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This paper introduces a novel deep learned quantization-based coding for 3D Airborne
LiDAR (Light detection and ranging) point cloud (pcd) image (DLQCPCD). The raw pcd
signals are sampled and transformed by applying the Nyquist signal sampling and Min-
max signal transformation techniques, respectively for improving the efficiency of the
training process. Then, the transformed signals are feed into the deep learned quantization
module for compressing the data. To the best of our knowledge, this proposed DLQCPCD
is the first deep learning-based model for 3D airborne LiDAR pcd compression. The
functions of Mean Squared Error and Stochastic Gradient Descent optimization function
enhance the quality of the decompressed image by 67.01 percent on average, compared
to other functions. The model’s efficiency has been validated with established well-known
compression techniques such as the 7-Zip, WinRAR, and tensor tucker decomposition
algorithm on the three inconsistent airborne datasets. The experimental results show that
the proposed model compresses every pcd image into constant 16 Number of Neurons of
data and decompresses the image with approximately 160 dB of PSNR value, 174.46 s
execution time with 0.6 s execution speed per instruction, and proved that it outperforms
the other existing algorithms regarding space and time.

Keywords: nyquist signal sampling, min-max signal transformation, airborne spatial information, LiDAR, 3D point
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INTRODUCTION

A LiDAR is an active optical technique that creates the high-density 3D point cloud image of sampled
Earth’s surface by transmitting the signal pulses toward the target image in the Earth, then, detects
and analyses the signal from the target by receiver sensor in the LiDAR. The receiver sensor calculates
the time interval between the signal pulse left from the sensor and the reflected signal received for
finding the distance of the object to the ground (What Is Lidar Data Help ArcGIS Desktop, n.d). The
LiDAR sensor record the information about the Earth as a pcd image and each point in the pcd holds
some of the attributes like 3D spatial information (x, y, z), intensities, color values (red, green, blue),
flight angle, etc. The resulting of the recorded point clouds are stored in the form of a laser file system
(LAS) or point cloud system (pcd) format (What Is a Point Cloud What Is LiDAR, n.d). The LiDAR
can generate 160,000 pulses per second; this will create a massive raw point cloud data. It is a very
challenging task to store and analyze this huge data. A high efficient compression process is
mandatory to solve this problem. In an earlier stage, the point cloud compression has been done by
using octree and voxelization methods, then, it slowly moves to the tensor-based compression
version. Now it reaches out to the artificial technology, to apply learning algorithms on the pcd image
to compress the huge data. Nowadays many of the machine learning algorithms such as
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classification, detection, segmentation, and identification are
focuses on the pcd images and are implemented on some of
the airborne datasets. A very few countable point cloud
autoencoders have been designed and tested only for balanced
ModelNet and ShapeNet datasets but the machine learning-based
compression model for airborne LiDAR pcd datasets is yet to be
designed. Our proposed DLQCPCD network model is the first
deep learned-based codec model for unbalanced airborne LiDAR
pcd datasets.

This proposed point cloud compression work depends on the
preprocessing methods and the deep learned quantization
module. Some of the existing related works of DLQAEPCD
are discussed in this section. The point cloud image surface
has been represented by the characteristics of the sampled
signal, generated by applying the Nyquist frequency rate value
(Mineo and Summan, 2019). The mathematical manipulation
formula helps to downsample the point cloud by multiplying the
maximum signal value with a scaling factor, which is less than
one, and round it to the closest integer coordinate value (Wang
et al., 2019). In the traditional octree downsampling algorithm,
convert the leaf node values as the patches of pcd image for
further processing steps (Golla and Klein 2015). In the high-
density point cloud image, the unnecessary points are removed
and retaining the sparse points in the planar, cylindrical, and
rough neighborhood areas (Lin et al., 2016). The down-sampled
pcd points are transformed into the range of some values for
reducing the complexity of the data manipulation. One of the
probability-based, improved normal distributive transformation
methods has been applied to the point cloud image to normalize
the points (Merten 2008). The statistical-based, multi-directional
affine registration algorithm transforms the pcd data values to
suitable data for the registration process (C. Wang et al., 2018).
On the other way, the geometric information of pcd data has been
transformed based on quadratic constraints, which have
combined the point’s orientation and position of the line
features (Sheng et al., 2018).

