foot
sinkage in terrain. The two terrain parameters, k and n, are to be
estimated by using data from Valkyrie’s on-board sensors. The
challenge here is that Valkyrie uses only one 6-axis load cell
mounted at the ankle to measure support force acting on the
foot, which cannot provide a detailed force distribution upon sole.
Ideally, Bernstein-Goriatchkin model can be easily implemented to
determine the terrain stiffness when the terrain undergoes an even
and flat sinkage, as seen in Figure 9A. However, when a bipedal
robot walks on deformable terrains, the sinkage is usually non-
uniform, thus the contact surface between the foot and the ground
could be oblique, as seen in Figure 9B.

In this case, it is impractical to identify the sinkage value
corresponding to the pressure calculated from the measured force
on ankle. To handle this mismatch, we calculate the net force
acting on the sole resulting from different levels of sinkage using
the following equation

F � ∫∫
A

σ(x, y) dA � ∫y2

y1

∫x2

x1

k · δnxy dxdy (36)

where F is the net force acting on the foot, δxy is the local foot
sinkage at (x, y) expressed in the foot frame. The contact area
between the foot and the ground is defined by (x1, x2) and
(y1, y2), which are also expressed in the foot frame. These same
parameters are used to calculate the torque values for verification,
thus we pick the projection of the ankle in the foot frame as the
origin. The contact area for Valkyrie is then defined as (−0.09 m,
0.18 m) along the x-axis and (-0.08 m, 0.08 m) along the y-axis
based on the physical dimensions of the robot. Since F can be
measured directly, using Eq. 36, we obtain k and n once we know
the sinkage at different positions of the foot, i.e., δxy . The sinkage
δxy can be calculated using the same frame transformation
method described in Section 3. Eq. 36 can then be written as

F � ∫y2

y1

∫x2

x1

k · (F1TF2 · P(3))ndxdy (37)

Theoretically, if two sets of F and F1TF2 for the sinking foot of
different states are provided, we can solve for k and n using Eq.
37. It is worth mentioning that in Eq. 37, both transformation
F1TF2 and support force F can be calculated or measured in real-
time. Contact range x and y are pre-defined based on the foot
dimensions. Therefore, this method can estimate the unknown
terrain’s stiffness in-situ.

5.3.2 Experiments and Results
To test the proposed estimation method, we run four
experiments: two with gym foam mats (Gym Foam Mat one
and two), Rubber Mulch, and Mason Sand. The same touch-land
motion as described in Section 5.2 is performed by Valkyrie to
collect data for terrain estimation. The support force acting on
Valkyrie’s right foot and the frame transformation F1TF2 are
recorded during each touch-land motion. Nonlinear Least-
Squares Data Fitting (Coleman and Li, 1996) is then used to
solve for parameters k and n. Table 2 shows the estimated
parameters for four tested terrains. The pressure and sinkage
relationships of the four terrains with the estimated parameters
are depicted in Figure 10. We intuitively realize that the
estimation results are not valid for the sand. This is because
the sand is known to be stiffer than both foam and rubber mulch
but Figure 10 shows that the sand is estimated to be the softest.
The reason of inaccurate estimation for sand is that the sand
demonstrates a much smaller deformation under the same
pressure compared with the form and the rubber mulch.
During the experiments, the foam mat and the rubber mulch
have a deformation between 20 and 25 mm while the sand has a
deformation between 5 and 10 mm, which is a section that is too
short to do regression for solving k and n.

To validate the estimation results for the foam mats and the
rubber mulch, we compare ankle torques measured from the load
cell with ankle torques calculated using the estimated parameters.
We choose torque comparison as the validation approach for one
practical reason: many bipedal robots walking algorithms keep
the robot balanced by tuning torques at the ankle (Kim et al.,
2007; Kang et al., 2012). We thus posit that a set of terrain
parameters that can correctly predict torque changes can be
useful in walking algorithms for keeping robots stable on
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deformable terrain. When Valkyrie’s foot lands on the terrain, the
torque measured at the ankle should be equal to the torque caused
by the force acting on the sole around the ankle axis. Considering
the torque caused by gravity, we have.

