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Using a team of robots for estimating scalar environmental fields is an emerging

approach. The aim of such an approach is to reduce the mission time for collecting

informative data as compared to a single robot. However, increasing the number of

robots requires coordination and efficient use of the mission time to provide a good

approximation of the scalar field. We suggest an online multi-robot frameworkm-AdaPP

to handle this coordination. We test our framework for estimating a scalar environmental

field with no prior information and benchmark the performance via field experiments

against conventional approaches such as lawn mower patterns. We demonstrated that

our framework is capable of handling a team of robots for estimating a scalar field and

outperforms conventional approaches used for approximating water quality parameters.

The suggested framework can be used for estimating other scalar functions such as

air temperature or vegetative index using land or aerial robots as well. Finally, we show

an example use case of our adaptive algorithm in a scientific study for understanding

micro-level interactions.

Keywords: multi-robot systems, informative path planning, Gaussian process, field validated, sampling hotspots,

freshwater analysis

1. FRAMEWORKS FOR ENVIRONMENTAL MONITORING

1.1. Current Practices in Environmental Monitoring
Environmental processes often exhibit large scale features, generally in the range of kilometers,
and vary both spatially and temporally. In order to monitor these processes through environmental
parameters such as pH or dissolved oxygen (DO), it is ideal to havemulti-fold coverage of the survey
area. Buoys and floats equipped with environmental sensors are used to monitor water quality
across different water resources such as oceans and freshwater systems. One of the widely used
platforms is Argo Floats (Roemmich et al., 1999), which has helped in various scientific studies
(Siswanto et al., 2008; Hosoda et al., 2009; Mignot et al., 2014; Stanev et al., 2014). A common
approach is to place static buoys based on prior information from environmental modeling (Krause
et al., 2008; Hart andMurray, 2010). Such an approach provides good temporal resolution, however,
it is resource intensive as each buoy requires environmental sensors and regular maintenance.

More recently, robotic systems such as autonomous underwater vehicles (AUVs) and unmanned
surface vehicles (USVs) are being increasingly used as fundamental data-gathering tools by
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scientists, catering to the need of environmental monitoring and
sampling (Dunbabin and Marques, 2012). A large fraction of
AUVs today are designed to carry out scientific data collection
missions (Pascoal et al., 2000; Sukhatme et al., 2007; Zhang et al.,
2012; Hitz et al., 2014; Koay et al., 2015). We also developed
such robotic systems for water quality monitoring as shown
in Figure 1B. Such robot-aided data collection has been also
used to explain biological processes (Caron et al., 2008; Camilli
et al., 2010). However, the use of these robots is still limited
due to the complex spatio-temporal nature of the environmental
parameters. Adaptive planning frameworks such as Informative
Path Planning (IPP) are generally used to overcome such
limitations and perform environmental monitoring missions
(Zhang and Sukhatme, 2007; Smith et al., 2011; Cao et al., 2013;
Hitz et al., 2017).

One of the challenges in using adaptive planning frameworks
is the data collection process. In general, the IPP framework
mitigates this challenge by evaluating paths using an informative
criterion for unobserved locations (Sukhatme et al., 2007; Low
et al., 2008, 2011; Yu et al., 2016; Ma et al., 2017), shown as an
illustration in Figure 1A. The robot then traverses the path that
provides maximum information as per the predefined criterion
and collects data to give an estimate of the environment. In
general, the IPP frameworks have three components: collecting
data while traversing, adapting the robot’s path to provide a
good approximation of the field, and learning a model of the
environmental field. The first component is self explanatory,
whereas, the last two components are the key characteristics that
define the behavior of all IPP frameworks.

The IPP frameworks generally plan the robot’s path based on
the data collected. Based on the frequency of this planning, the
IPP frameworks can be classified as: non-adaptive algorithms
(offline) which commit to a path and do not adjust based on
new observations and adaptive algorithms (online) which alter
the pre-planned paths on-the-fly based on the new observations.
Several non-adaptive algorithms have been suggested in the past
to solve near-optimal paths (Meliou et al., 2007; Hollinger and
Singh, 2008; Singh et al., 2009; Das et al., 2010) using prior
information of the field. However, the prior information for an
environmental field may not be available for pre-planning of the
robot’s path. Such types of applications require the use of adaptive
algorithms as the collection of information and path planning
have to be synchronized.

The IPP frameworks can also be classified into multi-
robot IPP frameworks (Singh et al., 2009; Low et al., 2011,
2012; Kemna et al., 2017) and single-robot frameworks (Zhang
and Sukhatme, 2007; Hitz et al., 2017; Mishra et al., 2018).
Each of these two classes of frameworks have their own
advantages and disadvantages. The planning process for a single-
robot framework is less complex compared to a multi-robot
frameworks, however, covering large survey areas with a single
robot may not be feasible due to limited resources. On the
contrary, multi-robot frameworks can easily cover large survey
areas by division-of-labor but this division-of-labor adds to the
complexity of the multi-robot IPP framework. Moreover, multi-
robot frameworks gather more data in a short amount of time
and thus require methods that can estimate the field using

large datasets in real-time. Such problems in model learning are
currently not addressed and thus limits the usage to small datasets
or small survey areas.

Another challenge in using adaptive algorithms is the online
estimation of the survey field, as this estimate governs future
waypoints in a robot’s path. For example, in the case of water
quality monitoring, a good approach may be to use off-the-shelf
simulators like Delft3D (Deltares, 2006) or the Regional Oceanic
Monitoring System (ROMS) (Moore et al., 2011). However, these
simulators generally run on high performance clusters and such
computational power is usually not available in robotic platforms.
One good approach to combine these simulators with path
planning is presented in Smith et al. (2010). In this approach,
ROMS uses the data from various sensors to produce velocity
profiles on a remote server, which can then be used by the robot
for path planning. However, in areas where the sensors for ROMS
are not present or the spatial resolution of ROMS’s forecast is
poor, such an approach will not work.

A commonly used approach in geostatistics (Le and Zidek,
2006; Webster and Oliver, 2007) is to assume that the spatio-
temporal environmental field is realized from a probabilistic
model called Gaussian processes (GPs). The computational
power required for learning a Gaussian process model is
comparatively much less than that required by physics-based
simulators. Therefore, this approach has been commonly used
in path planning (Sukhatme et al., 2007; Zhang and Sukhatme,
2007; Low et al., 2008, 2011, 2012). In Hitz et al. (2017), GPs
and an information criterion were used to plan paths for an AUV
to segment the environmental field into three different level sets.
Similarly, using GPs, a path-planning algorithm based on entropy
and information criterion is suggested in Cao et al. (2013). In all
of these works, GP regression uses all the data collected during
the survey. In a practical scenario, a water-quality sensor (YSI,
2017) can sense data at a frequency of about 1 Hz and thus
running a robot with this sensor for an hour will provide about
3, 600 data points for learning the model. This means that the
data collected during a survey can increase rapidly and therefore,
the conventional method of doing GP regression may not be
feasible. This problem can be solved by using sparse GPs.