In the earlier compression techniques, the maximum of pcd
preprocess methods only based on the voxel grid or octree
algorithm. Some of the preprocess work based on the
segmentation, which is based on the region growing
segmentation process in which the discarded boundary points
are restored by using polynomial equations of degree one during
the decompression process (Imdad et al., 2007). The combination
of plane fitting and discrete wavelet transform algorithm
improves the quality of the reconstructed pcd image (Chithra
and Christoper 2018). On the other hand, Tensor based point
cloud compression algorithm has been efficiently reduced the
storage space, then perfectly reconstruct the original point cloud
image (Chithra and Tamilmathi, 2020b). The dimension of 3D
point cloud data has been reduced into a single order tensor to
minimize the storage space and transmission time by applying the
Tucker decomposition method (Chithra and Tamilmathi, 2020a).
Recently Artificial Intelligence is made a greater change in the
point cloud process. Machine learning networks face real-time
challenging tasks is to handle the point set that directly taken
from the point cloud image. 3D point cloud has been classified by
using high-performance transfer learning algorithms (Zhao et al.,

2020). A 3D point cloud image has been classified and segmented
by using a structure-aware convolution neural network (Wang
et al., 2020). The geometric information of point cloud data has
been preserved by applying the spectral decomposition filter and
produces a good performance in the point cloud registration
process (Labussiere et al., 2018). Nowadays, some machine
learning-based algorithms focus on the 3D autoencoder
development process for encoding and reduce the dimension
of the point cloud image. Only a few countable machine learning
algorithm based model concentrates on the 3D point cloud
compression work. Pointnet-based deep autoencoder algorithm
replaced the transformation function in the point cloud
compression technique (Yan et al., 2019). The structure of the
3D point cloud image has been compressed by using the 3D
convolutional layer model (Quach et al., 2019). Voxelized and
scaled, non-overlapped 3D cube structure point cloud fed into the
stacked convolutional network to improve the latent feature
characteristics of the pcd image (Bello et al., 2020). Another
type of sparse autoencoder and compressed sensing method
improves the speed of the reconstruction process (Chen et al.,
2019). The quality of the reconstruction point cloud image has
been improved by the folded neural network with a tuned weight
model (Wang et al., 2012). The effective latent code has been
created from the convolution network model by maintaining the
adaptive features of the image (Yuhui et al., 2019). The quality of
the actual pcd image is compared with the target image by
different quality metrics (Schwarz et al., 2019).

This proposed DLQCPCD work compresses the spatial
information of airborne LiDAR pcd image based on the deep
learned quantization algorithm. First, the unbalanced raw pcd
data are sampled by applying the Nyquist signal sampling
technique. Then, the sampled signal data are transformed by
using the Min-max signal transformation method. The deep
learned quantization model has taken the transformed signal
data as the input and produces the latent vector as a compressed
form of bitstream data. This model has been implemented and
tested on three different dense airborne LiDAR pcd datasets and
compared with the existing algorithms.

Our main contributions are described in two folds.

1. Quantization is a core function of the traditional
compression procedure. The quantization and
dequantization modules have been replaced by the deep
learned quantization network structure to increase the
compression ratio and the quality of the reconstructed
image with high speed.

2. The above-discussed autoencoder and deep learning-
based compression models have been created only for a
balanced Terrestrial synthesis ModelNet and ShapeNet
datasets in OFF format files. These two data sets are
different from our unbalanced, unlabeled airborne
LiDAR data set. So far there is no model is available for
our proposed 3D airborne LiDAR pcd datasets. Other
machine learning algorithms such as segmentation,
detection, identification, and classification methods are
implemented in the airborne dataset. To the best of our
knowledge, this is the first proposed compression model
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for 3D airborne LiDAR pcd datasets based on a deep
learning algorithm.