τankle � τf + τg (38)

where τankle is the net torque measured at the ankle; τg is the
torque due to gravity, which equals to the measured torque at the
ankle during the swing; τf is the torque due to support force
resulting from terrain deformation. Since we now have parameter
k and n for the terrain, using Eq. 36, the pitch and roll torque can
then be calculated as

τpitch � ∫y2

y1

∫x2

x1

kδnxyx dxdy, τroll � ∫y2

y1

∫x2

x1

kδnxyy dxdy (39)

Figure 11 shows the comparison between the calculated
foot pitch and roll torques using estimated parameters and
measured foot pitch and roll torques from the ankle load cell.
The blue curves represent the measured results while the red
curves stand for the estimated results. The plots show that the
estimated parameters can predict the foot pitch torque well. As
for the foot roll torque, the estimated results match the trend of
torque changes with an offset of 1.5 Nm on average. One
possible source of this offset is the friction between the foot
and the terrain. The friction coefficient between the foot and the
terrain is currently not estimated and is planned as the
future work.

To numerically examine how well the estimated parameters
predict the foot pitch torque, we calculate the Normalized Root-
Mean-Square Error (NRMSE) between the estimated pitch
torques and the measured pitch torques. The Gym Foam Mat
one and two show a NRMSE of 15.9 and 15.7%, respectively,
which is the equivalent to an accuracy of 84.1 and 84.3%. While
the Rubber Mulch showed an NRMSE of 24.2%, which is an
accuracy of 75.8%. Since the estimated parameters from the Gym
Foam Mat one and two and Rubber Mulch experiments can well
predict foot pitch torque (an average accuracy of 80%) and roll
torque (same trend but with an offset), we assert that the
proposed method can be used to measure the stiffness of an
unknown deformable terrain. Future work will focus on
improving the estimation accuracy, including estimation of
friction coefficient for a thorough knowledge of unknown
terrains.

6 USER INTERFACE

Supervisory-control interfaces are an important aspect to robots
in extreme environments as you often want a human-in-the-loop
to help evaluate and make decisions for critical objectives of a task
at hand. In any supervisory-control interface, it is important to
find the balance of control between robot and human. Too much
control or autonomy on the robot side leaves the human unable to
potentially provide valuable feedback to the robot. While too
much control on the human side can leave the operator
overwhelmed with information and decision making, leaving

FIGURE 9 | Contact between the foot and ground terrain. (A) Even sinkage when the contact is flat. (B) Non-even sinkage when the contact is oblique.

TABLE 2 | Estimated stiffness parameters k and n for tested terrains using
Bernstein-Goriatchkin Model.

Terrain k (103Pa/mn) N Validity

Gym foam mat 1 1167.861 1.367 Good
Gym foam mat 2 609.296 1.212 Good
Rubber mulch 1738.93 1.45 Good
Mason sand 421146.385 3.00 Poor

FIGURE 10 | Relationship of pressure and sinkage for different terrains
using estimated parameters.
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less focus for the critical elements of a given task. Additionally, too
much control on the human side tends to increase the interface
complexity and therefore increase the amount of required operator
training to utilize the interface.

In this section, we present our work on a computer-based,
supervisory-control interface for NASA’s humanoid robot
Valkyrie (Radford et al., 2015), that aims to balance the
supervisory-control to allow for relatively untrained operators.
Our interface was originally designed to accomplish the tasks put
forward by the Space Robotics Challenge, a challenge using a
simulated Valkyrie robot in a virtual, mock-upMars environment
with tasks such as turning valves, moving equipment, and
inspection. However, our interface was purposely designed to
be generic enough to accomplish a wide variety of tasks and not
require tasks to be pre-programmed into the interface and is
therefore extendable to a wide variety of domains.