An explanation of how sparse GPs can be integrated into
a path planning framework is discussed in Ma et al. (2017).
This recent work is directed toward long-term monitoring and
overcomes the spatial and temporal changes by updating the
GP model based on an information criterion. Although it is a
good single-robot framework, the sparse GP point selection can
be improved with more data-driven sparse GP variants such
as sparse pseudo-inputs Gaussian processes (SPGP) (Snelson
and Ghahramani, 2006). The combination of such sparse GP
models and time-constrained mission planning for multi-robot
frameworks is still lacking.

1.2. Practical Constraints in Using a Team
of Robots
Our objective is to obtain a good approximation of a scalar
environmental field, such as temperature, conductivity, or
chlorophyll concentrations, using a team of robots within a
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FIGURE 1 | (A) A multi-robot scenario similar to the transect sampling task presented in Cao et al. (2013). The environmental field here is the sea surface temperature

of an area in the Sea of Japan on January 21, 2018, taken from MUR SST dataset (JPL MUR MEaSUREs Project, 2010). (B) Our robots deployed in a local reservoir

to perform adaptive monitoring to estimate dissolved oxygen in water.

fixed amount of time. We previously published a framework for
estimating scalar fields using a single robot (Mishra et al., 2018).
A common problem in using a single robot is the limitation
on the area it can cover within a finite time, limiting the total
collected information. Such problems with single robot scenarios
can be easily resolved by using a team of robots to collect more
information, however, these robots should be coordinated to
collect the information efficiently.

An entropy-based method for multi-robot operation (Cao
et al., 2013) generates a set of waypoints using dynamic
programming. However, this framework only considers transect
environmental fields, where robots can only move along one
spatial direction and generate waypoints based on the assumption
that fields are anisotropic. Another multi-robot framework uses a
lawnmower to obtain preliminary information, and then a leader
robot makes decisions to adapt the lawn mower pattern for the
team of robots (Chen et al., 2012). Such an approach is helpful
for adapting lawn mower patterns, however, following these
straight paths consumes time and collects repetitive information.
A similar approach is described in Petillo (2015), where the
robots maintain a formation and adapt the formation to cover
a larger area. Vehicles with motion constraints such as gliders
can make use of these frameworks but robots that do not have
such strict motion constraints may benefit from a more flexible
planning framework.

We are interested in a multi-robot framework that can be
used for a team of robots such as AUVs, impose fewer motion
constraints, and finish the monitoring task within a fixed amount
of time. Moreover, an important component missing in the
multi-robot frameworks is the computation time for making
decisions. The computation time can be ignored in cases where
it is insignificant compared to the overall mission time. However,
the framework’s task is to finish collecting data within a short
amount of time and thus computation time is an important
component of our overall mission time. For example, if each
decision iteration takes about 5 s to compute and iteration is
repeated every 30 s, then during a mission of 600 s, decisions are
taken about 20 times. In such a scenario, the computation time

will consume more than 15% of the mission time and thus leave
less time for data collection.

1.3. IPP Frameworks and Scientific
Experiments
Adaptive monitoring frameworks are commonly used for
estimating scalar environmental fields such as chlorophyll
concentration and temperature. The examples for integrating
these estimated fields into biological studies or the relevance for
biological studies is still not well-established. Frameworks are
designed for scientific experiments such as estimating hotspots
or tracking a certain phenomenon, yet the process of using
these estimated fields from a biological or geological standpoint
is generally missing. This is especially true in the studies to
understand the micro-level relationships between the estimated
fields and the microorganisms living in it.

Scientists have attempted to establish the connection between
the fields estimated using robots and various environmental
phenomena. One such work tracks hydrocarbon plumes and
bio-degradation at the Deepwater Horizon site (Newman et al.,
2008; Camilli et al., 2010). This work focused on developing a
framework to observe the bio-degradation of the hydrocarbon
plume and it is a good example of tracking a biological
phenomenon to understand it at a macro-scale. Another
interesting approach for establishing scientific relevance is
discussed in Das et al. (2015). In this approach, the authors
designed two frameworks, one to make the sampling decisions,
and another to estimate the concentration of a pathogen based
on the sensor values. The focus of this work was to select samples
from a predefined path and estimate the concentration of a
particular pathogen.

We are interested in establishing a use case for our framework
in identifying the micro-scale species associated with a water-
quality parameter. The high concentration regions of these
parameters can be both harmful and beneficial to the ecosystem,
depending on the biological and chemical characteristics
(Darrouzet-Nardi and Bowman, 2011; Zhu et al., 2013; Palta
et al., 2014). It is important to find and sample these regions and
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discover the associated microbial communities. Sampling from
hotspots of oxygen minimum zones has helped in understanding
amicroorganism’s role in terrestrial nitrogen loss in inland waters
(Zhu et al., 2015). Therefore, estimating the scalar fields and
sampling from the hotspots of parameters such as DO is useful
in understanding the environmental processes.

We introduce a multi-robot IPP framework m-AdaPP with
constraints onmission time for estimating a scalar environmental
field. Our aim is to coordinate a team of robots to get a good
approximation of the scalar field and finish the overall mission
in a fixed amount of time. Wemake use of a sparse GPmethod to
provide an estimate of the field and the corresponding variance.
The paths are evaluated to minimize the overall variance and we
include the time taken for this evaluation in our overall mission
time. We test the coordination and field estimation performance
of our framework using a sea surface temperature dataset in
simulation. We also examine the performance of our framework
against two multi-robot IPP algorithms, a greedy algorithm and
a distributed planning algorithm. We use an approach similar to
that shown in Kemna et al. (2017) and the greedy benchmark
algorithm as shown in Hitz et al. (2017) to simulate the greedy
behavior. The two comparisons with a greedy and distributed
algorithmwill help us examine the performance gains when using
a non-myopic and centralized planning approach. Finally, we
compare our framework’s performance against the conventional
lawn mower patterns for estimating environmental fields, and
show that our framework performs well. We also present an
approach for integrating our framework into a scientific study.

2. SPARSE GAUSSIAN PROCESSES

GP models are commonly used for non-parametric regression
problems (Rasmussen and Williams, 2004), such as spatial data
modeling (Stein, 2012), image thresholding (Oh and Lindquist,
1999), and soil modeling (Hengl et al., 2004). In a standard
GP problem for spatial data regression, the training data set
D consists of N vectors each composed of two elements X =

{xn}
N
n=1 and corresponding target values y = {yn}

N
n=1 with

a Gaussian measurement noise. The likelihood of observed
values y can be given as p(y|f) = N (y|f, σ 2I) where f is the
underlying latent function and σ 2I is the noise term. Placing a
zero mean prior and a covariance function given by K(xn, xn′ )
and parameterized by θ , the distribution for a new input x is
given by:

p(y|x,D, θ) = N (y|kx
⊤(KN + σ 2I)−1y,Kx,x

−kx
⊤(KN + σ 2I)−1kx + σ 2), (1)

where [kx]n = K(xn, x), [KN]n,n′ = K(xn, xn′ ), and Kx,x =

K(x, x). As it can be observed from (1), the computation time
for large datasets will be as high as the prediction, and even
the training scales with N3 due to inversion of the covariance
matrix, where N is the total number of datapoints. Sparse GPs
overcome this problem by having sparse approximation of the
full GP using only M points, where M ≪ N. In general, the
selection of this subset of M points is based on information
criteria (Seeger et al., 2003).