Experimental results show that the proposed DLQCPCD
algorithm compresses every pcd image into constant 16-bits of
data and the quality of the reconstructed image averagely
increased by 67.01% on average compared to the other
function combination. This is the first deep learning-based
model implemented on 3D airborne LiDAR pcd image
compression. The compression performance and the
compression efficiency of the proposed DLQCPCD model are
compared with the existing well-known compression algorithms
such as 7-Zip, WinRAR, and tensor tucker decomposition
algorithm, respectively. The experimental results show that the
proposed model compresses every pcd image into 16 Number of
Neurons of data and decompresses the image with approximately
160 dB of PSNR value, 174.46 s execution time with 0.6 execution
speed per instruction and proved that it outperforms the other
existing algorithms regarding space and time complexity.

This paper is organized as follows. Proposed Deep Learning-
based Compression Methodology presents the proposed deep
learning-based compression methodology. The datasets and
the experimental results are discussed in Experimental Results.
Finally, the conclusion of the work is given in Conclusion.

PROPOSED DEEP LEARNING-BASED
COMPRESSION METHODOLOGY

The architecture of the proposed DLQCPCDmethod is shown in
Figure 1. The proposed compression process consists of three
steps; i) Nyquist Signal sampling, ii) Min-max Signal
transformation, and iii) Deep learning-based quantization
process. A detailed explanation of the proposed DLQCPCD is
given below.

Nyquist Signal Sampling
The massive, continuous pcd signal has been discretized into
finite signal data by using the Nyquist sampling technique. This

sampling technique supports the distortion-free reconstruction
process. The main aim of this Nyquist sampling method is to
select the discrete sequence of signal values to get the complete
information from the continuous signal by using the Nyquist
sample rate. This sampling method does not lose any information
in the original point cloud. Millions of signal pulses have been
recorded by the LiDAR sensor per second hence the raw data is
very huge and also each pcd image in the dataset has a varying size
of 3D point data. It is not efficient to train the single model for all
pcd images in the dataset. Thus the imbalanced data in the dataset
should be balanced by the Nyquist sampling function before feed
into the training process. The three different coordinate signal
pulses x, y, z have been independently sampled by the constant
sample period δs. Then, the Nyquist sampling frequency (Nyquist
sampling rate) χs can be represented as the following Eq. 1.

Xs � 1
δs
, (1)

The Nyquist sampling rate denotes the number of samples is
taken for the further process. The Nyquist sampling theorem
denotes that the frequency is strictly less than half of the sample
rate. In this proposed method the constant sampling period δs �2.
The discrete signal samples have been collected by using this
sample period from the Nyquist rate (2δs) of the continuous
signal. Hence the alternative signal samples are collected from the
original recorded signal. Then the Nyquist sampling rate is half of
the portion of the original signal that has been taken as a sampled
signal data of the original signal. In the pcd signal, Sp expressed in
Eq. 2.

Sp � {Xn,Yn,Zn}, (2)

Xn � {x1, x2, x3, ..., xn, },
Yn � {y1, y2, y3, ..., yn},
Zn � {z1, z2, z3, ...zn},

where Xn, Yn, Zn are the set of x, y, z coordinate values,
respectively. The n is a number of signal data in each set.
From each set, i positioned data have been collected for
sampling, and the remaining (i−1) positioned signal data are

FIGURE 1 | The architecture of the proposed DLQCPCD algorithm.
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not considered for further processing. Hence the n/2 sampling
rate signal data only consider for the next transformation process.