6.1 Related Work
The DARPA Robotics Challenge (DRC) was a two-year challenge
with the goal of accelerating progress in human-supervised
robotic technology for disaster-response operations. The DRC
helped support development for a variety of robotic research,
with one key area being the design of human-robot interaction
with focus on supervisory control methodologies (Yanco et al.,
2015; Norton et al., 2017). The DRC allowed for a variety of
supervisory-control interfaces for humanoid robots to be
developed furthering the state-of-the-art. However, most of the
developed interfaces required multiple well-trained operators in

order to successfully complete tasks (Norton et al., 2017). Several
interfaces aimed to reduce the amount of input required on the
human operator, but still allowed operators to take over low-level
commands of the robot when needed and provided a wide range
of robot sensor data (Stentz et al., 2015; DeDonato et al., 2017).

6.2 Interface
OurValkyrie interfacewas designed tomimic several of the humanoid
interfaces designed for the DRC finals, but with a reduced number of
capabilities, inputs, and sensor data to allow for both a single operator
and to reduce operator training time. The goal was to create a
comparable interface to ones used at the DRC, but user-friendly
enough to allow for non-experts to quickly learn and operate.

Our interface, as seen in Figure 12, utilizes RViz, a 3D
visualization tool for ROS, and custom Qt Widgets, also known
as Panels in RViz. RViz was chosen as the interface backbone since
ROS is widely used in the robotics community making it familiar to
many and for its built-in data visualization tools. RViz was also used
for several of the interfaces designed for DRC (DeDonato et al.,
2015; Kohlbrecher et al., 2015; Stentz et al., 2015). The interface can
be broken down into four custom panels: Arm Motion Planner,
Step Planner, Neck Interface, and Hand Interface. Additionally,
there are three built-in RViz panels: themain visualization window,
a display panel, and a camera feed panel.

The main window consists of the built in 3D data visualization
of RViz and for our specific interface includes a point-cloud from
Valkyrie’s Multisense SL sensor located in the head, a robot
model of Valkyrie’s current joint state and planned joint state

FIGURE 11 | Foot pitch and roll torque comparison. Blue curves stand for measured torques and red curves represent the estimated torques.
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from the arm motion planner, and interactive markers to
interface with the arm motion and step planners. The display
panel allows users to select what is actively visualized in the main
window and the camera feed panel for our interface is a camera
feed from one of the stereo cameras in the Multisense SL.

6.2.1 Arm Motion Planner Panel
The Arm Motion Planner panel utilizes a whole body inverse
kinematics solver that finds motion plans based on a set of cost
and constraints (Long et al., 2016, 2017). Cost and constraints can
be categorized as either kinematic, collision avoidance, or ZMP.
To reduce the complexity of the interface, operators only need to
define the desired end-effector positions and a predefined set of
cost and constraints are used, i.e., balancing constraint or velocity
cost, etc. To define the end-effector positions, operators can add
waypoints for the end-effector to traverse though. This is
accomplished through the use of interactive markers that
represent a waypoint and are visually represented as a single
end-effector. Operators are able to translate and rotate the
waypoint by using arrows and circular scroll bars that
surround the marker visual. The waypoints are ordered to
allow for a variety of paths. A plan can be requested after the
waypoints have been placed in a satisfactory manner. Operators
are provided a planning indicator and are informed when the
planning is complete and whether the planner was successful in
finding a plan or unsuccessful. If a plan returns unsuccessful, then
the returned plan either violated one of the default set of costs or it
was unable to traverse through all the placed waypoints.
Operators are notified of the reason the planned returned
unsuccessful and informed on how to improve the waypoints
to results in a successful plan. For example, a waypoint may be out
of the robot’s workspace and need to bemoved closer to the robot.
After a plan is returned, the operator can visualize the robot’s

movement through the entire plan before allowing the robot to
execute it to ensure that the plan both provides the desired
outcome and is collision free. Figure 12B demonstrates an
example of placed waypoints and the final robot configuration
of the returned plan. After visualizing the plan, operators can
request the robot execute it.