A common problem with information criterion-based
sparse GP methods is the absence of a good method
to learn the kernel hyperparameters, because the subset
selection and hyperparameter optimization are generally done
independently. Moreover, when using automatic relevance
determination (MacKay, 1998) covariance function, learning
bad hyperparameters can adversely affect the prediction
performance. The SPGP framework solves this problem by
constructing a GP regression model which finds the active subset
and hyperparameters in one smooth joint optimization.

2.1. Sparse Pseudo-Input Gaussian
Processes
In a standard GP model (Rasmussen and Williams, 2004) with
zero mean prior, the kernel function is solely responsible for
estimating the mapping between the input vector and the target
values as shown in (1). Therefore, assuming the hyperparameters
of the kernel function are known, the predictive function
is effectively parameterized by D. In the case of SPGP, this
parameterization is done using the pseudo data setD of sizeM≪

N, which has pseudo-inputs X = {xm}
M
m=1 and corresponding

pseudo targets f = {fm}
M
m=1. The pseudo targets are denoted

as f instead of y because these targets do not represent the
observed values and therefore, adding the noise variance σ 2

can be omitted. The actual prediction distribution has the noise
variance and is given as:

p(y|x,D, θ) = N (y|kx
⊤K−1

M f,Kx,x − kx
⊤K−1

M kx + σ 2), (2)

where [KM]mm′ = K(xm, xm′ ) and [kx]m = K(xm, x), for m =
1, 2 . . . ,M. On comparing (1) and (2), one can clearly observe the
reduced computation burden for the inversion of the covariance
matrix, from a matrix KN with N × N entries to a matrix KM

with M × M entries. Following the derivation in Snelson and
Ghahramani (2006), the predictive distribution is given as a new
input x∗ as:

p(y|x∗,D,X) = N (y∗|µ∗, σ
2
∗ ), (3)

where

µ∗ = k∗
TQ−1

M KMN(� + σ 2I)y (4)

σ 2
∗ = K∗,∗ − k⊤∗ (K

−1
M −Q−1

M )k∗ + σ 2. (5)

The derivation of QM is omitted here for brevity but these
are present in Snelson and Ghahramani (2006). The main
cost in computing QM is the inversion of a diagonal matrix
(Snelson and Ghahramani, 2006). Using the spatial data as
input, µ∗ will represent the mean predicted field and the
variance σ 2

∗ will constitute the uncertainty in this prediction.
The pseudo points X, parameters θ , and noise variance σ 2

are learned in one joint optimization given by (6). This joint
optimization aims at learning a generative model by maximizing
the marginal likelihood with respect to the pseudo points and
kernel parameters.

p(y|X, θ , σ 2) = N (0,KNMK−1
M KMN + � + σ 2I) (6)
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TABLE 1 | Description of all the commonly used notations in all the sections.

Notation Description

X̃ ,X Continuous and discretized spatial domain.

H Total number of robots.

x 2D location vector.

xt,i Location of a robot i at time t.

xt,1 :H Location of all the H robots at time t.

xt : T ,i Location of robot i from time t to T.

xt+Ts ,1 :H Location of all the H robots at time t+ Ts.

yt : T Measured scalar values by the team of robots between time t

and T.

Y (·) Scalar field over the continuous domain X̃ .

D̂t Data collected from all the H robots till time t.

µ∗, σ 2
∗ Estimated mean and variance by the sparse GP.

ct,i Representative location of the cell at time t, visited by robot i.

Act+Ts ,i
Set of available actions at time t+ Ts when a robot i visits a

cell ct+Ts ,i .

V (ct,i ) Value function of a cell ct,i for a robot i at time t.

π (ct,i ) Policy for the cell ct,i at time t.

R(ct,i , a) Reward for taking action a when the robot i is in cell ct,i at

time t.

Pt,i A path for robot i for the remaining time of T − t.

T (Pt,i ) Time for traversing a path Pt,i by robot i at time t.

P0
t,i Starting location of the path for the robot i at time t.

3t,i A set of all the paths Pt,i for a robot i for the remaining time

T − t.

P̂t A set of paths for all the H robots for the remaining time T − t.

3̂t A set containing all the paths for all the robots for the

remaining time T − t.

Ts Time interval for planning iterations.

8t+Ts Set of all available actions for the team of robot at time t+ Ts.

ϕ′
t+Ts

One set of actions for the team of robots at time t+ Ts.

U (ϕ′
t+Ts

) Sum of cell variances reached by all the robots on taking the

actions given by ϕ′
t+Ts

.

ϑT−(t+Ts )(·) Represents the potential of reducing variance in the remaining

time T − (t+ Ts).

We follow the suggestions given in Snelson and Ghahramani
(2006) for initialization of M pseudo points and the kernel
function and learn these parameters to get a representative model
of the collected data. Moreover, the scalar environmental fields
can be non stationary (Cao et al., 2013) and up to a certain
extent, SPGP is capable of modeling non-stationary GP processes
through its pseudo-inputs, which gives it an edge over other
sparse GP methods.

3. PROBLEM FORMULATION

We follow the common notations stated in Table 1 throughout
our formulation and the suggested solution for consistency.
Broadly, our problem statement is to find a path for a team of H
robots and collect representative data to provide a good estimate
of the environmental field and finish this task within a fixed
amount of time T. This statement can be represented as:

argmin
P̂t∈3̂t

1

|X̃ |

∫

X̃

(
Y(x)− Ŷ(x, D̂t ∪ D̂T−t,̂Pt )

)2
dx, (7)

such that,

T (̂Pt) ≤ T − t, and (8)

P̂0t = xt,1 :H , (9)

where P̂t is a set containing one path for each robot and given as:

P̂t = {Pt,1, Pt,2, Pt,3, . . . Pt,H}, (10)

and each of these paths {Pt,1, Pt,2, Pt,3, . . . Pt,H} is a set of
locations given by {xt :T,1, xt :T,2, xt :T,3, . . . xt :T,H}. Similarly,
3̂t is a set containing all the paths for each robot and it is given as:

3̂t = {3t,1, 3t,2, 3t,3, . . . 3t,H}. (11)

The function Y(·) in (7) is the field over the spatial domain X̃

and D̂t is the data collected by all the robots and thus D̂t =

{Dt,1, Dt,2, Dt,3. . . Dt,H}, whereDt,i is the data collected by robot
i until time t. The function Ŷ(·, ·) is the estimated function of the
field at time t using the collected data D̂t and the data yet to be
collected D̂T−t,̂Pt by traversing paths given by P̂t . The path Pt,i
and the set of collection of paths 3t,i in (10) and (11) represent
the candidate paths for robot i. Moreover, P̂0t in (9) are the
starting locations, which are also the locations of all the H robots
at time t. All the paths in the set 3̂t start from the locations given
by P̂0t . Finally, the function T (·) provides an estimate of the time
to traverse a path. In our problem statement, we have defined
the measure of goodness as a low mean squared error over
the complete spatial domain. The current form of the problem
statement is not solvable as we cannot get the information about
Y(·) without sampling or visiting locations and thus without
actually traversing a set of paths P̂t , we cannot obtain the target
values yt :T = {yi}