Min-Max Signal Transformation
The real-world coordinate values of recorded LiDAR pcd data
have been transformed into the window (standard) coordinate
values to improve the training stability of the described model.
This standard transformation has been done by the Min-max
pulse transformation function. This proposed Min-max
transformation is one of the efficient and fewer computation
methods to transforms the raw coordinate pulse value into the
range of 0 and 1 without affecting the structure of the pcd image.
In this transformation, the minimum pulse value of the signal is
transformed into 0 and the maximum pulse value of the signal is
transformed into 1. The other pulse value of a signal is
transformed in between the range of 0–1. The main goal of
this transformation algorithm is to move every signal to the same
scale to make them equally involved in the further processing
technique. The transformation function is described by the
following equations

ωmax � MAX{Sp},
ωmin � MIN{Sp},
S′p � Vn

i�1(xi − ωmin)/(ωmax − ωmin), (3)

where xi, ωmax, ωmin are the ith input signal, maximum and
minimum signal value in the pcd signal set Sp, respectively that
contains the different range of pulse value. Sp′ is the transformed
pcd signal values are normalized in the range of 0 and 1. The
resultant normalized signal value improves the efficiency of the
training process of the proposed model.

Deep Learned Quantization
Quantization is the process of mapping the massive raw pcd
data into a minimum number of the necessary bitstream for the
storage and transmission process. DLQ is a deep learning-based
network to reduce the dimension of the normalized 3D
structured pcd data into a single order tensor with a fewer
number of bytes to reduce the time and space complexity of the
storage and the transmission process. The architecture of DLQ
is shown in Figure 1, which consists of a quantization module
with encoder function c � Qθ (x) and a dequantization module
with decoder function x’ � Dφ(c) where x, x’, c, Q, and D are
input variable, decoded variable, latent space vector
(compressed bitstream), quantization function and
dequantization function, respectively. The DLQ network has
been trained by the optimized encoding and decoding
parameters θ and φ. Every 3D point in the pcd image has
been quantized by using multiple dense layers in the DLQ
network. The quantization module has been constructed by
four dense layers with 128, 64, 32, 16 neurons, respectively
followed by ReLU activation function. ReLU activation
function selects the necessary information from the image
for the compression process. It produces better performance
in the proposed model compared with the other optimized
activation functions like linear and sigmoid activation

functions. The deep learning-based quantization function is
denoted by Eq. 4.

Q � D4(D3(D2(D1(S′p,Qe1)Qe2)Qe3)Qe4), (4)

where Sp′ is a normalized input pcd set with n number of 3D
points in the spatial domain, which is an input and target output
data of deep learning module. Q is a quantized bitstream (Latent
space vector) with a constant compressed size of pcd image,
which is a resultant stream of deep learned model with four fully
connected layers D1, D2, D3, and D4 with the ith optimized
quantization parameters Qei. The dequantization functional
part is consists of four dense layers with 32, 64, 128, 6144
neurons followed by the ReLU function, and then the sigmoid
function. The dequantization function has been restored the
missing value in the latent space vector by applying the
inverse process of a quantization process, which is denoted by
the Eq. 5.

Sp″ � D1(D2(D3(D4(Q,De4)De3)De2)De1), (5)

where Dei is an optimal dequantization parameter applied on a
quantized bitstream to produce back to the normalized pcd data
through the trained dequantization deep learning module. The
output pcd signal of the dequantizationmodule is denoted by Sp′′.
In this deep learning architecture, each neuron in the layer linked
with all the neurons in the successive layer through the link is
called weight (w). The bias value is linked with all the neurons in
each layer. This proposed quantization architecture has been deep
learned by applying the Mean Squared Error (MSE) loss function
to calculate the distortion between actual and targeted output pcd
image is denoted in Eq. 6. This loss function leads to the Peak
Signal-to-noize Ratio (PSNR) characteristics of the LiDAR pcd
image.

MSE � ∑n

i�1
(Sp′ − Sp″)2

n
, (6)

Where Sp′ And Sp′′ are the target and actual output pcd image
signal. The stochastic gradient descent (SGD) optimizer is applied
to balance the weight values to reduce the distortion between the
actual and target value of the model. Eq. 7 is describing the SGD
calculation function.