6.2.2 Step Planner Panel
The Step Planner panel allows operators to designate a goal
position for the robot to navigate to. It works in a similar
strategy as the Arm Motion Planner panel, except rather than
multiple waypoints, there is only a single waypoint that represents
the final goal pose for feet with a visual of a pair of feet.
Additionally, the interactive marker that represents the
waypoint only allows for 2D interaction on a plane. After this
single waypoint is placed, operators can request a plan which is
generated using an A* search-based footstep planner. Same as
the Arm Motion Planner panel, operators are provided a
planning indicator and informed when the plan returns. As
soon as a successful plan is found the planner will return.
However, the planner will infinitely plan until a successful
plan is found, therefore, there is a 10 s timeout in place to
force a return and the operator is notified of this timeout and to
try again. As soon as a successful plan is returned, colored
interactive markers that represent each footstep in the returned
plan are visualized, red for the right foot and blue for the left
foot. These interactive markers can be adjusted by the operator
by clicking on the footstep marker to activate the interactive
marker controls and then adjusting the footstep in the same
method as the waypoints, the interactive marker controls can
also be switched off by clicking the footstep marker. Figure 12C
shows an example of a placed goal marker, a returned footstep
plan, and selected footstep in adjustment mode. When finished

FIGURE 12 | Valkyrie interface.
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making adjustments, operators are then able to send the plan to
the robot for execution.

6.2.3 Neck Interface and Hand Interface Panels
The Neck Interface and Hand Interface panels both work in the
same manner with a series of joint sliders and buttons with some
predefined joint positions. The Neck Interface panel allows
operators to move the head of the robot right-left and up-
down with sliders and a predefined neutral position, where the
robot is looking straight forward. The Hand Interface panel has
sliders for each individual finger to open-close along with two
predefined open hand and closed fist grasp. Sliders were added
over additional grasp types to allow the operator to position the
hand at any intermediate pose if needed.

7 CONCLUSION

Humanoid robots are equipped with the necessary combination of
location and manipulation capacities to fulfill a variety of roles in
man-made hazardous environments. However, there are numerous
challenges before this potential can be realized. In this paper, we
presented our research to help further the development of utilizing
humanoid robots in supervisory roles for extreme environments,
with emphasis on operation in nuclear facilities.

We first examined ways to improve manipulation within
constrained environments, with a focus on glovebox operation,
by looking into three different areas. First, we aimed to better
understand a robot’s feasible workspace in constrained
environments by developing a method called the constrained
manipulability polytope (CMP) that considers both the robot’s
capabilities and the constraints imposed by an environment. The
CMP methodology assists in both autonomous motion planning
and human-in-the-loop teleoperation by providing feedback of
the robot’s workspace to the operator and indeed by providing a
representation of both robot joint and Cartesian space constraints
as a bounded limits in tool motion. Second, we investigated using
contact supports to increase stability and we presented our
theoretical methodology to accomplish contact-implicit motion
planning. The objective of this work was to increase the robot’s
workspace by using support contacts to reach areas that are not
within the robot’s workspace without support. Third, we
considered using non-prehensile manipulation over dexterous
manipulation and presented a methodology capable of pushing
objects in a constrained environment. The purpose of this work

was to add the capability of moving objects around that might not
be within reach of the robot or easily manipulated with
dexterous hands.

We also detailed methods to improve locomotion for
humanoid robots by developing a technique to accomplish in-
situ terrain classification and estimation that can be used to better
inform a walking controller. Finally, we presented our generic
humanoid robot interface that allows for robot operation from
operators with limited training and/or knowledge of robotics.
When operating in high-risk environments, such as nuclear
facilities, it will be necessary to keep humans-in-the-loop
especially individuals with expertise in the environment the
robot is operating in. Future work should consider further
developing all these areas and combining them into one
robotic platform with a supervisory-control interface for a
single operator. Human supervised robots will be a key role in
the future operation, maintenance, and decommissioning of
nuclear facilities.
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Mordatch, I., Popović, Z., and Todorov, E. (2012a). Contact-invariant
optimization for hand manipulation. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association), 137–144.

Mordatch, I., Todorov, E., and Popović, Z. (2012b). Discovery of complex
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