T
i=t for yet to be visited locations. To overcome

this, we can make use of characteristics of a GP model to make
problem (9) solvable. The function Ŷ(·, ·) can be learned using a
GP model and it can be written as N (µ∗, σ 2

∗ ), where µ∗ should
represent a close approximation of Y(·) if the learned GP model
is a good fit and the overall variance σ 2

∗ is low. Therefore, we can
re-write (7) as:

argmin
P̂t∈3̂t

1

|X |

∑

X

σ 2
∗ (x, D̂t , P̂t). (12)

It is important to take note of two changes between (7) and (12).
First, we have replaced D̂T−t,̂Pt with just P̂t as we can get an
estimate of the variance without sensing the target values and
only the spatial locations given by P̂t are sufficient. However,
the estimated variance depends on D̂T−t and it will be updated
using (5) whenever the robot collects more data D̂t . Therefore,
our planning problem can be seen as collecting good data such
that the overall variance becomes low.

Second, the problem statement given by (7) is in the
continuous domain X̃ . This means the number of paths in
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the set 3̂t will be large and searching for the optimal path
P̂∗t that satisfies our problem statement will be difficult. A
common approach to reduce such complexity is to discretize
the continuous domain X̃ into a grid X . In this scenario, each
location x will generally have eight neighbors and thus for each
location the decision will be to select which of these neighbors to
visit. Finally, the constraints on (12) will be:

T (Pt,i)+ τ ≤ T − t, and (13)

P0t = xt,i ∀i ∈ [1,H], (14)

where the new addition τ in comparison to (8) represents
the computation time for each decision and xt,i represents the
location of robot i at time t. The constraints given by (13)
represent that each robot will have less than T − t time available
for collecting data. However, we can absorb τ inside T (Pt,i) if
the computation can be done while traversing. This will require
taking a decision for the next location while collecting data.
The current formulation given by (12) will not allow this as
the decision made at time t is possible only after collecting all
the data D̂t until time t. However, we can use the data D̂t to
make a decision for the next location xt+1 and collect more data
while traveling from xt to xt+1. This will change the problem
statement to:

argmin
P̂t∈3̂t+1

1

|X |

∑

X

σ 2
∗ (x, D̂t , P̂t), (15)

such that,

τ ≤ T ({xt,i, xt+1,i}) and (16)

T (Pt,i) ≤ T − t and (17)

P0t,i = xt+1,i ∀i ∈ [1,H] , (18)

where 3̂t+1 represents the set of all paths for each robot i from
its next location xt+1,i. This formulation changes (13) to (17)
but introduces a new constraint given by (16), which suggests
that computation time should be less than or equal to the time
taken by the robots to travel to the next location. The set 3̂t+1

can be visualized as a state space too. This state space will be
a convolution of multiple state spaces given by {3t+1,i} and its
starting state given as st = {xt+1,i} ∀i ∈ [1,H]. The state space
of the set 3̂t+1 at each planning iteration aims to reduce the
variance and this is similar to the problem of selecting locations as
described in Singh et al. (2009), which is shown to be anNP-hard
search problem. Therefore, we need a framework to transform
this search problem that can be solved in polynomial time and
provide a good estimate of the environmental field.

4. MULTI-ROBOT PLANNING
FRAMEWORK

We suggest a centralized framework, named as m-AdaPP, to
efficiently search through the state space given by 3̂t+1 and
collect data using the kernel information to get a good estimate

of our field. This algorithm follows the basic IPP framework
and thus has the three components, which are planning, model
learning, and collecting data. As discussed in the section before,
we learn themodel and plan for the next location while the robots
are traveling and collecting more data. Wemake use of the spatial
decomposition approach as explained in Mishra et al. (2018) and
reduce our search space by discretizing the grid into cells.

There are three constraints on our planning as shown in
our problem formulation. These are the limits on each robot’s
total mission time T, bounds on the computation time used for
planning, and each robot’s starting point. Although the planning
is done over cells instead of locations, this does not mean that
robots do not collect data while traveling from one cell to
another. The data are collected as and when the sensors provide
a scalar value of the field, defined by the sensor’s frequency rate.
These data are then stamped against the current location of the
robot and sent to a central server. This server uses the data for
estimating the environmental field.

In the discretized area, the representative location of each
cell changes based on the variance in that cell. This results
in each robot traversing different lengths of paths, which
means robots reach their next waypoint at different times.
Therefore, the update of the collected data is asynchronous and
planning decisions are made using partial information. We bring
synchronization between the team of robots by dividing the
total time T into intervals of Ts, where by the end of each
interval the robots reach their waypoints. Therefore, this time
interval Ts is sufficient for a robot to reach the neighboring cell,
even when traversing at the average speed. The addition of this
synchronization time step also transforms the decision step from
t + 1 to t + Ts and thus the framework uses this time interval to
plan for the paths ahead of the next synchronization event.

4.1. Multi-Robot Path Planning With No
Constraints
We make use of single-robot dynamic programming (DP) along
with the spatial decomposition algorithm discussed in Mishra
et al. (2018) to explain our multi-robot path planning algorithm.
This single-robot DP algorithm can be defined as a Markov
decision process (MDP). The formulation as a MDP will require
states to be defined by the cells, actions as the moves available
in each of these cells, the transition probabilities as 1, and
the reward function given by R(·, ·). Extending the single-robot
algorithm to a multi-robot scenario requires two modifications.
First, the robots should be coordinated to explore an area in a
collaborative manner. This is similar to the problem solved in
Singh et al. (2009) using a sequential decision algorithm. This
algorithm decides a path for one robot first, which is followed
by path allocation to the second robot and then sequentially to
the remaining robots. However, we are concerned only with the
next waypoint in the case of planning with no constraints. The
second necessary modification is to prevent the collision between
two robots, which can be achieved by having negative rewards for
each robot’s current location. For the ease of notation, we denote
the representative location of a cell visited by a robot i at time t
as ct,i. As we are interested in planning for one-time ahead, the
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update rules for multi-robot case can be given as:

V(ct,i) = max
a∈Act,i

[R(ct,i, a)+ γV(ct+Ts ,i)], (19)

π(ct,i) = argmax
a∈Act,i

V(ct,i), (20)

where

R(ct,i, a) =

{
σ∗,ct

||ct,i− ct+Ts ,i||
if ct+Ts ,i 6∈ xt+Ts ,1 :H − {xt+Ts ,i}

−ǫ if ct+Ts ,i ∈ xt+Ts ,1 :H − {xt+Ts ,i}
,

xt,1 :H represents the current location of all the robots, ct+Ts ,i

represents the location of the cell that the robot i will reach at
time t+Ts, and ǫ is the value of the negative reward. We run one
full cycle of policy iteration using DP for robot 1 and obtain the
optimal policy given by π∗(·). Using this policy, we get the future
location of robot 1, given by ct+Ts ,1 : = π∗(ct,i) and thus we
update xt+Ts ,1 : = ct+Ts ,1. We also update this new location for
robot 1 in the location set of all robots xt+Ts ,1 :H . This update of
the location in the set of locations xt+Ts ,1 :H makes sure that robot
2 and the remaining robots do not visit the same cell where robot
1 will be at the next time step. We run such cycles sequentially
for all theH robots and obtain the next respective waypoints. We
name this algorithm themulti-robot DP.