Θ � Θ − (α × G), (7)

Θi � Θi − α(S′p − Sp″)xij , (8)

where α is a learning rate and Θi is an ith random point selected
for the gradient calculation, and G is a gradient value. The
optimized hyperparameter values such as learning rate (α �
0.3) and momentum (β � 0.9) values are to increase the speed
of the convergence rate. DLQ network has been trained by 6000
epochs to produce a better-reconstructed image but actually, the
model reached convergence much earlier.

Performance Metrics
The performance of the proposed DLQCPCD algorithm has been
measured by objective quality metrics based on Point-to-Point
(P2P) and Point-to-Plane (P2Pl) metrics. The distortion value
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between the actual output and the targeted output value has been
measured by the chamfer distance (Yan et al., 2019). The sampled
original pcd image is denoted by Vorg and the decompressed pcd
image is denoted by Vdeg. All the performance metrics are
described in Table 1 (Schwarz et al., 2019).

EXPERIMENTAL RESULTS

The proposed DLQCPCD implemented and tested on the three
different size and dense, 3D Airborne LiDAR point cloud datasets
using Jupyter environment in Python 3.7.3 on Windows 10 with
12.0 GB RAM and X64 bit processor. The first one is, the LAS
format of a huge 3D LiDAR point cloud dataset (Downloads,
n.d), which contains the seven different point cloud images
(National Lidar Dataset - Wikipedia, n.d). The second one is,
XYZ format of the Sydney Urban 3D object dataset (Sydney

Urban Objects Dataset - ACFR - The University of Sydney, n.d),
from that twenty-three massive scan data, have been trained and
tested for DLQCPCD. The final one is, pcd format of the
International Society of Photogrammetry and Remote Sensing
(ISPRS) dataset, which contains the eight urban landscape-City
Site (Csite) and rural landscape-Forest Site (Fsite) of the high-
dense PCD data set (Test Sites, n.d). All the pcd in different
datasets are converted into the unique pcd format. These datasets
are split into the purpose of training (80%) process and testing
(20%) process for efficiently evaluates the proposed model.
Figure 2 shows some of the sample pcd images of three
different LiDAR point cloud datasets.

In Figure 2, dataset names are defined by a single letter such as
S for Sydney dataset, I for the ISPRS dataset, and L for the LiDAR
dataset. The proposed compression method extracts only the
spatial information from the different attributes of the pcd image
for the compression purpose. This extracted inconsistent spatial

TABLE 1 | The Objective quality metrics of 3D point cloud data.

Metrics Formula

Root Mean Square Distance (RMSD) (P2P) drms(Vorg ,Vdeg) �
�������������������������������
1
K ∑
vo ∈ Vorg

vo − vd nearest neighbour2
√

Hausdorff distance (P2P) dhaussdorf(Vorg ,Vdeg) � maxvo ∈ Vogr, (
∣∣∣∣∣∣∣∣∣∣vo − vdnearestneighbour

∣∣∣∣∣|2 , vd is the point in Vdeg closest to vo)

PSNR using RMSD (P2P) psnr drms � 10 log10(|255||22/(dsymmetric rms(V))2)

PSNR using Hausdorff distance (P2P) psnr haussdorf � 10 log10(|255||22/(dhaussdorf(V))2)

Chamfer Distance dch(P, P′) � max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
|P| ∑

x εP, y ε P′

min
∣∣∣∣∣∣∣∣x − y2

∣∣∣∣∣∣∣∣
1
|P′| ∑

x ε P′ , y ε P

min
∣∣∣∣∣∣∣∣x − y2

∣∣∣∣∣∣∣∣
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

FIGURE 2 | Input sample images from three different datasets (A) Scan2446(S) (B) Scan23124(S) (C) Csite3(I) (D) Fsite8(I) (E) Lake(L) (F) Building(L).
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information has been uniformly sampled by applying the
Nyquist signal sampling technique on all the pcd in the
datasets to increase the efficiency of the DLQ deep learning
model. The sampling technique selects the 3D signal data based
on the sampling rate (2048×3) and the sampling interval value
(Two). One of the sampled Scan2446(S) point clouds is shown
as a 3D scatter point graph in Figure 3B. Then the real-valued
pcd image has been transformed into the window coordinate to
reduce the computation complexity without affecting the
structure of the point cloud. All the pcd data values are
transformed into the range of 0 and 1 by applying the Min-
max signal transformation method. This transformation
technique is best suited for this DLCQPCD than the other
transformation techniques. Figure 3C shows the 3D scatter
point graph of the transformed point cloud. It illustrates that the
range of the signal value is transformed without affecting the
structure of the point cloud image.

Next, the transformed values are fed into the input layer of the
DLQ network which contains the quantization module with four
different sized fully connected layers with 128, 64, 32, 16 neurons,
respectively followed by the ReLU activation function. The last
dense layer produces the latent vector as the compressed bitstream

with 16 bits. The error values have been calculated and shown in
Figure 4 for a different combination of functions. Figure 4A shows
that the calculated error value while applying different loss
functions like MSE, Mean Absolute Error (MAE), and Mean
Squared Logarithmic Error (MSLE) on the datasets. From the
graph, it is noted that the MSE loss function produces the
minimum error value than the other functions. Hence, the MSE
is selected as a suitable loss function for this proposed model.

Figure 4B defines that the calculated error value while
applying different optimizer functions like SGD, ADAM, and
Root Mean Square Properties (RMS) on the datasets. From the
graph, it is observed that the function SGD produces a minimum
error than the other functions. Hence, SGD is considered the best
optimizer for the proposedmodel. The proposed DLQ network has
been deeply trained by the MSE loss function and SGD optimizer
to reduce the distortion between the actual and targeted output
with less convergence time. The combination of MSE loss function
and SGD optimizer function enhances the quality of the
decompressed output image from the proposed model than the
other combination of functions.

Figure 5 illustrates the training and validation loss values for
three different pcd datasets. The proposed DLQ network trained by

FIGURE 3 | The output of the DLQCPCD preprocesses algorithm (A) Original Scan2446(S) pcd image (B) After Nyquist Signal Sampling (C) After Min-max
Transformation.

FIGURE 4 | (A) Loss function Search Space (B) Optimizer function Search Space.
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6000 epochs for getting better quality reconstructed image but the
model reached the convergence state much earlier that is shown in
Figure 4. The DLQ network produces better target images that are
shown inFigure 6. The sample target (input) and actual output pcd

images from three datasets are shown in the Figures from 6(A) to
6(C) and from 6(D) to 6(F), respectively.

The objective quality metrics in Table 1 are applied to an
original and reconstructed image of the DLQCPCD algorithm;

FIGURE 5 | Training and validation loss value over the Epochs (A) 3D LiDAR pcd dataset (B) Sydney Urban 3D Object dataset (C) ISPRS dataset.

FIGURE 6 | Target and the actual result pcd images of the DLQmodel (A) Target Test1(L) (B) Target Scan19761(S) (C) Target Fsite8(I) (D) Actual Test1(L) (E)Actual
Scan19761(S) (F) Actual Fsite8(I).

TABLE 2 | The performance comparison between the different combinations of loss and optimizer functions on two sample images from each dataset.

Point
Cloud
Test
Images

Optimization Function Search Space Loss Function Search Space

PSNR Hausdorff Distance PSNR Hausdorff Distance

SGD ADAM RMS SGD ADAM RMS MSE MAE MSLE MSE MAE MSLE

Test1(L) 139 124.7 81.8 0.02 0.06 0.9 139 79.3 93.8 0.02 1.06 1.09
Zurich(L) 128 46.1 46.2 0.07 10.5 10.8 128 46.3 46.1 0.07 10.5 10.5
Fsite7(I) 85.2 93.3 53.1 0.6 2.08 9.19 85.2 64.8 55.6 0.6 6.1 24.9
Fsite8(I) 121 17.4 17.5 0.1 73.3 71.0 121 17.3 17.3 0.1 72.5 73.3
Scan23124(S) 98.5 115.5 62.2 0.1 0.1 0.6 98.5 63.2 71.3 0.1 1.8 5.8
Scan25322(S) 122 36.4 36.9 0.1 14.6 14.7 122 36.8 36.3 0.1 14.9 14.6
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then the results are tabulated in Table 2. It shows only the quality
metrics of two sample images from each dataset.