4.2. Multi-Robot Path Planning With
Temporal Constraints
Introducing time constraints to the multi-robot framework
explained above is not straightforward. The new waypoints
generated using the above framework may not be optimal given
the temporal constraints T − t. Therefore, we need to find a
combination of actions for different robots that would reduce the
overall variance within the remaining time. Let8t+Ts denote this
combinatorial set of all actions Act+Ts ,i

∀i ∈ [1,H] at time t + Ts.
We define another combinatorial set ϕt+Ts , which is a subset of
8t+Ts representing one action for each robot. From the set8t+Ts ,
we remove the states where the next action for two ormore robots
will result in a collision. Therefore, the optimal combination of
action ϕ∗

t+Ts
at time t + Ts can be given by:

argmax
ϕ′
t+Ts

∈8t+Ts

U(ϕ′
t+Ts

)+ ηϑT−(t+Ts)(ϕ
′
t+Ts

), (21)

where U(ϕ′
t+Ts

) is a function that gives the sum of variances of
cells that will be visited due to the combination of actions in
ϕ′
t+Ts

, η is a discounting factor, and ϑT−(t+Ts)(ϕ
′
t+Ts

) represents
the potential of reducing variance within the remaining time
T − (t + Ts) by taking the combination of actions given by the
set ϕ′

t+Ts
.

Interestingly, calculating the variance has no direct
dependency on the target values yt :T as shown in (5). This
suggests that once the kernel function is learned using the
collected data, we can estimate the change in variance over
the field. We use this characteristic to get an estimate of
ϑT−(t+Ts)(ϕ

′
t+Ts

). The variance after taking a path can be

Algorithm 1: m-AdaPP - multi-robot adaptive path
planning

Data: Starting points (xt,1 :H), total mission time
(T − t − Ts), SPGP parameters (M)

Result: Estimate field µ∗

/* Initialization */
1 Run sampling decomposition using resolution G and set σ 2

∗

as constant;
/* Algorithm loop */

2 while t < T do

3 Construct the set 8t+TS ;
4 foreach ϕ′

t+Ts
∈ 8t+TS do in parallel

5 Estimate ϑT−(t+Ts)(ϕ
′
t+Ts

) by simulating planning

usingmulti-robot DP and SPGP kernel;
6 Calculate and store U(ϕ′

t+Ts
)+ ηϑT−(t+Ts)(ϕ

′
t+Ts

);

7 Find the set ϕ′
t+Ts

that solves (21);

8 Wait for time interval given by Ts to be over;
9 Take the actions given in ϕ′

t+Ts
;

10 Update the recently collected data training data D̂t+Ts

and the time t = t + Ts;
11 Initialize θ using full-GP on a random subset of collected

data [D̂t(rand(M))] ;
12 InitializeM pseudo points x with a random subset of

visited locations x1 : t,1 :H(rand(M));
13 Learn SPGP model using [D̂t , θ , x] and obtain µ∗ and σ 2

∗

over the field X ;
14 Run sampling decomposition using resolution G and σ 2

∗ ;

estimated using (5) and the remaining overall variance in
the field will give the estimate for ϑT−(t+Ts)(ϕ

′
t+Ts

). However,
obtaining just this value will not solve our problem. We need to
coordinate a team of robots and select the best available option
given the remaining time T − (t + Ts). We still need to search
through the set 8t+TS to select a set of actions at time t + Ts.

We solve the problem of coordination between the robots
by using multi-robot DP at each simulated planning iteration
and provide a combination of actions. We do this in two steps.
First, we run one full iteration of multi-robot DP and obtain a
set of actions ϕ′

t+Ts
. Second, we reduce the total time by Ts and

update the variance of the cells based on the paths the robots
will take due to the actions given by ϕ′

t+Ts
. We re-run the multi-

robot DP algorithm to find the next set of actions ϕ′
t+2Ts

using
the updated variance. We iterate over these two steps until the
mission time is over t = T. Using this approach, we get an
estimate of ϑT−(t+Ts)(·) and thus we can evaluate the value of the
combination ϕ′

t+Ts
given by (21). Similarly, we can use this to find

the values for all the combinations given by the set 8t+Ts . Once
we have the values for all the actions, we can use (21) to find the
set of actions for the robots for time t + Ts. An example of these
steps is illustrated as a diagram in Figure 2. All these steps are
repeated whenever the training dataset D̂t is updated, which will
be at a regular interval of Ts and thus bring the adaptive nature to
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FIGURE 2 | A concept diagram explaining the sequential planning in our multi-robot framework m-AdaPP. The left-most grid shows the robots traversing a path to

the next waypoint. In parallel, the framework is planning for the next of actions assuming the robots have already reached the location. The framework simulates paths

and updates the variance for the remaining time and select the actions that minimize the overall variance.

the m-AdaPP framework. Our overall framework is presented in
Algorithm 1 and a graphical illustration of it is shown in Figure 3.

There are two important points to note about our framework.
First, the decisions are made sequentially but it does not mean
the robots also move sequentially. Once a decision is made, all
the robots move to their next location simultaneously within
time Ts. Second, the calculation of ϑT−(t+Ts)(·) for one set of
action in 8t+Ts is independent of the other set of action. This
provides an opportunity to estimate the value for ϑT−(t+Ts)(·) for
all the sets of actions in parallel. This helps in reducing the overall
computation time of our framework.

4.3. Field Prediction Using SPGP
We make use of the same kernel function used in single-robot
frameworks. It is defined by K(·, ·):

K(xn, xn′ ) = α exp

(
1

2

2∑

l=1

bl(xn,l − xn′ ,l)
2
)
, (22)

where α, b1, and b2 are the parameters of the kernel function, xn
and xn′ represent two different locations, and xn,l represents the
value for the l dimension of xn. After adding the Gaussian noise
model, the hyperparameters of the sparse GP are given by θ =

{α, b1, b2, σ 2} and pseudo inputs x. Following the suggestions
given in Snelson andGhahramani (2006), we initialize the pseudo
points with random spatial locations from the collected data and
initialize the kernel hyperparameters by learning a full-GP model

with the same kernel function but using only a small subset of
the dataset.

5. EXPERIMENTAL RESULTS

We performed two sets of experiments to test the performance
of our framework. We first examined the coordination within the
team of robots and later we did experiments in Singapore waters
to compare the fields estimated by our framework and lawn
mower patterns. Finally, we examined the biological relevance of
the fields estimated using our framework.