From Table 2, it is proved that theMSE and SGD combination
improves the PSNR value of the DLQCPCD algorithm’s
decompressed image with minimum Hausdorff distance in all
three datasets. The ADAM optimization function produces
nearer to the value of the SGD function. In the loss function
search space, the MAE function produces the very nearer value of
the MSE function. The distortion-rate between the target and
actual output of the DLQmodel has been measured and shown in
Figure 7A. In this Figure LiDAR dataset has less distortion rate

than the other two datasets. Since, both the datasets are high
dense than the LiDAR dataset.

The quality of the decompressed pcd from the proposed
compression algorithm has been analyzed by using different
objective quality metrics based on P2P and P2Pl methods. The
different metrics formula has been mentioned in Table 1. The
quality metrics Mean square error (MSE) and the Hausdorff
mean square error (HMSE) for both P2P and P2Pl has been
measured between the distance of original and decompressed
image, is tabulated in Table 3.

FromTable 3, it is observed that there is no noticeable distance
between original and decompressed pcd. The quality of the
decompressed pcd is measured by the Peak signal-to-noize
ratio (PSNR) and Hausdorff peak signal-to-noize ratio
(HPSNR). The calculated quality of the decompressed pcd
from the proposed method is shown in Figure 8.

From Figure 8, it is observed that the Test1 point cloud from
the LiDAR LAS dataset produced the high-quality decompressed
point cloud rather than other point clouds. The performance of
the proposed DLQCPCD algorithm is compared with the well-
known general compression techniques (7-Zip and Win RAR)
and the existing Tensor tucker decomposition algorithm (Chithra
and Christoper 2018), (Chithra and Tamilmathi, 2020a), is shown
in Table 4. The proposed well-trained deep learning-based
architecture is to compress each point cloud from the three
different databases into 16-bit compressed data. The existing

FIGURE 7 | (A) The calculated Chamfer Distance of the Test Datasets (B)Comparison of Total execution time between proposed and Tensor Tucker compression
algorithm.

TABLE 3 | The objective distance measurement is based on Point-to-Point and
Point-to-Plane metrics.

Point Cloud Name Point-to-Point (P2P) Point-to-Plane (P2Pl)

MSE HMSE MSE HMSE

Scan11290(S) 1.49E-05 0.202613003 5.99E-11 0.000170152
Scan20631(S) 2.83E-09 0.138679112 6.73E-14 4.68E-05
Scan19761(S) 9.66E-08 0.189268328 2.99E-14 6.98E-05
Scan11886(S) 2.72E-07 0.119642347 8.20E-14 0.000137626
Scan2738(S) 4.58E-06 0.250359661 5.76E-12 9.96E-05
Fsite7(I) 0.0003987 0.632448537 3.22E-12 0.000320763
Fsite8(I) 0.0001926 0.361468333 3.62E-12 0.000259748
Test1(L) 1.29E-10 0.019763539 3.50E-16 7.29E-06
Zurich(L) 2.86E-10 0.078470708 5.13E-14 4.29E-05

FIGURE 8 | The PSNR value of the decompressed point clouds based on P2P and P2Pl.
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algorithm can compress the single image at a time without having
prior knowledge of the point cloud data. Hence, it takes more
time to compress and decompress the point cloud. The proposed
algorithm has gained knowledge during training the process.
Once it is trained for the specific point cloud it can compress and
decompress the set of point clouds within a minute.

From Table 4, it is concluded that the proposed deep learning-
based model performed well with less distortion-rate at high
speed than the existing Tensor Tucker compression algorithm.
The existing well-known compression algorithm such as 7-Zip
and WinRAR compresses the single pcd image into kilobytes
(Chithra and Christoper 2018), (Chithra and Tamilmathi, 2020a),
but this proposed DLQCPCD algorithm compresses every pcd
image into 16 bits of the latent vector.

The proposed compression algorithm’s efficiency has been
measured by some factors like Compressed point cloud, Quality
of decompressed point cloud, Execution time, Execution speed,
Main memory utilization, and Processor utilization. These factors
are measured by testing the proposed algorithm and the existing
tensor tucker decomposition algorithm with a 3D LiDAR dataset.
The final calculated values are shown in Table 5.

Table 5 shows that the proposed DLQCPCD method achieves a
high compression ratio, better quality of decompressed pcd, less
execution time, less memory utilization with high speed than the
existing tucker-based compressionmethodwith our systemcofiguration.

Figures from 6 to 8 and Tables from 3 to 5, concluded that the
proposed DLQCPCD lossy point cloud compression method
produces better compression performance and compression
efficiency than the existing algorithms. Hence, this efficient
compress algorithm is suitable for LiDAR, Sydney, and Test
site airborne datasets.

CONCLUSION

In this work, a deep learned quantization-based codec has been
developed for 3D airborne LiDAR pcd images. The Nyquist signal
sampling and Min-max transformation algorithm have been
applied on the raw pcd data to sampling and transforming the
signal into the range of 0 and1 to increase the efficiency of the
training process in the proposed algorithm. Then, the
transformed data feed into the DLQ model to generate the
latent code vector. The combination of MSE loss function and
SGD optimization function improves the quality of the
decompressed image by 67.01% on average compared to the
other function combination. This is the first deep learning-based
model implemented on 3D airborne LiDAR pcd image
compression. The compression performance and the
compression efficiency of the proposed DLQCPCD model are
compared with the existing well-known compression algorithms
such as 7-Zip, WinRAR, and tensor tucker decomposition
algorithm respectively. The experimental results show that the
proposed model compresses every pcd image into 16 Number of
Neurons of data and decompresses the image with approximately
160 dB of PSNR value, 174.46 s execution time with 0.6 s
execution speed per instruction and proved that it
outperforms the other existing algorithms regarding space and
time complexity. However, this proposed DLQCPCD
compression work is developed only for spatial (geometry)
information which is one of the seven attributes in the 3D
LiDAR point cloud. The remaining attributes are occupied the
same storage space as in the original point cloud. This algorithm
can reduce only one attribute of the memory space in the original
image based on the lossy compression technique.

TABLE 4 | Comparison of compression performance between the proposed method and the existing algorithms.

Dataset Name PCD Name Location txt file size
in KB

Existing Compression algorithm Proposed DLQCPCD algorithm
in Number of Neurons7-Zip in KB Win RAR in KB Tucker based on SVD

in KB

3D LiDAR LAS Test1 507 78.9 81.7 29.3 16
Zurich 28,224 429 459 31.3 16

Sydney Urban Objects Scan 11290 1118 406 437 25.6 16
Scan20631 1140 436 470 22.2 16
Scan19761 1151 441 476 24.8 16
Scan11886 1159 389 416 21.5 16
Scan2738 1161 439 473 25 16

ISPRS FSite7 6907 603 696 30.8 16
FSite8 6082 423 490 31.2 16

TABLE 5 | Efficiency comparison between the existing and proposed method.

Compression
Efficiency Metrics

Existing Tensor tucker
Algorithm

Proposed DLQCPCD Algorithm

Compressed bitstream 5.7% of the original image (averagely) 16 Number of Neurons
Quality of Decompressed PCD 55 db (average) 160 db (average)
Execution Time 591.8 s 174.46 s
Execution Speed (per instruction) 2.9 s 0.6 s
Main memory Utilization 3.8% 3.6%
Processor Utilization 44% (approximately) 60% (approximately)
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