5.1. Simulations to Test the Coordination
Efficiency
In our previous work (Mishra et al., 2018; Mishra, 2019),
we have shown via simulations that our single robot adaptive
algorithm performs better as compared to lawn mower and
other commonly used search techniques. The objective of these
simulations was primarily to establish that our framework is
capable of coordinating a team of robots and provide a good
estimate of the field.We used field data of sea surface temperature
(SST) provided by the Jet Propulsion Laboratory (JPL MUR
MEaSUREs Project, 2010). We extracted data for two regions of
200 × 200 km2 each, and mapped each to a field with an area of
200×200 m2. This scaling was done to retain essential features of
a scalar temperature field, but also to include an area which can
be explored within a practical value of mission time T. The main
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FIGURE 3 | An illustration showing execution of one step of our framework. The GP model learning and planning for the next waypoint occurs in parallel while the

robot is collecting data from the field. Such an approach can be used for efficient use of mission time.

feature of this field is its scalar nature and not that it represents
the sea surface temperature. It can be easily compared to the fields
of vegetation spread, air quality, or ash plumes. We denote the
two scaled temperature fields shown in Figure 4A as Field 1 and
Figure 5A as Field 2 for the following discussions.

The maximum speed of the robots used in environmental
monitoring is generally low. This is to make sure that the robots
do not cause substantial disturbance to the environment they is
sensing. For example, the maximum speed of our water-quality
sensing robot, NUSwan (Koay et al., 2017), is 1 m/s. However,
the average speed of NUSwan with external disturbances such
as strong winds or waves is about 0.3 m/s. We use this speed to
define the value of Tcleverefs. Following the grid size G = 30 m,
the average time required for traveling from one cell to another
cell will be at least 100 s. Therefore, we set the value of Ts as 120 s
giving the vehicle sufficient time to reach the next cell.

We learned the SPGP model with M = 50 pseudo data
points. Similar to the single robot framework, we initialized the
pseudo points with M random points of the total dataset and
ran a full GP regression to initialize the hyperparameters of our
kernel function. The simulation experiments were implemented
in MATLAB. For SPGP, we took the MATLAB code provided
by the authors (Snelson and Ghahramani, 2006) and modified it
for spatial regression application. The simulations were run on a
hexa-core Intel i7 processor with 32 GB of RAM.

We simulated teams consisting of a maximum of three robots.
We examined the coordination within the team of robots by
providing less mission time for the teams with a higher number
of robots. This means that the team with two robots has less
time compared to a single robot. If the framework is able to
coordinate the team of two robots well, the performance of these
two simulations should be comparable. For our simulation setup,
we set the mission time T as 2, 400 s for a single robot, 1, 200 s for
a team of two robots, and 800 s for a team of three robots.

Note that the mission time T for a single robot here is
2, 400 s, which is much higher than the mission times set in
our previous work (Mishra et al., 2018). This difference is due
to the assumed vehicle speed, and a relationship can be seen
in terms of distance traveled: a vehicle with speed 0.3 m/s
travels around 700 m in 2, 400 s. Whereas, the same vehicle
with an increase of 1 m/s in speed travels the same distance
in 700 s. Therefore, our limit on mission time in the current
setup is not substantially different from the setup in Mishra
et al. (2018). Moreover, our average computation time for the
team of three robots after parallelization was about 23 s, which
is much less than Ts and thus satisfies the constraint on τ given
by (16).

The results of the fields estimated using m-AdaPP are
shown for one simulation run in Figures 4, 5. It is clear
from the figures that the estimated hot and cold regions in
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FIGURE 4 | Simulation results of m-AdaPP for estimating a temperature field. (A) Represents the ground truth and (B) represents the field estimated using one robot.

Similarly, (C,D) represent the field estimated using two robots and a team of three robots, respectively. The mission time for (B) is T = 2, 400 s, (C) is T = 1, 200 s, and

(D) is T = 800 s. It can be observed that the hot and cold regions estimated using different teams of robots are correct. This shows that our framework efficiently

coordinates the team of robots and makes efficient use of mission time to collect good representative data.

our framework are correct and the overall estimated fields
are similar for teams with different numbers of robots. We
also calculated the mean absolute error (MAE) over all the
locations in the entire field and used it as a measure of
performance in estimating the fields. We use this metric
to examine the coordination efficiency of our framework.
The MAE results for one simulation run are presented
in Figure 6.

It can be observed from Figure 6 that our framework’s
performance is similar for different teams of robots. The
mission time for each team of robots is proportional to the
number of robots in each team. This means that the amount
of data collected by a single robot in T = 2, 400 s will
be similar to the amount of data collected by a team of
two robots in T = 1, 200 s. A similar performance between

these two setups will show that our framework is able to
efficiently coordinate the team of robots. Therefore, the similar
MAE values in Figure 6 for different teams of robots and
for different fields is a good indication that our framework
is capable of coordinating the team efficiently. It can be also
observed from Figure 6 that the performance of multi-robot
teams is less monotonic. This could be due to the random
initialization of SPGP and thus we also repeated the simulations
over 10 runs for each team of robots and recorded the
MAE. The main difference between these 10 runs was the
random initialization of the SPGP model and the corresponding
planning using this SPGP model. These results are presented
in Figure 7, and it can be observed that our framework shows
a consistent monotonic performance over multiple runs. The
results in Figure 7 give an overview of the performance over
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FIGURE 5 | Another set of results of our framework on estimating a temperature field from the SST dataset. (A) Represents the ground truth and the remaining figures

(B–D) represent the field estimated using one, two, and three robots, respectively. Similar to the previous figure, the fields estimated using different teams of robots are

comparable. These results are another example showing that our framework coordinated the team of robots well.

10 runs whereas Figures 4–6 are results from a randomly
selected instance.

5.2. Performance Comparison With Greedy
IPP in Simulations
Our framework searches for a combination of actions for the
team of robots that satisfies (21). This equation includes both
the short term goals, denoted by U(·), and the long term
goals, denoted by ϑT−(t+Ts)(·). Interestingly, removing the term
ϑT−(t+Ts)(·) from (21) will shift the framework’s focus to the sum
of variance of neighboring cells and thus convert our framework
into a greedy IPP. Moreover, removing this term will also relax
the dependence on future moves and thus simulate a myopic
planning approach. The time bounds will only be present to stop
the simulation and not constrain the framework’s planning or
model learning.

The key difference between the greedy IPP and our framework
is the selection of actions at any given time t. Both the frameworks
use the same sparse GP method and the actions are selected in a
centralized manner. The performance of this greedy framework
can be thus used as a benchmark and effectively compare two
different IPP approaches, myopic and non-myopic.

We simulated the greedy IPP using the simulation setup
explained in the previous section. The greedy IPP and m-AdaPP
are both given the same amount of time for a team of two robots
and we simulated 10 runs for both the fields. We calculated the
MAE values for all the runs and the end results are shown in
Figure 8. It can be clearly observed that AdaPP performs better
when compared to a greedy IPP. These results are encouraging
as it shows that our non-myopic planning approach performs
well and efficiently coordinates the team of robots within the
given time.
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FIGURE 6 | Mean absolute error (MAE) in estimating the temperature field using different teams of robots. (A) Shows the error in estimating the field given by Field 1

and (B) shows the error in estimating Field 2. The similar MAE values for different teams of robots with different mission time T provide more objective evidence that

our framework is capable of coordinating the teams well.

FIGURE 7 | The mean absolute error over 10 runs for different teams of robots. The result shows the error in estimating the field given by Field 1. The consistent

performance of our multi-robot framework over multiple runs provides the evidence that our framework is robust.

5.3. Simulations to Compare Performance
With a Distributed Implementation of
m-AdaPP
Our framework makes use of centralized planning for
coordinating the team of robots and this centralized planning
can be distributed for the team of robots using different
approaches. One of these approaches can be splitting the area
into proportional areas to the number of robots and perform
planning for each robot in its respective area. It is important to
note that in this approach only the planning will be performed
separately for each robot and the model learning will still be
centralized. The use of such a distributed planning approach
will decouple the next action selection for each robot, however,

it will also put restrictions on the coordination of robots as the
framework can only use one robot in the designated area.

We simulated this distributed planning approach to compare
its performance with the suggested centralized framework. We
used the same setup as described in section 5.1 for a team of
robots. Field 1 and Field 2 were both split into two equal left and
right halves for simulating the distributed planning approach.We
simulated 10 runs for both the fields and used both the versions
of our planning approach. The MAEs for these simulations are
shown as boxplots in Figure 9. It can be clearly observed from
the boxplots that median errors of centralized planning are about
half the median errors of distributed planning. This result shows
that our centralized planning performs better when compared to
the distributed planning.
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FIGURE 8 | Mean absolute error over 10 runs shown as a boxplot for a team of two robots with greedy IPP and m-AdaPP. The error calculated in estimating both the

fields, Field 1 and Field 2. The greedy IPP is a multi-robot IPP that aims to reduce the maximum sum of variance in the neighboring cells, and hence simulates greedy

planning. The error values show that m-AdaPP performs better compared to the greedy IPP.

FIGURE 9 | A boxplot of mean absolute error over 10 runs for a team of two robots with distributed planning and centralized planning of m-AdaPP. The result shows

the error in estimating both the fields, Field 1 and Field 2. The tiled version of AdaPP for a team of two robots is essentially separating the field into two equal halves

and using m-AdaPP for planning individually. It is important to note that model learning in distributed planning and centralized planning of m-AdaPP is the same and

only the approach for planning is different. The error values show that centralized planning performs better when compared to the tiled version.

5.4. Field Experiments for Performance
Comparison With Lawn Mower Paths
We tested the performance of our framework against
conventional approaches such as estimating fields using lawn
mower paths via field experiments. We developed two variants
of the NUSwan (Koay et al., 2017) robot as shown in Figure 10.
These robots were equipped with general water-quality sensors
such as DO, conductivity, pH, and oxidation-reduction potential.
Moreover, these robots used on-board navigation sensors to
guide the robot to the locations given by the framework. Our

framework m-AdaPP was hosted on a cloud server, which can
be accessed by our robots using a mobile network. This cloud
server was a compute instance provided by AmazonWeb Service
with the capability to run 16 threads in parallel. This capability
is crucial for our framework as it significantly reduces the
computation time for making planning decisions. We optimized
our framework to run smoothly on this compute instance. Both
the robots posted the data to this server every 5 s.

For consistency, the mission time for the team of two robots
for our field experiments is the same as the mission time we
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FIGURE 10 | One of the robots we used in our field experiments. It is a variant of NUSwan (Koay et al., 2017). This figure shows various components present in our

robot. Our robots are capable of navigating autonomously once a waypoint is given. It is equipped with general water-quality sensors and provides real-time updates

of the physical and chemical parameters of water. Moreover, our robots use a middleware which enables them to receive waypoints from remote servers and provide

the mission relevant information back to the server for future planning.

used for two robots in our simulations, which is T = 1, 200 s
and Ts = 120 s. In general, lawn mower paths are defined by
the number of legs, where each leg is a straight path parallel to
one of the axes of the survey area. If the speed of the vehicle is
constant, lawn mowers can be defined in terms of time but speed
of the vehicle in the field can vary due to external disturbances.
Therefore, the lawnmowers are defined in terms of lengths rather
than time.

Imposing the temporal constraints directly on the lawnmower
paths can result in abruptly stopping the lawn mower pattern.
Therefore, we assume an average speed of the robots and use this
average speed to calculate the total length of the lawn mower for
the mission time T = 1, 200 s. We set this average speed as 0.5
m/s. Note that this average speed is higher than the average speed
mentioned earlier. This difference is to factor in the fact that the
vehicle mostly moves in a straight line and thus inertia of the
vehicle helps in maintaining a higher speed. Using the average
speed of 0.5 m/s and a mission time of T = 1, 200 s, we set the
length of the lawn mower as 600m.

We selected a survey field of area 150 × 150 m2 in a local
reservoir and used our robots to estimate the field of DO over
this area. The estimated fields using the lawn mower patterns
and our frameworks are present in Figures 11, 12, respectively.
The mission time for the lawn mower paths was 1, 236 s and
thus our assumption of a higher average speed was correct.

Additionally, the distance traveled by the robots while using our
framework is less when compared to lawn mowers, generally
within a 5% range. The distance traveled is less mainly due to
momentary stops during synchronizations between the team of
robots and the server. The black and red circles with a large radius
and no outline represent the starting locations of the robots in
Figures 11, 12, whereas, the circles with a green outline represent
the end location of the robots.

We collected a test dataset to measure the performance of
our framework and the lawn mower paths. This test dataset
was collected while robots were traveling back to the starting
location after finishing the mission. This dataset contained
both the locations as well as the ground truth data for the
respective locations. We obtained the estimated DO value for
these locations using the learnedmodels and calculated the errors
using the collected ground truth data. Additionally, we calculated
the mean and standard deviation for each of the collected test
datasets. These statistical values can be used to approximate the
similarity between the two datasets. The results for both are
presented in Table 2. It can be observed that both the test dataset
had similar characteristics and thus the errors of the twomethods
can be compared. The calculated errors for our framework are
significantly lower compared to the errors for the lawn mower
paths. These field experiments demonstrate that our framework
is able to provide a better estimate of the environmental field.
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FIGURE 11 | Field estimated using lawn mower patterns with a team of two robots. The estimated field is for relative dissolved oxygen for an area of 150× 150 m2 in

a local reservoir. The black and red circles with a large radius and no outline represent the starting locations of the robots. Similarly, the black and red dots represent

the locations of the data collected. Finally, the black and red circles with a large radius and a green outline reflect the end location of each robot and the arrow

represents the direction toward the starting location. The total mission time for this experiment was T = 1, 236 s.

5.5. Using Estimated Fields for Scientific
Experiments
The aim of these experiments was to use the estimated fields
for selecting locations to collect water samples from different
concentrations of a water-quality parameter and use these water
samples to understand the micro-level interactions. For the
sample collection process, we performed three field estimation
tasks using our framework. Two out of these three estimation
tasks were on the same day with a temporal difference of 1 h.
Each of these estimation tasks were given a mission time of 20
min. The following was the overall schedule of our experiments:
10 : 30 am on February 28, 2019, 01 : 05 p.m. on March 4, 2019,
and 02 : 25 p.m. on March 4, 2019. These estimated fields are
shown in Figures 13, 14, where all the values of dissolved oxygen
(DO) are a relative measure of DO instead of the true values.

After each field was estimated, we manually selected the
locations to sample and used the robot’s automated sampler to
collect 1 L of water. These sampling locations are shown as red
and blue circles with white outlines in Figures 13, 14. In total,
we collected three samples from the regions with low DO values
(cold regions) and four samples from the regions with high DO
values (hot regions). These samples were then sent for lab analysis
such as sample filtering, DNA sequencing, and assembling the
DNA to identify different microorganisms. We used the PHRED
quality score (Ewing and Green, 1998; Ewing et al., 1998) for
our samples. This score is a value between 2 and 40 and it
is used to check the quality of the samples before performing
any further analysis. This value will be low if the amount of
information such as the total DNA present in the samples is not
enough to construct and identify the microorganisms. Similarly,
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FIGURE 12 | Field estimated using a team of two robots and our framework m-AdaPP. The estimated field is for relative dissolved oxygen for an area of 150× 150

m2 in a local reservoir. The black and red circles with a large radius and no outline represent the starting locations of the robots. Similarly, the black and red dots

represent the locations of the data collected. Finally, the black and red circles with a large radius and a green outline reflect the end location of each robot and the

arrow represents the direction toward the starting location. The total mission time for this experiment was T = 1, 200 s with Ts = 120 s. It is interesting to observe that

data collected using this team of robots were dense in a few regions, whereas, sparse for the remaining regions. However, our framework still performs better as

compared to the lawn mower pattern and this is a field-validated result that collecting representative data (adaptive framework) can perform better when compared to

collecting data with repetitive information (lawn mowers).

this value will be high if the amount of information present
in the collected samples is enough for further analysis such as
identifying microorganisms. The PHRED quality score can vary
due to many different reasons such as sampling location or the
filtering process, and thus having an objective score makes it
easier to evaluate the samples collected. The mean scores after
denoising was approximately 30.

After our quality analysis, we performed further analysis
to find the exact microorganisms present in our samples
and examined the differences between hot and cold regions
estimated by our framework. Figure 15 shows the principal

TABLE 2 | The root mean square error (RMSE), mean absolute error (MAE), and

statistics for the test dataset used for each approach.

Estimated using Estimation error Test data

RMSE MAE Mean Std. deviation

Lawn mower patterns 6.6 4.8 148.4 5.2

m-AdaPP 3.9 2.8 149.1 4.5

These values represent the error in the estimation of the dissolved oxygen field. These

errors were calculated using the test data collected by the team of robots while returning

to the starting location and the mean and standard deviation for each of the test dataset

is available in the last two columns. Our framework gives about a 50% improvement in

performance as compared to the fields estimated using lawn mowers.
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FIGURE 13 | (A) The estimated fields of relative values of dissolved oxygen for a 75 × 75 m2 area in Pandan Reservoir on March 4, 2019 at (A) 01 : 05 p.m. and (B)

02 : 25 p.m. The red and black dots, respectively, represent the paths of the two robots. The red and blue circles with the white outline represent the samples

collected from the hot and cold regions, respectively.
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FIGURE 14 | The estimated field for relative value of dissolved oxygen for a 75 × 75 m2 area in Pandan Reservoir on February 28, 2019. The red and black dots

respectively represent the paths of the two robots. The red and blue circles with the white outline represent the samples collected from the hot and cold regions,

respectively.

coordinate analysis (PCoA) (Anderson and Willis, 2003),
which is a commonly used method to find the dissimilarities
between a group of microorganisms in a sample. Although
we performed only three experiments, the results shown in
Figure 15 are encouraging. It is clearly evident that the group
of microorganisms living in the hot regions are substantially
different from the group living in the cold regions of the
estimated fields. Therefore, these preliminary results provide
a good use case for the adaptive frameworks. Such field
estimation experiments can further help in understanding
the biological questions such as explaining the difference
in the groups of microorganisms between the cold and
hot regions.

6. CONCLUSION

We outlined a framework for monitoring scalar environmental
fields using a team of robots with bounds on overall mission
time. We used the kernel information of the sparse GP model

to explore the combinations of actions available to the team of
robots and collect informative data. The paths are evaluated to
minimize the overall variance and we include the time taken
for this evaluation in our overall mission time to provide real-
time performance. We simulated the framework using real world
data and the results show that our framework is capable of
coordinating a team of robots efficiently. We also simulated
multiple runs of the framework to test the robustness in our
performance and the results show consistent results across
multiple simulations.

We designed two robots based on the NUSwan vehicle for
monitoring reservoirs in Singapore. Using this team of robots, we
validated the performance of our framework in the field against
conventional methods such as using lawn mower paths. The
estimation error for these field experiments was based on the test
data collected after finishing the monitoring task and the results
show that our framework outperforms the lawnmower approach.
Overall, we explained and validated our contribution for using a
team of robots to estimate a scalar environmental field.
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FIGURE 15 | The results from the analysis of principal coordinates and ordination for the microbial communities within each of the seven samples. The red dots

represent the samples collected from the hot regions, whereas, the cyan dots represent the samples from cold regions of the estimated field. Percentage values of

each axis represent the variation explained.

We further examined the biological relevance of the fields
estimated using our multi-robot framework, m-AdaPP. We used
the framework to estimate three fields and find the regions
of high (hot) and low (cold) concentrations for each survey
area. After completing each survey, we collected physical water
samples using our robots and used standard scientific protocols
to analyze the communities of microorganisms in the samples.
These standard lab-based methods were sample filtering, DNA
sequencing, and assembling the DNA to identify different
microorganisms. The results show the samples collected using
our framework are of good quality and can be used for biological
studies. Moreover, we analyzed our samples collected from hot
and cold regions and found the microorganism communities to
be distinct.

7. LIMITATIONS AND FUTURE WORK

The suggested m-AdaPP framework has two limitations. First,
the centralized approach for coordinating the team of robots.

Our framework solves the best actions for the entire team
of robots and thus the size of the decision space is directly
related to the number of robots. This direct relationship
results in high computational cost for a large team of
robots. An approach to address this limitation can be a
distributed algorithm.

The second limitation comes from the use of SPGP. Although
the training time scales with NM2 instead of N3 still having
a very large number of training points, N will affect the
performance of our framework. A simple solution to this problem
will be the use of streaming GPs as the training time as
these GP models are completely independent of the training
points N.

The field experiments primarily showed the use for in-
water applications. However, the problem formulation of our
framework does not put a limitation on the applications and
it can be easily extended to estimate any scalar field that can
be approximated using GPs. Our framework can be easily used
for the estimation of air temperature or estimation of vegetation
spread using aerial or land vehicles.
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